WO2018021161A1 - ポリオレフィン系樹脂用結晶核剤、ポリオレフィン系樹脂用結晶核剤の製造方法、及び、ポリオレフィン系樹脂用結晶核剤の流動性の改良方法 - Google Patents

ポリオレフィン系樹脂用結晶核剤、ポリオレフィン系樹脂用結晶核剤の製造方法、及び、ポリオレフィン系樹脂用結晶核剤の流動性の改良方法 Download PDF

Info

Publication number
WO2018021161A1
WO2018021161A1 PCT/JP2017/026379 JP2017026379W WO2018021161A1 WO 2018021161 A1 WO2018021161 A1 WO 2018021161A1 JP 2017026379 W JP2017026379 W JP 2017026379W WO 2018021161 A1 WO2018021161 A1 WO 2018021161A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleating agent
crystal nucleating
polyolefin resin
bis
polyolefin
Prior art date
Application number
PCT/JP2017/026379
Other languages
English (en)
French (fr)
Inventor
祥平 岩崎
陽平 内山
松本 和也
光子 井上
佑里恵 篠田
崇之 前田
Original Assignee
新日本理化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016149528A external-priority patent/JP6694139B2/ja
Priority claimed from JP2017128572A external-priority patent/JP6867593B2/ja
Application filed by 新日本理化株式会社 filed Critical 新日本理化株式会社
Priority to CN201780047038.6A priority Critical patent/CN109563308B/zh
Priority to US16/321,775 priority patent/US11634427B2/en
Priority to EP17834169.9A priority patent/EP3492519B1/en
Publication of WO2018021161A1 publication Critical patent/WO2018021161A1/ja
Priority to US18/184,127 priority patent/US20230219972A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/156Heterocyclic compounds having oxygen in the ring having two oxygen atoms in the ring
    • C08K5/1575Six-membered rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0047Agents changing thermal characteristics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/527Cyclic esters

