WO2018021113A1 - プリプレグ、金属張積層板及びプリント配線板 - Google Patents

プリプレグ、金属張積層板及びプリント配線板 Download PDF

Info

Publication number
WO2018021113A1
WO2018021113A1 PCT/JP2017/026113 JP2017026113W WO2018021113A1 WO 2018021113 A1 WO2018021113 A1 WO 2018021113A1 JP 2017026113 W JP2017026113 W JP 2017026113W WO 2018021113 A1 WO2018021113 A1 WO 2018021113A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
group
formula
prepreg
prepreg according
Prior art date
Application number
PCT/JP2017/026113
Other languages
English (en)
French (fr)
Inventor
柏原 圭子
孝 星
博晴 井上
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018529808A priority Critical patent/JP6861377B2/ja
Priority to US16/316,579 priority patent/US11059260B2/en
Priority to CN201780043922.2A priority patent/CN109476862B/zh
Priority to KR1020197001678A priority patent/KR102346231B1/ko
Publication of WO2018021113A1 publication Critical patent/WO2018021113A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2461/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/012Flame-retardant; Preventing of inflammation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0257Nanoparticles

Definitions

  • the present disclosure generally relates to a prepreg, a metal-clad laminate, and a printed wiring board, and more specifically, a prepreg provided with a woven fabric base material and a semi-cured product of a resin composition, and a metal-clad laminate formed using the prepreg
  • the present invention relates to a board and a printed wiring board formed using the metal-clad laminate.
  • a prepreg is formed by impregnating a woven fabric base material with a resin composition containing a thermosetting resin and heating and drying until a semi-cured state is obtained (see, for example, Patent Documents 1-3).
  • a metal-clad laminate can be manufactured by laminating a metal foil on the prepreg formed in this way and then heat-pressing it.
  • a printed wiring board can be manufactured by removing the unnecessary portion of the metal foil of the metal-clad laminate and providing a conductor pattern. Then, a package is manufactured by mounting and sealing a semiconductor element on this printed wiring board.
  • PoP Package on Package
  • this PoP is a form in which a plurality of subpackages are stacked, the mountability of the subpackages and the electrical conduction reliability for each subpackage are important.
  • the mountability and conduction reliability of the package are smaller when the absolute value of warpage at room temperature is smaller, and the amount of change in warpage when the ambient temperature is changed from room temperature to 260 ° C. The smaller the number, the better. Therefore, at present, development of a substrate material that reduces the warpage of the package is actively performed.
  • the material that has been proposed as a substrate material that reduces the warpage of the package is a material developed with the direction of high rigidity and low coefficient of thermal expansion. That is, it is a proposal that the higher the rigidity is, the lower the coefficient of thermal expansion (CTE) is, the lower the warpage of the package is.
  • CTE coefficient of thermal expansion
  • the insulating layer of such a thin object has a small amount of moisture absorption, so the insulating layer is configured even when heated by soldering or the like.
  • the swelling of the insulating layer can be suppressed by the strength of the resin to be used.
  • the thickness of the insulating layer is 0.2 mm or more, the moisture absorption amount of such a thick insulating layer increases, and when the absorbed moisture is heated and evaporated by soldering or the like, the insulating layer is formed. The resin is broken and the insulating layer is swollen. As described above, the conventional printed wiring board having a particularly large thickness has a problem that the moisture absorption heat resistance is low.
  • An object of the present disclosure is to provide a prepreg, a metal-clad laminate, and a printed wiring board that can improve moisture absorption heat resistance.
  • the prepreg according to one aspect of the present disclosure is A woven fabric substrate; And a semi-cured product of the resin composition impregnated in the woven fabric base material.
  • the resin composition contains at least one of the following (A1) component and the following (A2) component, the following (B) component, the following (C1) component, and the following (C2) component. To do.
  • (A1) An epoxy resin having at least one of a naphthalene skeleton and a biphenyl skeleton.
  • (B) It has a structure represented by at least the following formula (b2) and the following formula (b3) among the following formula (b1), the following formula (b2) and the following formula (b3), and has a weight average molecular weight of 200,000. High molecular weight body of ⁇ 850,000.
  • X in the formula (b1), y in the formula (b2), and z in the formula (b3) satisfy the following relational expression.
  • x: y: z (molar fraction) 0: 0.95: 0.05 to 0.2: 0.6: 0.2 (where x + y + z ⁇ 1, 0 ⁇ x ⁇ 0.2, 0.6) ⁇ y ⁇ 0.95, 0.05 ⁇ z ⁇ 0.2).
  • R1 is a hydrogen atom or a methyl group
  • R2 is at least one of a hydrogen atom, an alkyl group, a glycidyl group, and an epoxidized alkyl group, among a glycidyl group and an epoxidized alkyl group.
  • R3 is a hydrogen atom or a methyl group
  • R4 is Ph (phenyl group), —COOCH 2 Ph or —COO (CH 2 ) 2 Ph.
  • R5 is a methoxy group or an ethoxy group
  • R6 has an isocyanate group, a glycidyl group or an amino group at the terminal of an aliphatic alkyl group having 3 to 18 carbon atoms.
  • R7 is a methoxy group or an ethoxy group
  • R8 has a methacryloyl group or a vinyl group at the terminal of an aliphatic alkyl group having 3 to 18 carbon atoms.
  • the metal-clad laminate according to one aspect of the present disclosure is A cured product of the prepreg; And a metal foil bonded to the cured product.
  • the printed wiring board according to one aspect of the present disclosure is A cured product of the prepreg; And a conductor pattern provided on the cured product.
  • FIG. 1 is a schematic cross-sectional view showing a prepreg according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic plan view showing a woven fabric substrate constituting the prepreg of the same.
  • FIG. 3 is a schematic cross-sectional view showing a metal-clad laminate according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic cross-sectional view illustrating a printed wiring board according to an embodiment of the present disclosure.
  • 5A to 5G are schematic cross-sectional views showing a series of steps of the semi-additive method.
  • FIG. 6A is a schematic cross-sectional view showing a state in which no resin smear remains between the inner layer pattern and the plating after the semi-additive method is performed.
  • FIG. 6A is a schematic cross-sectional view showing a state in which no resin smear remains between the inner layer pattern and the plating after the semi-additive method is performed.
  • FIG. 6B is a schematic cross-sectional view showing a state in which a resin smear remains between the inner layer pattern and the plating after the semi-additive method is performed.
  • 7A to 7G are schematic sectional views showing a series of steps of the modified semi-additive method.
  • FIG. 8A is a schematic cross-sectional view showing a state in which no resin smear remains between the inner layer pattern and the plating after the modified semi-additive method is performed.
  • FIG. 8B is a schematic cross-sectional view showing a state in which a resin smear remains between the inner layer pattern and the plating after the modified semi-additive method is performed.
  • 9A is an electron micrograph showing the dispersion state of the inorganic filler of Example 1.
  • FIG. 9B is an electron micrograph showing the dispersion state of the inorganic filler of Comparative Example 1.
  • FIG. 1 shows a prepreg 1 of this embodiment.
  • the prepreg 1 includes a woven fabric substrate 5 and a semi-cured product 4 of a resin composition impregnated in the woven fabric substrate 5.
  • the semi-cured product 4 of the resin composition means a resin composition in an intermediate stage of the curing reaction.
  • the intermediate stage is also called a B stage, and is a stage between the varnished A stage and the fully cured C stage. At this stage, when further heated, it is once melted and then completely cured to obtain a cured product of the resin composition.
  • the prepreg 1 is in a semi-cured state, which means that the resin composition constituting the prepreg 1 is in a semi-cured state. Further, the cured product of the prepreg 1 means that the resin composition constituting the prepreg 1 is in a completely cured state.
  • the resin composition contains at least one of the following components (A1) and (A2). That is, the resin composition may contain both the component (A1) and the component (A2), may contain the component (A1), and may not contain the component (A2). ) Component may not be contained, and (A2) component may be contained. Furthermore, the resin composition contains the following component (B), the following component (C1), and the following component (C2). Hereinafter, each component which comprises a resin composition is demonstrated in order.
  • the component (A1) is a matrix resin that is a highly rigid component.
  • the component (A1) is an epoxy resin having at least one of a naphthalene skeleton and a biphenyl skeleton.
  • the epoxy resin of component (A1) may have both a naphthalene skeleton and a biphenyl skeleton, may have a naphthalene skeleton and may not have a biphenyl skeleton, or may have a naphthalene skeleton. It may not have and may have a biphenyl skeleton.
  • an epoxy resin having a naphthalene skeleton and not having a biphenyl skeleton may be referred to as a naphthalene skeleton-containing epoxy resin.
  • An epoxy resin having no naphthalene skeleton and having a biphenyl skeleton may be referred to as a biphenyl skeleton-containing epoxy resin.
  • the component (A2) is also a matrix resin that is a highly rigid component.
  • the component (A2) is a phenol resin having at least one of a naphthalene skeleton and a biphenyl skeleton.
  • the (A2) component phenolic resin may have both a naphthalene skeleton and a biphenyl skeleton, may have a naphthalene skeleton and may not have a biphenyl skeleton, or may have a naphthalene skeleton. It may not have and may have a biphenyl skeleton.
  • a phenol resin having a naphthalene skeleton and not having a biphenyl skeleton may be referred to as a naphthalene skeleton-containing phenol resin.
  • a phenol resin having no naphthalene skeleton and having a biphenyl skeleton may be referred to as a biphenyl skeleton-containing phenol resin.
  • both the component (A1) and the component (A2) have at least one of a naphthalene skeleton and a biphenyl skeleton
  • the heat resistance of the cured product of the prepreg 1 (for example, solder heat resistance) Property).
  • the naphthalene skeleton is a rigid skeleton
  • the heat resistance of the cured product of the prepreg 1 can be further increased.
  • the prepreg 1 is a material for the metal-clad laminate 2, the printed wiring board 3, and the package, these heat resistances can also be improved.
  • the metal-clad laminate 2 and the printed wiring board 3 may be collectively referred to as a substrate.
  • the component (B) is a low elasticity component, for example, an epoxy-modified acrylic resin.
  • the component (B) has a structure represented by at least the following formula (b2) and the following formula (b3) among the following formula (b1), the following formula (b2), and the following formula (b3). .
  • X in the formula (b1), y in the formula (b2), and z in the formula (b3) satisfy the following relational expression.
  • x: y: z (molar fraction) 0: 0.95: 0.05 to 0.2: 0.6: 0.2 (where x + y + z ⁇ 1, 0 ⁇ x ⁇ 0.2, 0.6) ⁇ y ⁇ 0.95, 0.05 ⁇ z ⁇ 0.2).
  • R1 is a hydrogen atom or a methyl group
  • R2 is at least one of a hydrogen atom, an alkyl group, a glycidyl group, and an epoxidized alkyl group, among a glycidyl group and an epoxidized alkyl group.
  • R3 is a hydrogen atom or a methyl group
  • R4 is Ph (phenyl group), —COOCH 2 Ph or —COO (CH 2 ) 2 Ph.
  • the main chain of the component (B) has a structure represented by at least the formula (b2) and the formula (b3) among the formula (b1), the formula (b2), and the formula (b3).
  • the main chain of component (B) has a structure represented by formula (b1), formula (b2), and formula (b3), a structure represented by formula (b1), formula (b2), or formula (b3)
  • the order of arrangement is not particularly limited.
  • the structures represented by the formula (b1) may or may not be continuous, and the structures represented by the formula (b2) may be continuous. Or may not be continuous, and the structures represented by the formula (b3) may or may not be continuous.
  • the arrangement order of the structures represented by the formula (b2) and the formula (b3) is not particularly limited.
  • the structures represented by the formula (b2) may or may not be continuous, and the structures represented by the formula (b3) may be continuous. It does not have to be continuous.
  • R2 in formula (b2) means that it contains at least one of a glycidyl group and an epoxidized alkyl group among a hydrogen atom, an alkyl group, a glycidyl group, and an epoxidized alkyl group.
  • R2 in formula (b2) there is one R2 in the structure represented by one formula (b2).