Definitions

  • the present invention relates to an improvement in fluidity of a crystal nucleating agent for polyolefin resins, and more specifically, a method for improving the fluidity, and production of a crystal nucleating agent for polyolefin resins having improved fluidity including the method.
  • the present invention relates to a method, a crystal nucleating agent for polyolefin resin having improved fluidity obtained by the method, a polyolefin resin composition comprising the crystal nucleating agent, and a molded article thereof.
  • Polyolefin resins such as polyethylene and polypropylene have inexpensive and well-balanced performance, and are used in various applications as general-purpose plastics.
  • polyolefin resins are crystalline resins, and are often used with the addition of a crystal nucleating agent for the purpose of improving production efficiency and for the purpose of improving mechanical properties, thermal properties, and optical properties.
  • a crystal nucleating agent is indispensable for improving transparency, which is an optical property.
  • the above-mentioned crystal nucleating agents include inorganic crystal nucleating agents such as talc and organic crystal nucleating agents such as diacetal compounds, metal salts of carboxylic acids and phosphoric acid esters, and organic crystal nucleating agents.
  • crystal nucleating agents of dissolution type and non-dissolution type are crystal nucleating agents of dissolution type and non-dissolution type.
  • a dissolution type organic crystal nucleating agent typified by the diacetal compound is particularly effective and widely used.
  • Patent Documents 1 to 3 a method of improving fluidity by granulating
  • Patent Documents 4 to 7 a method of improving fluidity by adding a fluidity improver without granulating
  • fluidity improving methods are not limited to crystal nucleating agents, and the following two methods are generally known and widely used.
  • (1) Method for controlling particle shape such as particle size (2) Method for adding additive effective for improving fluidity, ie, fluidity improver
  • the demand for liquidity has become increasingly severe in recent years, and it has been difficult for the method (2) to sufficiently satisfy the demand. Therefore, the method (1) is often used in applications that require stricter requirements on fluidity.
  • the larger the particle size, the better the fluidity, and the method of granulating by mixing with the nucleating agent alone or with other additives, or mixing with a resin in advance to form a masterbatch This method is used as a general-purpose method.
  • the granulating method is also important for fluidity, and various studies have been made so far.
  • Patent Document 8 a method of granulating without adding unwanted foreign components by adding only an antioxidant, an antacid and a lubricant. If it is not included, granulation is difficult, and there is a limit to the reduction of the binder amount.
  • the present invention relates to a method for improving the fluidity of a crystal nucleating agent for polyolefin resins essentially without using an additive, a method for producing a crystal nucleating agent for polyolefin resins having improved fluidity, including the method, and
  • An object of the present invention is to provide a polyolefin resin crystal nucleating agent having improved flowability obtained by the method, a polyolefin resin composition containing the crystal nucleating agent, and a molded product thereof.
  • the present invention relates to a method for improving the fluidity of a crystal nucleating agent for polyolefin resins shown below, a method for producing a crystal nucleating agent for polyolefin resins having improved fluidity, and the improvement of fluidity obtained by the method.
  • the present invention provides a crystal nucleating agent for polyolefin resin, a polyolefin resin composition containing the crystal nucleating agent, and a molded article thereof.
  • the present invention relates to a crystal nucleating agent for polyolefin resin, which has a loose bulk density in the range of 0.25 to 0.50 g / cm 3 and a bulk density of 0.35 to 0.80 g / cm 3. 3.
  • a polyolefin-based crystal nucleating agent characterized by being in the range of 3 .
  • the polyolefin resin crystal nucleating agent preferably has an angle of repose of 48 degrees or less.
  • the crystal nucleating agent for polyolefin resin is preferably a diacetal compound represented by the following general formula (1).
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched carbon, An alkoxy group having 1 to 4 carbon atoms, a linear or branched alkoxycarbonyl group having 1 to 4 carbon atoms, or a halogen atom;
  • R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, or a linear or branched carbon atom.
  • a hydroxyalkyl group of formula 1 to 4 is shown.
  • m and n each represents an integer of 1 to 5.
  • R 1 and R 2 are the same or different, and are a methyl group or an ethyl group, R 3 is a hydrogen atom, and m and n are integers of 1 or 2.
  • p is preferably 1.
  • R 1 and R 2 are the same or different and are a propyl group or a propoxy group
  • R 3 is a propyl group or a propenyl group
  • m and n are 1.
  • P is preferably 1.
  • the compound having the binder effect was removed from the extruded granulated product comprising the polyolefin resin crystal nucleating agent comprising a raw material powder of the polyolefin resin crystal nucleating agent and a compound having a binder effect.
  • a granular material is preferred.
  • the polyolefin resin crystal nucleating agent preferably has a powdering rate of 40% or less. Further, it is preferable that the granular material has a columnar shape with a diameter of 0.5 to 5.0 mm.
  • the said crystal nucleating agent for polyolefin-type resins is the compression product which carried out the dry compression process.
  • the dry compression process is preferably a roller compression method.
  • the roll pressure in the dry compression process is preferably in the range of 0.1 to 10 MPa.
  • the polyolefin resin crystal nucleating agent remains on a JIS test sieve having a mesh opening of 1 mm in a screening test conducted without breaking secondary agglomerates on the sieve under conditions in accordance with JIS K0069 (1992). It is preferable that the ratio with respect to the total weight of a thing is 25 weight% or less.
  • the polyolefin resin crystal nucleating agent preferably has a ratio of 50 volume% or more to the total volume of coarse particles having a particle diameter of 15 ⁇ m or more in laser diffraction particle size distribution measurement.
  • the present invention also relates to a method for producing a polyolefin resin crystal nucleating agent having improved fluidity, wherein (i) a mixing step of mixing a raw material powder of a polyolefin resin crystal nucleating agent and a compound having a binder effect (Ii) Granulation step of granulating the mixture obtained in the step (i) by extrusion granulation; (iii) Granulation product obtained in the step (ii) in the step (i) It is also a method for producing a crystal nucleating agent for polyolefin resin comprising a step of removing a compound having a mixed binder effect.
  • the polyolefin resin crystal nucleating agent obtained in the above step (iii) has a loose bulk density of 0.25 to 0.50 g / cm 3 and a bulk density of 0.30 to 0.80 g / m 3. 3 and a pulverization rate of 40% or less is preferable.
  • this invention is a manufacturing method of the crystal nucleating agent for polyolefin resin, Comprising: It is a manufacturing method of the crystal nucleating agent for polyolefin resin characterized by comprising the dry-type compression process process by a roller compression method. The roll pressure in the compression processing step is preferably in the range of 0.1 to 10 MPa.
  • the present invention also relates to a polyolefin resin comprising a polyolefin resin and a crystal nucleating agent for polyolefin resin, or a crystal nucleating agent for polyolefin resin produced by the method for producing a crystal nucleating agent for polyolefin resin. It is also a composition. Moreover, this invention is also a polyolefin resin molding which uses the said polyolefin resin composition as a raw material.
  • the present invention also relates to a method for improving the fluidity of a crystal nucleating agent for polyolefin-based resins, wherein the loose bulk density of the crystal nucleating agent is in the range of 0.25 to 0.50 g / cm 3 , and the bulk density is increased.
  • a method for improving the fluidity of the crystal nucleating agent for polyolefin resin wherein the powdering rate is adjusted to 40% or less in the range of 0.3 to 0.80 g / m 3 .
  • the present invention is also a method for improving the fluidity of a crystal nucleating agent for polyolefin resin, which comprises a dry compression process step by a roller compression method.
  • the crystal nucleating agent for polyolefin resins of the present invention is very excellent in fluidity, and can greatly contribute to improvement of productivity. Further, the crystal nucleating agent for polyolefin resins of the present invention has the same or better performance than conventional crystal nucleating agents in terms of dispersibility and solubility in polyolefin resins, which has been a problem. Since it is a problem-free level and can sufficiently exhibit the nucleating agent performance, and the performance and appearance of the polyolefin resin molded product can be obtained at a desired level, it can be used with confidence. Therefore, the polyolefin resin crystal nucleating agent of the present invention can be widely used in various applications, and the obtained molded product has excellent performance and is useful in many applications.
  • the polyolefin resin crystal nucleating agent of the present invention (hereinafter also simply referred to as “crystal nucleating agent”) has a loose bulk density in the range of 0.25 to 0.50 g / cm 3 and a bulk density of bulk.
  • the range is 0.30 to 0.80 g / cm 3 .
  • the loose bulk density is preferably 0.30 to 0.45 g / cm 3 , and more preferably the loose bulk density is 0.35 to 0.45 g / cm 3 .
  • the above-mentioned bulk density is preferably 0.35 to 0.75 g / cm 3 , and the above-mentioned bulk density is more preferably 0.35 to 0.70 g / cm 3 .
  • the bulk density is greatly increased compared to the conventional products, and it is assumed that this has an effect on improving the fluidity.
  • the Note that the bulk density is a value obtained by further measuring the loose bulk density and making it dense by tapping or the like, and is usually larger than the loose bulk density.
  • the bulk density is a density calculated by filling the container with a certain volume, and the container is in a rough state in which the container is slowly filled (without applying pressure).
  • the value measured in (1) is referred to as loose bulk density
  • the value measured after further tapping it under certain conditions to form a dense state is referred to as bulk density.
  • bulk density the value measured after further tapping it under certain conditions to form a dense state.
  • the bulk density is greatly increased after granulation, voids between the powders etc. existing before granulation are reduced by granulation, and good granulation is achieved. It can be confirmed that granules are obtained.
  • the bulk density is a value that can be easily obtained by measuring the capacity of the container and the weight of the filled contents as described above, and can be measured by the following method, for example. Hold the funnel vertically over the opening of the graduated cylinder, slowly put a specified amount of sample through the funnel into the graduated cylinder (without applying pressure), and measure the weight of the sample in the graduated cylinder using a scale. To do. The loose bulk density is obtained from the obtained weight using the following formula (1). Subsequently, after repeating a predetermined number of operations (tapping) of dropping the measuring cylinder vertically from a certain height on a rubber sheet or the like. The volume of the sample in the graduated cylinder is read, and the bulk density is obtained using the following formula (2).
  • the bulk density of the obtained crystal nucleating agent is within a specific range from the viewpoint of dispersibility and solubility in the resin. If the bulk density is too high, the crystal nucleating agent is too hard and too tight, making it difficult to disperse in the resin and reducing the solubility. Accordingly, it is important that the bulk density is in a specific range in order to have good fluidity and excellent dispersibility and solubility in the resin.
  • the crystal nucleating agent of the present invention has an angle of repose of preferably 48 degrees or less, more preferably 46 degrees or less, still more preferably 45 degrees or less, particularly preferably from the viewpoint of improving the fluidity which is the object of the present invention. Is recommended to be 40 degrees or less. When the angle of repose exceeds 48 degrees, sufficient fluidity tends to be hardly obtained.
  • crystal nucleating agent of the present invention examples include diacetal compounds, carboxylate compounds, phosphate ester salt compounds, amide compounds, rosin compounds, and the like. Among these, the effect of the present invention is most remarkable in the diacetal compound. However, the type is not particularly limited as long as the effect of the present invention is exhibited.
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched carbon, An alkoxy group having 1 to 4 carbon atoms, a linear or branched alkoxycarbonyl group having 1 to 4 carbon atoms, or a halogen atom;
  • R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, or a linear or branched carbon atom.
  • a hydroxyalkyl group of formula 1 to 4 is shown.
  • m and n each represents an integer of 1 to 5.
  • p represents 0 or 1;
  • Two R 1 may be bonded to each other to form a tetralin ring together with a benzene ring to which they are bonded.
  • Two R 2 groups may be bonded to each other to form a tetralin ring together with the benzene ring to which they are bonded.
  • more preferable compounds include, for example, R 1 and R 2 in the general formula (1) are the same or different, and are a methyl group or an ethyl group, and R 3 is a hydrogen atom.
  • R 1 and R 2 in the general formula (1) are the same or different, and are a methyl group or an ethyl group, and R 3 is a hydrogen atom.
  • R 1 and R 2 in the general formula (1) are propyl groups or propoxy groups
  • R 3 is propyl
  • m and n are 1, and p is 1.
  • diacetal compound examples include the following compounds. 1,3: 2,4-di-O-benzylidene-D-sorbitol, 1,3: 2,4-bis-O- (methylbenzylidene) -D-sorbitol, 1,3: 2,4-bis-O -(O-methylbenzylidene) -D-sorbitol, 1,3: 2,4-bis-O- (m-methylbenzylidene) -D-sorbitol, 1,3: 2,4-bis-O- (p- Methylbenzylidene) -D-sorbitol, 1,3: 2,4-bis-O- (ethylbenzylidene) -D-sorbitol, 1,3: 2,4-bis-O- (o-ethylbenzylidene) -D- Sorbitol, 1,3: 2,4-bis-O- (m-ethylbenzylidene) -D-sorbitol, 1,3: 2,4-bis
  • Particularly preferred embodiments include 1,3: 2,4-bis-O- (p-methylbenzylidene) -D-sorbitol, 1,3: 2,4-bis-O- (p-ethylbenzylidene) -D. -Sorbitol, 1,3: 2,4-bis-O- (3 ', 4'-dimethylbenzylidene) -D-sorbitol, 1,3: 2,4-bis-O- (pn-propylbenzylidene) Examples include 1-propyl sorbitol.
  • the diacetal compound of the said specific aspect may be used independently, from a viewpoint of other performance, for example, low-temperature workability, it uses it in the aspect which used together or used 2 or more types of diacetal compounds. Also good.
  • diacetal compound examples include the production methods described in JP-B-48-43748, JP-A-53-5165, JP-A-57-185287, JP-A-2-231488, and the like. And can be easily manufactured. Moreover, what is currently marketed as a crystal nucleating agent for polyolefins, for example, Gelol D, Gelall MD, Gelall DXR, manufactured by Shin Nippon Rika Co., Ltd., Milad 3988, Milad NX8000 manufactured by Milliken (USA), etc. are used as they are. May be.
  • crystal nucleating agent other than the diacetal compound examples include sodium benzoate, pt-butylbenzoic acid aluminum salt, cyclohexanedicarboxylic acid metal salt represented by the following general formula (2), and general formula (3 )
  • a carboxylate compound such as a norbornane dicarboxylic acid metal salt, a phosphate ester salt compound represented by the following general formula (4), an amide compound represented by the following general formula (5), and the following general formula Examples thereof include rosin compounds such as rosin acid represented by (6) or metal salt compounds thereof (for example, alkali metal salts such as lithium, sodium, potassium, and magnesium).
  • M 1 and M 2 are both lithium ions, or a single metal selected independently from the group consisting of calcium, strontium, zinc, magnesium and monobasic aluminum.
  • R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are the same or different and are a hydrogen atom or an alkyl having 1 to 9 carbon atoms.
  • a group (wherein any two vicinal (bonded to adjacent carbon) or geminal (bonded to the same carbon) alkyl groups may together form a hydrocarbon ring having up to 6 carbon atoms).
  • R 17 , R 18 , R 19 , R 20 , R 21 , R 22 , R 23 , R 24 , R 25 , and R 26 are a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, Hydroxy group, alkoxy group having 1 to 9 carbon atoms, alkyleneoxy group having 1 to 9 carbon atoms, amino group, and alkylamino group having 1 to 9 carbon atoms, halogen atom, phenyl group, alkylphenyl group, and up to 9
  • the metal cation is selected from the group consisting of geminal or vicinal carbocycles having the following carbon atoms, preferably the metal cation is calcium, strontium, barium, magnesium, aluminum Arm, silver, sodium,
  • R 27 to R 30 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 9 carbon atoms;
  • R 31 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms;
  • M 5 represents an alkali metal, and when d is 2, M 5 represents an alkaline earth metal, zinc or hydroxyaluminum.
  • R 32 represents a saturated or unsaturated aliphatic polycarboxylic acid residue having 2 to 18 carbon atoms, an alicyclic polycarboxylic acid residue having 3 to 18 carbon atoms, or an aromatic polycarboxylic acid residue having 6 to 18 carbon atoms.
  • R 33 s are the same or different and are each a saturated or unsaturated aliphatic amine residue having 5 to 30 carbon atoms, an alicyclic amine residue having 5 to 30 carbon atoms, or 6 to 6 carbon atoms. Represents 30 aromatic amine residues.
  • R 34 , R 35 and R 36 represent a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, and may be the same or different.
  • the method for adjusting the bulk density to a specific range is not particularly limited as long as the effect of the present invention can be obtained.
  • a compound having a binder effect that can be removed in advance can be obtained by an ordinary production method. After granulating the mixture of the obtained crystal nucleating agent for polyolefin resin (hereinafter referred to as “raw material powder of crystal nucleating agent for polyolefin resin”) by extrusion or the like, the compound having the mixed binder effect is removed. Thus, the portion where the compound having the binder effect removed in the granular material is present becomes a cavity, and the bulk density can be reduced as compared with a granulated material having a similar shape.
  • the bulk density can be reduced by performing only the compression treatment in a powder state or in a partially flaky state. Can be adjusted.
  • the above-mentioned “raw material powder for polyolefin resin crystal nucleating agent” may be any polyolefin resin crystal nucleating agent obtained by a normal production method, and the size, shape, type of compound, etc. It is not limited.
  • the crystal nucleating agent of the present invention is a granular material obtained by removing the compound having the binder effect from the extruded granulated product made of a mixture containing the raw material powder of the crystal nucleating agent for polyolefin resin and the compound having the binder effect.
  • the above-mentioned granularity is large enough to improve fluidity as described below, that is, has a certain bulk density and does not easily powder, that is, indicates a certain powdering rate.
  • Such a granular crystal nucleating agent is obtained by, for example, mixing a crystal nucleating agent powder obtained by a normal production method and a compound having a binder effect, and granulating the resulting mixture by extrusion granulation. It can be easily obtained by removing the compound having the binder effect mixed above.
  • the inventors of the present invention added a compound obtained by extruding and granulating a mixture of a raw material powder for a polyolefin-based resin crystal nucleating agent and a specific compound having a binder effect at a specific ratio under specific conditions, and then adding the above compound
  • the above-mentioned bulk density and the powdering rate described later can be suitably in a specific range, and the granular polyolefin resin whose dispersibility in the resin is improved without containing a binder It has been found that a crystal nucleating agent can be produced.
  • the obtained granular polyolefin resin crystal nucleating agent is very excellent in fluidity, has no problems such as caking, and exhibits excellent dispersibility and solubility in the resin. It has also been found that a polyolefin resin composition containing a crystal nucleating agent and a molded product thereof are very excellent in transparency.
  • the crystal nucleating agent obtained by the above method has a compound having a binder effect removed, is substantially free of a binder compound, and contains a conventional binder compound and is a granular nucleating agent for polyolefin resin. Problems such as caking, which is a problem in the past, are also resolved, and a wider range of applications is possible.
  • the powdering rate is preferably within a specific range.
  • the powdering rate becomes large, when actually using, a granular material will be broken and pulverized, and there exists a tendency for the fluidity improvement effect by granulation to become difficult to be acquired.
  • it is important that the powdering rate is in a specific range, and when the powdering rate is excessively large, transfer of the granular crystal nucleating agent is performed.
  • the granular material is crushed and not only fluidity is lowered, but there is also a concern that problems such as dust may occur. In that case, the above-described bulk density generally becomes a small value.
  • the above-mentioned pulverization rate is a measure of the hardness of the granular material after granulation.
  • the weight pulverized to a certain particle size or less is measured.
  • the ratio to the total weight before giving an impact was determined and used as the powdering rate.
  • vibration is applied on the 600 ⁇ m sieve for a predetermined time, and after the vibration is stopped, the weight that passes through the 600 ⁇ m sieve is measured while the vibration is applied.
  • the value divided by the total weight put on the 600 ⁇ m sieve before applying vibration was multiplied by 100 to obtain the powdering rate (%).
  • the powdering rate is preferably 40% or less, more preferably 30% or less, still more preferably 20% or less, and particularly preferably 10%. % Or less is recommended from the viewpoint of fluidity improvement effect.
  • the powdering rate is too small, dispersibility and solubility in the resin tend to decrease, but by selecting a compound having a crystal nucleating agent and a binder effect, the powdering rate is not necessarily small, The dispersibility and solubility in the resin are not necessarily reduced.
  • the size in granulation varies depending on the type of crystal nucleating agent and the application to be used, and it is difficult to determine it generally, but preferably the diameter after granulation and after removal of the compound having a binder effect is 0. It is recommended that it be 5 mm or more.
  • the particle size after granulation may affect the dispersibility and solubility in the resin.
  • the granular material is cylindrical, it is preferable from the viewpoint of dispersibility and solubility in the resin. It is recommended that the diameter is 5.0 mm or less, more preferably 2.5 mm or less, and still more preferably 1.5 mm or less.
  • the diameter can be easily measured by a method of measuring the diameter of the obtained cylindrical granular material using a caliper or the like.
  • the compound having a binder effect in the present invention means a compound having an effect of promoting the pressure bonding between the raw material powders of the polyolefin resin crystal nucleating agent, specifically, the polyolefin resin crystal nucleating agent of the above. It is recommended that the compound has an effect of wetting the surface of the raw material powder, swelling or partially dissolving the raw material powder of the polyolefin resin crystal nucleating agent.
  • any compound having any structure can be used as long as it exhibits the effect of the present invention.
  • it in order to satisfy the object of the present invention, it can be easily removed after granulation. It is necessary to be a compound.
  • the removal method is a method of distilling off by drying or the like (drying method)
  • lower alcohols such as methanol, ethanol, propanol, butanol and pentanol
  • low-boiling hydrocarbon compounds such as hexane and cyclohexane
  • ketone compounds such as acetone and methyl ethyl ketone
  • ether compounds such as dioxane, and water.
  • alcohol having 1 to 4 carbon atoms, water, or a mixture of the alcohol and water is recommended.
  • the alcohol is more preferably methanol and / or ethanol.
  • methanol or a mixture of methanol and water is most recommended.
  • the proportion of methanol in the mixture is preferably 5% by weight or more, more preferably 10% by weight or more, still more preferably 30% by weight or more, and particularly preferably 50% by weight. The above is preferable.
  • glycerin liquid paraffin, paraffin wax, fatty acid, higher alcohol and the like can also be used.
  • the mixing amount of the compound having a binder effect with respect to the raw material powder of the polyolefin resin crystal nucleating agent is not particularly limited as long as the effect of the present invention is achieved, and further varies depending on the type of each compound.
  • the amount is preferably 20 to 60 parts by weight, more preferably 30 to 50 parts by weight with respect to 100 parts by weight of the raw material powder of the polyolefin resin crystal nucleating agent. It is recommended that the amount be 40 to 50 parts by weight.
  • the amount of the compound having the binder effect is less than 20 parts by weight, granulation tends to be difficult, and if it is forcibly granulated, there is a concern that the dispersibility and solubility in the resin may decrease, and 60 parts by weight Even if it exceeds, it is difficult to obtain an improvement effect commensurate with the mixing amount, and there is a concern that the powdering rate will increase, both of which are not preferred.
  • the crystal nucleating agent of the present invention is preferably a compressed product that has been dry-compressed because the above-described bulk density can be suitably within a specific range.
  • Such a crystal nucleating agent can be easily obtained by dry-compressing the raw material powder for the polyolefin resin crystal nucleating agent.
  • the inventors of the present invention have sought for a method that does not add an additive that is a completely different component, and as a result of intensive studies, a crystal nucleating agent having a specific characteristic produced by a specific method essentially uses the additive. Even without the above, it has been found that the above-mentioned bulk density can be suitably satisfied, and the fluidity of the crystal nucleating agent can be remarkably improved without significantly impairing the dispersibility and solubility in the resin, which has been regarded as a problem in the past. .
  • the conventional compression granulation is an operation aimed at granulating, that is, producing a large and hard granular material, whereas the raw material powder for the polyolefin resin crystal nucleating agent is used.
  • This is an operation in which only the compression treatment is performed in a powdered state or in a partially flaky state, not in a completely granular form. Therefore, the shape of the crystal nucleating agent of the present invention obtained by the dry compression process is a partially coarsened powdery or brittle flake shaped compressed product, and the granular material obtained by conventional compression granulation is It shows completely different properties.
  • the shape of the raw material powder for the polyolefin resin crystal nucleating agent used in the dry compression process is not particularly limited as long as the effect of the present invention is achieved, but preferably the average particle size is less than 15 ⁇ m, more preferably 10 ⁇ m. The following powders are particularly recommended. By satisfying this shape, a tendency to positively affect the dispersibility and solubility of the dry-compressed crystal nucleating agent in the polyolefin resin is recognized.
  • the crystal nucleating agent of the present invention can be produced, for example, by a production method comprising the following steps (i) to (iii).
  • Step (iii): The compound having the binder effect mixed in the step (i) is removed from the granulated product obtained in the step (ii).
  • the process for producing a crystal nucleating agent for polyolefin resins according to the present invention comprising such steps (i) to (iii) is also one aspect of the present invention.
  • the mixing method of the step (i) may be any method as long as the raw material powder of the polyolefin resin crystal nucleating agent and the compound having a binder effect can be mixed uniformly. Examples thereof include a method of mixing for several minutes to several tens of minutes while heating to room temperature or 100 ° C. or lower using a stirring mixer or a screw mixer.
  • the amount of the compound having the binder effect with respect to the raw material powder of the polyolefin resin crystal nucleating agent is not particularly limited as long as the effect of the present invention is exerted, and further depends on the type of each compound. In addition, since it varies depending on the granulation conditions, it is not generally determined, but preferably it is 20 to 60 parts by weight with respect to 100 parts by weight of the raw material powder of the polyolefin resin crystal nucleating agent. It is recommended that the amount be 30 to 50 parts by weight, more preferably 40 to 50 parts by weight.
  • the amount of the compound having the binder effect is less than 20 parts by weight, granulation tends to be difficult, and if it is forcibly granulated, there is a concern that the dispersibility and solubility in the resin may decrease, and 60 parts by weight Even if it exceeds, it is difficult to obtain an improvement effect commensurate with the mixing amount, and there is a concern that the powdering rate will increase, both of which are not preferred.
  • Extrusion granulation is a method in which a raw material, in the present invention, the mixture obtained in the above step (i) is subjected to pressure using a screw, plunger, roller, etc., and a screen having a large number of holes of a certain size. It is a method of granulating by extruding from a die horizontally or downward in a columnar shape, and after being extruded into a columnar shape, it can be cut into an appropriate length with a cutter or the like to obtain a granular material. The obtained granular material can be further shaped using a shaping machine or the like.
  • the extrusion method is not particularly limited as long as the granulated product having the effects of the present invention can be obtained. However, when productivity and the like are taken into consideration, a method of extruding downward using a roller is the most efficient.
  • the extrusion granulation is usually performed at room temperature, but may be performed by heating to a low temperature of 100 ° C. or lower.
  • the pore diameter of the screen die is not particularly limited as long as a granulated product having the effect of the present invention is obtained, but preferably, considering the balance between fluidity and dispersibility and solubility in the resin, It is recommended to use a screen die having a hole diameter of about 0.5 to 5.0 mm, preferably a screen die having a hole diameter of about 0.5 to 2.5 mm, more preferably about 0.5 to 1.5 mm.
  • the effect of the present invention can be exhibited most by using a screen die having a hole diameter of.
  • the pressure at the time of extrusion depends on the hole diameter of the screen die, and it is difficult to limit it in general. However, if the pressure is too low, productivity tends to decrease. There is a concern that the obtained granular material becomes too hard, and the dispersibility and solubility in the polyolefin resin are affected.
  • a cutter or the like can be installed immediately after the screen die, adjusted to an appropriate length, and supplied to the next step.
  • any method may be used as long as the compound having the binder effect mixed in the step (i) can be removed.
  • the method varies depending on the type of compound having a binder effect, and a method suitable for the type is selected. For example, when a lower alcohol having a relatively low boiling point is used, heating and / or under reduced pressure is used.
  • the so-called drying method in which the solvent is distilled off, is generally used.
  • a so-called extraction method in which the compound is removed using a solvent or the like that dissolves only the compound having a binder effect can also be used.
  • the drying method it is important to set conditions so that coloring or the like does not occur, and it is recommended that the conditions be set to 150 ° C. or lower, more preferably 120 ° C. or lower. Further, when it is difficult to distill off, a method of reducing the pressure is also effective.
  • the crystal nucleating agent of the present invention can also be produced, for example, by dry compression processing.
  • the method for producing the polyolefin resin crystal nucleating agent of the present invention by such dry compression processing is also one aspect of the present invention.
  • Examples of the dry compression method include a tablet method and a roller compression method, but a roller compression method that can control the compression state more precisely is recommended.
  • the apparatus used for the roller compression can use the apparatus normally used, and specifically, the compactor by Hosokawa Micron Corporation, the roller compactor by Freund Sangyo Co., Ltd., etc. are illustrated.
  • the polyolefin resin crystal nuclei are adjusted by adjusting the supply amount of raw material powder of the polyolefin resin crystal nucleating agent, the distance between rolls, the roll speed, the roll pressure, and the like.
  • the raw material powder of the agent can be dry-compressed.
  • the roll pressure is important, and it is recommended to adjust the pressure in the range of preferably 0.1 to 10 MPa, more preferably 1 to 10 MPa, and further preferably 3 to 10 MPa. When the roll pressure is less than 0.1 MPa, fluidity may be insufficiently improved, and when it exceeds 10 MPa, the dispersibility may be lowered.
  • the shape of the crystal nucleating agent of the present invention is not particularly limited as long as the effects of the present invention are exhibited, and may be powdery or flaky (flaky).
  • the crystal nucleating agent of the present invention when it is in the form of flakes, it can be used in the form of powder by further pulverizing or crushing. Although the fluidity is improved even in the shape, it is more preferable to use after pulverization or pulverization when emphasis is placed on dispersibility or solubility in polyolefin resin.
  • the flaky crystal nucleating agent of the present invention when used after being pulverized or pulverized, it is more preferable in terms of fluidity to have a complex shape including coarse particles at a certain ratio.
  • the ratio of coarse particles having a particle size of 15 ⁇ m or more is preferably 50% by volume or more, more preferably 60% by volume or more with respect to the total volume is particularly recommended. It is presumed that the entire fluidity including fine particles is improved by including coarse particles at a ratio of 50% by volume or more.
  • the pulverization or pulverization can be performed using a pulverizer or pulverizer that is usually used, for example, a hammer mill, a pin mill, a jet mill, a pulverizer, a cutter mill, a planar crusher, or a flake crusher.
  • a general-purpose classifier after crushing or crushing for example, a screen classifier such as a vibration sieve or a stirring cylindrical sieve, or a wind classifier such as forced centrifugal separation or gravity inertia separation. You may classify.
  • the laser diffraction particle size distribution measurement can be performed by a general-purpose method and conditions using a general-purpose apparatus.
  • a laser diffraction particle size distribution meter manufactured by Malvern Instruments, "Mastersizer 3000" is used. And thoroughly stirring and mixing in a wet measurement cell to disperse the sample in an aqueous solution to which a surfactant has been added as a dispersant, and then further stirring and circulating the resulting mixture in the apparatus After the ultrasonic wave is applied and dispersed sufficiently uniformly in the apparatus, the particle size distribution of the sample can be measured while applying the ultrasonic wave.
  • the crystal nucleating agent of the present invention obtained by the dry compression process has a feature that the secondary cohesion is very small. This feature is considered to be an effect of the dry compression processing according to the present invention.
  • the secondary agglomeration property was determined from the amount of secondary agglomerates having a predetermined size or more generated during the test in the screening test. Specifically, a sieving test was performed under the conditions in accordance with 6.1 of JIS K0069 (1992), and the ratio of the residue on the JIS test sieve having an opening of 1 mm to the total weight was determined. In the above screening test, the secondary agglomeration is judged by the amount of secondary agglomerates generated during the sieving test.
  • the effectiveness of the method for evaluating secondary agglomeration is that the same sample of the raw material powder for the polyolefin resin crystal nucleating agent is used for manual sieving under the condition that no secondary agglomerates remain, and the aperture is 1 mm or more. This is confirmed because the amount of the residue on the sieve is significantly smaller than the amount of the secondary agglomerates, a significant difference is recognized, and the reproducibility is generally reproducible. Therefore, it can be said that the more the residue on the sieve, the greater the secondary cohesiveness. Furthermore, when the ratio calculated
  • the present invention relates to a method for improving the fluidity of a crystal nucleating agent for polyolefin resin, wherein the loose bulk density of the crystal nucleating agent is in the range of 0.25 to 0.50 g / cm 3 and the bulk density is 0. It is also a method for improving the fluidity of the crystal nucleating agent for polyolefin resin, wherein the powdering rate is adjusted to 40% or less in the range of 30 to 0.80 g / m 3 .
  • the present invention is also a method for improving the fluidity of a crystal nucleating agent for polyolefin resin, which comprises a dry compression process step by a roller compression method.
  • a dry compression process step by a roller compression method As the roll pressure and the like in the compression processing step, those described in the above-mentioned production of the polyolefin resin crystal nucleating agent can be suitably used.
  • the present invention relates to a polyolefin resin comprising the polyolefin resin and the crystal nucleating agent for polyolefin resin of the present invention, or the crystal nucleating agent for polyolefin resin produced by the method for producing a crystal nucleating agent for polyolefin resin of the present invention. It is also a resin composition.
  • the composition includes, for example, the crystal nucleating agent of the present invention and a polyolefin resin, and if necessary, other polyolefin resin additives, dry blended at room temperature, and then melt-mixed under predetermined conditions. By doing so, it can be easily obtained.
  • the concentration of the crystal nucleating agent of the present invention in the polyolefin-based composition is not particularly limited as long as the effect as the crystal nucleating agent according to the present invention is exhibited, but is preferably 0 with respect to 100 parts by weight of the polyolefin-based resin. 0.001 to 10 parts by weight, more preferably 0.01 to 5 parts by weight.
  • the polyolefin resin is not particularly limited as long as the effects of the present invention are exhibited, and conventionally known polyolefin resins can be used.
  • polyethylene resins, polypropylene resins, polybutene resins, polymethylpentenes can be used.
  • examples thereof include polyresin and polybutadiene resin.
  • high density polyethylene medium density polyethylene, linear polyethylene, ethylene content of 50% by weight or more, preferably 70% by weight or more of ethylene copolymer, propylene homopolymer, propylene of 50% by weight or more, preferably 70% by weight % Propylene copolymer, butene homopolymer, butene content 50% by weight or more, preferably 70% by weight or more butene copolymer, methylpentene homopolymer, methylpentene content 50% by weight or more, preferably 70% by weight methylpentene copolymer And polybutadiene.
  • the copolymer may be a random copolymer or a block copolymer.
  • these resins may be isotactic or syndiotactic.
  • the comonomer constituting the copolymer include ⁇ -olefins having 2 to 12 carbon atoms such as ethylene, propylene, butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, 1,4- Examples include bicyclo type monomers such as endomethylenecyclohexene, (meth) acrylic acid esters such as methyl (meth) acrylate and ethyl (meth) acrylate, and vinyl acetate.
  • a catalyst applied for producing such a polymer not only a Ziegler-Natta type catalyst generally used but also a transition metal compound (for example, a titanium halide such as titanium trichloride and titanium tetrachloride) is chlorinated.
  • a catalyst system, a metallocene catalyst, or the like which is a combination of a catalyst formed on a carrier mainly composed of magnesium halide such as magnesium and an alkylaluminum compound (triethylaluminum, diethylaluminum chloride, etc.) can also be used.
  • melt flow rate (hereinafter abbreviated as “MFR”, JIS K7210-1999) of the polyolefin resin according to the present invention is appropriately selected depending on the molding method to be applied, and is usually about 0.01 to 200 g / 10 min. A range of 0.05 to 100 g / 10 minutes is recommended.
  • the polyolefin resin composition of the present invention may contain other polyolefin resin additives within a range that does not impair the effects of the present invention, depending on the purpose of use and use thereof. Good.
  • polyolefin resin additive examples include various additives described in “Polylist Additives Manual” (January 2002) edited by the Sanitation Council for Polyolefins. Specifically, fluorescent whitening agents (2,5-thiophenediyl (5-tert-butyl-1,3-benzoxazole), 4,4′-bis (benzoxazol-2-yl) stilbene, etc.), Antioxidants, stabilizers (metal compounds, epoxy compounds, nitrogen compounds, phosphorus compounds, sulfur compounds, etc.), UV absorbers (benzophenone compounds, benzotriazole compounds, etc.), surfactants, lubricants (paraffin, wax, etc.) Aliphatic hydrocarbons, higher fatty acids having 8 to 22 carbon atoms, higher fatty acid metal (Al, Ca) salts having 8 to 22 carbon atoms, higher aliphatic alcohols having 8 to 22 carbon atoms, polyglycols, 4 to 22 carbon atoms Esters of higher fatty acids and aliphatic monohydric alcohols
  • the amount used may be used in a range that is usually used as long as the effects of the present invention are not impaired, but for example, preferably 100 parts by weight of polyolefin resin. It is generally used in an amount of about 0.0001 to 100 parts by weight, more preferably about 0.001 to 50 parts by weight.
  • antioxidants examples include phenol-based antioxidants, phosphite-based antioxidants, sulfur-based antioxidants, and the like, and specific antioxidants include 2,6-di-tert-butylphenol. , Tetrakis [methylene-3- (3,5-tert-butyl-4-hydroxyphenol) propionate] methane, phenolic antioxidants such as 2-hydroxy-4-methoxybenzophenone, alkyl disulfides, thiodipropionic acid esters, Sulfur-based antioxidants such as benzothiazole, trisnonylphenyl phosphite, diphenylisodecyl phosphite, triphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, 3,9-bis (2 , 6-tert-butyl-4-methylphenoxy) -2,4, , 10-tetraoxa-3,9-diphosphaspiro [5,
  • tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane which is a phenolic antioxidant
  • tris (2, which is a phosphite-based antioxidant, 4-di-tert-butylphenyl) phosphite, 3,9-bis (2,6-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5 5]
  • Undecane and the like are particularly recommended.
  • the present invention is also a polyolefin resin molded article using the polyolefin resin composition of the present invention as a raw material.
  • the polyolefin resin molded product of the present invention can be obtained by molding the polyolefin resin composition of the present invention according to a conventional molding method.
  • the molding method is not particularly limited as long as the effects of the present invention are exhibited, and any conventionally known molding method such as injection molding, extrusion molding, blow molding, pressure molding, rotational molding, or film molding can be employed.
  • the polyolefin-based resin molded body thus obtained is excellent in optical properties such as transparency and mechanical properties such as impact resistance.
  • optical properties such as transparency and mechanical properties such as impact resistance.
  • the volume of the crystal nucleating agent in the graduated cylinder was read to the order of 0.1 cm 3 , and the bulk density was calculated using the following formula (2).
  • Loose bulk density (g / cm 3 ) weight of crystal nucleating agent in graduated cylinder (g) / 100 cm 3
  • Bulk density (g / cm 3 ) weight of crystal nucleating agent in graduated cylinder (g) / volume of crystal nucleating agent after tapping (cm 3 )
  • Powdering rate (%) weight passing through sieve (g) / weight put on sieve (g) ⁇ 100 All the samples used for the measurement of the dusting rate were screened with the same open sieve as the screen used in the test before the measurement, and only the material remaining on the screen was used. The sample passed through the screen in the above test. All fine powders are powders that were fined during the test.
  • The crystal nucleating agent remains without being discharged from the funnel, and it is difficult to completely discharge the crystal nucleating agent remaining on the funnel only by a slight impact.
  • X The crystal nucleating agent remains in a large amount without being discharged from the funnel, and it is difficult to discharge the crystal nucleating agent remaining on the funnel even when an impact is applied.
  • DMDBS 1,3: 2,4-bis-O- (3 ′, 4′-dimethylbenzylidene) -D-sorbitol
  • EDBS 1,3: 2,4-bis-O— ( p-ethylbenzylidene) -D-sorbitol
  • CDBS 1,3: 2,4-bis-O- (p-chlorobenzylidene) -D-sorbitol
  • PDBN 1,3: 2,4-bis-O— (p- n-propylbenzylidene) -1-n-propylsorbitol
  • a mixture of DMDBS and methanol or a mixed solution of methanol and water, which is a compound having a binder effect, is charged with a predetermined amount shown in Table 1 and stirred at room temperature for 10 minutes to mix a crystal nucleating agent for polyolefin resin and a compound having a binder effect.
  • Classification step After removing the compound having a binder effect, classification is performed with a sieve having an opening of 600 ⁇ m, and small granulated products and ungranulated powder are removed to obtain the granular crystal nucleating agent for polyolefin resin of the present invention. It was. The diameter of the granulated product was measured with a caliper and found to be in the range of 0.8 to 1.2 mm.
  • MFR 7 g / 10 min (load 2160 g, temperature 230 ° C
  • the dry blend is melt-mixed using a single screw extruder (VS-20 manufactured by Tanabe Plastics Machine Co., Ltd.) at a barrel temperature of 250 ° C., and then the extruded strand is cooled, cut with a pelletizer, and polyolefin resin.
  • a composition was prepared.
  • Example 1 Extrusion granulation was carried out in the same manner as in Example 1 using only DMDBS without mixing a compound having a binder effect, but production of a granular crystal nucleating agent for polyolefin resin was attempted. However, most of the powder was still in a powder state, and the granulated portion was very brittle, so that it could not be said to be substantially granular. Therefore, operations such as classification were not performed, and the crystal nucleating agent for polyolefin resins outside the present invention was used as it was. Using the obtained polyolefin resin crystal nucleating agent, the loose bulk density and the bulk density were measured, and the results are shown in Table 1. Subsequently, using the obtained crystal nucleating agent for polyolefin resin, the powder fluidity was evaluated by a powder fluidity test (funnel test), and the results are shown in Table 1.
  • Example 2 it implemented similarly to Example 1 and obtained the polyolefin resin composition and the polyolefin resin molding. Using the obtained molded body, the haze value was measured, and the obtained results are shown in Table 1. Moreover, the white spot evaluation in a molded object was performed visually by the said method, and the result was also shown in Table 1.
  • Example 2 it implemented similarly to Example 1 and obtained the polyolefin resin composition and the polyolefin resin molding. Using the obtained molded body, the haze value was measured, and the obtained results are shown in Table 1. Moreover, the white spot evaluation in a molded object was performed visually by the said method, and the result was also shown in Table 1.
  • Example 2 it implemented similarly to Example 1 and obtained the polyolefin resin composition and the polyolefin resin molding. Using the obtained molded body, the haze value was measured, and the obtained results are shown in Table 2. Moreover, the white point evaluation in a molded object was performed visually by the said method, and the result was also shown in Table 2.
  • Example 13 it implemented similarly to Example 13 and obtained the polyolefin resin composition and the polyolefin resin molding.
  • the haze value was measured, and the obtained results are shown in Table 2.
  • the white point evaluation in a molded object was performed visually by the said method, and the result was also shown in Table 2.
  • Examples 25 to 32 The granular nucleating agent for polyolefin resin of the present invention was obtained in the same manner as in Example 1 except that PDBN was used instead of DMDBS as the nucleating agent for polyolefin resin.
  • the diameter of the granulated product was measured with a caliper and found to be in the range of 0.9 to 1.3 mm.
  • Using the resulting granular crystal nucleating agent for polyolefin resin loose bulk density, bulk density, and powdering rate were measured, and the results are shown in Table 3. Subsequently, using the obtained granular polyolefin resin crystal nucleating agent, the powder fluidity was evaluated by a powder fluidity test (funnel test), and the results are shown in Table 3.
  • Example 5 Extrusion granulation was carried out in the same manner as in Example 1 using only PDBN without mixing a compound having a binder effect, and production of a granular crystal nucleating agent for polyolefin resin was attempted. However, most of the powder was still in a powder state, and the granulated portion was very brittle, so that it could not be said to be substantially granular. Therefore, operations such as classification were not performed, and the crystal nucleating agent for polyolefin resins outside the present invention was used as it was. Using the obtained polyolefin resin crystal nucleating agent, the loose bulk density and the bulk density were measured, and the results are shown in Table 3. Subsequently, using the obtained crystal nucleating agent for polyolefin resin, the powder fluidity was evaluated by a powder fluidity test (funnel test), and the results are shown in Table 3.
  • Examples 33 to 38 The granular nucleating agent for polyolefin resin of the present invention was obtained in the same manner as in Example 1 except that only CDBS was used instead of DMDBS as the nucleating agent for polyolefin resin.
  • the diameter of the granulated product was 0.7 to 1.2 mm as measured with a caliper.
  • Using the resulting granular crystal nucleating agent for polyolefin resin loose bulk density, bulky bulk density, and powdering rate were measured, and the results are shown in Table 4.
  • the powder fluidity was evaluated by a powder fluidity test (funnel test), and the results are shown in Table 4.
  • Example 7 Extrusion granulation was carried out in the same manner as in Example 1 using only CDBS without mixing a compound having a binder effect, and production of a granular crystal nucleating agent for polyolefin resin was attempted. However, most of the powder was still in a powder state, and the granulated portion was very brittle, so that it could not be said to be substantially granular. Therefore, operations such as classification were not performed, and the crystal nucleating agent for polyolefin resins outside the present invention was used as it was. Using the obtained polyolefin resin crystal nucleating agent, the loose bulk density, the bulk density, and the powdering rate were measured, and the results are shown in Table 4. Subsequently, using the obtained crystal nucleating agent for polyolefin resin, the powder fluidity was evaluated by a powder fluidity test (funnel test), and the results are shown in Table 4.
  • the granular nucleating agent for polyolefin resin of the present invention has a significantly improved fluidity which has been a problem until now. It can be seen that this greatly contributes to productivity improvement.
  • the granular polyolefin-based resin crystal nucleating agent of the present invention is very excellent in dispersibility and solubility in the resin. The problem of dispersibility and solubility in the resin, which was a problem with polyolefin resin crystal nucleating agents, has been solved. As a result, the resulting polyolefin resin molded product has no problems such as white spots. It can be seen that it is very useful in various applications.
  • Example 39 Raw material for crystal nucleating agent for polyolefin resin using roll type compression granulator “Co-compacting machine HMS-25” manufactured by Hosokawa Micron Co., Ltd. at room temperature, roll pressure 10MPa, roll rotation speed 25Hz DMDBS (manufactured by Shin Nippon Rika Co., Ltd., Gelol DXR, average particle size of 5 ⁇ m) is continuously supplied to the compression roll as powder, subjected to dry compression, and the flake-shaped crystal nucleating agent of the present invention containing powder (DMDBS compressed product) was obtained.
  • DMDBS manufactured by Hosokawa Micron Co., Ltd. at room temperature
  • roll pressure 10MPa roll rotation speed 25Hz
  • DMDBS manufactured by Shin Nippon Rika Co., Ltd.
  • Gelol DXR average particle size of 5 ⁇ m
  • the flake-shaped crystal nucleating agent of the present invention containing the obtained powder is pulverized using an impact screen crusher “Feather Mill FM-2F” manufactured by Hosokawa Micron Co., Ltd. Further, a powdery crystal nucleating agent of the present invention (DMDBS compressed product) containing coarse particles was also obtained. From the result of the particle size distribution measurement, it was confirmed that the ratio of coarse particles of 15 ⁇ m or more was 63 vol% or more for the obtained powdery crystal nucleating agent of the present invention.
  • Example 40 Except that the roll pressure was changed to 7.5 MPa, it was carried out in the same manner as in Example 1 to obtain a flaky crystal nucleating agent of the present invention and a powdery crystal nucleating agent of the present invention. From the result of the particle size distribution measurement, it was confirmed that the ratio of coarse particles of 15 ⁇ m or more was 59% by volume or more for the obtained powdery crystal nucleating agent of the present invention. Subsequently, by using the obtained powdery crystal nucleating agent of the present invention, the bulk density and the angle of repose were measured, and in the powder flowability test (funnel test) and the screening test, The next cohesiveness was evaluated, and the results are shown in Table 5.
  • Example 41 Except that the roll pressure was changed to 5.0 MPa, it was carried out in the same manner as in Example 1 to obtain a flaky crystal nucleating agent of the present invention and a powdery crystal nucleating agent of the present invention. From the result of the particle size distribution measurement, it was confirmed that the ratio of coarse particles of 15 ⁇ m or more was 53% by volume or more in the obtained powdery crystal nucleating agent of the present invention. Subsequently, by using the obtained powdery crystal nucleating agent of the present invention, the bulk density and the angle of repose were measured, and in the powder flowability test (funnel test) and the screening test, The next cohesiveness was evaluated, and the results are shown in Table 5.
  • Example 42 Except having changed the roll rotational speed into 20 Hz, it implemented similarly to Example 1 and obtained the powdery crystal nucleating agent of this invention. Since the obtained crystal nucleating agent of the present invention was in the form of powder, it was not crushed and subjected to the following fluidity test. Subsequently, by using the obtained powdery crystal nucleating agent of the present invention, the bulk density and the angle of repose were measured, and in the powder flowability test (funnel test) and the screening test, The next cohesiveness was evaluated, and the results are shown in Table 5.
  • Example 43 Except that EDBS was used as the raw material powder for the crystal nucleating agent for polyolefin resin, the same operation as in Example 2 was performed to obtain a flake-shaped crystal nucleating agent of the present invention and a powdered crystal nucleating agent of the present invention. It was. From the result of the particle size distribution measurement, it was confirmed that the ratio of coarse particles of 15 ⁇ m or more was 65 vol% or more for the obtained powdery crystal nucleating agent of the present invention.
  • Example 44 A powdery crystal nucleating agent of the present invention was obtained in the same manner as in Example 4 except that EDBS was used as the raw material powder for the crystal nucleating agent for polyolefin resin. Since the obtained crystal nucleating agent of the present invention was in the form of powder, it was not crushed and subjected to the following fluidity test. Subsequently, by using the obtained powdery crystal nucleating agent of the present invention, the bulk density and the angle of repose were measured, and in the powder flowability test (funnel test) and the screening test, The next cohesiveness was evaluated, and the results are shown in Table 5.
  • Example 45 Except that PDBN was used as the raw material powder for the polyolefin resin crystal nucleating agent, the same procedure as in Example 2 was performed to obtain a flake-shaped crystal nucleating agent of the present invention and a powdered crystal nucleating agent of the present invention. It was. From the result of the particle size distribution measurement, it was confirmed that the ratio of coarse particles of 15 ⁇ m or more was 60% by volume or more for the obtained powdery crystal nucleating agent of the present invention.
  • the dry blend is melt-mixed using a single screw extruder (VS-20 manufactured by Tanabe Plastics Machine Co., Ltd.) at a barrel temperature of 240 ° C., and then the extruded strand is cooled and cut with a pelletizer to obtain a polyolefin resin.
  • a composition was prepared.
  • Example 47 As a crystal nucleating agent, a polyolefin-based resin composition and a polyolefin were prepared in the same manner as in Example 46 except that the powdery crystal nucleating agent of the present invention (compressed product of DMDBS) obtained in Example 40 was used. A resin molded body was obtained. Using the obtained molded body, the haze value was measured, and the obtained results are shown in Table 6. Then, the white point evaluation in a molded object was performed visually by the said method, and the result was combined and shown in Table 6.
  • Example 48 The same procedure as in Example 46 was conducted except that the powdery crystal nucleating agent of the present invention (compressed product of DMDBS) obtained in Example 41 was used as the crystal nucleating agent. A resin molded body was obtained. Using the obtained molded body, the haze value was measured, and the obtained results are shown in Table 6. Then, the white point evaluation in a molded object was performed visually by the said method, and the result was combined and shown in Table 6.
  • Example 49 The same procedure as in Example 46 was conducted except that the powdery crystal nucleating agent of the present invention obtained in Example 42 (compressed product of DMDBS) was used as the crystal nucleating agent. A resin molded body was obtained. Using the obtained molded body, the haze value was measured, and the obtained results are shown in Table 6. Then, the white point evaluation in a molded object was performed visually by the said method, and the result was combined and shown in Table 6.
  • Example 50 As a crystal nucleating agent, a polyolefin-based resin composition and a polyolefin were prepared in the same manner as in Example 46 except that the powdery crystal nucleating agent of the present invention (compressed EDBS) obtained in Example 43 was used. A resin molded body was obtained. Using the obtained molded body, the haze value was measured, and the obtained results are shown in Table 6. Then, the white point evaluation in a molded object was performed visually by the said method, and the result was combined and shown in Table 6.
  • Example 51 As a crystal nucleating agent, a polyolefin-based resin composition and a polyolefin were obtained in the same manner as in Example 46 except that the powdery crystal nucleating agent of the present invention (compressed EDBS) obtained in Example 44 was used. A resin molded body was obtained. Using the obtained molded body, the haze value was measured, and the obtained results are shown in Table 6. Then, the white point evaluation in a molded object was performed visually by the said method, and the result was combined and shown in Table 6.
  • Example 52 As a crystal nucleating agent, a polyolefin-based resin composition and a polyolefin were obtained in the same manner as in Example 46 except that the powdery crystal nucleating agent of the present invention (compressed product of PDBN) obtained in Example 45 was used. A resin molded body was obtained. Using the obtained molded body, the haze value was measured, and the obtained results are shown in Table 6. Then, the white point evaluation in a molded object was performed visually by the said method, and the result was combined and shown in Table 6.
  • the compression-processed crystal nucleating agent of the present invention (actual examples 39 to 45) is more bulky than the non-compressed crystal nucleating agent (comparative examples 9 to 11). It can be seen that the density is greatly increased. Moreover, it can be confirmed from the results of the screening test that the secondary agglomeration is remarkably improved by the compression process, and the fluidity is greatly improved from the results of the angle of repose and the powder flowability evaluation. From this result, it can be seen that by using the crystal nucleating agent of the present invention, workability at the time of blending with the polyolefin resin or at the time of molding after blending is greatly improved.
  • the polyolefin resin composition using the crystal nucleating agent of the present invention that has been subjected to the compression processing of the present invention and the molded product thereof have been converted into undispersed and undissolved materials that have been problematic until now. It can be seen that there is no fear of causing defects such as white spots, and that the present invention shows a very excellent performance as a transparent nucleating agent.
  • the crystal nucleating agent of the present invention is greatly improved in fluidity, and can be used in various applications as a crystal nucleating agent having excellent fluidity.
  • the dispersibility and solubility in the polyolefin-based resin have been improved to a level causing no practical problem, and the molded product can be used without any problem in terms of performance. Therefore, the crystal nucleating agent of the present invention can greatly contribute to the improvement of productivity in various applications, and the obtained polyolefin-based resin molded product is an undispersed or undissolved product of the crystal nucleating agent. It has no defects such as white spots, and has excellent optical properties such as transparency and mechanical properties such as impact resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