  • the component (B) will be described separately for the case where it has only one structure represented by the formula (b2) and the case where it has two or more.
  • R2 is a glycidyl group or an epoxidized alkyl group.
  • R2 in the structure represented by at least one formula (b2) is glycidyl group or epoxidized.
  • R2 in the structure represented by the remaining formula (b2) which is an alkyl group is a hydrogen atom or an alkyl group. Since R2 in the structure represented by at least one formula (b2) is a glycidyl group or an epoxidized alkyl group, R2 in all the structures represented by formula (b2) is glycidyl group or epoxidized. Or an alkyl group.
  • the structure represented by the formula (b3) has Ph (phenyl group), —COOCH 2 Ph, and —COO (CH 2 ) 2 Ph. Since Ph, —COOCH 2 Ph, and —COO (CH 2 ) 2 Ph are thermally stable, the strength of the cured product of the prepreg 1 is increased. Therefore, the moisture absorption heat resistance of the substrate manufactured using the prepreg 1 as a material can be improved.
  • the component (B) preferably does not have an unsaturated bond such as a double bond or a triple bond between adjacent carbon atoms. That is, it is preferable that adjacent carbon atoms of the component (B) are bonded by a saturated bond (single bond). Thereby, since oxidation with time can be reduced, loss of elasticity and brittleness can be suppressed.
  • Component (B) is a high molecular weight material having a weight average molecular weight (Mw) in the range of 200,000 to 850,000.
  • Mw weight average molecular weight
  • the significant digits of the weight average molecular weight are two digits. Numbers that are 200,000 or 850,000 by rounding off the third digit (thousands) are also included in the above range of 200,000 to 850,000.
  • the weight average molecular weight (Mw) of the component (B) is preferably in the range of 300,000 to 500,000.
  • the cured product of the prepreg 1 is difficult to absorb moisture, so that the moisture resistance of the substrate can be increased, and the insulation reliability can be improved. Even if the cured product of the prepreg 1 absorbs moisture, the breaking strength of the resin constituting the cured product is increased, so that the moisture absorption heat resistance of the substrate can be improved. In particular, even in the case of a thick printed wiring board having an insulating layer thickness of 0.2 mm or more, the moisture absorption heat resistance is improved, so that swelling of the insulating layer due to heating such as soldering can be suppressed. . Of course, moisture absorption heat resistance is also improved in the case of a thin printed wiring board having an insulating layer thickness of less than 0.2 mm.
  • the component (A1), the component (A2), and the component (B) are preferably phase-separated without being compatible with each other in the semi-cured state and the cured state of the resin composition.
  • cured material of the prepreg 1 is suppressed, and the heat resistance (for example, solder heat resistance) of a board
  • the epoxy value of the component (B) is preferably in the range of 0.01 to 0.80 eq / kg.
  • the epoxy value is the equivalent number of epoxy groups present in 1 kg of component (B).
  • the components (A1) and (A2) and the component (B) are difficult to be compatible with each other, whereby the glass transition temperature of the cured product of the prepreg 1 ( The decrease in Tg) can be suppressed, and the heat resistance of the substrate and the package can be improved.
  • the epoxy value of component (B) is more preferably in the range of 0.06 to 0.40 eq / kg, and still more preferably in the range of 0.14 to 0.28 eq / kg.
  • the (C1) component will be described.
  • the component (C1) is a first filler obtained by surface-treating the first inorganic filler with a first silane coupling agent represented by the following formula (c1). That is, the first inorganic filler is an aggregate of fine particles, and the reactive groups (methoxy groups or ethoxy groups are hydrolyzed by the first silane coupling agent represented by the formula (c1) on the surface of each fine particle. Are chemically bonded by silanol produced by Thus, the 1st filler which is (C1) ingredient is formed.
  • R5 is a methoxy group or an ethoxy group
  • R6 has an isocyanate group, a glycidyl group or an amino group at the terminal of an aliphatic alkyl group having 3 to 18 carbon atoms.
  • the first inorganic filler examples include spherical silica, barium sulfate, silicon oxide powder, crushed silica, calcined talc, barium titanate, titanium oxide, clay, alumina, mica, boehmite, zinc borate, zinc stannate, etc. And metal oxides and metal hydrates.
  • an inorganic filler having an average particle diameter of 45 ⁇ m or more is not contained in the resin composition.
  • insulation reliability may be lowered particularly in thin materials (prepreg 1, metal-clad laminate 2 and printed wiring board 3).
  • the average particle size means the particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method.
  • the first silane coupling agent represented by the formula (c1) is a trifunctional compound in which an aliphatic alkyl group having a specific functional group (isocyanate group, glycidyl group or amino group) is bonded to a silicon atom. Alkoxysilane.
  • silane coupling agent having an isocyanate group at the terminal of the aliphatic alkyl group include 3-isocyanatopropyltriethoxysilane.
  • silane coupling agent having a glycidyl group at the end of an aliphatic alkyl group examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and 3-glycidoxyoctyltrimethoxysilane. Can be mentioned.
  • silane coupling agent having an amino group at the end of the aliphatic alkyl group examples include N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane. Mention may be made of ethoxysilane and N-phenyl-3-aminopropyltrimethoxysilane.
  • the carbon number of the aliphatic alkyl group of the reactive group R6 in the first silane coupling agent represented by the formula (c1) is 3 or more and 18 or less. If the aliphatic alkyl group has less than 3 carbon atoms, the elasticity of the cured product of the prepreg 1 becomes too large.
  • the (C2) component will be described.
  • the component (C2) is a second filler obtained by surface-treating the second inorganic filler with a second silane coupling agent represented by the following formula (c2). That is, the second inorganic filler is an aggregate of fine particles, and the second silane coupling agent represented by the formula (c2) is chemically bonded to the surface of each fine particle by its reactive group (methoxy group or ethoxy group). is doing. Thus, the 2nd filler which is (C2) component is formed.
  • R7 is a methoxy group or an ethoxy group
  • R8 has a methacryloyl group or a vinyl group at the terminal of an aliphatic alkyl group having 3 to 18 carbon atoms.
  • the second inorganic filler are the same as those of the component (C1), that is, specific examples of the first inorganic filler.
  • the first inorganic filler of component (C1) and the second inorganic filler of component (C2) may be the same or different in material, average particle diameter, and the like.
  • the second silane coupling agent represented by the formula (c2) is a trifunctional alkoxysilane in which an aliphatic alkyl group having a specific carbon number and having a specific functional group (methacryloyl group or vinyl group) is bonded to a silicon atom. is there.
  • the common name for the methacryloyl group is methacrylic group.
  • silane coupling agent having a methacryloyl group at the terminal of the aliphatic alkyl group include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, and 3-methacryloxyoctyltrimethoxysilane.
  • silane coupling agent having a vinyl group at the end of the aliphatic alkyl group examples include vinyltrimethoxysilane and vinyltriethoxysilane.
  • the second inorganic filler is surface-treated with the second silane coupling agent represented by (c2)
  • the second silane coupling agent represented by (c2) an aliphatic alkyl group having a specific carbon number exists on the surface of the second filler.
  • a methacryloyl group or a vinyl group is bonded to the terminal of the aliphatic alkyl group, and these reactive groups have high affinity with the component (B). Therefore, the second filler of the component (C2) and the component (B) are chemically bonded by these reactive groups.
  • the carbon number of the aliphatic alkyl group of the reactive group R8 in the second silane coupling agent represented by the formula (c2) is 3 or more and 18 or less. If the aliphatic alkyl group has less than 3 carbon atoms, the elasticity of the cured product of the prepreg 1 becomes too large.
  • the resin is more likely to absorb moisture than the inorganic filler. Therefore, in the cured resin composition, if the dispersion of the inorganic filler is non-uniform, there will be a lot of resin in the sparse part of the inorganic filler, so the moisture absorbed will be increased, and conversely the inorganic filling Since there is not much resin in dense parts of the material, less moisture is absorbed. That is, if the dispersion of the inorganic filler is non-uniform, the distribution of moisture absorbed is also non-uniform. When a moisture absorption heat resistance test is performed on the cured product of such a resin composition, moisture is unevenly distributed, and the moisture in this portion evaporates to cause swelling.
  • first silane coupling agent and second silane coupling agent two types of silane coupling agents
  • inorganic fillers first inorganic filler and second inorganic filler
  • the moisture absorption heat resistance is improved by using two types of fillers (first filler and second filler) obtained by surface treatment of the material. That is, the first filler of the component (C1) has high affinity with the epoxy resin of the component (A1) and the phenol resin of the component (A2), and the second filler of the component (C2) High affinity. Therefore, the entire first filler of the component (C1) and the second filler of the component (C2) are offset near the components (A1) and (A2), or are shifted closer to the component (B).
  • the entire first filler and second filler are uniformly dispersed in the cured product of the resin composition. As a result, moisture is evenly dispersed and absorbed. As a result, the uneven distribution of moisture is reduced, the occurrence of swelling is suppressed, and the moisture absorption heat resistance can be improved.
  • the resin composition contains the first filler (C1) and the second filler (C2), the dimensional stability of the substrate can be improved.
  • the filler means both the first filler and the second filler.
  • the inorganic filler means both the first inorganic filler and the second inorganic filler.
  • silane coupling agent means both the first silane coupling agent represented by the formula (c1) and the second silane coupling agent represented by the formula (c2).
  • the aliphatic alkyl group has a function of relieving stress generated when the prepreg 1 after curing undergoes thermal expansion or contraction.
  • a stress relaxation layer due to the aliphatic alkyl group is formed on the surface of the inorganic filler. Since the filler having the stress relaxation layer is present in the component (A1), the component (A2) and the component (B), the thermal expansion is performed with respect to the component (A1), the component (A2) and the component (B). Or the stress relaxation effect by heat contraction is exhibited. As a result, the cured prepreg 1 containing the filler is less likely to be thermally deformed.
  • the moisture absorption heat resistance of the substrate can be further improved.
  • the stress relaxation effect due to the presence of aliphatic alkyl groups on the surface of the filler is thermally expanded or contracted together with the thermal expansion or thermal contraction of the components (A1), (A2) and (B) because the single bond of the alkyl group can freely rotate. This is because it can be done.
  • the aliphatic alkyl group has a function of reducing the etching amount in the desmear treatment (desmear etching) after drilling the metal-clad laminate 2 formed using the prepreg 1 as a material.
  • desmear treatment refers to removing resin smear generated during drilling by laser processing or drilling by chemical hole cleaning or the like.
  • Specific desmear treatment includes permanganic acid treatment.
  • permanganate treatment a desmear liquid mainly composed of alkaline potassium permanganate is used.
  • the above-mentioned etching amount means the amount of resin that can be removed by desmearing.
  • the etching amount is large, the inner diameter of the hole formed by drilling may be increased. Therefore, it is preferable that the etching amount be as small as possible.
  • the aliphatic alkyl group has an isocyanate group, a glycidyl group, an amino group, a methacryloyl group, or a vinyl group at the terminal, and these functional groups are strongly combined with the component (A1), the component (A2), or the component (B). Because of the bonding, the amount of etching during the desmear process can be reduced. The etching amount during desmear treatment can be reduced as compared with the case where the aliphatic alkyl group does not have any functional group of isocyanate group, glycidyl group, amino group, methacryloyl group and vinyl group at the terminal.
  • Examples of the method for surface-treating the inorganic filler with a silane coupling agent include a direct treatment method, an integral blend method, and a dry concentrate method.
  • the amount of the silane coupling agent added to the inorganic filler is not particularly limited.
  • the amount of the silane coupling agent necessary for forming a monomolecular layer of the silane coupling agent on the entire surface layer of the inorganic filler can be calculated by the following formula (1).
  • An amount of 0.1 to 15 times the calculated value is a preferable addition amount of the silane coupling agent. In this case, the effect of stress relaxation by the inorganic filler is more efficiently exhibited.
  • W C W F ⁇ S F / S C (1)
  • W C Amount of silane coupling agent required for formation of monomolecular layer (g)
  • W F Amount of inorganic filler added
  • S F Specific surface area of inorganic filler (m 2 / g)
  • S C Minimum covering area of silane coupling agent (m 2 / g)
  • the component (C1) or the component (C2) is a nanofiller having an average particle size of 100 nm or less. More preferably, the component (C1) or the component (C2) is a nanofiller having an average particle size of 10 to 100 nm.