本発明は、他の特性を阻害することなく、ポリオレフィン系樹脂用結晶核剤の流動性を改良する方法、及びその流動性の改良された結晶核剤を含む、透明性等の性能に優れポリオレフィン系樹脂組成物及びその成形体を提供することを目的とする。 特定の性状に調整することにより、ポリオレフィン系樹脂用結晶核剤の流動性を改善できることを見出し、その特定の性状を有する結晶核剤を用いることにより、成形加工時における作業性が大きく改善され、更に透明性等の性能に優れたポリオレフィン系樹脂組成物及びその成形体を得ることができる。

Description

ポリオレフィン系樹脂用結晶核剤、ポリオレフィン系樹脂用結晶核剤の製造方法、及び、ポリオレフィン系樹脂用結晶核剤の流動性の改良方法
本発明は、ポリオレフィン系樹脂用結晶核剤の流動性の改良に関するものであり、詳しくは、該流動性の改良方法、その方法を含む流動性の改良されたポリオレフィン系樹脂用結晶核剤の製造方法及び該方法により得られた流動性の改良されたポリオレフィン系樹脂用結晶核剤、更にその結晶核剤を含んでなるポリオレフィン系樹脂組成物及びその成形体に関する。
ポリエチレンやポリプロピレン等のポリオレフィン系樹脂は、安価でバランスの良い性能を有し、汎用のプラスチックとして様々な用途で使用されている。また、一般にポリオレフィン系樹脂は結晶性の樹脂であり、生産効率の向上を目的に、また機械的特性や熱的特性、光学的特性を向上する目的で結晶核剤を加えて用いられることが多い。特に、光学的特性である透明性の改善には結晶核剤の配合が不可欠である。
上記結晶核剤には、タルク等の無機系の結晶核剤とジアセタール系化合物、カルボン酸やリン酸エステルの金属塩等の有機系の結晶核剤があり、更に有機系の結晶核剤には溶解タイプと非溶解タイプの結晶核剤がある。透明性等の光学的特性の改善には上記ジアセタール系化合物に代表される溶解タイプの有機系の結晶核剤が特に有効であり、多く用いられている。
汎用プラスチック、特にポリオレフィン系樹脂の特徴の一つは、安価であることであり、その為には生産性に優れることが重要であり、上述の様に結晶核剤を加えることによる成形サイクルの短縮等の様々な工夫がなされている。原料のフィード性もその重要な因子の一つであり、個々の原料のフィード性、即ちその流動性に優れることが必要である。しかし、上記結晶核剤、なかでもジアセタール系の結晶核剤は流動性が悪く、生産性における大きな問題であった。
そのため、これまでにもジアセタール系化合物をはじめとした結晶核剤の流動性の改良に関して様々な検討がなされてきた。例えば、粒状化することにより流動性を改良する方法(特許文献1~3)や、粒状化せず、流動性改良剤を加えることにより流動性を改良する方法(特許文献4~7)等が提案されており、実際に使われている。
近年、汎用プラスチックにおいては、より一層の生産性の向上が求められており、原料のフィード性、即ちその流動性のより一層の改善が求められており、上記結晶核剤、なかでもジアセタール系の結晶核剤の流動性の更なる改善が生産性を向上する上での大きな課題であった。
上記の通り、流動性の改良方法としては、結晶核剤に限らず一般的に次の2つの方法が知られており、広く使われている。
(1)粒径等の粒子形状をコントロールする方法
(2)流動性の改良に有効な添加剤、即ち流動性改良剤を添加する方法
上述の様に、近年流動性に対する要求は益々厳しくなるなかで、(2)の方法では、その要求を十分に満たすことが難しいのが現状であった。従って、流動性に対してより厳しい要求が求められる用途では(1)の方法が使われることが多い。
(1)の方法の場合、一般に、粒径が大きいほど流動性が良くなる傾向にあり、核剤単独又は他の添加剤と混合して粒状化する方法や予め樹脂と混合してマスターバッチ化する方法等が汎用的な方法として使われている。
しかし、粒状化等により粒径を大きくした場合、流動性は改良されるが、ポリオレフィン系樹脂中での分散性や溶解性が悪くなる傾向があり、その結果、核剤本来の透明性等の性能の低下だけでなく、白点等の外観上の問題も生じる懸念があり、特に分散性等に対する要求が厳しい分野では、バインダー等の添加剤を加えて粒状化する方法が一般的であった。
上記バインダーとしては、これまでにも様々な化合物が検討されてきたが、帯電防止剤や滑剤としてポリオレフィン用添加剤に広く用いられている有機酸モノグリセリド等が、使い勝手の良いバインダーとして知られている。
また、粒状化する方法も流動性に対して重要であり、その方法に関しても、これまでに様々な検討がなされてきた。
一方、最近の傾向として、全般的に環境問題等を配慮して、また配合処方の融通性を確保するため、結晶核剤以外の成分の量をできるだけ少なくする方向に進んでおり、バインダーを添加しないで粒径をコントロールする方法やバインダーを含まないか含んでもごく少量のバインダーで粒状化する方法が望まれている。また、用途によっては、バインダーの配合による核剤そのものの性能への影響も懸念されるケースがあり、バインダー量の低減はその観点からも望まれていた。なかでも、医療用途ではその傾向が特に顕著であり、異種成分である添加剤を使用しない流動性改良方法の開発が強く望まれている。これまでにも、酸化防止剤と制酸剤と滑剤のみを加えることにより、望まない異種成分を含まないで粒状化する方法等も提案されている(特許文献8)が、ある量以上のバインダーを含まないと粒状化が難しく、バインダー量の低減には限界があった。
更に、用途によっては、上述の樹脂中での分散性や溶解性に関してもより要求が厳しくなっており、これまでの粒状化する方法では有機酸モノグリセリド等の比較的融点の低いバインダーを大量に加える必要があった。しかし、その場合、バインダーに起因するケーキング等の新たな問題の発生が指摘されており、その改善が必要となっていた。
特に、ジアセタール系化合物等の結晶核剤の場合、二次凝集性等の問題があり、更に、溶融樹脂中での分散性や溶解性がその核剤性能に大きく影響することが知られており、従来公知の系での粒状化では、全ての要求を十分に満足することが難しいのが現状であり、その改善が強く望まれている。
国際公開第98/33851号 特開2001-81236号公報 国際公開第2002/077094号 特表2009-507982号公報 特開2013-209662号公報 特開2015-30849号公報 国際公開第2014/136824号 特開2002-332359号公報
本発明は、本質的に添加剤を使用することなくポリオレフィン系樹脂用結晶核剤の流動性を改良する方法、その方法を含む流動性の改良されたポリオレフィン系樹脂用結晶核剤の製造方法及び該方法により得られた流動性の改良されたポリオレフィン系樹脂用結晶核剤、更にその結晶核剤を含んでなるポリオレフィン系樹脂組成物及びその成形体を提供することを目的とする。
本発明は以下に示すポリオレフィン系樹脂用結晶核剤の流動性改良方法、その方法を含む流動性の改良されたポリオレフィン系樹脂用結晶核剤の製造方法及び該方法により得られた流動性の改良されたポリオレフィン系樹脂用結晶核剤、更にその結晶核剤を含んでなるポリオレフィン系樹脂組成物及びその成形体を提供するものである。
本発明は、ポリオレフィン系樹脂用結晶核剤であって、ゆるみかさ密度が0.25~0.50g/cmの範囲であり、且つ、かためかさ密度が0.35~0.80g/cmの範囲であることを特徴とするポリオレフィン系樹脂用結晶核剤である。
また、上記ポリオレフィン系樹脂用結晶核剤は、安息角が48度以下であることが好ましい。
また、上記ポリオレフィン系樹脂用結晶核剤が、下記一般式(1)で示されるジアセタール系化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
[式(1)中、R及びRは、同一又は異なって、それぞれ、水素原子、直鎖状若しくは分岐鎖状の炭素数1~4のアルキル基、直鎖状若しくは分岐鎖状の炭素数1~4のアルコキシ基、直鎖状若しくは分岐鎖状の炭素数1~4のアルコキシカルボニル基又はハロゲン原子を示す。Rは、水素原子、直鎖状若しくは分岐鎖状の炭素数1~4のアルキル基、直鎖状若しくは分岐鎖状の炭素数2~4のアルケニル基又は直鎖状若しくは分岐鎖状の炭素数1~4のヒドロキシアルキル基を示す。m及びnは、それぞれ1~5の整数を示す。pは0又は1を示す。2つのRは互いに結合してそれらが結合するベンゼン環と共にテトラリン環を形成していてもよい。2つのR基は互いに結合してそれらが結合するベンゼン環と共にテトラリン環を形成していてもよい。]
また、上記一般式(1)において、R及びRが、同一又は異なって、メチル基又はエチル基であり、かつ、Rが水素原子であり、m及びnが1又は2の整数であり、pが1であることが好ましい。
また、上記一般式(1)において、R及びRが、同一又は異なって、プロピル基又はプロポキシ基であり、かつ、Rがプロピル基又はプロペニル基であり、m及びnが1であり、pが1であることが好ましい。
また、上記ポリオレフィン系樹脂用結晶核剤が、該ポリオレフィン系樹脂用結晶核剤の原料粉末とバインダー効果を有する化合物とを含む混合物からなる押出造粒物より上記バインダー効果を有する化合物が除去された粒状物であることが好ましい。
また、上記ポリオレフィン系樹脂用結晶核剤は、粉化率が40%以下であることが好ましい。
また、上記粒状物が、直径0.5~5.0mmの範囲の円柱状であることが好ましい。
また、上記ポリオレフィン系樹脂用結晶核剤は、乾式圧縮加工された圧縮物であることが好ましい。
また、上記乾式圧縮加工が、ローラー圧縮法であることが好ましい。
また、上記乾式圧縮加工におけるロール圧力が0.1~10MPaの範囲であることが好ましい。
また、上記ポリオレフィン系樹脂用結晶核剤は、JIS K0069(1992)に準拠した条件で、ふるい上の二次凝集物を砕かずに行うふるい分け試験において、目開き1mmのJIS試験用ふるい上の残存物の全重量に対する割合が25重量%以下であることが好ましい。
また、上記ポリオレフィン系樹脂用結晶核剤は、レーザー回折式粒度分布測定において、粒径15μm以上の粗粒の全体積に対する割合が50体積%以上であることが好ましい。
また、本発明は、流動性の改良されたポリオレフィン系樹脂用結晶核剤の製造方法であって、(i)ポリオレフィン系樹脂用結晶核剤の原料粉末とバインダー効果を有する化合物を混合する混合工程、(ii)上記工程(i)で得られた混合物を、押出造粒により、粒状化する造粒工程、(iii)上記工程(ii)で得られた造粒物より上記工程(i)で混合したバインダー効果を有する化合物を除去する工程を具備するポリオレフィン系樹脂用結晶核剤の製造方法でもある。
また、上記工程(iii)で得られたポリオレフィン系樹脂用結晶核剤が、ゆるみかさ密度0.25~0.50g/cmであり、かためかさ密度が0.30~0.80g/mの範囲であり、且つ、粉化率40%以下であることが好ましい。
また、本発明は、ポリオレフィン系樹脂用結晶核剤の製造方法であって、ローラー圧縮法による乾式圧縮加工工程を具備することを特徴とするポリオレフィン系樹脂用結晶核剤の製造方法でもある。
また、上記圧縮加工工程におけるロール圧力が、0.1~10MPaの範囲であることが好ましい。
また、本発明は、ポリオレフィン系樹脂及び上記ポリオレフィン系樹脂用結晶核剤、又は、上記ポリオレフィン系樹脂用結晶核剤の製造方法で製造されたポリオレフィン系樹脂用結晶核剤を含んでなるポリオレフィン系樹脂組成物でもある。
また、本発明は、上記ポリオレフィン系樹脂組成物を原料とするポリオレフィン系樹脂成形体でもある。
また、本発明は、ポリオレフィン系樹脂用結晶核剤の流動性の改良方法であって、該結晶核剤のゆるみかさ密度を0.25~0.50g/cmの範囲に、かためかさ密度が0.3~0.80g/mの範囲に、粉化率を40%以下に調整することを特徴とするポリオレフィン系樹脂用結晶核剤の流動性の改良方法でもある。
また、本発明は、ローラー圧縮法による乾式圧縮加工工程を具備することを特徴とするポリオレフィン系樹脂用結晶核剤の流動性の改良方法でもある。
本発明のポリオレフィン系樹脂用結晶核剤は、非常に流動性に優れており、生産性の向上等に大きく寄与することができる。また、本発明のポリオレフィン系樹脂用結晶核剤は、問題であったポリオレフィン系樹脂中での分散性や溶解性についても、従来の結晶核剤と同等かそれ以上の性能を有し、実用上問題のないレベルであり、核剤性能を十分に発揮することができること、ポリオレフィン系樹脂成形体の性能や外観等が所望のレベルで得ることができることから、安心して使うことができる。従って、本発明のポリオレフィン系樹脂用結晶核剤は、様々な用途で幅広く使用することが可能であり、得られた成形品は優れた性能を有しており、多くの用途で有用である。
<ポリオレフィン系樹脂用結晶核剤>
本発明のポリオレフィン系樹脂用結晶核剤(以下、単に「結晶核剤」ともいう)は、ゆるみかさ密度が0.25~0.50g/cmの範囲であり、且つ、かためかさ密度が0.30~0.80g/cmの範囲である。上記ゆるみかさ密度が、0.30~0.45g/cmであることが好ましく、上記ゆるみかさ密度が0.35~0.45g/cmであることがより好ましい。また、上記かためかさ密度が、0.35~0.75g/cmであることが好ましく、上記かためかさ密度が0.35~0.70g/cmであることがより好ましい。一般に、かさ密度は高いほど流動性に優れる傾向にあり、本発明でも従来の製品に比べてかさ密度が大きく増加しており、そのことが流動性の改良に効果をもたらしているものと推測される。なお、かためかさ密度は、ゆるみかさ密度を測定したものを更にタッピング等により密な状態にした値であり、通常ゆるみかさ密度より大きな値となる。
ここで、かさ密度とは、ある容積の容器に充填された時に、その内容積を体積として計算された密度のことであり、容器中にゆっくりと(圧力を加えずに)充填した粗な状態で測定した値をゆるみかさ密度と言い、それを更に一定の条件でタッピングして密な状態にした後に測定した値をかためかさ密度と言う。例えば、造粒物の場合、一般的にはかさ密度が大きいほど、造粒物中の空隙が少なく、硬く締まった造粒物になっているものと考えられている。また、造粒前と造粒後の比較では、造粒後にかさ密度が大きく増加していれば、造粒前に存在した粉体等の間の空隙が造粒により減少して、良好な造粒物が得られていることを確認することができる。
また、かさ密度は、上述の通り容器の容量と充填された内容物の重量を測定することにより、容易に求められる値であり、例えば、下記方法などで測定することができる。
漏斗をメスシリンダーの開口部上に、垂直に保持し、漏斗を通してメスシリンダー中に所定量の試料をゆっくりと(圧力を加えずに)入れ、秤を用いてメスシリンダー内の試料の重量を測定する。得られた重量より下記式(1)を用いてゆるみかさ密度を求める。続いて、メスシリンダーをゴムシート等の上で一定の高さから垂直に落下させる操作(タッピング)を所定の回数繰り返した後。メスシリンダー内の試料の容量を読み取り、下記式(2)を用いてかためかさ密度を求める。
式(1)
ゆるみかさ密度(g/cm)=試料の重量(g)/メスシリンダーの容量(cm
式(2)
かためかさ密度(g/cm)=試料の重量(g)/タッピング後の試料の容量(cm
また、本発明において、樹脂中での分散性や溶解性の観点からも、得られた結晶核剤のかさ密度が特定の範囲であることが推奨される。かさ密度が大きすぎると結晶核剤が硬く締まりすぎており、樹脂中で分散しにくくなり、溶解性も低下する傾向にある。従って、流動性が良好であり、かつ、樹脂中での分散性や溶解性に優れるためには、かさ密度が特定の範囲であることが重要である。
更に、本発明の結晶核剤は、本発明の目的である流動性の改良の観点より、その安息角が好ましくは48度以下、より好ましくは46度以下、更に好ましくは45度以下、特に好ましくは40度以下であることが推奨される。安息角が48度を超えると十分な流動性が得られ難くなる傾向にある。
本発明の結晶核剤としては、例えば、ジアセタール系化合物、カルボン酸塩系化合物、リン酸エステル塩系化合物、アミド系化合物、ロジン系化合物等が例示される。なかでも、上記ジアセタール系化合物において、本発明の効果が最も顕著である。ただし、その種類は、本発明の効果を奏する限り、特に限定されるものではない。
上記ジアセタール系化合物としては、特に限定されないが、下記一般式(1)で示されるジアセタール化合物が好適に例示される。
Figure JPOXMLDOC01-appb-C000003
[式(1)中、R及びRは、同一又は異なって、それぞれ、水素原子、直鎖状若しくは分岐鎖状の炭素数1~4のアルキル基、直鎖状若しくは分岐鎖状の炭素数1~4のアルコキシ基、直鎖状若しくは分岐鎖状の炭素数1~4のアルコキシカルボニル基又はハロゲン原子を示す。Rは、水素原子、直鎖状若しくは分岐鎖状の炭素数1~4のアルキル基、直鎖状若しくは分岐鎖状の炭素数2~4のアルケニル基又は直鎖状若しくは分岐鎖状の炭素数1~4のヒドロキシアルキル基を示す。m及びnは、それぞれ1~5の整数を示す。pは0又は1を示す。2つのRは互いに結合してそれらが結合するベンゼン環と共にテトラリン環を形成していてもよい。2つのR基は互いに結合してそれらが結合するベンゼン環と共にテトラリン環を形成していてもよい。]
上記ジアセタール化合物の中でも、更に好ましい化合物としては、例えば、上記一般式(1)中のR及びRが、同一又は異なって、メチル基又はエチル基であり、かつ、Rが水素原子であり、m及びnが1又は2の整数であり、pが1である化合物や、上記一般式(1)中のR及びRがプロピル基又はプロポキシ基であり、かつ、Rがプロピル基又はプロペニル基であり、m及びnが1であり、pが1である化合物等が挙げられる。
また、次の様な化合物も更に好ましい化合物として例示することができる。上記一般式(1)において、R及びRがプロピル基又はプロポキシ基であり、かつ、Rがプロピル基又はプロペニル基であり、m及びnが1であり、pが1である化合物。
上記ジアセタール系化合物の具体的な態様としては、次の様な化合物が例示される。1,3:2,4-ジ-O-ベンジリデン-D-ソルビトール、1,3:2,4-ビス-O-(メチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-メチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-メチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-メチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(エチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-エチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-エチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-エチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-イソプロピルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-イソプロピルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-イソプロピルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-n-プロピルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-n-プロピルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-n-プロピルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-n-ブチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-n-ブチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-n-ブチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-t-ブチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-t-ブチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-t-ブチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(ジメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,3’-ジメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,4’-ジメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’5’-ジメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,6’-ジメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(3’,5’-ジメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,3’-ジエチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,4’-ジエチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,5’-ジエチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,6’-ジエチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(3’,4’-ジエチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(3’,5’-ジエチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,4’,5’-トリメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(3’,4’,5’-トリメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,4’,5’-トリエチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(3’,4’,5’-トリエチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-メトキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-メトキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-メトキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-エトキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-エトキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-エトキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-イソプロポキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-イソプロポキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-イソプロポキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-n-プロポキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-n-プロポキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-n-プロポキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-メトキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-メトキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-メトキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-エトキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-エトキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-エトキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-イソプロポキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-イソプロポキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-イソプロポキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-n-プロポキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-n-プロポキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-n-プロポキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-フルオロベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-フルオロベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-フルオロベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-クロロベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-クロロベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-クロロベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-ブロモベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-ブロモベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-ブロモベンジリデン)-D-ソルビトール、1,3-O-ベンジリデン-2,4-O-(p-メチルベンジリデン)-D-ソルビトール、1,3-O-(p-メチルベンジリデン)-2,4-O-ベンジリデン-D-ソルビトール、1,3-O-ベンジリデン-2,4-O-(p-エチルベンジリデン)-D-ソルビトール、1,3-O-(p-エチルベンジリデン)-2,4-O-ベンジリデン-D-ソルビトール、1,3-O-ベンジリデン-2,4-O-(p-クロロベンジリデン)-D-ソルビトール、1,3-O-(p-クロロベンジリデン)-2,4-O-ベンジリデン-D-ソルビトール、1,3-O-ベンジリデン-2,4-O-(2’,4’-ジメチルベンジリデン)-D-ソルビトール、1,3-O-(2’,4’-ジメチルベンジリデン)-2,4-O-ベンジリデン-D-ソルビトール、1,3-O-ベンジリデン-2,4-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトール、1,3-O-(3’,4’-ジメチルベンジリデン)-2,4-O-ベンジリデン-D-ソルビトール、1,3-O-(p-メチルベンジリデン)-2,4-O-(p-エチルベンジリデン)-D-ソルビトール、1,3-O-(p-エチルベンジリデン)-2,4-O-(p-メチルベンジリデン)-D-ソルビトール、1,3-O-(p-メチルベンジリデン)-2,4-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトール、1,3-O-(3’,4’-ジメチルベンジリデン)-2,4-O-p-メチルベンジリデン-D-ソルビトール、1,3-O-(p-エチルベンジリデン)-2,4-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトール、1,3-O-(3’,4’-ジメチルベンジリデン)-2,4-O-p-エチルベンジリデン-D-ソルビトール、1,3-O-(p-メチルベンジリデン)-2,4-O-(p-クロロベンジリデン)-D-ソルビトール、1,3-O-(p-クロロベンジリデン)-2,4-O-(p-メチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(3’,4’-ジクロロベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-ベンジリデン-1-メチルソルビトール、1,3:2,4-ビス-O-(p-メチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(p-エチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(p-n-プロピルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(2’,3’-ジメチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(2’,4’-ジメチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(2’,5’-ジメチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(2’,6’-ジメチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(3’,5’-ジメチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(2’,3’-ジエチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(2’,4’-ジエチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(2’,5’-ジエチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(2’,6’-ジエチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジエチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(3’,5’-ジエチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(3’-メチル-4’-メトキシベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジクロロベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(p-メトキシカルボニルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(3’-メチル-4’-フルオロベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(3’-ブロモ-4’-エチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-ベンジリデン-1-エチルソルビトール、1,3:2,4-ビス-O-(p-メチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(p-エチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(p-n-プロピルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(2’,3’-ジメチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(2’,4’-ジメチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(2’,5’-ジメチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(2’,6’-ジメチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(3’,5’-ジメチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(2’,3’-ジエチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(2’,4’-ジエチルベンジリデン)
-1-エチルソルビトール、1,3:2,4-ビス-O-(2’,5’-ジエチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(2’,6’-ジエチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジエチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(3’,5’-ジエチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(3’-メチル-4’-メトキシベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジクロロベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(p-メトキシカルボニルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(3’-メチル-4’-フルオロベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(3’-ブロモ-4’-エチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-ベンジリデン-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(p-メチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(p-エチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(p-n-プロピルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(2’,3’-ジメチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(2’,4’-ジメチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(2’,5’-ジメチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(2’,6’-ジメチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(3’,5’-ジメチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(2’,3’-ジエチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(2’,4’-ジエチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(2’,5’-ジエチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(2’,6’-ジエチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジエチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(3’,5’-ジエチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(3’-メチル-4’-メトキシベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジクロロベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(p-メトキシカルボニルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(p-エトキシカルボニルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(p-プロポキシカルボニルベンジリデン)-1-n-プロピルソルビトール、1,3-O-(p-n-プロピルベンジリデン)-2,4-O-(p-プロポキシベンジリデン)-1-n-プロピルソルビトール、1,3-O-(p-プロポキシベンジリデン)-2,4-O-(p-n-プロピルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(3’-メチル-4’-フルオロベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(3’-ブロモ-4’-エチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(p-n-プロピルベンジリデン)-1-プロペニルソルビトール、1,3:2,4-ビス-O-(p-エトキシカルボニルベンジリデン)-1-プロペニルソルビトール、1,3:2,4-ビス-O-(p-プロポキシカルボニルベンジリデン)-1-プロペニルソルビトール、1,3-O-(p-n-プロピルベンジリデン)-2,4-O-(p-プロポキシベンジリデン)-1-プロペニルソルビトール、1,3-O-(p-プロポキシベンジリデン)-2,4-O-(p-n-プロピルベンジリデン)-1-プロペニルソルビトール、1,3:2,4-ビス-O-ベンジリデン-1-アリルソルビトール、1,3:2,4-ビス-O-(p-メチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(p-エチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(p-n-プロピルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(2’,3’-ジメチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(2’,4’-ジメチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(2’,5’-ジメチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(2’,6’-ジメチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(3’,5’-ジメチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(2’,3’-ジエチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(2’,4’-ジエチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(2’,5’-ジエチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(2’,6’-ジエチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジエチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(p-エトキシカルボニルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(p-プロポキシカルボニルベンジリデン)-1-アリルソルビトール、1,3-O-(p-n-プロピルベンジリデン)-2,4-O-(p-プロポキシベンジリデン)-1-アリルソルビトール、1,3-O-(p-プロポキシベンジリデン)-2,4-O-(p-n-プロピルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(3’,5’-ジエチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(3’-メチル-4’-メトキシベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジクロロベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(p-メトキシカルボニルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(3’-メチル-4’-フルオロベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(3’-ブロモ-4’-エチルベンジリデン)-1-アリルソルビトール等。
特に、好ましい態様としては、1,3:2,4-ビス-O-(p-メチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-エチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-n-プロピルベンジリデン)-1-プロピルソルビトールが挙げられる。
また、上記具体的な態様のジアセタール化合物は、単独で用いてもよいが、他の性能、例えば低温加工性等の観点から、2種以上のジアセタール化合物を併用、又は予め混合した態様で用いてもよい。
上記併用又は混合系で用いる場合、例えば、1,3:2,4-ジ-O-ベンジリデン-D-ソルビトールと1,3:2,4-ビス-O-(p-メチルベンジリデン)-D-ソルビトールの組合せや1,3:2,4-ビス-O-(p-エチルベンジリデン)-D-ソルビトールと1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトールの組合せ、1,3:2,4-ジベンジリデン-D-ソルビトールと1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトールの組合せ、1,3:2,4-ビス-O-(p-メチルベンジリデン)-D-ソルビトールと1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトールの組合せ、1,3:2,4-ビス-O-(p-クロロベンジリデン)-D-ソルビトールと1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトールの組合せ、1,3:2,4-ビス-O-(3’,4’-ジクロロベンジリデン)-D-ソルビトールと1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトールの組合せ等が例示される。
上記ジアセタール化合物は、例えば、特公昭48-43748号公報、特開昭53-5165号公報、特開昭57-185287号公報、特開平2-231488号公報等に記載されている製造方法等を用いて容易に製造することができる。また、現在ポリオレフィン用結晶核剤として市販されているもの、例えば、新日本理化(株)製のゲルオールD、ゲルオールMD、ゲルオールDXR、ミリケン社(米国)製のミラッド3988、ミラッドNX8000等をそのまま使用してもよい。
また、上記ジアセタール化合物以外の結晶核剤としては、例えば、安息香酸ナトリウム塩、p-t-ブチル安息香酸アルミニウム塩、下記一般式(2)で示されるシクロヘキサンジカルボン酸金属塩、下記一般式(3)で表されるノルボルナンジカルボン酸金属塩等のカルボン酸塩系化合物、下記一般式(4)で示されるリン酸エステル塩系化合物、下記一般式(5)で示されるアミド系化合物、下記一般式(6)で示されるロジン酸又はその金属塩化合物(例えば、リチウム、ナトリウム、カリウム、マグネシウム等のアルカリ金属塩)等のロジン系化合物等が例示される。
Figure JPOXMLDOC01-appb-C000004
[式中、M及びMは、いずれもリチウムイオンであるか、又は共同してカルシウム、ストロンチウム、亜鉛、マグネシウム及び一塩基性アルミニウムからなる群から互いに独立して選択される単一の金属カチオンであり、R、R、R、R10、R11、R12、R13、R14、R15及びR16は、同一又は異なって、水素原子、炭素数1~9のアルキル基(ここで、いずれか2つのビシナル(隣接炭素に結合)又はジェミナル(同一炭素に結合)アルキル基は、一緒になって6個までの炭素原子を有する炭化水素環を形成してもよい)、ヒドロキシ基、炭素数1~9のアルコキシ基、炭素数1~9のアルキレンオキシ基、アミノ基及び炭素数1~9のアルキルアミノ基、ハロゲン原子(フッ素、塩素、臭素及び沃素)ならびにフェニル基からなる群からそれぞれ選択される。]
Figure JPOXMLDOC01-appb-C000005
[式中、M及びMは、同一又は異なって、金属カチオン又は有機カチオンから成る群から独立して選択されるか、又は該2つの金属イオンは単一の金属イオンにまとめられ(二価、例えばカルシウム等)、R17、R18、R19、R20、R21、R22、R23、R24、R25、及びR26は水素原子、炭素数1~9のアルキル基、ヒドロキシ基、炭素数1~9のアルコキシ基、炭素数1~9のアルキレンオキシ基、アミノ基、及び炭素数1~9のアルキルアミノ基、ハロゲン原子、フェニル基、アルキルフェニル基、及び最大9個の炭素原子を有するジェミナル又はビシナルの炭素環から成る群から個々に選択され、好ましくは、金属カチオンはカルシウム、ストロンチウム、バリウム、マグネシウム、アルミニウム、銀、ナトリウム、リチウム、ルビジウム、カリウム等から成る群から選択される。]
Figure JPOXMLDOC01-appb-C000006
[式中、R27~R30は、同一又は異なって、水素原子又は炭素数1~9のアルキル基を表し、R31は水素原子又は炭素数1~3のアルキル基を表し、dは1又は2の整数であり、dが1のとき、Mはアルカリ金属を表し、dが2のとき、Mはアルカリ土類金属、亜鉛又はヒドロキシアルミニウムを表す。]
Figure JPOXMLDOC01-appb-C000007
[式中、fは、2~6の整数を表す。R32は、炭素数2~18の飽和若しくは不飽和の脂肪族ポリカルボン酸残基、炭素数3~18の脂環族ポリカルボン酸残基又は炭素数6~18の芳香族ポリカルボン酸残基を表す。2~6個のR33は、同一又は異なって、それぞれ、炭素数5~30の飽和若しくは不飽和の脂肪族アミン残基、炭素数5~30の脂環族アミン残基又は炭素数6~30の芳香族アミン残基を表す。]
Figure JPOXMLDOC01-appb-C000008
[式中、R34、R35及びR36は、水素原子、アルキル基、シクロアルキル基又はアリール基を示し、各同一であっても異なっていてもよい。]
上記かさ密度を特定の範囲に調整する方法としては、本発明の効果が得られる限り、特に限定されることはないが、例えば、予め除去可能なバインダー効果を有する化合物を、通常の製造方法により得られたポリオレフィン系樹脂用結晶核剤(以下、「ポリオレフィン系樹脂用結晶核剤の原料粉末」という)に混合したものを押出等により造粒した後、混合したバインダー効果を有する化合物を除去することにより、粒状物中に除去したバインダー効果を有する化合物が存在していた部分が空洞となり、通常の同程度の形状の造粒物に比べてかさ密度を小さくすることができる。
また、例えば、上記ポリオレフィン系樹脂用結晶核剤の原料粉末を完全な粒状物にするのではなく、粉末の状態又は一部フレーク状になった状態で圧縮処理のみを行うことにより、かさ密度を調整することができる。なお、上記「ポリオレフィン系樹脂用結晶核剤の原料粉末」とは、通常の製造方法により得られたポリオレフィン系樹脂用結晶核剤であればよく、大きさや、形状、化合物の種類等については特に限定されない。
本発明の結晶核剤は、上記ポリオレフィン系樹脂用結晶核剤の原料粉末とバインダー効果を有する化合物とを含む混合物からなる押出造粒物より、上記バインダー効果を有する化合物が除去された粒状物であることが好ましい。一般に、粒径が小さくなると流動性に関する懸念が生じやすいことが知られており、粒状化することにより、流動性が大きく改善することが確認されている。より具体的には、上記観点より、得られた粒状の結晶核剤のかさ密度が上述した範囲を満たし、後述する粉化率が特定の範囲を満たすことが好ましい。ここで、上記粒状とは、以下に述べる様な流動性の改善に十分な大きさ、即ちある特定のかさ密度を有し、且つ、容易に粉化しない、即ちある特定の粉化率を示す形状であることを意味する。その様な粒状の結晶核剤は、例えば、通常の製造方法により得られた結晶核剤の粉末とバインダー効果を有する化合物を混合し、得られた混合物を、押出造粒により、粒状化した後、上記で混合したバインダー効果を有する化合物を除去する等により、容易に得ることができる。
本発明者らは、ポリオレフィン系樹脂用結晶核剤の原料粉末とバインダー効果を有する特定の化合物を特定の比率で配合した混合物を、特定の条件下で押出造粒した後、上記の添加した化合物を除去することにより、上述したかさ密度、及び、後述する粉化率を好適に特定の範囲とすることができ、バインダーを含まずに樹脂中での分散性が改善された粒状のポリオレフィン系樹脂用結晶核剤を製造することが可能であることを見出した。また、得られた粒状のポリオレフィン系樹脂用結晶核剤は、流動性に非常に優れており、かつ、ケーキング等の問題もなく、優れた樹脂中での分散性や溶解性を示し、更にその結晶核剤を含んでなるポリオレフィン系樹脂組成物及びその成形体が透明性にも非常に優れていることも見出した。上記方法により得られた結晶核剤は、バインダー効果を有する化合物が除去されており、実質的にバインダー化合物を含有しておらず、従来のバインダー化合物を含有する粒状のポリオレフィン系樹脂用結晶核剤で問題となっているケーキング等の問題も解消され、より幅広い用途への応用が可能である。
本発明の結晶核剤では、粉化率が特定の範囲であることが好ましい。上記粉化率が大きくなると、実際に使用する際に粒状物が壊れて微粉化してしまい、粒状化による流動性改善効果が得られ難くなる傾向にある。また、樹脂中での分散性や溶解性の観点からも、上記粉化率が特定の範囲であることが重要であり、上記粉化率が過度に大きい場合、上記粒状の結晶核剤の移送時やポリオレフィン系樹脂への添加時等に粒状物が砕けてしまい、流動性が低下するだけでなく、粉塵等の問題が生じる懸念もある。その場合、一般的には上述したかさ密度は小さな値となってしまう。
ここで、上記粉化率とは、造粒後の粒状物の硬さの目安であり、本発明では、ある特定の衝撃を受けた後、ある特定の粒径以下に微粉化した重量を測定し、衝撃を与える前の全重量に対する比率を求めて、粉化率とした。具体的には、予め600μmのふるいでふるい分けされた試料を用いて、600μmのふるい上で所定時間振動を与え、振動停止後、振動を与えている間に600μmのふるいを通過した重量を測定し、振動を与える前に600μmのふるい上に投入した全重量で割った値を100倍して、粉化率(%)とした。上記粉化率が大きいほど脆く、わずかな衝撃でも砕けてしまい、樹脂と混合する前に粉化してしまい、粒状の維持が難しくなり、流動性改善の効果が得られ難くなる傾向にある。本発明においては、結晶核剤の種類により、一概には言えないが、粉化率が40%以下であることが好ましく、より好ましくは30%以下、更に好ましくは20%以下、特に好ましくは10%以下であることが、流動性改善効果等の観点より推奨される。また、粉化率が小さすぎる場合、樹脂中での分散性や溶解性が低下する傾向にあるが、結晶核剤やバインダー効果を有する化合物の選択により、必ずしも粉化率が小さくなっても、樹脂中での分散性や溶解性が低下するとは限らない。
また、粒状化におけるサイズは、その結晶核剤の種類や使用する用途により異なり、一概に決めることは難しいが、好ましくは、上記造粒後及びバインダー効果を有する化合物を除去した後の直径が0.5mm以上であることが推奨される。
樹脂中での分散性や溶解性には、造粒後の粒径が影響する場合があり、例えば、粒状物が円柱状の場合、樹脂中での分散性や溶解性の観点からは、好ましくはその直径が5.0mm以下、より好ましくは2.5mm以下、更に好ましくは1.5mm以下であることが推奨される。
上記直径とは、得られた円柱状の粒状物の直径をノギス等を用いて計測する方法等で、容易に測定することができる。
<バインダー効果を有する化合物>
本発明におけるバインダー効果を有する化合物とは、上記ポリオレフィン系樹脂用結晶核剤の原料粉末同士の圧着を促進する効果のある化合物を意味し、具体的には、上記ポリオレフィン系樹脂用結晶核剤の原料粉末の表面を濡らしたり、上記ポリオレフィン系樹脂用結晶核剤の原料粉末を膨潤させたり、一部溶解させたりする効果を有する化合物であることが推奨される。
上記バインダー効果を有する化合物としては、本発明の効果を奏するものであれば、どの様な構造の化合物でも使用することができるが、本発明の目的を満たすためには造粒後に容易に除去可能な化合物である必要がある。
具体的には、除去方法が乾燥等により留去する方法(乾燥法)の場合には、メタノール、エタノール、プロパノール、ブタノール、ペンタノール等の低級アルコールやヘキサン、シクロヘキサン等の低沸点炭化水素化合物、アセトン、メチルエチルケトン等のケトン化合物、ジオキサン等のエーテル化合物、及び、水等が挙げられ、単独で又は組み合わせて用いても良い。
中でも、炭素数1~4のアルコール、水、又は該アルコールと水との混合物が推奨される。上記アルコールとしては、メタノール及び/又はエタノールであることがより推奨される。特にメタノール、又は、メタノールと水との混合物が最も推奨される。また、メタノールと水との混合物である場合、混合物中に占めるメタノールの割合が、好ましくは5重量%以上、より好ましくは10重量%以上、更に好ましくは30重量%以上、特に好ましくは50重量%以上であることが好ましい。
また、除去方法が後述する抽出法等の上記以外の方法の場合には、グリセリン、流動パラフィン、パラフィンワックス、脂肪酸、高級アルコール等も用いることができる。
上記ポリオレフィン系樹脂用結晶核剤の原料粉末に対するバインダー効果を有する化合物の混合量は、本発明の効果を奏する限り、特に制限はなく、更にそれぞれの化合物の種類によっても異なり、また、造粒条件によっても異なるため、一概に決められないが、好ましくは上記ポリオレフィン系樹脂用結晶核剤の原料粉末100重量部に対して、20~60重量部であることが、より好ましくは30~50重量部であることが、更に好ましくは40~50重量部であることが推奨される。
上記バインダー効果を有する化合物の混合量が、20重量部未満では造粒が難しくなる傾向があり、無理に造粒すると樹脂中での分散性や溶解性が低下する懸念があり、60重量部を超えても混合量に見合った改善効果は得られ難く、更に粉化率の上昇する懸念があり、いずれも好ましくない。
また、本発明の結晶核剤は、上述したかさ密度を好適に特定の範囲にすることができることから、乾式圧縮加工された圧縮物であることが好ましい。このような結晶核剤は、上記ポリオレフィン系樹脂用結晶核剤の原料粉末を乾式圧縮加工することにより容易に得ることができる。
本発明者らは、全く異種成分である添加剤を加えない方法を求めて、鋭意検討した結果、特定の方法で製造した特定の特性を有する結晶核剤が、本質的に添加剤を使用しなくても、上述したかさ密度を好適に満たすことができ、従来問題とされていた樹脂中での分散性や溶解性を大きく損なうことなく、結晶核剤の流動性を著しく改良できることを見出した。
なお、上記乾式圧縮加工は、従来の圧縮造粒が造粒、即ち大きく硬い粒状物を製造することを目的とする操作であるのに対して、上記ポリオレフィン系樹脂用結晶核剤の原料粉末を完全な粒状物にするのではなく、粉末の状態又は一部フレーク状になった状態で圧縮処理のみを行う操作である。従って、上記乾式圧縮加工により得られた本発明の結晶核剤の形状は、一部粗粒化した粉末状又はもろいフレーク状の圧縮物であり、従来の圧縮造粒で得られる粒状物とは全く異なる性状を示している。
上記乾式圧縮加工に用いられる上記ポリオレフィン系樹脂用結晶核剤の原料粉末の形状としては、本発明の効果を奏する限り、特に制約はないが、好ましくは平均粒径が15μm未満、より好ましくは10μm以下の粉末であることが、特に推奨される。この形状を満たすことにより、乾式圧縮加工された結晶核剤のポリオレフィン系樹脂への分散性や溶解性に良影響を及ぼす傾向が認められる。
<ポリオレフィン系樹脂用結晶核剤の製造>
本発明の結晶核剤の製造方法に関して、以下に更に具体的な例を示して、詳しく説明する。但し、本発明は、目的の性能が得られる限り、必ずしも以下の方法に限定されるものではない。
本発明の結晶核剤は、例えば、下記工程(i)~(iii)を具備する製造方法により製造することができる。
工程(i):上記ポリオレフィン系樹脂用結晶核剤の原料粉末と上記バインダー効果を有する化合物を混合して、混合物を得る。
工程(ii):上記工程(i)で得られた混合物を、粒状化し、造粒物を得る。
工程(iii):上記工程(ii)で得られた造粒物より上記工程(i)で混合したバインダー効果を有する化合物を除去する。このような工程(i)~(iii)を具備する本発明のポリオレフィン系樹脂用結晶核剤の製造方法もまた、本発明の一つである。
上記工程(i)の混合方法は、上記ポリオレフィン系樹脂用結晶核剤の原料粉末とバインダー効果を有す化合物が均一に混合できる方法であれば、どの様な方法を用いても良いが、例えば、攪拌混合機やスクリュー混合機等を用いて、室温又は100℃以下に加温しながら数分から数十分間混合する方法等が挙げられる。
上記工程(i)において、上記ポリオレフィン系樹脂用結晶核剤の原料粉末に対する上記バインダー効果を有する化合物の混合量は、本発明の効果を奏する限り、特に制限はなく、更にそれぞれの化合物の種類によっても異なり、また、造粒条件によっても異なるため、一概に決められないが、好ましくは上記ポリオレフィン系樹脂用結晶核剤の原料粉末100重量部に対して、20~60重量部であることが、より好ましくは30~50重量部であることが、更に好ましくは40~50重量部であることが推奨される。上記バインダー効果を有する化合物の混合量が、20重量部未満では造粒が難しくなる傾向があり、無理に造粒すると樹脂中での分散性や溶解性が低下する懸念があり、60重量部を超えても混合量に見合った改善効果は得られ難く、更に粉化率の上昇する懸念があり、いずれも好ましくない。
上記工程(ii)の造粒方法は、上記混合物を粒状化できる方法であれば、どの様な方法を用いても良いが、好ましくは、押出造粒法が推奨される。押出造粒法とは、原料、本発明では上記工程(i)で得られた混合物を、スクリュー、プランジャー、ローラー等を用いて圧力をかけて、一定のサイズの多数の孔の空いたスクリーンダイから横向きや下向きに円柱状に押し出して造粒する方法であり、円柱状に押し出された後、カッター等で適当な長さに切断して粒状物を得ることができる。得られた粒状物は、更に整形機等を用いて形状を整えることもできる。
上記押出方法は、本発明の効果を有する粒状化物が得られる方法であれば、特に制限はないが、生産性等を考慮した場合、ローラーを用いて下向きに押し出す方法が最も効率的である。
上記押出造粒は、通常室温下で行われることが多いが、100℃以下の低温に加温して行っても良い。
上記スクリーンダイの孔径は、本発明の効果を有する粒状化物が得られる範囲であれば、特に制約はないが、流動性と樹脂中での分散性や溶解性のバランスを考慮した場合、好ましくは直径0.5~5.0mm程度の孔径のスクリーンダイを用いることが推奨され、好ましくは直径0.5~2.5mm程度の孔径のスクリーンダイ、より好ましくは直径0.5~1.5mm程度の孔径のスクリーンダイを用いることにより、本発明の効果を最も発揮することが可能である。
また、押し出す際の圧力に関しては、上記スクリーンダイの孔径にも依存するものであり、一概に限定することは難しいが、圧力が低すぎると生産性が落ちる傾向にあり、圧力を上げすぎると得られた粒状物が硬くなりすぎて、ポリオレフィン系樹脂中での分散性や溶解性に影響が生じる懸念がある。
押し出された造粒物が連続した状態の場合は、スクリーンダイの直後にカッター等を設置し、適当な長さに調整して、次の工程に供給することもできる。
上記工程(iii)の除去方法は、上記工程(i)で混合されたバインダー効果を有する化合物が除去できる方法であれば、どの様な方法を用いても良い。具体的には、バインダー効果を有する化合物の種類により異なり、その種類に適した方法が選択されるが、例えば、沸点の比較的低い低級アルコール等を用いた場合には、加熱及び/又は減圧下で留去する、所謂乾燥法が一般的である。また、沸点が高く、留去困難な化合物の場合には、バインダー効果を有する化合物のみを溶解する溶媒等を用いて除去する、所謂抽出法を用いることもできる。
乾燥法の場合、着色等が生じない様に条件を設定することが重要であり、好ましくは、150℃以下、より好ましくは120℃以下に設定することが推奨される。また、留去が難しい場合には、減圧にする方法等も有効である。
また、上記工程(iii)の後に、必要に応じて、整粒工程や分級工程を加えることも有効である。例えば、汎用のふるい式や気流式の分級機等を用いて粒子形状を整えることにより、より本発明の効果を発揮しやすくなる。
また、本発明の結晶核剤は、例えば、乾式圧縮加工により製造することもできる。このような乾式圧縮加工による本発明のポリオレフィン系樹脂用結晶核剤の製造方法もまた、本発明の一つである。
上記乾式圧縮加工の方法としては、タブレット法やローラー圧縮法等が挙げられるが、より精密に圧縮状態をコントロールできるローラー圧縮法が推奨される。また、そのローラー圧縮に用いる装置は、通常使われている装置を使うことができ、具体的には、ホソカワミクロン(株)製のコンパクタやフロイント産業(株)製のローラーコンパクター等が例示される。
より具体的には、例えば、ローラー圧縮法では、上記ポリオレフィン系樹脂用結晶核剤の原料粉末の供給量、ロール間距離、ロール速度、ロール圧力等を調整して、上記ポリオレフィン系樹脂用結晶核剤の原料粉末を乾式圧縮加工することができる。なかでも、ロール圧力が重要であり、好ましくは0.1~10MPaの範囲、より好ましくは1~10MPaの範囲、更に好ましくは3~10MPaの範囲で調整することが推奨される。ロール圧力が0.1MPa未満の場合、流動性改良が不十分である可能性があり、10MPaを超えると分散性が低下する懸念がある。
本発明の結晶核剤の形状は、本発明の効果を奏する限り、特に限定されず、粉末状でもフレーク状(薄片状)でも構わない。
本発明の結晶核剤がフレーク状の場合、更に粉砕や解砕を行って、粉末状にして使用することもできる。その形状のままでも流動性は向上するが、ポリオレフィン系樹脂への分散性や溶解性の重視する場合は粉砕や解砕を行って使用することがより好ましい。
更に、本発明のフレーク状の結晶核剤を粉砕や解砕して使用する場合、一定の割合で粗粒を含んでなる複合した形状であることが流動性の面でより好ましい。例えば、レーザー回折式粒度分布測定において、粒径15μm以上の粗粒の割合が全体積に対して、好ましくは50体積%以上、より好ましくは60体積%以上である態様等が特に推奨される。粗粒を50体積%以上の割合で含むことにより微細な粒子も含めた全体の流動性がよくなっているものと推測される。
上記粉砕や解砕は、通常使われている粉砕機や解砕機、例えば、ハンマーミル、ピンミル、ジェットミル、パルベライザー、カッターミル、プレーナークラッシャー、フレーククラッシャー等を用いて、行うことができる。また、必要に応じて、粉砕や解砕後、汎用の分級機、例えば、振動ふるい機や攪拌円筒ふるい機等のスクリーン分級機、強制遠心分離や重力慣性分離等の風力分級機等を用いて、分級してもよい。
なお、上記レーザー回折式粒度分布測定は、汎用の装置を用いて、汎用の方法・条件により測定可能であり、例えば、レーザー回折式粒度分布計(マルバーンインスツルメンツ社製、「マスターサイザー3000」)を用いて、湿式測定セル中で十分に撹拌混合することで、分散剤として界面活性剤を加えた水溶液中に試料を分散させ、続いて、得られた混合物を装置内で更に撹拌、循環させながら、超音波を当てて装置内にて十分に均一に分散させた後、超音波を当てながら試料の粒度分布を測定することができる。
また、上記乾式圧縮加工により得られた本発明の結晶核剤は、二次凝集性が非常に小さいという特徴を有している。この特徴は、本発明に係る乾式圧縮加工による効果と考えられる。本発明では、ふるい分け試験において試験中に発生した所定の大きさ以上の二次凝集物の量より、二次凝集性を判定した。具体的には、JIS K0069(1992)の6.1に準拠した条件で、ふるい分け試験を行い、目開き1mmのJIS試験用ふるい上の残存物の全重量に対する割合を求めた。上記ふるい分け試験は、ふるい分け試験中に発生した二次凝集物の量を以て二次凝集性を判定するため、ブラシやはけを用いず、ふるい上の二次凝集物を砕かない条件で、ふるい分け時間を1分間に固定して手動ふるい分けを行った。なお、二次凝集性の評価方法の有効性は、上記ポリオレフィン系樹脂用結晶核剤の原料粉末の同じサンプルを用いて、二次凝集物が残らない条件で手動ふるい分けを行い、目開き1mm以上のふるい上の残存物の量が上記の二次凝集物の量よりも明らかに小さい値であって有意差が認められ、かつ概ね再現性があったことから、確認されている。従って、そのふるい上の残存物が多いほど、二次凝集性が大きいと言える。更に、上記ふるい分け試験の測定結果から求められる割合は、好ましくは25重量%以下、より好ましくは20重量%以下であるとき、全体に実用上問題ない程度の流動性を示すと言える。
<ポリオレフィン系樹脂用結晶核剤の流動性の改良方法>
本発明は、ポリオレフィン系樹脂用結晶核剤の流動性の改良方法であって、該結晶核剤のゆるみかさ密度を0.25~0.50g/cmの範囲に、かためかさ密度が0.30~0.80g/mの範囲に、粉化率を40%以下に調整することを特徴とするポリオレフィン系樹脂用結晶核剤の流動性の改良方法でもある。
また、本発明は、ローラー圧縮法による乾式圧縮加工工程を具備することを特徴とするポリオレフィン系樹脂用結晶核剤の流動性の改良方法でもある。上記圧縮加工工程におけるロール圧力等は、上述したポリオレフィン系樹脂用結晶核剤の製造で記載したものを好適に用いることができる。
<ポリオレフィン系樹脂組成物>
本発明は、ポリオレフィン系樹脂及び上記本発明のポリオレフィン系樹脂用結晶核剤、又は上記本発明のポリオレフィン系樹脂用結晶核剤製造方法で製造されたポリオレフィン系樹脂用結晶核剤を含んでなるポリオレフィン系樹脂組成物でもある。該組成物は、例えば、本発明の結晶核剤とポリオレフィン系樹脂とを、必要に応じてその他のポリオレフィン系樹脂用添加剤を加えて、室温にてドライブレンド後、所定の条件にて溶融混合することにより、容易に得ることができる。
上記ポリオレフィン系組成物中の本発明の結晶核剤の濃度は、本発明に係る結晶核剤としての効果を奏する限り、特に制約はないが、ポリオレフィン系樹脂100重量部に対して、好ましくは0.001~10重量部、より好ましくは0.01~5重量部である。
[ポリオレフィン系樹脂]