  • the resin smear removing effect in the desmear treatment can be improved. This point will be described in more detail.
  • the main component of the resin smear is considered to be the component (B) of the high molecular weight product.
  • this nano filler will disperse
  • Such resin smear can be easily removed by desmear treatment.
  • both the (C1) component and the (C2) component are not the above-mentioned nanofillers, the resin smear is almost composed of only the resin component.
  • Such resin smear can be removed by making the desmear treatment conditions more severe than in the first case, but it is difficult to remove by the desmear treatment under the same conditions as in the first case. That is, if the desmear treatment conditions are the same, the average of either the (C1) component or the (C2) component is greater than when the average particle diameter of both the (C1) component and the (C2) component exceeds 100 nm. Resin smear can be easily removed when the particle diameter is 100 nm or less. The reason for this is considered to be that nanofillers having an average particle diameter of 100 nm or less are uniformly dispersed in the resin smear as described above.
  • the average particle diameter of either the (C1) component or the (C2) component is 10 nm or more, the thickening of the resin composition in the varnish state can be suppressed.
  • the term “nanofiller” simply means the first filler or the second filler having an average particle diameter of 100 nm or less.
  • the mass ratio of the sum of the components (A1) and (A2) and the component (B) is preferably 90:10 to 50:50, more preferably 80:20 to 60:40. .
  • the content of the component (B) is preferably 10 to 50 parts by mass, more preferably 20 to 20 parts by mass with respect to 100 parts by mass in total of the components (A1), (A2) and (B). 40 parts by mass.
  • the hydroxyl equivalent of the phenol resin (A2) is preferably in the range of 0.2 to 1.1 with respect to the epoxy equivalent 1 of the epoxy resin (A1).
  • the total content of the component (C1) and the component (C2) is preferably 80% by mass or less, and more preferably 50% by mass or less, based on the total amount of the resin composition.
  • the content of the component (C1) and the component (C2) is such that when the component (C1) and the component (C2) are each surface-treated with a predetermined silane coupling agent, the surface also includes the silane coupling agent. It is content of the (C1) component and (C2) component after a process.
  • the ratio (mass ratio) of the component (C1) and the component (C2) is preferably 98: 2 to 60:40, more preferably 95: 5 to 80:20.
  • the content of the component (C2) is preferably 2 to 40 parts by mass and more preferably 5 to 20 parts by mass with respect to a total of 100 parts by mass of the components (C1) and (C2). .
  • the nanofiller is preferably 1 to 30 parts by mass with respect to 100 parts by mass in total of the component (A1), the component (A2) and the component (B). And more preferably in the range of 3 to 10 parts by mass. If the nanofiller is 1 part by mass or more, the resin smear removing effect in the desmear treatment can be improved. More specifically, if the desmear treatment conditions are the same, the resin smear is more easily removed when the nanofiller is 1 part by mass or more than when the nanofiller is less than 1 part by mass. be able to. If a nano filler is 30 mass parts or less, the thickening of the resin composition of a varnish state can be suppressed.
  • the resin composition may further contain an additive.
  • the additive include phosphorus-based flame retardants.
  • the resin composition contains a phosphorus-based flame retardant
  • the cured product of the prepreg 1, the substrate, and the flame retardance of the package can be improved.
  • phosphorus-based flame retardants easily absorb moisture, in this embodiment, two types of fillers obtained by surface-treating two types of inorganic fillers with two types of silane coupling agents are used. , Moisture absorption heat resistance can be improved.
  • the phosphorus-based flame retardant has little effect on the dispersibility of the inorganic filler.
  • the resin composition may further contain a curing accelerator.
  • a curing accelerator examples include imidazoles and derivatives thereof, organophosphorus compounds, metal soaps such as zinc octoate, secondary amines, tertiary amines, and quaternary ammonium salts. .
  • the woven fabric substrate 5 will be described.
  • the woven fabric base material 5 is not particularly limited as long as the warp yarns 51 and the weft yarns 52 are woven so as to be substantially orthogonal like the plain weave shown in FIG.
  • Specific examples of the woven fabric substrate 5 include those made of inorganic fibers such as glass cloth and those made of organic fibers such as aramid cloth.
  • the thickness of the woven fabric substrate 5 is preferably in the range of 10 to 200 ⁇ m.
  • a loss tangent (tan ⁇ ) chart is obtained.
  • this chart (tan ⁇ curve)
  • the peak in the temperature range of 200 ° C. or higher is the main dispersion peak.
  • the main dispersion peak is related to the movement of the main chain of the molecular structure of the cured product, and is attributed to the glass transition temperature (Tg).
  • the peak in the temperature range of 100 ° C. or lower or 60 ° C. or lower is a sub-dispersion peak.
  • the secondary dispersion peak is related to the movement of the side chain in the molecular structure of the cured product, and is particularly attributed to the high molecular weight component (B).
  • the above dynamic viscoelasticity measurement is performed at a constant frequency (for example, 10 Hz).
  • the loss tangent (tan ⁇ ) chart is a chart in which the vertical axis represents the loss tangent (tan ⁇ ) and the horizontal axis represents the temperature, and shows the temperature dependence of the loss tangent (tan ⁇ ).
  • the prepreg 1 has a ratio of loss elastic modulus (E ′′) to storage elastic modulus (E ′) of preferably 0.05 or higher in a temperature range of 100 ° C. or lower and a temperature range of 200 ° C. or higher. More preferably, it is 0.05 or more in a temperature range of 60 ° C. or less and a temperature range of 200 ° C. or more, and particularly preferably a loss tangent (tan ⁇ ) in a temperature range of 100 ° C. or less and a temperature range of 200 ° C. or more.
  • the peak values are all 0.05 or more, more preferably the loss tangent (tan ⁇ ) peak values in the temperature range of 60 ° C. or lower and the temperature range of 200 ° C. or higher are both 0.05 or higher.
  • the component (A1) and (A2) it is possible to have the characteristics of both the high rigidity component of the component (B) and the low elasticity component of the component (B). As described above, the sub-dispersion peak shifts to a lower temperature side from 100 ° C. or lower to 60 ° C. or lower, whereby high elongation characteristics and further low elasticity can be imparted to the cured product.
  • the prepreg 1 in the cured state preferably has a tensile elongation of 5% or more in an oblique 45 ° direction (for example, in the direction of a double-headed arrow in FIG. 2) with respect to the warp yarn 51 or the weft yarn 52 of the woven fabric substrate 5.
  • a tensile elongation rate For measurement of the tensile elongation rate, one prepreg 1 in a cured state (C stage state) is usually used as a sample, but a plurality of prepregs 1 are arranged so that the directions of the warp yarn 51 and the weft yarn 52 coincide with each other. What was laminated
  • the tensile elongation can be measured by the following tensile test. First, the length (L 0 ) of the sample in an oblique 45 ° direction with respect to the warp 51 or the weft 52 is measured before the tensile test. At this time, the width of the sample is adjusted to 5 mm. Next, using a tensile tester, the sample is pulled at an angle of 45 ° with respect to the warp 51 or the weft 52 at a speed of 5 mm / min, and the length (L) immediately before the sample breaks is measured. And a tensile elongation rate is computable with the following formula
  • a varnish of the resin composition is prepared. After adding (A1) component, (A2) component, and (B) component to a solvent and dissolving, a base varnish is prepared by adding an additive and a curing accelerator as necessary.
  • the solvent include ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone, aromatic solvents such as toluene and xylene, and nitrogen-containing solvents such as dimethylformamide.
  • the varnish of the resin composition can be prepared by adding and dispersing the component (C1) and the component (C2) to the base varnish.
  • a disperser such as a homogenizer, a disper, or a bead mill may be used.
  • the prepreg 1 can be produced by impregnating the woven fabric substrate 5 with the resin composition in the varnish state (A stage state) and heating and drying it until it becomes a semi-cured state (B stage state). it can.
  • the metal-clad laminate 2 of this embodiment includes a cured product of the prepreg 1 and a metal foil 6 bonded to the cured product. Specifically, as shown in FIG. 3, the metal foil 6 is bonded to the surface of the insulating layer 41 formed by curing the prepreg 1 (more specifically, the semi-cured product 4 of the resin composition), and the metal A tension laminate 2 is formed.
  • the metal foil 6 may be laminated on one side or both sides of one prepreg 1 and heat-press molded, or a plurality of prepregs 1 may be laminated, and the metal foil 6 may be laminated on one side or both sides. You may heat-press-mold.
  • the semi-cured prepreg 1 is heated to become the cured insulating layer 41 as described above.
  • the moisture absorption heat resistance of the metal-clad laminate 2 can be improved not only when the thickness T1 of the insulating layer 41 is less than 0.2 mm but also when the thickness T1 is 0.2 mm or more.
  • the upper limit of the thickness T1 of the insulating layer 41 of the metal-clad laminate 2 is about 0.4 mm.
  • the metal foil 6 include a copper foil.
  • Lamination molding can be performed by heating and pressing using, for example, a multistage vacuum press or a double belt press.
  • the printed wiring board 3 of this embodiment includes a cured product of the prepreg 1 and a conductor pattern 7 provided on the cured product.
  • the conductor pattern 7 can be provided by removing a part of the metal foil 6 of the metal-clad laminate 2.
  • the conductor pattern 7 can be formed, for example, by a subtractive method.
  • An example of the printed wiring board 3 is shown in FIG.
  • This printed wiring board 3 is a multilayer printed wiring board in which a conductor pattern 7 is formed by a subtractive method and is multilayered by a build-up method.
  • the conductor pattern 7 inside the insulating layer 41 is an inner layer pattern 71, and the conductor pattern 7 on the outer surface of the insulating layer 41 is an outer layer pattern 72.
  • the moisture absorption heat resistance of the printed wiring board 3 can be improved not only when the thickness T2 of the insulating layer 41 is less than 0.2 mm but also when the thickness T2 is 0.2 mm or more.
  • the upper limit of the thickness T2 of the insulating layer 41 of the printed wiring board 3 is about 0.4 mm.
  • the woven fabric substrate 5 is not shown.
  • the interlayer connection is an electrical connection between conductor patterns 7 of different layers.
  • the hole may be a through hole (through hole) that penetrates the printed wiring board 3 or a non-through hole (blind hole) that does not penetrate.
  • the via hole 8 can be formed by plating the inner surface of the through hole
  • the blind via hole 9 can be formed by plating the inner surface of the non-through hole.
  • a belly via hole may be formed.
  • the inner diameter of the hole is, for example, in the range of 0.01 to 0.20 mm.
  • the depth of the hole is in the range of 0.02 to 0.80 mm, for example. Drilling can be performed by laser processing or drilling.
  • the functional group at the terminal of the aliphatic alkyl group of the silane coupling agent is an isocyanate group, glycidyl group, amino group, methacryloyl group or Since it is a vinyl group, the etching amount at the time of a desmear process can be decreased. Even if resin smear occurs, the resin smear in the hole can be further removed if the inside of the hole is cleaned by a desmear process such as chemical hole cleaning. Thereby, the conduction failure resulting from the resin smear can be eliminated and the conduction reliability can be improved.
  • the aliphatic alkyl group of the silane coupling agent functions as a stress relaxation layer. Can be made low elastic and can give high elongation characteristics. From this, the moisture absorption heat resistance of the printed wiring board 3 can be further improved.
  • the two types of methods are a semi-additive method (SAP: Semi-Additive-Process) and a modified semi-additive method (MSAP: Modified Semi-Additive-Process).
  • SAP Semi-Additive-Process
  • MSAP Modified Semi-Additive-Process
  • FIG. 5A shows the insulating layer 42 having the inner layer pattern 711 inside and the main surface 420 outside.
  • holes are formed in the insulating layer 42 to form non-through holes 90.
  • Drilling can be performed by laser processing.
  • the laser L include a CO 2 laser and a UV-YAG laser.
  • the non-through hole 90 is opened on the main surface 420 side of the insulating layer 42.