上記ポリオレフィン系樹脂としては、本発明の効果を奏する限り特に限定されることなく、従来公知のポリオレフィン系樹脂が使用可能であり、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリブテン系樹脂、ポリメチルペンテン系樹脂、ポリブタジエン系樹脂等が例示される。より具体的には、高密度ポリエチレン、中密度ポリエチレン、直鎖状ポリエチレン、エチレン含量50重量%以上、好ましくは70重量%以上のエチレンコポリマー、プロピレンホモポリマー、プロピレン50重量%以上、好ましくは70重量%以上のプロピレンコポリマー、ブテンホモポリマー、ブテン含量50重量%以上、好ましくは70重量%以上のブテンコポリマー、メチルペンテンホモポリマー、メチルペンテン含量50重量%以上、好ましくは70重量%以上のメチルペンテンコポリマー、ポリブタジエン等が例示される。また、上記コポリマーはランダムコポリマーであってもよく、ブロックコポリマーであってもよい。更に、これらの樹脂の立体規則性がある場合は、アイソタクチックでもシンジオタクチックでもよい。上記コポリマーを構成し得るコモノマーとして、具体的にはエチレン、プロピレン、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン、ノネン、デセン、ウンデセン、ドデセン等の炭素数2~12のα-オレフィン、1,4-エンドメチレンシクロヘキセン等のビシクロ型モノマー、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の(メタ)アクリル酸エステル、酢酸ビニル等が例示される。
かかる重合体を製造するために適用される触媒としては、一般に使用されているチーグラー・ナッタ型触媒はもちろん、遷移金属化合物(例えば、三塩化チタン、四塩化チタン等のチタンのハロゲン化物)を塩化マグネシウム等のハロゲン化マグネシウムを主成分とする担体に担持してなる触媒と、アルキルアルミニウム化合物(トリエチルアルミニウム、ジエチルアルミニウムクロリド等)とを組み合わせてなる触媒系、メタロセン触媒等も使用できる。
本発明に係るポリオレフィン系樹脂のメルトフローレート(以下「MFR」と略記する。JIS K7210-1999)は、その適用する成形方法により適宜選択されるが、通常0.01~200g/10分程度、好ましくは0.05~100g/10分程度が推奨される。
[その他の添加剤]
また、上述の通り、本発明のポリオレフィン系樹脂組成物には、その使用目的やその用途に応じて、本発明の効果を損なわない範囲でその他のポリオレフィン系樹脂用添加剤が含まれていてもよい。
上記ポリオレフィン系樹脂用添加剤としては、例えば、ポリオレフィン等衛生協議会編「ポジティブリストの添加剤要覧」(2002年1月)に記載されている各種添加剤が挙げられる。具体的には、蛍光増白剤(2,5-チオフェンジイル(5-tert-ブチル-1,3-ベンゾキサゾール)、4,4’-ビス(ベンゾオキサゾール-2-イル)スチルベン等)、酸化防止剤、安定剤(金属化合物、エポキシ化合物、窒素化合物、燐化合物、硫黄化合物等)、紫外線吸収剤(ベンゾフェノン系化合物、ベンゾトリアゾール系化合物等)、界面活性剤、滑剤(パラフィン、ワックス等の脂肪族炭化水素、炭素数8~22の高級脂肪酸、炭素数8~22の高級脂肪酸金属(Al、Ca)塩、炭素数8~22の高級脂肪族アルコール、ポリグリコール、炭素数4~22の高級脂肪酸と炭素数4~18の脂肪族1価アルコールとのエステル、炭素数8~22の高級脂肪酸アマイド、シリコーン油、ロジン誘導体等)、充填剤(タルク、ハイドロタルサイト、マイカ、ゼオライト、パーライト、珪藻土、炭酸カルシウム、ガラス繊維等)、発泡剤、発泡助剤、ポリマー添加剤、可塑剤(ジアルキルフタレート、ジアルキルヘキサヒドロフタレート等)、架橋剤、架橋促進剤、帯電防止剤、難燃剤、分散剤、有機無機の顔料(インディゴ化合物、フタロシアニン系化合物、アントラキノン系化合物、ウルトラマリン化合物、アルミン酸コバルト化合物等)、加工助剤、他の結晶核剤等の各種添加剤が例示される。
これらの添加剤を使用する場合、その使用量は、本発明の効果を阻害しない限り、通常使用されている範囲で使用すればよいが、例えば、ポリオレフィン系樹脂100重量部に対して、好ましくは0.0001~100重量部程度、より好ましくは0.001~50重量部程度で使用されるのが一般的である。
上記酸化防止剤としては、フェノール系酸化防止剤、亜リン酸エステル系酸化防止剤、イオウ系酸化防止剤等が例示され、具体的な酸化防止剤としては、2,6-ジ-tert-ブチルフェノール、テトラキス[メチレン-3-(3,5-tert-ブチル-4-ヒドロキシフェノール)プロピオネート]メタン、2-ヒドロキシ-4-メトキシベンゾフェノン等のフェノール系酸化防止剤、アルキルジスルフィド、チオジプロピオン酸エステル、ベンゾチアゾール等の硫黄系酸化防止剤、トリスノニルフェニルホスファイト、ジフェニルイソデシルホスファイト、トリフェニルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、3,9-ビス(2,6-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン等の亜リン酸エステル系酸化防止剤等が例示される。中でも、フェノール系酸化防止剤であるテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、亜リン酸エステル系の酸化防止剤であるトリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、3,9-ビス(2,6-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン等が特に推奨される。
<ポリオレフィン系樹脂成形体>
本発明は、上記本発明のポリオレフィン系樹脂組成物を原料とするポリオレフィン系樹脂成形体でもある。本発明のポリオレフィン系樹脂成形体は、上記本発明のポリオレフィン系樹脂組成物を用いて、慣用されている成形方法に従って成形することにより得られる。上記成形方法としては、本発明の効果を奏する限り、特に制約はなく、射出成形、押出成形、ブロー成形、圧空成形、回転成形、フィルム成形等の従来公知の成形方法のいずれも採用できる。
かくして得られたポリオレフィン系樹脂成形体は、透明性等の光学的特性や耐衝撃性等の機械的特性に優れており、成形品やシート、フィルムとして、自動車部材、電気部材、機械部品、日常雑貨等様々な用途で、非常に有用である。
以下に実施例を示し、本発明を更に詳しく説明するが、本発明はこれらの実施例によって制限されるものではない。尚、実施例や応用例中の化合物の略号、及び各特性の測定は以下の通りである。
[ポリオレフィン系樹脂用結晶核剤の性状]
(1)かさ密度の測定
漏斗をメスシリンダーの開口部上2cmとなるように、かつそれと軸が一致するように垂直に保持し、漏斗を通して100cmのメスシリンダーに結晶核剤を100cmゆっくりと(圧力を加えずに)入れた。秤を用いてメスシリンダー内の結晶核剤の重量を0.1gの桁まで測定した。得られた重量より下記式(1)を用いてゆるみかさ密度を求めた。続いて、メスシリンダーをゴムシートの上5cmの高さから垂直に落下させる操作(タッピング)を50回繰り返した。メスシリンダー内の結晶核剤の容量を0.1cmの桁まで読み取り、下記式(2)を用いてかためかさ密度を求めた。
式(1)
ゆるみかさ密度(g/cm)=メスシリンダー内の結晶核剤の重量(g)/100cm
式(2)
かためかさ密度(g/cm)=メスシリンダー内の結晶核剤の重量(g)/タッピング後の結晶核剤の容量(cm
(2)粉化率
600μmのふるい上に試料10gをゆっくりと投入した後、30分間振動を与えた、振動停止後、600μmのふるいを通過した重量を測定し、下式より粉化率(%)を求めた。
粉化率(%)=ふるいを通過した重量(g)/ふるい上に投入した重量(g)×100
粉化率測定に供した試料は、全て測定前に試験で用いたふるいと同じ目開きのふるいでふるい分けして、ふるい上に残ったもののみを使用しており、上記試験でふるいを通過した微粉末は全て試験中に微粉末化した粉末である。
(3)粉体流動性試験(漏斗試験)
結晶核剤を、漏斗の上縁までの距離が5cmの高さから、開口部の直径15cm、穴の直径1.5cmの漏斗上へ注ぎ込み、振動させずに漏斗下口より落下させる。結晶核剤の漏斗から排出状態より、以下の基準に従って、結晶核剤の流動性を4段階評価にて判定した。
(評価基準)
◎:結晶核剤が全て速やかに漏斗から排出され、漏斗内壁の付着物もほとんど確認されない。
○:結晶核剤がわずかに漏斗から排出されずに残るが、わずかな衝撃により残った結晶核剤も全て排出される。
△:結晶核剤が漏斗から排出されずに残り、わずかな衝撃だけでは漏斗上に残った結晶核剤を完全に排出することは困難である。
×:結晶核剤が漏斗から排出されずに多量に残り、衝撃を与えても漏斗上に残った結晶核剤を排出することは困難である。
(4)ふるい分け試験
JIS K0069(1992)6.1に準拠した条件で、ふるい分け試験を行い、目開き1mmのJIS試験用ふるい上の残存物の全重量に対する割合を測定した。上記ふるい分け試験は、ブラシやはけを用いず、ふるい上の二次凝集物を砕かない条件で行い、ふるい分け時間を1分間とし、手動ふるい分けを行った。なお、予め後述の各実施例における本発明の結晶核剤について、二次凝集物が残らない条件で測定を行い、目開き1mmのふるい上の残存物が1重量%以下であること、後述の比較例におけるポリオレフィン系樹脂用結晶核剤の原料粉末については0重量%であることを確認した。従って、ふるい上の残存物の量が、一定時間内に発生した二次凝集物の量の目安として有効であり、ふるい上の残存物が多いほど、二次凝集性が大きいと言える。
(5)安息角の測定
25℃、湿度60%の条件下で、結晶核剤30gを、漏斗上縁までの距離が1cmの高さから、開口部の直径9cm、穴の直径1cmの漏斗上へ注ぎ込み、振動させずに漏斗下口から10cmの位置にある直径9cmの円形台上に落下させる。落下した円錐状の堆積物の高さを測定し、水平面と母線のなす角を計算から求め、安息角(単位:度)とした。この安息角が小さいほど粉末流動性が良いことを示す。
[成形体の性状]
(6)ヘイズ値の測定
東洋精機製作所社製のヘイズメータを用いて、JIS K7136(2000)に準じた方法でヘイズ値を測定した。評価試料には、1mm厚み射出成形品のポリプロピレン系樹脂成形体を使用した。得られたヘイズ値の数値が小さい程、透明性に優れていることを示す。
(7)白点評価
射出成形した50mm×50mm×1mm形状のポリオレフィン系樹脂成形体を評価試料として使用し、目視観察で成形体中の白点の数をカウントした。得られた結果は、試料5枚の平均値をとり、その試料の白点数とし、得られた評価結果より、以下の3段階で分類評価した。
◎:白点数が3個未満である。成形体の性能上、全く問題のないレベルである。
○:白点数が3~15個の範囲である。核剤としての性能上、問題はないが、他の物性面で未分散物の影響が出る可能性がある。
×:白点数が15個を超えて存在が確認される。明らかに、核剤の性能面でも十分に効果が発現されておらず、更に未分散物が様々な物性面で問題を生ずる可能性が高い。
実施例中の化合物の略号
DMDBS:1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトール
EDBS:1,3:2,4-ビス-O-(p-エチルベンジリデン)-D-ソルビトール
CDBS:1,3:2,4-ビス-O-(p-クロロベンジリデン)-D-ソルビトール
PDBN:1,3:2,4-ビス-O-(p-n-プロピルベンジリデン)-1-n-プロピルソルビトール
[実施例1~12]
工程(i):温度計、冷却装置を設置した(株)ダルトン製の全量4.7Lの万能混合撹拌機(5dmv-01-rr型)に、粉末状のポリオレフィン系樹脂用結晶核剤であるDMDBSとバインダー効果を有する化合物であるメタノール又はメタノールと水の混合溶液を表1に記載の所定量を仕込み、室温で10分間攪拌し、ポリオレフィン系樹脂用結晶核剤とバインダー効果を有する化合物の混合物を得た。
工程(ii):次に、孔径1.0mmのスクリーンダイを設置した(株)ダルトン製のファインディスクペレッターPV-5型に得られた混合物を、室温下で負荷が一定になる様に徐々に投入し、押出造粒を行い、造粒物を得た。
工程(iii):続いて、得られた造粒物から、真空下120℃で1時間乾燥してメタノール又はメタノールと水の混合物を除去した。
分級工程:バインダー効果を有する化合物を除去した後に、目開き600μmのふるいで分級し、小さい造粒物及び未造粒の粉末を除去し、本発明の粒状のポリオレフィン系樹脂用結晶核剤を得た。造粒物の直径はノギスで測定したところ、0.8~1.2mmの範囲であった。
得られた粒状のポリオレフィン系樹脂用結晶核剤を用いて、ゆるみかさ密度、かためかさ密度、粉化率を測定し、結果を表1に示した。続いて、得られた粒状のポリオレフィン系樹脂用結晶核剤を用いて、粉体流動性試験(漏斗試験)による粉体流動性の評価を行い、結果を合わせて表1に示した。
次に、ポリオレフィン系樹脂としてポリプロピレンランダムコポリマー(MFR=7g/10分(荷重2160g、温度230℃)、(株)プライムポリマー社製、R-720)100重量部、結晶核剤として上記で得られた粒状のポリオレフィン系樹脂用結晶核剤0.2重量部、及びその他添加剤としてステアリン酸カルシウム(CaSt)0.05重量部、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(Irg1010)0.01重量部、テトラキス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASFジャパン(株)製、商品名「IRGAFOS168」)0.05重量部をドライブレンドした。そのドライブレンド物を一軸押出機(田辺プラスチックス機械株式会社製VS―20)を用いてバレル温度250℃にて溶融混合後、押し出されたストランドを冷却し、ペレタイザーでカッティングして、ポリオレフィン系樹脂組成物を調製した。
続いて、得られたポリオレフィン系樹脂組成物を用いて、射出成形機(日精樹脂工業株式会社製NS40-5A)にて射出成形温度(加熱温度)240℃、金型温度(冷却温度)40℃の条件下で成形して、厚みが1mmのポリオレフィン系樹脂成形体を得た。
上記で得られた成形体を評価試料として用いて、ヘイズ値を測定し、得られた結果を表1に示した。また、上記方法にて目視により成形体中の白点評価を行い、その結果も合わせて表1に示した。
[比較例1]
バインダー効果を有する化合物を混合せずに、DMDBSのみを用いて、実施例1と同様に押出造粒を実施して、粒状のポリオレフィン系樹脂用結晶核剤の製造を試みたが、僅かに粒状化されたが、ほとんどが粉末状態のままであり、粒状化された部分も非常に脆く、実質的に粒状とは言えない状態であった。従って、分級等の操作は行わず、そのままの状態で、本発明外のポリオレフィン系樹脂用結晶核剤とした。
得られたポリオレフィン系樹脂用結晶核剤を用いて、ゆるみかさ密度、かためかさ密度を測定し、結果を表1に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、粉体流動性試験(漏斗試験)による粉体流動性の評価を行い、結果を合わせて表1に示した。
続いて、実施例1と同様に実施して、ポリオレフィン系樹脂組成物及びポリオレフィン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値を測定し、得られた結果を表1に示した。また、上記方法にて目視により成形体中の白点評価を行い、その結果も合わせて表1に示した。
[比較例2]
造粒前の粉末状のDMDBSのゆるみかさ密度、かためかさ密度を測定し、結果を表1に示した。続いて、実施例と同様に粉体流動性試験(漏斗試験)による粉体流動性の評価を行い、結果を表1に示した。
続いて、実施例1と同様に実施して、ポリオレフィン系樹脂組成物及びポリオレフィン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値を測定し、得られた結果を表1に示した。また、上記方法にて目視により成形体中の白点評価を行い、その結果も合わせて表1に示した。
Figure JPOXMLDOC01-appb-T000009
[実施例13~24]
ポリオレフィン系樹脂用結晶核剤として、DMDBSの代わりにEDBSとDMDBSのEDBS/DMDBS=7/3の混合物を用いた以外は、実施例1と同様に実施して、本発明の粒状のポリオレフィン系樹脂用結晶核剤を得た。造粒物の直径はノギスで測定したところ、0.8~1.1mmの範囲であった。
得られた粒状のポリオレフィン系樹脂用結晶核剤を用いて、ゆるみかさ密度、かためかさ密度、粉化率を測定し、結果を表2に示した。続いて、得られた粒状のポリオレフィン系樹脂用結晶核剤を用いて、粉体流動性試験(漏斗試験)による粉体流動性の評価を行い、結果を合わせて表2に示した。
[比較例3]
バインダー効果を有する化合物を混合せずに、EDBSとDMDBSのEDBS/DMDBS=7/3の混合物のみを用いて、実施例1と同様に押出造粒を実施して、粒状のポリオレフィン系樹脂用結晶核剤の製造を試みたが、僅かに粒状化されたが、ほとんどが粉末状態のままであり、粒状化された部分も非常に脆く、実質的に粒状とは言えない状態であった。従って、分級等の操作は行わず、そのままの状態で、本発明外のポリオレフィン系樹脂用結晶核剤とした。
得られたポリオレフィン系樹脂用結晶核剤を用いて、ゆるみかさ密度、かためかさ密度を測定し、結果を表2に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、粉体流動性試験(漏斗試験)による粉体流動性の評価を行い、結果を合わせて表2に示した。
続いて、実施例1と同様に実施して、ポリオレフィン系樹脂組成物及びポリオレフィン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値を測定し、得られた結果を表2に示した。また、上記方法にて目視により成形体中の白点評価を行い、その結果も合わせて表2に示した。
[比較例4]
造粒前の粉末状のEDBSとDMDBSのEDBS/DMDBS=7/3の混合物のゆるみかさ密度、かためかさ密度を測定し、結果を表2に示した。続いて、実施例と同様に粉体流動性試験(漏斗試験)による粉体流動性の評価を行い、結果を表2に示した。
続いて、実施例13と同様に実施して、ポリオレフィン系樹脂組成物及びポリオレフィン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値を測定し、得られた結果を表2に示した。また、上記方法にて目視により成形体中の白点評価を行い、その結果も合わせて表2に示した。
Figure JPOXMLDOC01-appb-T000010
[実施例25~32]
ポリオレフィン系樹脂用結晶核剤として、DMDBSの代わりにPDBNを用いた以外は、実施例1と同様に実施して、本発明の粒状のポリオレフィン系樹脂用結晶核剤を得た。造粒物の直径はノギスで測定したところ、0.9~1.3mmの範囲であった。
得られた粒状のポリオレフィン系樹脂用結晶核剤を用いて、ゆるみかさ密度、かためかさ密度、粉化率を測定し、結果を表3に示した。続いて、得られた粒状のポリオレフィン系樹脂用結晶核剤を用いて、粉体流動性試験(漏斗試験)による粉体流動性の評価を行い、結果を合わせて表3に示した。
[比較例5]
バインダー効果を有する化合物を混合せずに、PDBNのみを用いて、実施例1と同様に押出造粒を実施して、粒状のポリオレフィン系樹脂用結晶核剤の製造を試みたが、僅かに粒状化されたが、ほとんどが粉末状態のままであり、粒状化された部分も非常に脆く、実質的に粒状とは言えない状態であった。従って、分級等の操作は行わず、そのままの状態で、本発明外のポリオレフィン系樹脂用結晶核剤とした。
得られたポリオレフィン系樹脂用結晶核剤を用いて、ゆるみかさ密度、かためかさ密度を測定し、結果を表3に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、粉体流動性試験(漏斗試験)による粉体流動性の評価を行い、結果を合わせて表3に示した。
[比較例6]
造粒前の粉末状のPDBNのかさ密度を測定し、結果を表3に示した。続いて、実施例と同様に粉体流動性試験(漏斗試験)による粉体流動性の評価を行い、結果を表3に示した。
Figure JPOXMLDOC01-appb-T000011
[実施例33~38]
ポリオレフィン系樹脂用結晶核剤として、DMDBSの代わりにCDBSのみを用いた以外は、実施例1と同様に実施して、本発明の粒状のポリオレフィン系樹脂用結晶核剤を得た。造粒物の直径はノギスで測定したところ、0.7~1.2mmの範囲であった。
得られた粒状のポリオレフィン系樹脂用結晶核剤を用いて、ゆるみかさ密度、かためかさ密度、粉化率を測定し、結果を表4に示した。続いて、得られた粒状のポリオレフィン系樹脂用結晶核剤を用いて、粉体流動性試験(漏斗試験)による粉体流動性の評価を行い、結果を合わせて表4に示した。
[比較例7]
バインダー効果を有する化合物を混合せずに、CDBSのみを用いて、実施例1と同様に押出造粒を実施して、粒状のポリオレフィン系樹脂用結晶核剤の製造を試みたが、僅かに粒状化されたが、ほとんどが粉末状態のままであり、粒状化された部分も非常に脆く、実質的に粒状とは言えない状態であった。従って、分級等の操作は行わず、そのままの状態で、本発明外のポリオレフィン系樹脂用結晶核剤とした。
得られたポリオレフィン系樹脂用結晶核剤を用いて、ゆるみかさ密度、かためかさ密度、粉化率を測定し、結果を表4に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、粉体流動性試験(漏斗試験)による粉体流動性の評価を行い、結果を合わせて表4に示した。
[比較例8]
造粒前の粉末状のCDBSのかさ密度を測定し、結果を表4に示した。続いて、実施例と同様に粉体流動性試験(漏斗試験)による粉体流動性の評価を行い、結果を表4に示した。
Figure JPOXMLDOC01-appb-T000012
上記表1~4における実施例と比較例の結果を比較すれば明らかな様に、本発明の粒状のポリオレフィン系樹脂用結晶核剤は、これまで課題であった流動性が著しく改善されており、生産性向上に大きく寄与するものであることがわかる。また、表1~4における実施例と比較例の結果より、本発明の粒状のポリオレフィン系樹脂用結晶核剤が、樹脂中での分散性や溶解性に非常に優れており、これまで粒状のポリオレフィン系樹脂用結晶核剤で課題であった樹脂中での分散性や溶解性の課題が解決され、その結果、得られたポリオレフィン系樹脂成形体が白点等の問題もなく、非常に優れた透明性を有するものであり、様々な用途で非常に有用であることがわかる。
[実施例39]
ホソカワミクロン(株)製のロール型圧縮造粒機「コパクティングマシン HMS-25」を用いて、室温下、ロール圧力10MPa、ロール回転速度25Hzの条件下で、ポリオレフィン系樹脂用結晶核剤の原料粉末としてDMDBS(新日本理化(株)製、ゲルオールDXR、平均粒径5μm)を圧縮ロール部に連続的に供給して、乾式圧縮加工を行い、粉末を含むフレーク状の本発明の結晶核剤(DMDBSの圧縮物)を得た。
また、別の態様として、ホソカワミクロン(株)社製の衝撃型スクリーン粉砕機「フェザミルFM-2F」を用いて、前記の得られた粉末を含むフレーク状の本発明の結晶核剤を解砕し、粗粒を含む粉末状の本発明の結晶核剤(DMDBSの圧縮物)も得た。
得られた粉末状の本発明の結晶核剤は、粒度分布測定の結果より、15μm以上の粗粒の割合が63体積%以上であることを確認した。
続いて、得られた粉末状の本発明の結晶核剤を用いて、かさ密度、安息角を測定し、また粉体流動性試験(漏斗試験)及びふるい分け試験にて、粉体流動性及び二次凝集性の評価を行い、それらの結果を合わせて表5に示した。
[実施例40]
ロール圧力を、7.5MPaに変えた以外は、実施例1と同様に実施して、フレーク状の本発明の結晶核剤及び粉末状の本発明の結晶核剤を得た。得られた粉末状の本発明の結晶核剤は、粒度分布測定の結果より、15μm以上の粗粒の割合が59体積%以上であることを確認した。
続いて、得られた粉末状の本発明の結晶核剤を用いて、かさ密度、安息角を測定し、また粉体流動性試験(漏斗試験)及びふるい分け試験にて、粉体流動性及び二次凝集性の評価を行い、それらの結果を合わせて表5に示した。
[実施例41]
ロール圧力を、5.0MPaに変えた以外は、実施例1と同様に実施して、フレーク状の本発明の結晶核剤及び粉末状の本発明の結晶核剤を得た。得られた粉末状の本発明の結晶核剤は、粒度分布測定の結果より、15μm以上の粗粒の割合が53体積%以上であることを確認した。
続いて、得られた粉末状の本発明の結晶核剤を用いて、かさ密度、安息角を測定し、また粉体流動性試験(漏斗試験)及びふるい分け試験にて、粉体流動性及び二次凝集性の評価を行い、それらの結果を合わせて表5に示した。
[実施例42]
ロール回転速度を、20Hzに変えた以外は、実施例1と同様に実施して、粉末状の本発明の結晶核剤を得た。得られた本発明の結晶核剤が粉末状であったため、解砕は行わず、次の流動性試験に供した。
続いて、得られた粉末状の本発明の結晶核剤を用いて、かさ密度、安息角を測定し、また粉体流動性試験(漏斗試験)及びふるい分け試験にて、粉体流動性及び二次凝集性の評価を行い、それらの結果を合わせて表5に示した。
[実施例43]
ポリオレフィン系樹脂用結晶核剤の原料粉末として、EDBSを用いた以外は、実施例2と同様に実施して、フレーク状の本発明の結晶核剤及び粉末状の本発明の結晶核剤を得た。得られた粉末状の本発明の結晶核剤は、粒度分布測定の結果より、15μm以上の粗粒の割合が65体積%以上であることを確認した。
続いて、得られた粉末状の本発明の結晶核剤を用いて、かさ密度、安息角を測定し、また粉体流動性試験(漏斗試験)及びふるい分け試験にて、粉体流動性及び二次凝集性の評価を行い、それらの結果を合わせて表5に示した。
[実施例44]
ポリオレフィン系樹脂用結晶核剤の原料粉末として、EDBSを用いた以外は、実施例4と同様に実施して、粉末状の本発明の結晶核剤を得た。得られた本発明の結晶核剤が粉末状であったため、解砕は行わず、次の流動性試験に供した。
続いて、得られた粉末状の本発明の結晶核剤を用いて、かさ密度、安息角を測定し、また粉体流動性試験(漏斗試験)及びふるい分け試験にて、粉体流動性及び二次凝集性の評価を行い、それらの結果を合わせて表5に示した。
[実施例45]
ポリオレフィン系樹脂用結晶核剤の原料粉末として、PDBNを用いた以外は、実施例2と同様に実施して、フレーク状の本発明の結晶核剤及び粉末状の本発明の結晶核剤を得た。得られた粉末状の本発明の結晶核剤は、粒度分布測定の結果より、15μm以上の粗粒の割合が60体積%以上であることを確認した。
続いて、得られた粉末状の本発明の結晶核剤を用いて、かさ密度、安息角を測定し、また粉体流動性試験(漏斗試験)及びふるい分け試験にて、粉体流動性及び二次凝集性の評価を行い、それらの結果を合わせて表5に示した。
[比較例9]
圧縮加工前の原料DMDBS(ポリオレフィン系樹脂用結晶核剤の原料粉末)を用いて、かさ密度、安息角を測定し、また粉体流動性試験(漏斗試験)及びふるい分け試験にて、粉体流動性及び二次凝集性の評価を行い、それらの結果を合わせて表5に示した。
[比較例10]
圧縮加工前の原料EDBS(ポリオレフィン系樹脂用結晶核剤の原料粉末)を用いて、かさ密度、安息角を測定し、また粉体流動性試験(漏斗試験)及びふるい分け試験にて、粉体流動性及び二次凝集性の評価を行い、それらの結果を合わせて表5に示した。
[比較例11]
圧縮加工前の原料PDBN(ポリオレフィン系樹脂用結晶核剤の原料粉末)を用いて、かさ密度、安息角を測定し、また粉体流動性試験(漏斗試験)及びふるい分け試験にて、粉体流動性及び二次凝集性の評価を行い、それらの結果を合わせて表5に示した。
Figure JPOXMLDOC01-appb-T000013
[実施例46]
ポリオレフィン系樹脂としてポリプロピレンランダムコポリマー(MFR=7g/10分(荷重2160g、温度230℃)、(株)プライムポリマー製、R-720)100重量部、結晶核剤として実施例39で得られた粉末状の本発明の結晶核剤(DMDBSの圧縮物)0.2重量部、及びその他添加剤としてステアリン酸カルシウム(日東化成工業(株)製、商品名「Ca-St」)0.05重量部、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(BASFジャパン(株)製、商品名「IRGANOX1010」)0.05重量部、テトラキス(2,4-ジ-tert-ブチルフェニル)ホスファイト(BASFジャパン(株)製、商品名「IRGAFOS168」)0.05重量部をドライブレンドした。そのドライブレンド物を一軸押出機(田辺プラスチックス機械株式会社製VS―20)を用いてバレル温度240℃にて溶融混合後、押し出されたストランドを冷却し、ペレタイザーでカッティングして、ポリオレフィン系樹脂組成物を調製した。
続いて、得られたポリオレフィン系樹脂組成物を用いて、射出成形機(日精樹脂工業株式会社製NS40-5A)にて射出成形温度(加熱温度)240℃、金型温度(冷却温度)40℃の条件下で成形して、厚みが1mm及び厚さ2mmのポリオレフィン系樹脂成形体を得た。
上記で得られた成形体を評価試料として用いて、ヘイズ値を測定し、得られた結果を表6に示した。続いて、上記方法にて目視により成形体中の白点評価を行い、その結果を合わせて表6に示した。
[実施例47]
結晶核剤として、実施例40で得られた粉末状の本発明の結晶核剤(DMDBSの圧縮物)を用いた以外は、実施例46と同様に実施して、ポリオレフィン系樹脂組成物及びポリオレフィン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値を測定し、得られた結果を表6に示した。続いて、上記方法にて目視により成形体中の白点評価を行い、その結果を合わせて表6に示した。
[実施例48]
結晶核剤として、実施例41で得られた粉末状の本発明の結晶核剤(DMDBSの圧縮物)を用いた以外は、実施例46と同様に実施して、ポリオレフィン系樹脂組成物及びポリオレフィン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値を測定し、得られた結果を表6に示した。続いて、上記方法にて目視により成形体中の白点評価を行い、その結果を合わせて表6に示した。
[実施例49]
結晶核剤として、実施例42で得られた粉末状の本発明の結晶核剤(DMDBSの圧縮物)を用いた以外は、実施例46と同様に実施して、ポリオレフィン系樹脂組成物及びポリオレフィン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値を測定し、得られた結果を表6に示した。続いて、上記方法にて目視により成形体中の白点評価を行い、その結果を合わせて表6に示した。
[実施例50]
結晶核剤として、実施例43で得られた粉末状の本発明の結晶核剤(EDBSの圧縮物)を用いた以外は、実施例46と同様に実施して、ポリオレフィン系樹脂組成物及びポリオレフィン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値を測定し、得られた結果を表6に示した。続いて、上記方法にて目視により成形体中の白点評価を行い、その結果を合わせて表6に示した。
[実施例51]
結晶核剤として、実施例44で得られた粉末状の本発明の結晶核剤(EDBSの圧縮物)を用いた以外は、実施例46と同様に実施して、ポリオレフィン系樹脂組成物及びポリオレフィン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値を測定し、得られた結果を表6に示した。続いて、上記方法にて目視により成形体中の白点評価を行い、その結果を合わせて表6に示した。
[実施例52]
結晶核剤として、実施例45で得られた粉末状の本発明の結晶核剤(PDBNの圧縮物)を用いた以外は、実施例46と同様に実施して、ポリオレフィン系樹脂組成物及びポリオレフィン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値を測定し、得られた結果を表6に示した。続いて、上記方法にて目視により成形体中の白点評価を行い、その結果を合わせて表6に示した。
Figure JPOXMLDOC01-appb-T000014
上記表5の結果より、本発明の圧縮加工された本発明の結晶核剤(実際例39~45)は、圧縮加工されていない結晶核剤(比較例9~11)と比較して、かさ密度が大きく上昇していることがわかる。また、ふるい分け試験の結果より、圧縮加工により、二次凝集性が著しく改良されており、安息角の結果及び粉体流動性評価の結果から、流動性が大きく改善されていることが確認できる。この結果より、本発明の結晶核剤を用いることにより、ポリオレフィン系樹脂との配合時や配合後の成形加工時における作業性が大きく改善されていることがわかる。
また、上記表6の結果より、本発明の圧縮加工された本発明の結晶核剤を用いたポリオレフィン系樹脂組成物及びその成形体が、これまで問題であった未分散物や未溶解物に起因する白点等の欠点が生じる懸念もなく、更に非常に優れた透明核剤としての性能を示していることがわかる。
本発明の結晶核剤は、流動性が大きく改良されており、非常に流動性に優れた結晶核剤として、様々な用途で使用することができ、また、本発明の結晶核剤は、問題であったポリオレフィン系樹脂中での分散性や溶解性についても実用上問題のないレベルまで改善されており、成形品の性能的にも問題なく使用することができる。従って、本発明の結晶核剤は、様々な用途で生産性の向上等に大きく寄与することが可能であり、得られたポリオレフィン系樹脂成形体は、結晶核剤の未分散物や未溶解物による白点等の欠点がなく、かつ透明性等の光学的特性や耐衝撃性等の機械的特性に優れており、自動車部材、電気部材、機械部品、日用雑貨、衣装等のケース、食品等の容器等、様々な用途で使われる。特に、不要な添加剤等の混入が敬遠される医療用途等では、添加剤を加えることなく、流動性を改良できる技術として今後の活用が大いに期待される技術である。