  • the bottom surface 91 of the non-through hole 90 is the surface of the inner layer pattern 711. Resin smear 49 is generated at the time of drilling, and this resin smear 49 adheres to the surface of the inner layer pattern 711 which is the bottom surface 91 of the non-through hole 90.
  • a desmear process is performed as shown in FIG. 5C.
  • the main surface 420 of the insulating layer 42, the inner side surface 92 and the bottom surface 91 of the non-through hole 90 are roughened, and the resin smear 49 is removed from the bottom surface 91 and the inner side surface 92 of the non-through hole 90.
  • an electroless plating process is performed on the main surface 420 of the insulating layer 42, the bottom surface 91 of the non-through hole 90, and the inner side surface 92 to form the electroless plating layer 61 that becomes the seed layer 60. To do.
  • a plating resist 43 is formed on the main surface 420 of the insulating layer 42.
  • the plating resist 43 is formed on a portion of the main surface 420 of the insulating layer 42 where the outer layer pattern 721 is not formed.
  • electrolytic plating is performed to fill the portion that is not masked with the plating resist 43 with plating 62.
  • the plating resist 43 is removed, and the seed layer 60 interposed between the plating resist 43 and the main surface 420 of the insulating layer 42 is removed by etching.
  • the blind via hole 9 that electrically connects the inner layer pattern 711 and the outer layer pattern 721 is formed.
  • the blind via hole 9 is also called a fill via because it is filled with the plating 62.
  • both the (C1) component and the (C2) component filler are contained in the insulating layer 42 as in the present embodiment, as shown in FIG. A fill via in which the resin smear 49 does not remain is formed between the pattern 711 and the electroless plating layer 61. That is, the resin smear 49 can be easily removed by a desmear process. Thereby, the conduction defect resulting from the resin smear 49 can be eliminated, and the conduction reliability can be improved. Note that the fact that the resin smear 49 does not remain includes not only the case where no resin smear 49 remains, but also the case where a very small amount remains so as not to affect the conduction reliability.
  • FIG. 7A shows the insulating layer 42 having the inner layer pattern 711 inside and the main surface 420 outside.
  • the main surface 420 is provided with a very thin metal foil 63 that becomes the first seed layer 601.
  • the non-through hole 90 is formed by drilling the insulating layer 42 including the first seed layer 601. Drilling can be performed by laser processing. Specific examples of the laser L include a CO 2 laser and a UV-YAG laser.
  • the non-through hole 90 is opened on the main surface 420 side of the insulating layer 42.
  • the bottom surface 91 of the non-through hole 90 is the surface of the inner layer pattern 711. Resin smear 49 is generated at the time of drilling, and this resin smear 49 adheres to the surface of the inner layer pattern 711 which is the bottom surface 91 of the non-through hole 90.
  • a desmear process is performed as shown in FIG. 7C.
  • the first seed layer 601 provided on the main surface 420 of the insulating layer 42, the inner side surface 92 and the bottom surface 91 of the non-through hole 90 are roughened, and the bottom surface 91 and the inner side surface 92 of the non-through hole 90 are provided. Resin smear 49 is removed.
  • an electroless plating process is performed on the first seed layer 601 provided on the main surface 420 of the insulating layer 42, the bottom surface 91 and the inner side surface 92 of the non-through hole 90, and the second seed An electroless plating layer 61 to be the layer 602 is formed.
  • a plating resist 43 is formed on the main surface 420 of the insulating layer 42.
  • the plating resist 43 is formed on a portion of the main surface 420 of the insulating layer 42 where the outer layer pattern 721 is not formed.
  • electrolytic plating is performed to fill the portion that is not masked with the plating resist 43 with plating 62.
  • the plating resist 43 is removed, and the first seed layer 601 and the second seed layer 602 interposed between the plating resist 43 and the main surface 420 of the insulating layer 42 are etched. Remove.
  • the blind via hole 9 that electrically connects the inner layer pattern 711 and the outer layer pattern 721 is formed.
  • the blind via hole 9 is also called a fill via because it is filled with the plating 62.
  • both the (C1) component and the (C2) component filler are contained in the insulating layer 42 as in this embodiment, as shown in FIG. A fill via in which the resin smear 49 does not remain is formed between the pattern 711 and the electroless plating layer 61. That is, the resin smear 49 can be easily removed by a desmear process. Thereby, the conduction defect resulting from the resin smear 49 can be eliminated, and the conduction reliability can be improved. Note that the fact that the resin smear 49 does not remain includes not only the case where no resin smear 49 remains, but also the case where a very small amount remains so as not to affect the conduction reliability.
  • a package such as a fine pitch ball grid array (FBGA) can be manufactured.
  • a package such as PoP (Package on Package) can be manufactured by using a package as a subpackage and stacking a plurality of subpackages. In this way, various types of packages can be manufactured, but for any package, warpage is reduced and moisture absorption heat resistance is also reduced by the components (A1), (A2), and (B).
  • the components (A1), (A2), and (B) has been enhanced. That is, since the rigidity can be increased by the component (A1) and the component (A2) and the elasticity can be reduced by the component (B) to relieve the stress, the warpage of the package can be universally used without depending on the package form. Can be reduced. Furthermore, the moisture absorption heat resistance of the package can be enhanced by the component (A1), the component (A2) and the component (B).
  • (C1) component ⁇ Isocyanate silane-treated silica This is a spherical silica (“SC2500GNO” manufactured by Admatechs Co., Ltd.) surface-treated with 3-isocyanatopropyltriethoxysilane, and has an average particle size of 0.5 ⁇ m (500 nm). is there.
  • Epoxysilane-treated silica This is spherical silica (“SC2500SEJ” manufactured by Admatechs Co., Ltd.) surface-treated with 3-glycidoxypropyltrimethoxysilane, and has an average particle size of 0.5 ⁇ m (500 nm).
  • Component (C2) Vinylsilane-treated silica This is spherical silica ("SC2500SVJ” manufactured by Admatechs Co., Ltd.) surface-treated with vinyltrimethoxysilane, and has an average particle size of 0.5 ⁇ m (500 nm).
  • Methacrylsilane-treated silica This is spherical silica (“YA050C-MJE” manufactured by Admatechs Co., Ltd.) surface-treated with 3-methacryloxypropyltrimethoxysilane, and has an average particle size of 50 nm.
  • the varnish of the resin composition is impregnated into a woven fabric base material (glass cloth “WEA116E” manufactured by Nitto Boseki Co., Ltd., thickness: 88 ⁇ m) so that the thickness after curing becomes 100 ⁇ m, and this is a semi-cured state.
  • a prepreg was produced by heating and drying at 130 ° C. for 5 minutes until
  • ⁇ Metal-clad laminate> Two prepregs are stacked, and copper foil (thickness 12 ⁇ m) is laminated as a metal foil on both sides, and heated at 220 ° C. for 60 minutes while being pressurized at 2.94 MPa (30 kgf / cm 2 ) under vacuum.
  • a copper-clad laminate (CCL) was produced as a metal-clad laminate.
  • the thickness of the insulating layer of the metal-clad laminate was 200 ⁇ m. Further, by removing the metal foils on both sides of the metal-clad laminate by etching, an unclad plate having a thickness of 0.2 mm was manufactured.
  • test piece (Hygroscopic heat resistance) The unclad plate was cut into a square shape to obtain a test piece (size 5 cm ⁇ 5 cm). The end face of this test piece was polished and smoothed. Further, as a pretreatment, the test piece was placed in an oven at 100 ° C. for 1 hour and dried. Thereafter, moisture was absorbed for 0 hours, 12 hours, and 24 hours under the conditions of 60 ° C., humidity 60%, and 1 atmosphere (101.3 kPa). Next, three kinds of test pieces having different moisture absorption times were immersed in a solder bath at 288 ° C. for 120 seconds. Then, it was visually confirmed whether or not the test piece taken out from the solder bath was swollen.
  • CTE Coefficient of thermal expansion
  • the above-described unclad plate was cut into a strip shape with a width of 5 mm in a direction (bias direction) inclined by 45 ° with respect to the warp direction of the woven fabric substrate to prepare a sample having a length of 80 mm.
  • This sample was subjected to a tensile test using a tensile tester (“Autograph AGS-X” manufactured by Shimadzu Corporation) at a distance between marked lines of 60 mm and 5 mm / min.
  • the tensile elongation rate was calculated by the following formula from the length (L 0 ) of the initial sample before performing the tensile test and the length (L) immediately before the sample was broken by the tensile test.
  • Tensile elongation (%) ⁇ (L ⁇ L 0 ) / L 0 ⁇ ⁇ 100 (Tensile breaking strength)
  • the tensile strength at break was calculated by the following formula from the load F (N) when the sample broke and the cross-sectional area S (mm 2 ) of the sample.
  • Examples 1 to 5 have better dispersibility of the inorganic filler, and therefore have better moisture absorption heat resistance and tensile breaking strength. confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Nanotechnology (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

織布基材と、樹脂組成物の半硬化物と、を備えたプリプレグに関する。樹脂組成物は、(A1)及び(A2)の少なくともいずれかと、(B)と、(C1)と、(C2)と、を含有する。(A1)ナフタレン骨格及びビフェニル骨格の少なくともいずれかの骨格を有するエポキシ樹脂。(A2)ナフタレン骨格及びビフェニル骨格の少なくともいずれかの骨格を有するフェノール樹脂。(B)式(b1)、式(b2)及び式(b3)の少なくとも式(b2)及び式(b3)で表される構造を有し、重量平均分子量が20万~85万である高分子量体。(C1)式(c1)で表される第1シランカップリング剤で第1無機充填材を表面処理して得られた第1充填材。(C2)式(c2)で表される第2シランカップリング剤で第2無機充填材を表面処理して得られた第2充填材。 (R6)Si(R5)・・・(C1) (R8)Si(R7)・・・(C2)

Description

プリプレグ、金属張積層板及びプリント配線板
 本開示は、一般にプリプレグ、金属張積層板及びプリント配線板に関し、より詳細には織布基材と樹脂組成物の半硬化物とを備えたプリプレグ、前記プリプレグを用いて形成された金属張積層板、及び、前記金属張積層板を用いて形成されたプリント配線板に関する。
 従来、プリプレグは、熱硬化性樹脂を含有する樹脂組成物を織布基材に含浸させると共に、半硬化状態となるまで加熱乾燥して形成されている(例えば、特許文献1-3参照)。そして、このようにして形成されたプリプレグに金属箔を積層して加熱加圧成形することによって金属張積層板を製造することができる。さらにこの金属張積層板の金属箔の不要部分を除去して導体パターンを設けることによってプリント配線板を製造することができる。その後、このプリント配線板に半導体素子を実装して封止することによってパッケージが製造されている。
 近年、スマートフォンやタブレットPCに多く用いられるパッケージとしてPoP(パッケージ・オン・パッケージ,Package on Package)が挙げられる。このPoPは複数のサブパッケージを積層する形態であるため、サブパッケージの実装性やサブパッケージごとの電気的な導通信頼性が重要となる。そして、この実装性や導通信頼性はパッケージ(サブパッケージも含む)の室温での反りの絶対値が小さければ小さいほど、また室温から260℃まで雰囲気温度を変化させたときの反りの変化量が少なければ少ないほど向上する。したがって、現在、パッケージの反りが小さくなる基板材料の開発が盛んに行われている。
 現在、パッケージの反りを小さくする基板材料として提案されているのは、高剛性、低熱膨張率という方向性で開発した材料である。すなわち、剛性が高ければ高いほど、熱膨張率(CTE:coefficient of thermal expansion)が低ければ低いほど、パッケージの反りが小さくなるという提案である。
 パッケージの製造に用いられるプリント配線板において、絶縁層の厚みが0.2mm未満の場合、このような薄物の絶縁層の吸湿量は少ないため、はんだ付けなどで加熱されても、絶縁層を構成する樹脂の強度により絶縁層の膨れを抑制することができる。
 しかし、絶縁層の厚みが0.2mm以上の場合、このような厚物の絶縁層の吸湿量は多くなり、この吸湿された水分がはんだ付けなどで加熱されて蒸発すると、絶縁層を構成する樹脂が破断され、絶縁層に膨れが発生してしまう。このように、特に厚みのある従来のプリント配線板には吸湿耐熱性が低いという問題があった。
特開2006-137942号公報 特開2007-138152号公報 特開2008-007756号公報
 本開示の目的は、吸湿耐熱性を向上させることができるプリプレグ、金属張積層板及びプリント配線板を提供することにある。
 本開示の一態様に係るプリプレグは、
 織布基材と、
 前記織布基材に含浸された樹脂組成物の半硬化物と、を備えたプリプレグである。
 前記樹脂組成物は、下記(A1)成分及び下記(A2)成分のうちの少なくともいずれかの成分と、下記(B)成分と、下記(C1)成分と、下記(C2)成分と、を含有する。
 (A1)ナフタレン骨格及びビフェニル骨格のうちの少なくともいずれかの骨格を有するエポキシ樹脂。
 (A2)ナフタレン骨格及びビフェニル骨格のうちの少なくともいずれかの骨格を有するフェノール樹脂。
 (B)下記式(b1)、下記式(b2)及び下記式(b3)のうちの少なくとも下記式(b2)及び下記式(b3)で表される構造を有し、重量平均分子量が20万~85万である高分子量体。
Figure JPOXMLDOC01-appb-C000004
 式(b1)中のx、式(b2)中のy及び式(b3)中のzは、次の関係式を満たす。x:y:z(モル分率)=0:0.95:0.05~0.2:0.6:0.2(ただし、x+y+z≦1、0≦x≦0.2、0.6≦y≦0.95、0.05≦z≦0.2)である。式(b2)中、R1は水素原子又はメチル基、R2は、水素原子、アルキル基、グリシジル基及びエポキシ化されたアルキル基のうち、少なくともグリシジル基及びエポキシ化されたアルキル基のうちの1つを含む。式(b3)中、R3は水素原子又はメチル基、R4はPh(フェニル基)、-COOCHPh又は-COO(CHPhである。
 (C1)下記式(c1)で表される第1シランカップリング剤で第1無機充填材を表面処理して得られた第1充填材。
Figure JPOXMLDOC01-appb-C000005
 式(c1)中、R5はメトキシ基又はエトキシ基であり、R6は炭素数3以上18以下の脂肪族アルキル基の末端にイソシアネート基、グリシジル基又はアミノ基を有する。
 (C2)下記式(c2)で表される第2シランカップリング剤で第2無機充填材を表面処理して得られた第2充填材。
Figure JPOXMLDOC01-appb-C000006
 式(c2)中、R7はメトキシ基又はエトキシ基であり、R8は炭素数3以上18以下の脂肪族アルキル基の末端にメタクリロイル基又はビニル基を有する。
 本開示の一態様に係る金属張積層板は、
 前記プリプレグの硬化物と、
 前記硬化物に接着されている金属箔と、を備えている。
 本開示の一態様に係るプリント配線板は、
 前記プリプレグの硬化物と、
 前記硬化物に設けられた導体パターンと、を備えている。
図1は本開示の一実施形態に係るプリプレグを示す概略断面図である。 図2は同上のプリプレグを構成する織布基材を示す概略平面図である。 図3は本開示の一実施形態に係る金属張積層板を示す概略断面図である。 図4は本開示の一実施形態に係るプリント配線板を示す概略断面図である。 図5A~図5Gはセミアディティブ法の一連の工程を示す概略断面図である。 図6Aは、セミアディティブ法の実施後に、内層パターンとめっきとの間に樹脂スミアが残っていない状態を示す概略断面図である。図6Bは、セミアディティブ法の実施後に、内層パターンとめっきとの間に樹脂スミアが残っている状態を示す概略断面図である。 図7A~図7Gはモディファイドセミアディティブ法の一連の工程を示す概略断面図である。 図8Aは、モディファイドセミアディティブ法の実施後に、内層パターンとめっきとの間に樹脂スミアが残っていない状態を示す概略断面図である。図8Bは、モディファイドセミアディティブ法の実施後に、内層パターンとめっきとの間に樹脂スミアが残っている状態を示す概略断面図である。 図9Aは実施例1の無機充填材の分散状態を示す電子顕微鏡写真である。図9Bは比較例1の無機充填材の分散状態を示す電子顕微鏡写真である。
 [プリプレグ]
 図1に本実施形態のプリプレグ1を示す。プリプレグ1は、織布基材5と、織布基材5に含浸された樹脂組成物の半硬化物4とを備えている。
 ここで、樹脂組成物の半硬化物4とは、硬化反応の中間段階にある樹脂組成物を意味する。中間段階とは、Bステージとも呼ばれ、ワニス状態のAステージと、完全に硬化した状態のCステージとの間の段階である。この段階で、さらに加熱すると一度溶融した後、完全硬化し、樹脂組成物の硬化物となる。なお、プリプレグ1は半硬化状態であるが、これはプリプレグ1を構成する樹脂組成物が半硬化状態であることを意味する。またプリプレグ1の硬化物は、プリプレグ1を構成する樹脂組成物が完全硬化状態であることを意味する。
 樹脂組成物について説明する。樹脂組成物は、下記(A1)成分及び下記(A2)成分のうちの少なくともいずれかの成分を含有する。すなわち、樹脂組成物は、(A1)成分及び(A2)成分の両方を含有してもよいし、(A1)成分を含有し、かつ(A2)成分を含有しなくてもよいし、(A1)成分を含有せず、かつ(A2)成分を含有してもよい。さらに樹脂組成物は、下記(B)成分と、下記(C1)成分と、下記(C2)成分と、を含有する。以下、樹脂組成物を構成する各成分について順に説明する。
 (A1)成分について説明する。(A1)成分は、高剛性成分であるマトリックス樹脂である。具体的には、(A1)成分は、ナフタレン骨格及びビフェニル骨格のうちの少なくともいずれかの骨格を有するエポキシ樹脂である。このように、(A1)成分のエポキシ樹脂は、ナフタレン骨格及びビフェニル骨格の両方を有していてもよいし、ナフタレン骨格を有し、かつビフェニル骨格を有しなくてもよいし、ナフタレン骨格を有さず、かつビフェニル骨格を有していてもよい。以下では、ナフタレン骨格を有し、かつビフェニル骨格を有しないエポキシ樹脂を、ナフタレン骨格含有エポキシ樹脂という場合がある。またナフタレン骨格を有さず、かつビフェニル骨格を有するエポキシ樹脂を、ビフェニル骨格含有エポキシ樹脂という場合がある。
 (A2)成分について説明する。(A2)成分も、高剛性成分であるマトリックス樹脂である。具体的には、(A2)成分は、ナフタレン骨格及びビフェニル骨格のうちの少なくともいずれかの骨格を有するフェノール樹脂である。このように、(A2)成分のフェノール樹脂も、ナフタレン骨格及びビフェニル骨格の両方を有していてもよいし、ナフタレン骨格を有し、かつビフェニル骨格を有しなくてもよいし、ナフタレン骨格を有さず、かつビフェニル骨格を有していてもよい。以下では、ナフタレン骨格を有し、かつビフェニル骨格を有しないフェノール樹脂を、ナフタレン骨格含有フェノール樹脂という場合がある。またナフタレン骨格を有さず、かつビフェニル骨格を有するフェノール樹脂を、ビフェニル骨格含有フェノール樹脂という場合がある。
 上記のように、(A1)成分及び(A2)成分の両方が、ナフタレン骨格及びビフェニル骨格のうちの少なくともいずれかの骨格を有しているので、プリプレグ1の硬化物の耐熱性(例えばはんだ耐熱性)を高めることができる。特にナフタレン骨格は剛直な骨格であるため、(A1)成分及び(A2)成分の少なくともいずれかがナフタレン骨格を有していれば、プリプレグ1の硬化物の耐熱性を更に高めることができる。プリプレグ1は、金属張積層板2、プリント配線板3及びパッケージの材料となるので、これらの耐熱性も高めることができる。なお、金属張積層板2及びプリント配線板3をまとめて基板という場合がある。
 (B)成分について説明する。(B)成分は、低弾性成分であり、例えばエポキシ変性アクリル樹脂である。具体的には、(B)成分は、下記式(b1)、下記式(b2)及び下記式(b3)のうちの少なくとも下記式(b2)及び下記式(b3)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000007
 式(b1)中のx、式(b2)中のy及び式(b3)中のzは、次の関係式を満たす。x:y:z(モル分率)=0:0.95:0.05~0.2:0.6:0.2(ただし、x+y+z≦1、0≦x≦0.2、0.6≦y≦0.95、0.05≦z≦0.2)である。式(b2)中、R1は水素原子又はメチル基、R2は、水素原子、アルキル基、グリシジル基及びエポキシ化されたアルキル基のうち、少なくともグリシジル基及びエポキシ化されたアルキル基のうちの1つを含む。式(b3)中、R3は水素原子又はメチル基、R4はPh(フェニル基)、-COOCHPh又は-COO(CHPhである。
 すなわち、(B)成分の主鎖は、式(b1)、式(b2)及び式(b3)のうちの少なくとも式(b2)及び式(b3)で表される構造を有している。
 (B)成分の主鎖が式(b1)、式(b2)及び式(b3)で表される構造を有する場合、式(b1)、式(b2)及び式(b3)で表される構造の配列順序は特に限定されない。この場合、(B)成分の主鎖において、式(b1)で表される構造同士が連続していても連続していなくてもよく、また式(b2)で表される構造同士が連続していても連続していなくてもよく、また式(b3)で表される構造同士が連続していても連続していなくてもよい。