Claims (21)

  1. ポリオレフィン系樹脂用結晶核剤であって、
    ゆるみかさ密度が0.25~0.50g/cmの範囲であり、且つ、かためかさ密度が0.35~0.80g/cmの範囲である
    ことを特徴とするポリオレフィン系樹脂用結晶核剤。
  2. 安息角が48度以下である請求項1に記載のポリオレフィン系樹脂用結晶核剤。
  3. 前記ポリオレフィン系樹脂用結晶核剤が、下記一般式(1)で示されるジアセタール系化合物である請求項1又は2に記載のポリオレフィン系樹脂用結晶核剤。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R及びRは、同一又は異なって、それぞれ、水素原子、直鎖状若しくは分岐鎖状の炭素数1~4のアルキル基、直鎖状若しくは分岐鎖状の炭素数1~4のアルコキシ基、直鎖状若しくは分岐鎖状の炭素数1~4のアルコキシカルボニル基又はハロゲン原子を示す。Rは、水素原子、直鎖状若しくは分岐鎖状の炭素数1~4のアルキル基、直鎖状若しくは分岐鎖状の炭素数2~4のアルケニル基又は直鎖状若しくは分岐鎖状の炭素数1~4のヒドロキシアルキル基を示す。m及びnは、それぞれ1~5の整数を示す。pは0又は1を示す。2つのRは互いに結合してそれらが結合するベンゼン環と共にテトラリン環を形成していてもよい。2つのR基は互いに結合してそれらが結合するベンゼン環と共にテトラリン環を形成していてもよい。]
  4. 前記一般式(1)において、R及びRが、同一又は異なって、メチル基又はエチル基であり、かつ、Rが水素原子であり、m及びnが1又は2の整数であり、pが1である、請求項3に記載のポリオレフィン系樹脂用結晶核剤。
  5. 前記一般式(1)において、R及びRが、同一又は異なって、プロピル基又はプロポキシ基であり、かつ、Rがプロピル基又はプロペニル基であり、m及びnが1であり、pが1である、請求項3に記載のポリオレフィン系樹脂用結晶核剤。
  6. 前記ポリオレフィン系樹脂用結晶核剤が、該ポリオレフィン系樹脂用結晶核剤の原料粉末とバインダー効果を有する化合物とを含む混合物からなる押出造粒物より、前記バインダー効果を有する化合物が除去された粒状物である請求項1~5の何れかに記載のポリオレフィン系樹脂用結晶核剤。
  7. 粉化率が40%以下であることを特徴とする請求項6に記載のポリオレフィン系樹脂用結晶核剤。
  8. 前記粒状物が、直径0.5~5.0mmの範囲の円柱状である請求項6又は7に記載のポリオレフィン系樹脂用結晶核剤。
  9. 乾式圧縮加工された圧縮物である請求項1~5の何れかに記載のポリオレフィン系樹脂用結晶核剤。
  10. 前記乾式圧縮加工が、ローラー圧縮法である請求項9に記載のポリオレフィン系樹脂用結晶核剤。
  11. 前記乾式圧縮加工におけるロール圧力が0.1~10MPaの範囲である請求項9又は10に記載のポリオレフィン系樹脂用結晶核剤。
  12. JIS K0069(1992)に準拠した条件で、ふるい上の二次凝集物を砕かずに行うふるい分け試験において、目開き1mmのJIS試験用ふるい上の残存物の全重量に対する割合が25重量%以下である、請求項9~11の何れかに記載のポリオレフィン系樹脂用結晶核剤。
  13. レーザー回折式粒度分布測定において、粒径15μm以上の粗粒の全体積に対する割合が50体積%以上である、請求項9~12の何れかに記載のポリオレフィン系樹脂用結晶核剤。
  14. 流動性の改良されたポリオレフィン系樹脂用結晶核剤の製造方法であって、
    (i)ポリオレフィン系樹脂用結晶核剤の原料粉末とバインダー効果を有する化合物を混合する混合工程、
    (ii)前記工程(i)で得られた混合物を、押出造粒により、粒状化する造粒工程
    (iii)前記工程(ii)で得られた造粒物より前記工程(i)で混合したバインダー効果を有する化合物を除去する工程を具備する
    ことを特徴とするポリオレフィン系樹脂用結晶核剤の製造方法。
  15. 前記工程(iii)で得られたポリオレフィン系樹脂用結晶核剤が、ゆるみかさ密度0.25~0.50g/cmであり、かためかさ密度が0.30~0.80g/mの範囲であり、且つ、粉化率40%以下である、請求項14に記載のポリオレフィン系樹脂用結晶核剤の製造方法。
  16. ポリオレフィン系樹脂用結晶核剤の製造方法であって、
    ローラー圧縮法による乾式圧縮加工工程を具備することを特徴とするポリオレフィン系樹脂用結晶核剤の製造方法。
  17. 前記圧縮加工工程におけるロール圧力が、0.1~10MPaの範囲である請求項16に記載のポリオレフィン系樹脂用結晶核剤の製造方法。
  18. ポリオレフィン系樹脂及び請求項1~13の何れかに記載のポリオレフィン系樹脂用結晶核剤、又は、請求項14~17の何れかに記載のポリオレフィン系樹脂用結晶核剤の製造方法で製造されたポリオレフィン系樹脂用結晶核剤を含んでなるポリオレフィン系樹脂組成物。
  19. 請求項18に記載にポリオレフィン系樹脂組成物を原料とするポリオレフィン系樹脂成形体。
  20. ポリオレフィン系樹脂用結晶核剤の流動性の改良方法であって、
    該結晶核剤のゆるみかさ密度を0.25~0.50g/cmの範囲に、かためかさ密度が0.3~0.80g/mの範囲に、粉化率を40%以下に調整することを特徴とするポリオレフィン系樹脂用結晶核剤の流動性の改良方法。
  21. ローラー圧縮法による乾式圧縮加工工程を具備することを特徴とするポリオレフィン系樹脂用結晶核剤の流動性の改良方法。
PCT/JP2017/026379 2016-07-29 2017-07-21 ポリオレフィン系樹脂用結晶核剤、ポリオレフィン系樹脂用結晶核剤の製造方法、及び、ポリオレフィン系樹脂用結晶核剤の流動性の改良方法 WO2018021161A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780047038.6A CN109563308B (zh) 2016-07-29 2017-07-21 聚烯烃系树脂用结晶成核剂、聚烯烃系树脂用结晶成核剂的制造方法以及聚烯烃系树脂用结晶成核剂的流动性的改良方法
US16/321,775 US11634427B2 (en) 2016-07-29 2017-07-21 Crystal nucleating agent for polyolefin resin, method for producing crystal nucleating agent for polyolefin resin, and method for improving fluidity of crystal nucleating agent for polyolefin resin
EP17834169.9A EP3492519B1 (en) 2016-07-29 2017-07-21 Crystal nucleating agent for polyolefin resin, method for producing crystal nucleating agent for polyolefin resin, and method for improving fluidity of crystal nucleating agent for polyolefin resin
US18/184,127 US20230219972A1 (en) 2016-07-29 2023-03-15 Crystal nucleating agent for polyolefin resin, method for producing crystal nucleating agent for polyolefin resin, and method for improving fluidity of crystal nucleating agent for polyolefin resin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-149528 2016-07-29
JP2016149528A JP6694139B2 (ja) 2016-07-29 2016-07-29 ポリオレフィン系樹脂用結晶核剤
JP2017-128572 2017-06-30
JP2017128572A JP6867593B2 (ja) 2017-06-30 2017-06-30 流動性の改良された粒状のポリオレフィン系樹脂用結晶核剤