 (B)成分の主鎖が式(b2)及び式(b3)で表される構造を有する場合も、式(b2)及び式(b3)で表される構造の配列順序は特に限定されない。この場合、(B)成分の主鎖において、式(b2)で表される構造同士が連続していても連続していなくてもよく、また式(b3)で表される構造同士が連続していても連続していなくてもよい。
 ここで、式(b2)中のR2が、水素原子、アルキル基、グリシジル基及びエポキシ化されたアルキル基のうち、少なくともグリシジル基及びエポキシ化されたアルキル基のうちの1つを含むことの意味について補足説明する。前提として、1つの式(b2)で表される構造におけるR2は1つである。(B)成分が、式(b2)で表される構造を1つのみ有する場合と、2つ以上有する場合とに分けて説明する。
 前者の場合、すなわち(B)成分が1つの式(b2)で表される構造を有する場合、R2は、グリシジル基又はエポキシ化されたアルキル基である。
 後者の場合、すなわち(B)成分が2つ以上の式(b2)で表される構造を有する場合、少なくとも1つの式(b2)で表される構造におけるR2は、グリシジル基又はエポキシ化されたアルキル基であり、残りの式(b2)で表される構造におけるR2は、水素原子又はアルキル基である。少なくとも1つの式(b2)で表される構造におけるR2が、グリシジル基又はエポキシ化されたアルキル基であるから、全部の式(b2)で表される構造におけるR2が、グリシジル基又はエポキシ化されたアルキル基でもよい。
 式(b3)で表される構造は、Ph(フェニル基)、-COOCHPh、-COO(CHPhを有している。Ph、-COOCHPh、-COO(CHPhは熱的に安定であるため、プリプレグ1の硬化物の強度が高められる。したがって、プリプレグ1を材料として製造された基板の吸湿耐熱性を向上させることができる。
 (B)成分は、隣り合う炭素原子間に二重結合や三重結合のような不飽和結合を有しないことが好ましい。すなわち、(B)成分の隣り合う炭素原子同士は飽和結合(単結合)により結合されていることが好ましい。これにより、経時的な酸化を低減することができるので、弾性を失って脆くなることを抑制することができる。
 (B)成分は、重量平均分子量(Mw)が20万~85万の範囲内である高分子量体である。重量平均分子量の有効数字は2桁である。3桁目(千の位)を四捨五入して20万又は85万となる数値も、上記の20万~85万の範囲内に含まれる。(B)成分の重量平均分子量が20万より小さいと、耐薬品性が悪くなるおそれがある。逆に(B)成分の重量平均分子量が85万より大きいと、成形性が悪くなるおそれがある。(B)成分の重量平均分子量(Mw)は、好ましくは30万~50万の範囲内である。
 (B)成分が樹脂組成物に含有されていると、プリプレグ1の硬化物が吸湿しにくくなることによって、基板の耐湿性を高めることができ、絶縁信頼性を向上させることができる。またプリプレグ1の硬化物が吸湿したとしても、この硬化物を構成する樹脂の破断強度が高められているので、基板の吸湿耐熱性を向上させることができる。特に絶縁層の厚みが0.2mm以上の厚物のプリント配線板の場合であっても、吸湿耐熱性が高められているので、はんだ付けなどの加熱による絶縁層の膨れを抑制することができる。もちろん絶縁層の厚みが0.2mm未満の薄物のプリント配線板の場合も吸湿耐熱性は高められている。
 ここで、(A1)成分及び(A2)成分と(B)成分とは、樹脂組成物の半硬化状態及び硬化状態において、相溶しないで相分離していることが好ましい。これにより、プリプレグ1の硬化物のガラス転移温度(Tg)の低下が抑制され、基板及びパッケージの耐熱性(例えばはんだ耐熱性)を高めることができる。
 (B)成分のエポキシ価は0.01~0.80eq/kgの範囲内であることが好ましい。エポキシ価は、(B)成分1kg中に存在するエポキシ基の当量数である。(B)成分のエポキシ価が上記の範囲内であると、(A1)成分及び(A2)成分と(B)成分とが相溶しにくくなり、これによりプリプレグ1の硬化物のガラス転移温度(Tg)の低下が抑制され、基板及びパッケージの耐熱性を高めることができる。(B)成分のエポキシ価は、より好ましくは0.06~0.40eq/kgの範囲内であり、さらに好ましくは0.14~0.28eq/kgの範囲内である。
 (C1)成分について説明する。(C1)成分は、下記式(c1)で表される第1シランカップリング剤で第1無機充填材を表面処理して得られた第1充填材である。すなわち、第1無機充填材は微粒子の集合体であり、個々の微粒子の表面に、式(c1)で表される第1シランカップリング剤がその反応基(メトキシ基又はエトキシ基が加水分解したことにより生成するシラノール)によって化学結合している。このようにして、(C1)成分である第1充填材が形成されている。
Figure JPOXMLDOC01-appb-C000008
 式(c1)中、R5はメトキシ基又はエトキシ基であり、R6は炭素数3以上18以下の脂肪族アルキル基の末端にイソシアネート基、グリシジル基又はアミノ基を有する。
 第1無機充填材の具体例として、球状シリカ、硫酸バリウム、酸化ケイ素粉、破砕シリカ、焼成タルク、チタン酸バリウム、酸化チタン、クレー、アルミナ、マイカ、ベーマイト、ホウ酸亜鉛、スズ酸亜鉛、その他の金属酸化物及び金属水和物が挙げられる。
 好ましくは、平均粒子径が45μm以上の無機充填材が樹脂組成物に含有されていない。このような粗粒子が含有されていると、特に薄物の材料(プリプレグ1、金属張積層板2及びプリント配線板3)では絶縁信頼性が低下するおそれがある。なお、平均粒子径は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径を意味する。
 式(c1)で表される第1シランカップリング剤は、特定の官能基(イソシアネート基、グリシジル基又はアミノ基)を末端に有する特定炭素数の脂肪族アルキル基がケイ素原子に結合した三官能アルコキシシランである。
 脂肪族アルキル基の末端にイソシアネート基を有するシランカップリング剤の具体例として、3-イソシアネートプロピルトリエトキシシランが挙げられる。
 脂肪族アルキル基の末端にグリシジル基を有するシランカップリング剤の具体例として、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン及び3-グリシドキシオクチルトリメトキシシランが挙げられる。
 脂肪族アルキル基の末端にアミノ基を有するシランカップリング剤の具体例として、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン及びN-フェニル-3-アミノプロピルトリメトキシシランが挙げられる。
 (c1)で表される第1シランカップリング剤で第1無機充填材が表面処理されると、第1充填材の表面には特定炭素数の脂肪族アルキル基が存在することになる。この脂肪族アルキル基の末端には、イソシアネート基、グリシジル基又はアミノ基が結合しており、これらの反応基は、(A1)成分のエポキシ樹脂及び(A2)成分のフェノール樹脂との親和性が高い。したがって、これらの反応基によって、(C1)成分の第1充填材と(A1)成分のエポキシ樹脂及び(A2)成分のフェノール樹脂とが化学結合することになる。なお、(B)成分は、エポキシ変性されているが(式(b2)参照)、量的には少ないので、(C1)成分との親和性は低い。そのため、(A1)成分及び(A2)成分と(B)成分とは、樹脂組成物の半硬化状態及び硬化状態において、相溶しないで相分離した構造をとりやすい。
 式(c1)で表される第1シランカップリング剤における反応基R6の脂肪族アルキル基の炭素数は3以上18以下である。脂肪族アルキル基の炭素数が3未満であると、プリプレグ1の硬化物の弾性が大きくなり過ぎる。
 (C2)成分について説明する。(C2)成分は、下記式(c2)で表される第2シランカップリング剤で第2無機充填材を表面処理して得られた第2充填材である。すなわち、第2無機充填材は微粒子の集合体であり、個々の微粒子の表面に、式(c2)で表される第2シランカップリング剤がその反応基(メトキシ基又はエトキシ基)によって化学結合している。このようにして、(C2)成分である第2充填材が形成されている。
Figure JPOXMLDOC01-appb-C000009
 式(c2)中、R7はメトキシ基又はエトキシ基であり、R8は炭素数3以上18以下の脂肪族アルキル基の末端にメタクリロイル基又はビニル基を有する。
 第2無機充填材の具体例として、(C1)成分の場合と同様のもの、つまり第1無機充填材の具体例が挙げられる。(C1)成分の第1無機充填材と(C2)成分の第2無機充填材とは、材質、平均粒子径などが同じでもよいし、異なっていてもよい。
 式(c2)で表される第2シランカップリング剤は、特定の官能基(メタクリロイル基又はビニル基)を末端に有する特定炭素数の脂肪族アルキル基がケイ素原子に結合した三官能アルコキシシランである。なお、メタクリロイル基の慣用名はメタクリル基である。
 脂肪族アルキル基の末端にメタクリロイル基を有するシランカップリング剤の具体例として、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン及び3-メタクリロキシオクチルトリメトキシシランが挙げられる。
 脂肪族アルキル基の末端にビニル基を有するシランカップリング剤の具体例として、ビニルトリメトキシシラン及びビニルトリエトキシシランが挙げられる。
 (c2)で表される第2シランカップリング剤で第2無機充填材が表面処理されると、第2充填材の表面には特定炭素数の脂肪族アルキル基が存在することになる。この脂肪族アルキル基の末端には、メタクリロイル基又はビニル基が結合しており、これらの反応基は、(B)成分との親和性が高い。したがって、これらの反応基によって、(C2)成分の第2充填材と(B)成分とが化学結合することになる。
 式(c2)で表される第2シランカップリング剤における反応基R8の脂肪族アルキル基の炭素数は3以上18以下である。脂肪族アルキル基の炭素数が3未満であると、プリプレグ1の硬化物の弾性が大きくなり過ぎる。
 一般に、樹脂及び無機充填材を含有する樹脂組成物の硬化物において、無機充填材に比べて樹脂の方が吸湿しやすい。そのため、樹脂組成物の硬化物において、無機充填材の分散が不均一であると、無機充填材の疎らな部分には樹脂が多く存在するため、吸湿される水分も多くなり、逆に無機充填材の密な部分には樹脂があまり存在しないため、吸湿される水分も少なくなる。つまり、無機充填材の分散が不均一であると、吸湿される水分の分散も不均一となる。このような樹脂組成物の硬化物について吸湿耐熱性試験を行うと、水分が偏在し、この部分の水分が蒸発して、膨れが発生することになる。
 これに対して、本実施形態では、2種類のシランカップリング剤(第1シランカップリング剤及び第2シランカップリング剤)で2種類の無機充填材(第1無機充填材及び第2無機充填材)を表面処理して得られた2種類の充填材(第1充填材及び第2充填材)を使用して、吸湿耐熱性を向上させている。すなわち、(C1)成分の第1充填材は、(A1)成分のエポキシ樹脂及び(A2)成分のフェノール樹脂と親和性が高く、(C2)成分の第2充填材は、(B)成分と親和性が高い。そのため、(C1)成分の第1充填材及び(C2)成分の第2充填材の全体が、(A1)成分及び(A2)成分の近くに片寄ったり、あるいは(B)成分の近くに片寄ったりしにくくなる。つまり、第1充填材及び第2充填材の全体が樹脂組成物の硬化物において均一に分散するようになる。これにより、水分も均一に分散して吸湿されることとなる。その結果、水分の偏在が低減し、膨れの発生が抑制されて、吸湿耐熱性を向上させることができる。
 また(C1)成分の第1充填材及び(C2)成分の第2充填材が樹脂組成物に含有されていると、基板の寸法安定性を高めることができる。
 以下、(C1)成分の第1充填材及び(C2)成分の第2充填材に共通する事項について説明する。なお、単に充填材といえば、第1充填材及び第2充填材の両方を意味する。また単に無機充填材といえば、第1無機充填材及び第2無機充填材の両方を意味する。また単にシランカップリング剤といえば、式(c1)で表される第1シランカップリング剤及び式(c2)で表される第2シランカップリング剤の両方を意味する。
 脂肪族アルキル基は、硬化後のプリプレグ1が熱膨張又は熱収縮する際に発生する応力を緩和させる機能を有する。シランカップリング剤で無機充填材が表面処理されると、脂肪族アルキル基に起因する応力緩和層が無機充填材の表面に形成される。応力緩和層を有する充填材が、(A1)成分、(A2)成分及び(B)成分中に存在することで、(A1)成分、(A2)成分及び(B)成分に対して、熱膨張又は熱収縮による応力緩和作用が発揮される。その結果、充填材を含有する硬化後のプリプレグ1は熱変形が起こりにくくなる。このことから、基板の吸湿耐熱性をさらに向上させることができる。充填材の表面に脂肪族アルキル基が存在することによって応力緩和作用が生じる理由としては、いくつか考えられる。その理由の一つは、アルキル基の単結合が自由回転できることにより、(A1)成分、(A2)成分及び(B)成分の熱膨張又は熱収縮と共に充填材のアルキル基も熱膨張又は熱収縮することができるためである。
 さらに脂肪族アルキル基は、プリプレグ1を材料として形成された金属張積層板2の穴あけ後のデスミア処理(デスミアエッチング)の中で、エッチング量を少なくする機能を有する。
 ここで、デスミア処理とは、レーザ加工又はドリル加工での穴あけの際に発生した樹脂スミアを、ケミカルホールクリーニングなどで除去することをいう。具体的なデスミア処理として過マンガン酸処理が挙げられる。過マンガン酸処理では、アルカリ性過マンガン酸カリウムを主成分としたデスミア液が用いられる。
 上述のエッチング量とは、デスミア処理によって削れる樹脂の量を意味する。エッチング量が多い場合には、穴あけで形成した穴の内径が拡大するおそれがある。そのため、エッチング量は可能な限り少ない方が好ましい。
 上述のように充填材の表面に脂肪族アルキル基が存在すると、樹脂組成物の硬化物の内部へのデスミア液の浸透を抑制することができるので、エッチング量を少なくすることができる。このようにして、デスミア処理を行っても、穴の内径の拡大を抑制することができる。
 脂肪族アルキル基は、末端にイソシアネート基、グリシジル基、アミノ基、メタクリロイル基又はビニル基を有しており、これらの官能基が(A1)成分、(A2)成分又は(B)成分と強固に結合するため、デスミア処理時のエッチング量を少なくすることができる。脂肪族アルキル基の末端にイソシアネート基、グリシジル基、アミノ基、メタクリロイル基及びビニル基のいずれの官能基も有しない場合に比べて、デスミア処理時のエッチング量を少なくすることができる。
 無機充填材をシランカップリング剤で表面処理する方法としては、例えば、直接処理法、インテグラルブレンド法及びドライコンセントレート法を挙げることができる。無機充填材をシランカップリング剤で表面処理するにあたって、無機充填材に対するシランカップリング剤の添加量は、特に限定されない。無機充填材の表層全体にシランカップリング剤の単分子層を形成するのに必要なシランカップリング剤の量は、以下の式(1)で計算することができる。この計算値の0.1~15倍の量が好ましいシランカップリング剤の添加量である。この場合、無機充填材による応力緩和の作用がより効率的に発揮される。
 W=W×S/S・・・(1)
 W:単分子層の形成に必要なシランカップリング剤の量(g)
 W:無機充填材の添加量(g)
 S:無機充填材の比表面積(m/g)
 S:シランカップリング剤の最小被覆面積(m/g)
 好ましくは、(C1)成分又は(C2)成分は、平均粒子径が100nm以下のナノフィラーである。より好ましくは、(C1)成分又は(C2)成分は、平均粒子径が10~100nmのナノフィラーである。(C1)成分又は(C2)成分のいずれかの平均粒子径が100nm以下であれば、デスミア処理における樹脂スミアの除去効果を向上させることができる。この点についてより詳しく説明する。樹脂スミアの主成分は、高分子量体の(B)成分であると考えられる。そして、第一の場合として、(C1)成分又は(C2)成分のいずれかが上記のナノフィラーである場合には、このナノフィラーが樹脂スミアの中に均一に分散することとなる。このような樹脂スミアは、デスミア処理によって容易に除去することができる。第二の場合として、(C1)成分及び(C2)成分がいずれも上記のナノフィラーでない場合には、樹脂スミアが、ほぼ樹脂成分のみで構成されてしまう。このような樹脂スミアは、第一の場合よりもデスミア処理の条件を激しくすれば除去し得るが、第一の場合と同じ条件のデスミア処理では除去しにくくなる。すなわち、デスミア処理の条件が同じであれば、(C1)成分及び(C2)成分の両方の平均粒子径が100nmを超える場合に比べて、(C1)成分又は(C2)成分のいずれかの平均粒子径が100nm以下である場合の方が、樹脂スミアを容易に除去することができる。この理由は、上述のように平均粒子径が100nm以下のナノフィラーが樹脂スミア内で均一に分散しているからであると考えられる。(C1)成分又は(C2)成分のいずれかの平均粒子径が10nm以上であれば、ワニス状態の樹脂組成物の増粘を抑制することができる。なお、以下において、単にナノフィラーといえば、平均粒子径が100nm以下の第1充填材又は第2充填材を意味する。
 樹脂組成物において(A1)成分及び(A2)成分の合計と(B)成分の質量比は90:10~50:50であることが好ましく、80:20~60:40であることがより好ましい。言い換えると、(A1)成分、(A2)成分及び(B)成分の合計100質量部に対して、(B)成分の含有量は、好ましくは10~50質量部であり、より好ましくは20~40質量部である。(A1)成分のエポキシ樹脂のエポキシ当量1に対して、(A2)成分のフェノール樹脂の水酸基当量が0.2~1.1の範囲内であることが好ましい。(C1)成分及び(C2)成分の合計の含有量は、樹脂組成物の全量に対して80質量%以下であることが好ましく、50質量%以下であることがより好ましい。この場合の(C1)成分及び(C2)成分の含有量は、(C1)成分及び(C2)成分がそれぞれ所定のシランカップリング剤で表面処理されているときは、シランカップリング剤も含む表面処理後の(C1)成分及び(C2)成分の含有量である。(C1)成分と(C2)成分の比率(質量比)は、好ましくは98:2~60:40であり、より好ましくは95:5~80:20である。言い換えると、(C1)成分及び(C2)成分の合計100質量部に対して、(C2)成分の含有量は、好ましくは2~40質量部であり、より好ましくは5~20質量部である。
 (C1)成分又は(C2)成分がナノフィラーである場合、(A1)成分、(A2)成分及び(B)成分の合計100質量部に対して、ナノフィラーは、好ましくは1~30質量部の範囲内であり、より好ましくは3~10質量部の範囲内である。ナノフィラーが1質量部以上であれば、デスミア処理における樹脂スミアの除去効果を向上させることができる。より詳しく言えば、デスミア処理の条件が同じであれば、ナノフィラーが1質量部未満である場合に比べて、ナノフィラーが1質量部以上である場合の方が、樹脂スミアを容易に除去することができる。ナノフィラーが30質量部以下であれば、ワニス状態の樹脂組成物の増粘を抑制することができる。
 樹脂組成物はさらに添加剤を含有してもよい。添加剤の具体例として、リン系難燃剤が挙げられる。樹脂組成物がリン系難燃剤を含有することで、プリプレグ1の硬化物、基板、パッケージの難燃性を向上させることができる。なお、リン系難燃剤は吸湿しやすいが、本実施形態では、2種類のシランカップリング剤で2種類の無機充填材を表面処理して得られた2種類の充填材を使用しているので、吸湿耐熱性を向上させることができる。リン系難燃剤は、無機充填材の分散性にはほとんど影響を及ぼさない。樹脂組成物で小さな部品(例えばパッケージなど)を製造する場合には難燃性を付与する必要性は低いが、樹脂組成物で大きな部品(例えばマザーボードなど)を製造する場合には難燃性を付与する必要性が高い。したがって、後者の場合には樹脂組成物にリン系難燃剤を添加しておくことが好ましい。
 樹脂組成物はさらに硬化促進剤を含有してもよい。硬化促進剤としては、例えば、イミダゾール類及びその誘導体、有機リン系化合物、オクタン酸亜鉛等の金属石鹸類、第二級アミン類、第三級アミン類及び第四級アンモニウム塩を挙げることができる。
 織布基材5について説明する。織布基材5は、図2に示す平織のように縦糸51及び横糸52がほぼ直交するように織られたものであれば特に限定されない。織布基材5の具体例として、ガラスクロスのように無機繊維からなるもの、及び、アラミドクロスのように有機繊維からなるものが挙げられる。織布基材5の厚みは10~200μmの範囲内であることが好ましい。
 次に本実施形態のプリプレグ1の物性について説明する。
 プリプレグ1の硬化物を試料として動的粘弾性測定(DMA:dynamic mechanical analysis)を行うと、損失正接(tanδ)のチャートが得られる。このチャート(tanδ曲線)において、好ましくは100℃以下の温度域と200℃以上の温度域とにそれぞれピークが1つずつ存在し、より好ましくは60℃以下の温度域と200℃以上の温度域とにそれぞれピークが1つずつ存在する。200℃以上の温度域のピークは、主分散ピークである。主分散ピークは、硬化物の分子構造の主鎖の運動に関連し、ガラス転移温度(Tg)に起因している。一方、100℃以下又は60℃以下の温度域のピークは、副分散ピークである。副分散ピークは、硬化物の分子構造の側鎖の運動に関連し、特に(B)成分の高分子量体に起因している。副分散ピークが、100℃以下から60℃以下へと、より低温側にシフトすることで、硬化物により高い伸び特性と、更なる低弾性とを付与することができる。
 上記の動的粘弾性測定は、周波数を一定(例えば10Hz)にして行われる。損失正接(tanδ)は損失弾性率(E”)と貯蔵弾性率(E’)の比である。つまり、損失正接(tanδ)=損失弾性率(E”)/貯蔵弾性率(E’)である。損失正接(tanδ)のチャートは、縦軸に損失正接(tanδ)をとり、横軸に温度をとったチャートであり、損失正接(tanδ)の温度依存性を示している。
 プリプレグ1は、硬化状態において、損失弾性率(E”)と貯蔵弾性率(E’)の比が、好ましくは100℃以下の温度域と200℃以上の温度域とにおいて0.05以上であり、より好ましくは60℃以下の温度域と200℃以上の温度域とにおいて0.05以上である。特に好ましくは100℃以下の温度域と200℃以上の温度域とにおける損失正接(tanδ)のピークの値がいずれも0.05以上であり、より好ましくは60℃以下の温度域と200℃以上の温度域とにおける損失正接(tanδ)のピークの値がいずれも0.05以上である。
 損失正接(tanδ)のチャートにおいて、100℃以下の温度域と200℃以上の温度域とにそれぞれ0.05以上の値のピークが1つずつ存在していると、(A1)成分及び(A2)成分の高剛性成分と(B)成分の低弾性成分の両方の特徴を併せ持つことが可能となる。上述のように、副分散ピークが、100℃以下から60℃以下へと、より低温側にシフトすることで、硬化物により高い伸び特性と、更なる低弾性とを付与することができる。
 またプリプレグ1は、硬化状態において、織布基材5の縦糸51又は横糸52に対して斜め45°方向(例えば図2の両矢印の方向)における引張り伸び率が5%以上であることが好ましい。引張り伸び率の測定には通常、1枚のプリプレグ1を硬化状態(Cステージ状態)としたものを試料として用いるが、縦糸51及び横糸52の方向がそれぞれ一致するように複数枚のプリプレグ1を積層して硬化状態としたものを試料として用いてもよい。引張り伸び率の測定は、次のような引張り試験により行うことができる。まず、引張り試験前に縦糸51又は横糸52に対して斜め45°方向における試料の長さ(L)を測定する。このとき試料の幅は5mmに調整しておく。次に引張り試験機を用いて、速度5mm/分で縦糸51又は横糸52に対して斜め45°方向に試料を引張り、この試料が破断する直前の長さ(L)を測定する。そして、以下の式(2)によって引張り伸び率を算出することができる。
 引張り伸び率(%)={(L-L)/L}×100・・・(2)
 上記のようにして得られる引張り伸び率が5%以上であることによって、パッケージの反りをさらに低減することができる。
 [プリプレグの製造方法]
 まず樹脂組成物のワニスを調製する。溶剤に(A1)成分、(A2)成分、(B)成分を加えて溶解させた後、必要に応じて添加剤、硬化促進剤を加えて配合することによってベースワニスを調製する。ここで、溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤、トルエン、キシレン等の芳香族系溶剤、及び、ジメチルホルムアミド等の窒素含有溶剤を挙げることができる。次にベースワニスに(C1)成分、(C2)成分を加えて分散させることによって樹脂組成物のワニスを調製することができる。(C1)成分及び(C2)成分を分散させる際には、ホモジナイザー、ディスパー、ビーズミルなどの分散機を使用してもよい。
 次に、ワニス状態(Aステージ状態)の樹脂組成物を織布基材5に含浸させると共に、これを半硬化状態(Bステージ状態)となるまで加熱乾燥することによってプリプレグ1を製造することができる。
 [金属張積層板]
 本実施形態の金属張積層板2は、プリプレグ1の硬化物と、この硬化物に接着されている金属箔6とを備えている。具体的には、図3に示すようにプリプレグ1(より具体的には樹脂組成物の半硬化物4)が硬化して形成された絶縁層41の表面に金属箔6が接着されて、金属張積層板2が形成されている。この場合、1枚のプリプレグ1の片面又は両面に金属箔6を積層して加熱加圧成形してもよいし、複数枚のプリプレグ1を重ね、この片面又は両面に金属箔6を積層して加熱加圧成形してもよい。半硬化状態のプリプレグ1は、加熱されることで、上述のように硬化状態の絶縁層41となる。絶縁層41の厚みT1が0.2mm未満の場合はもちろん、0.2mm以上の場合でも、金属張積層板2の吸湿耐熱性を向上させることができる。金属張積層板2の絶縁層41の厚みT1の上限は0.4mm程度である。金属箔6としては、例えば、銅箔を挙げることができる。積層成形は、例えば多段真空プレスやダブルベルトプレスを用いて加熱加圧して行うことができる。