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/321,775 A-371-Of-International US11634427B2 (en) 2016-07-29 2017-07-21 Crystal nucleating agent for polyolefin resin, method for producing crystal nucleating agent for polyolefin resin, and method for improving fluidity of crystal nucleating agent for polyolefin resin
US18/184,127 Continuation US20230219972A1 (en) 2016-07-29 2023-03-15 Crystal nucleating agent for polyolefin resin, method for producing crystal nucleating agent for polyolefin resin, and method for improving fluidity of crystal nucleating agent for polyolefin resin

Publications (1)

Publication Number Publication Date
WO2018021161A1 true WO2018021161A1 (ja) 2018-02-01

Family

ID=61016247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026379 WO2018021161A1 (ja) 2016-07-29 2017-07-21 ポリオレフィン系樹脂用結晶核剤、ポリオレフィン系樹脂用結晶核剤の製造方法、及び、ポリオレフィン系樹脂用結晶核剤の流動性の改良方法

Country Status (4)

Country Link
US (2) US11634427B2 (ja)
EP (1) EP3492519B1 (ja)
CN (1) CN109563308B (ja)
WO (1) WO2018021161A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10414898B2 (en) * 2016-12-21 2019-09-17 Milliken & Company Additive composition and methods for using the same

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843748B1 (ja) 1969-10-06 1973-12-20 New Japan Chem Co Ltd
JPS535165A (en) 1976-07-01 1978-01-18 Ec Chem Ind Co Purification of dibenzylidenesorbitol
JPS57185287A (en) 1981-05-08 1982-11-15 Mitsui Toatsu Chem Inc Purification of bis(alkylbenzylidene)sorbitol
JPH02231488A (ja) 1989-03-03 1990-09-13 New Japan Chem Co Ltd アセタール類の製造方法
WO1998033851A1 (fr) 1997-02-04 1998-08-06 New Japan Chemical Co., Ltd. Composition particulaire a base de diacetal, procede de production associe, composition de resine polyolefinique et moulage
WO1999018108A1 (fr) * 1997-10-03 1999-04-15 New Japan Chemical Co., Ltd. Composition de diacetal, procede de preparation, agent de nucleation pour polyolefines contenant une telle composition, compositions de resines de polyolefines, et moulages
JP2001081236A (ja) 1999-09-14 2001-03-27 Sakai Chem Ind Co Ltd 顆粒状造核剤組成物とこれを配合してなるポリオレフィン樹脂組成物
JP2002060602A (ja) * 2000-08-24 2002-02-26 Teijin Chem Ltd 熱可塑性樹脂組成物
WO2002077094A1 (fr) 2001-03-27 2002-10-03 New Japan Chemical Co., Ltd. Composition de diacétal, agent de nucléation contenant la composition pour polyoléfine, composition de résine de polyolééfine contenant la composition de diacétal, procédé de production de la composition de résine, et objet moulé
JP2002332359A (ja) 2001-05-10 2002-11-22 New Japan Chem Co Ltd 粒状ポリオレフィン用添加剤組成物及びその製造方法、並びに該組成物を含むポリオレフィン樹脂組成物及びその成型体
JP2003096246A (ja) * 2001-09-27 2003-04-03 New Japan Chem Co Ltd 粒状ポリオレフィン樹脂用添加剤組成物の製造方法
JP2009507982A (ja) 2005-09-12 2009-02-26 ミリケン・アンド・カンパニー シリカ含有成核剤組成物及びそのような組成物のポリオレフィンでの使用のための方法
JP2013209662A (ja) 2013-05-31 2013-10-10 Adeka Corp 透明化剤組成物及びそれを含有してなるポリオレフィン系樹脂組成物
WO2014136824A1 (ja) 2013-03-05 2014-09-12 日亜化学工業株式会社 リードフレーム及び半導体装置
JP2015030849A (ja) 2013-08-06 2015-02-16 ドボン インコーポレイテッド 中和剤を含む添加剤組成物

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947705B2 (ja) 1975-04-02 1984-11-21 日本ゼオン (株) ポリオレフイン系樹脂組成物
JPS5630449A (en) * 1979-08-21 1981-03-27 Mitsui Toatsu Chem Inc Polypropylene composition
JPS5721440A (en) 1980-07-16 1982-02-04 Iic Kagaku Kogyo Kk Dibenzylidenesorbitol composition and production thereof
JPS60101131A (ja) 1983-11-07 1985-06-05 Iic Kagaku Kogyo Kk ポリオレフイン樹脂用添加剤
JPH0657676B2 (ja) * 1986-04-30 1994-08-03 ムサシノガイギ−株式会社 独立粒子状β晶テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフエニル)プロピオニルオキシメチル〕メタンおよびその製造方法
JPH089679B2 (ja) * 1988-09-16 1996-01-31 新日本理化株式会社 樹脂改質用ジアセタール組成物及び結晶性樹脂組成物
US5198484A (en) 1992-05-01 1993-03-30 Milliken Research Corporation Polyolefin composition containing ultrafine sorbitol and xylitol acetals
JPH0732454A (ja) 1993-07-16 1995-02-03 Kanegafuchi Chem Ind Co Ltd ブロー成形用樹脂組成物及びブロー成形方法
JPH07118512A (ja) 1993-10-22 1995-05-09 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物
JP3343754B2 (ja) 1995-03-08 2002-11-11 吉富ファインケミカル株式会社 ポリオレフイン系樹脂に対する透明化剤、その製造法及び透明性が改良されたポリオレフイン系樹脂組成物
US20020028864A1 (en) 1997-10-03 2002-03-07 Toshiaki Kobayashi Diacetal composition, process for preparing the same, polyolefin nucleating agent containing said composition, polyolefin resing compositions and molded articles
FR2772767B1 (fr) * 1997-12-23 2000-02-25 Roquette Freres Composition amelioree d'acetal d'alditol et son utilisation dans les matieres plastiques et gelifiees
KR100607559B1 (ko) 1999-06-15 2006-07-31 가부시키가이샤 아데카 조핵제
JP2001240698A (ja) 2000-02-29 2001-09-04 Mitsui Chemicals Inc 添加剤、ポリオレフィン樹脂組成物および成形体
US6592901B2 (en) * 2001-10-15 2003-07-15 Hercules Incorporated Highly compressible ethylcellulose for tableting
BR0308037A (pt) 2002-05-02 2004-12-28 New Japan Chem Co Ltd Agente para a supressão da transferência de odor e de gosto que se origine a partir de um diacetal, composição de diacetal que compreende o agente para a supressão da transferência de odor e de gosto, agente de nucleação de uma poliolefina que compreende a composição, composição de resina de poliolefina e produto moldado que compreende o agente de nucleação
WO2006005681A1 (en) * 2004-07-09 2006-01-19 Ciba Specialty Chemicals Holding Inc. Process for preparing a pulverulent alditol acetal composition
US8022133B2 (en) * 2005-01-28 2011-09-20 Milliken & Company Co-additive compositions and methods for applying co-additive compositions into nucleated polymer compounds
JP5191102B2 (ja) 2006-04-28 2013-04-24 国立大学法人広島大学 高性能造核剤の製造方法
CN101511930B (zh) 2006-09-12 2012-07-04 三井化学株式会社 聚丙烯树脂和吹塑容器
US8546473B2 (en) 2008-05-16 2013-10-01 Adeka Corporation Polyolefin resin composition
JP2010275535A (ja) 2009-04-27 2010-12-09 Sumitomo Chemical Co Ltd 粒剤およびその製造方法
BR112012016841B1 (pt) 2010-03-29 2020-03-31 Adeka Corporation Metodo para produzir uma composicao de resina de polipropileno
JP5628539B2 (ja) 2010-03-29 2014-11-19 株式会社Adeka ジベンジリデンソルビトール系透明化剤の効果を向上させた透明化剤組成物
JP2012233149A (ja) 2011-04-22 2012-11-29 New Japan Chem Co Ltd ジアセタール組成物、該組成物を含むポリオレフィン系樹脂用核剤、該核剤を含有するポリオレフィン系樹脂組成物及びその成形体
JP6263120B2 (ja) * 2012-08-10 2018-01-17 株式会社ダイセル 不飽和カルボン酸アミド化合物を含む結晶、及びその製造方法
WO2014136842A1 (ja) 2013-03-06 2014-09-12 新日本理化株式会社 ジアセタール含有組成物、ポリオレフィン樹脂組成物、及び樹脂成形体
CN103497484B (zh) 2013-09-06 2016-03-09 开滦能源化工股份有限公司 高模、高强、高耐热聚甲醛复合材料及其制备方法
CN104788545B (zh) 2014-05-29 2019-03-01 上海天伟生物制药有限公司 一种环肽类化合物的结晶粉末及其制备方法和用途
JP6346305B2 (ja) * 2014-12-05 2018-06-20 大日精化工業株式会社 顆粒状樹脂用添加剤の製造方法、その製造方法により得られる顆粒状樹脂用添加剤、熱可塑性樹脂組成物、及び成形品
JP6394376B2 (ja) 2014-12-25 2018-09-26 新日本理化株式会社 ジアセタール含有組成物
CN104910616B (zh) 2015-06-30 2017-07-21 广东银禧科技股份有限公司 一种用于选择性激光烧结的低温尼龙粉末材料及其制备方法
EP3505564B1 (en) * 2016-08-25 2021-02-24 New Japan Chemical Co., Ltd. Crystal nucleator for polyolefin resins, method for producing crystal nucleator for polyolefin resins, and method for improving fluidity of crystal nucleator for polyolefin resins
EP3362509A4 (en) 2016-12-20 2019-04-03 GCh Technology Co., Ltd. PARTICULATE NUCLEARING AGENT AND METHOD FOR THE PRODUCTION THEREOF

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843748B1 (ja) 1969-10-06 1973-12-20 New Japan Chem Co Ltd
JPS535165A (en) 1976-07-01 1978-01-18 Ec Chem Ind Co Purification of dibenzylidenesorbitol
JPS57185287A (en) 1981-05-08 1982-11-15 Mitsui Toatsu Chem Inc Purification of bis(alkylbenzylidene)sorbitol
JPH02231488A (ja) 1989-03-03 1990-09-13 New Japan Chem Co Ltd アセタール類の製造方法
WO1998033851A1 (fr) 1997-02-04 1998-08-06 New Japan Chemical Co., Ltd. Composition particulaire a base de diacetal, procede de production associe, composition de resine polyolefinique et moulage
WO1999018108A1 (fr) * 1997-10-03 1999-04-15 New Japan Chemical Co., Ltd. Composition de diacetal, procede de preparation, agent de nucleation pour polyolefines contenant une telle composition, compositions de resines de polyolefines, et moulages
JP2001081236A (ja) 1999-09-14 2001-03-27 Sakai Chem Ind Co Ltd 顆粒状造核剤組成物とこれを配合してなるポリオレフィン樹脂組成物
JP2002060602A (ja) * 2000-08-24 2002-02-26 Teijin Chem Ltd 熱可塑性樹脂組成物
WO2002077094A1 (fr) 2001-03-27 2002-10-03 New Japan Chemical Co., Ltd. Composition de diacétal, agent de nucléation contenant la composition pour polyoléfine, composition de résine de polyolééfine contenant la composition de diacétal, procédé de production de la composition de résine, et objet moulé
JP2002332359A (ja) 2001-05-10 2002-11-22 New Japan Chem Co Ltd 粒状ポリオレフィン用添加剤組成物及びその製造方法、並びに該組成物を含むポリオレフィン樹脂組成物及びその成型体
JP2003096246A (ja) * 2001-09-27 2003-04-03 New Japan Chem Co Ltd 粒状ポリオレフィン樹脂用添加剤組成物の製造方法
JP2009507982A (ja) 2005-09-12 2009-02-26 ミリケン・アンド・カンパニー シリカ含有成核剤組成物及びそのような組成物のポリオレフィンでの使用のための方法
WO2014136824A1 (ja) 2013-03-05 2014-09-12 日亜化学工業株式会社 リードフレーム及び半導体装置
JP2013209662A (ja) 2013-05-31 2013-10-10 Adeka Corp 透明化剤組成物及びそれを含有してなるポリオレフィン系樹脂組成物
WO2014192812A1 (ja) * 2013-05-31 2014-12-04 株式会社Adeka 透明化剤組成物及びそれを含有してなるポリオレフィン系樹脂組成物
JP2015030849A (ja) 2013-08-06 2015-02-16 ドボン インコーポレイテッド 中和剤を含む添加剤組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3492519A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10414898B2 (en) * 2016-12-21 2019-09-17 Milliken & Company Additive composition and methods for using the same

Also Published As

Publication number Publication date
US20230219972A1 (en) 2023-07-13
CN109563308A (zh) 2019-04-02
EP3492519A1 (en) 2019-06-05
EP3492519B1 (en) 2020-12-09
CN109563308B (zh) 2022-02-01
US11634427B2 (en) 2023-04-25
EP3492519A4 (en) 2020-03-18
US20200325150A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
JP2610772B2 (ja) 超微粒ソルビトールアセタール及びキシリトールアセタールを含有するポリオレフィン組成物
JP6394376B2 (ja) ジアセタール含有組成物
JP5920524B2 (ja) ジアセタール含有組成物、ポリオレフィン樹脂組成物、及び樹脂成形体
US6417254B1 (en) Particulate diacetal composition, process for producing the same, and polyolefin resin composition and molding
KR100842164B1 (ko) 디아세탈 조성물, 상기 조성물을 포함하는 폴리올레핀용핵제, 상기 디아세탈 조성물을 포함하는 폴리올레핀 수지조성물, 상기 수지 조성물의 제조법 및 성형체
CN106715556B (zh) 一种颗粒状成核剂及其制备方法
JP2003096246A (ja) 粒状ポリオレフィン樹脂用添加剤組成物の製造方法
EP3505564B1 (en) Crystal nucleator for polyolefin resins, method for producing crystal nucleator for polyolefin resins, and method for improving fluidity of crystal nucleator for polyolefin resins
US20230219972A1 (en) Crystal nucleating agent for polyolefin resin, method for producing crystal nucleating agent for polyolefin resin, and method for improving fluidity of crystal nucleating agent for polyolefin resin
EP3559103B1 (en) Additive composition and methods for using the same
JP2008274081A (ja) ポリオレフィン組成物の製造方法
JP6694139B2 (ja) ポリオレフィン系樹脂用結晶核剤
JP6694142B2 (ja) ポリオレフィン系樹脂用結晶核剤の流動性改良方法
JP6679450B2 (ja) 流動性の改良された顆粒状ポリオレフィン系樹脂用結晶核剤
JP6867593B2 (ja) 流動性の改良された粒状のポリオレフィン系樹脂用結晶核剤
US11746211B2 (en) Crystal nucleator for polyolefin resins, method for producing crystal nucleator for polyolefin resins, and method for improving fluidity of crystal nucleator for polyolefin resins
JP6849913B2 (ja) 流動性の改良された微粒子状ポリオレフィン系樹脂用結晶核剤
JP2019011277A5 (ja)
JP6912708B2 (ja) 流動性の改良されたポリオレフィン系樹脂用結晶核剤組成物
JP2017218471A (ja) ポリオレフィン系樹脂マスターバッチ及びその製造方法、並びに該マスターバッチを用いたポリオレフィン系樹脂成形体
CN109661424B (zh) 聚烯烃系树脂用结晶成核剂、聚烯烃系树脂用结晶成核剂的制造方法以及聚烯烃系树脂用结晶成核剂的流动性的改良方法
JP6849912B2 (ja) ポリオレフィン系樹脂用結晶核剤の流動性の改良方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834169

Country of ref document: EP

Effective date: 20190228