 [プリント配線板]
 本実施形態のプリント配線板3は、プリプレグ1の硬化物と、この硬化物に設けられた導体パターン7とを備えている。導体パターン7は、金属張積層板2の金属箔6の一部を除去して設けることができる。導体パターン7の形成は、例えばサブトラクティブ法により行うことができる。プリント配線板3の一例を図4に示す。このプリント配線板3は、サブトラクティブ法により導体パターン7が形成され、ビルドアップ法により多層化された多層プリント配線板である。絶縁層41の内部の導体パターン7は内層パターン71であり、絶縁層41の外部表面の導体パターン7は外層パターン72である。この場合の絶縁層41の厚みT2が0.2mm未満の場合はもちろん、0.2mm以上の場合でも、プリント配線板3の吸湿耐熱性を向上させることができる。プリント配線板3の絶縁層41の厚みT2の上限は0.4mm程度である。なお、図4において織布基材5は図示省略している。
 導体パターン7を形成するにあたって、絶縁層41に層間接続のための穴あけを行う。層間接続は、異なる層の導体パターン7同士の電気的な導通を行うことである。穴は、プリント配線板3を貫通する貫通穴(スルーホール)でもよいし、貫通しない非貫通穴(ブラインドホール)でもよい。図4に示すように、貫通穴の内面にめっきを行うなどしてバイアホール8を形成することができ、非貫通穴の内面にめっきを行うなどしてブラインドバイアホール9を形成することができる。図示省略しているが、ベリードバイアホールを形成してもよい。穴の内径は例えば0.01~0.20mmの範囲内である。穴の深さは例えば0.02~0.80mmの範囲内である。穴あけはレーザ加工又はドリル加工により行うことができる。
 (C1)成分及び(C2)成分の充填材が絶縁層41に含有されていると、シランカップリング剤の脂肪族アルキル基の末端の官能基がイソシアネート基、グリシジル基、アミノ基、メタクリロイル基又はビニル基であるので、デスミア処理時のエッチング量を少なくすることができる。樹脂スミアが発生しても、穴内をケミカルホールクリーニングなどのデスミア処理で洗浄すれば、穴内の樹脂スミアをさらに除去することができる。これにより、樹脂スミアに起因する導通不良を解消し、導通信頼性を向上させることができる。
 (C1)成分及び(C2)成分の充填材が絶縁層41に含有されていると、シランカップリング剤の脂肪族アルキル基が応力緩和層として機能するので、プリント配線板3をその熱膨張率を小さくした上で低弾性にすることができ、高い伸び特性を付与することもできる。このことから、プリント配線板3の吸湿耐熱性をさらに向上させることができる。
 ここで、ブラインドバイアホール9の形成に利用し得る2種類の方法について説明する。2種類の方法は、セミアディティブ法(SAP:Semi Additive Process)及びモディファイドセミアディティブ法(MSAP:Modified Semi Additive Process)である。
 まず図5A~図5Gを示しながらSAPについて説明する。
 図5Aは、内層パターン711を内部に有し、主面420を外部に有する絶縁層42を示す。
 まず、図5Bに示すように、絶縁層42に穴あけを行って非貫通穴90を形成する。穴あけはレーザ加工により行うことができる。レーザLの具体例として、COレーザ及びUV-YAGレーザが挙げられる。非貫通穴90は絶縁層42の主面420の側において開口している。非貫通穴90の底面91は、内層パターン711の表面である。穴あけの際に樹脂スミア49が発生し、この樹脂スミア49は、非貫通穴90の底面91である内層パターン711の表面に付着する。
 次に、上記の樹脂スミア49を除去するために、図5Cに示すようにデスミア処理を行う。この際、絶縁層42の主面420、非貫通穴90の内側面92及び底面91が粗化処理されるとともに、非貫通穴90の底面91及び内側面92から樹脂スミア49が除去される。
 次に、図5Dに示すように、絶縁層42の主面420、非貫通穴90の底面91及び内側面92にかけて無電解めっき処理を行って、シード層60となる無電解めっき層61を形成する。
 次に、図5Eに示すように、絶縁層42の主面420にめっきレジスト43を形成する。めっきレジスト43は、絶縁層42の主面420において外層パターン721を形成しない部分に形成する。
 次に、図5Fに示すように、電解めっき処理を行って、めっきレジスト43でマスクされていない部分にめっき62を充填する。
 その後、図5Gに示すように、めっきレジスト43を除去するとともに、めっきレジスト43と絶縁層42の主面420との間に介在していたシード層60をエッチングにより除去する。このようにして、内層パターン711と外層パターン721とを電気的に接続するブラインドバイアホール9が形成される。特にブラインドバイアホール9は、めっき62が充填されているので、フィルドバイアとも呼ばれる。
 ここで、絶縁層42に(C1)成分及び(C2)成分の充填材の両方が含有されていないと、図6Bに示すように、SAPの実施後に、内層パターン711と無電解めっき層61との間に樹脂スミア49が残ったフィルドバイアが形成されるおそれがある。この樹脂スミア49は、デスミア処理でも除去しきれずに残ったものである。そして、このように樹脂スミア49が残っていると、樹脂スミア49に起因する導通不良が発生し、導通信頼性を損なわれるおそれがある。
 これに対して、本実施形態のように、絶縁層42に(C1)成分及び(C2)成分の充填材の両方が含有されていると、図6Aに示すように、SAPの実施後に、内層パターン711と無電解めっき層61との間に樹脂スミア49が残っていないフィルドバイアが形成される。つまり、樹脂スミア49は、デスミア処理により容易に除去することができる。これにより、樹脂スミア49に起因する導通不良を解消し、導通信頼性を向上させることができる。なお、樹脂スミア49が残っていないとは、全く残っていない場合のみならず、導通信頼性にほとんど影響を及ぼさない程度にごく微量残っている場合も含まれる。
 次に図7A~図7Gを示しながらMSAPについて説明する。
 図7Aは、内層パターン711を内部に有し、主面420を外部に有する絶縁層42を示す。主面420には、第1シード層601となる非常に薄い金属箔63が設けられている。
 まず、図7Bに示すように、第1シード層601も含めて絶縁層42に穴あけを行って非貫通穴90を形成する。穴あけはレーザ加工により行うことができる。レーザLの具体例として、COレーザ及びUV-YAGレーザが挙げられる。非貫通穴90は絶縁層42の主面420の側において開口している。非貫通穴90の底面91は、内層パターン711の表面である。穴あけの際に樹脂スミア49が発生し、この樹脂スミア49は、非貫通穴90の底面91である内層パターン711の表面に付着する。
 次に、上記の樹脂スミア49を除去するために、図7Cに示すようにデスミア処理を行う。この際、絶縁層42の主面420に設けられた第1シード層601、非貫通穴90の内側面92及び底面91が粗化処理されるとともに、非貫通穴90の底面91及び内側面92から樹脂スミア49が除去される。
 次に、図7Dに示すように、絶縁層42の主面420に設けられた第1シード層601、非貫通穴90の底面91及び内側面92にかけて無電解めっき処理を行って、第2シード層602となる無電解めっき層61を形成する。
 次に、図7Eに示すように、絶縁層42の主面420にめっきレジスト43を形成する。めっきレジスト43は、絶縁層42の主面420において外層パターン721を形成しない部分に形成する。
 次に、図7Fに示すように、電解めっき処理を行って、めっきレジスト43でマスクされていない部分にめっき62を充填する。
 その後、図7Gに示すように、めっきレジスト43を除去するとともに、めっきレジスト43と絶縁層42の主面420との間に介在していた第1シード層601及び第2シード層602をエッチングにより除去する。このようにして、内層パターン711と外層パターン721とを電気的に接続するブラインドバイアホール9が形成される。特にブラインドバイアホール9は、めっき62が充填されているので、フィルドバイアとも呼ばれる。
 ここで、絶縁層42に(C1)成分及び(C2)成分の充填材の両方が含有されていないと、図8Bに示すように、MSAPの実施後に、内層パターン711と無電解めっき層61との間に樹脂スミア49が残ったフィルドバイアが形成されるおそれがある。この樹脂スミア49は、デスミア処理でも除去しきれずに残ったものである。そして、このように樹脂スミア49が残っていると、樹脂スミア49に起因する導通不良が発生し、導通信頼性を損なわれるおそれがある。
 これに対して、本実施形態のように、絶縁層42に(C1)成分及び(C2)成分の充填材の両方が含有されていると、図8Aに示すように、MSAPの実施後に、内層パターン711と無電解めっき層61との間に樹脂スミア49が残っていないフィルドバイアが形成される。つまり、樹脂スミア49は、デスミア処理により容易に除去することができる。これにより、樹脂スミア49に起因する導通不良を解消し、導通信頼性を向上させることができる。なお、樹脂スミア49が残っていないとは、全く残っていない場合のみならず、導通信頼性にほとんど影響を及ぼさない程度にごく微量残っている場合も含まれる。
 [パッケージ]
 プリント配線板3に半導体素子を実装して封止することによって、FBGA(Fine pitch Ball Grid Array)等のパッケージを製造することができる。パッケージをサブパッケージとして用い、複数のサブパッケージを積層することによって、PoP(Package on Package)等のパッケージを製造することもできる。このように、様々な形態のパッケージを製造することができるが、いずれのパッケージについても、(A1)成分、(A2)成分及び(B)成分によって、反りが低減されていると共に吸湿耐熱性も高められている。すなわち、(A1)成分及び(A2)成分によって剛性を高め、(B)成分によって弾性を低下させて応力を緩和させることができるので、パッケージの形態に依存することなく、汎用的にパッケージの反りを低減することができる。さらに(A1)成分、(A2)成分及び(B)成分によってパッケージの吸湿耐熱性も高めることができる。
 以下、本発明を実施例によって具体的に説明する。
 <ワニス配合>
 (A1)成分
 ・ナフタレン骨格含有エポキシ樹脂(DIC株式会社製「HP-9500」)
 ・ビフェニル骨格含有エポキシ樹脂(日本化薬株式会社製「NC-3000-H」)
 (A2)成分
 ・ナフタレン骨格含有フェノール樹脂(DIC株式会社製「HPC-9500P」)
 ・ビフェニル骨格含有フェノール樹脂(日本化薬株式会社製「GPH-103」)
 (B)成分
 ・エポキシ変性アクリル樹脂(ナガセケムテックス株式会社製「PMS-12-82」)
 これは、式(b1)、式(b2)及び式(b3)で表される構造を有し、隣り合う炭素原子間に不飽和結合を有さず、重量平均分子量が50万、エポキシ価が0.21eq/kgである。
 (C1)成分
 ・イソシアネートシラン処理シリカ
 これは、3-イソシアネートプロピルトリエトキシシランで表面処理された球状シリカ(株式会社アドマテックス製「SC2500GNO」)であり、平均粒子径は0.5μm(500nm)である。
 ・エポキシシラン処理シリカ
 これは、3-グリシドキシプロピルトリメトキシシランで表面処理された球状シリカ(株式会社アドマテックス製「SC2500SEJ」)であり、平均粒子径は0.5μm(500nm)である。
 (C2)成分
 ・ビニルシラン処理シリカ
 これは、ビニルトリメトキシシランで表面処理された球状シリカ(株式会社アドマテックス製「SC2500SVJ」)であり、平均粒子径は0.5μm(500nm)である。
 ・メタクリルシラン処理シリカ
 これは、3-メタクリロキシプロピルトリメトキシシランで表面処理された球状シリカ(株式会社アドマテックス製「YA050C-MJE」)であり、平均粒子径は50nmである。
 (溶剤)
 ・メチルエチルケトン
 (添加剤)
 ・リン系難燃剤(大塚化学株式会社製「SPB-100」)
 <プリプレグ>
 表1に示す配合量(質量部)で、溶剤に(A1)成分、(A2)成分、(B)成分を加えて溶解させた後、さらに添加剤を加えて配合し、次に(C1)成分、(C2)成分を加えて分散させることによって樹脂組成物のワニスを調製した。実施例1~5では(A1)成分及び(A2)成分と(B)成分とは相溶しないで相分離している。なお、ワニスにおける(C1)及び(C2)成分の分散性は、株式会社島津製作所製レーザ回折式粒度分布測定装置「SALD-2100」を用いて確認した。
 次に、上記の樹脂組成物のワニスを織布基材(日東紡績株式会社製ガラスクロス「WEA116E」、厚み88μm)に硬化後の厚みが100μmとなるように含浸させると共に、これを半硬化状態となるまで130℃で5分間加熱乾燥することによってプリプレグを製造した。
 <金属張積層板>
 上記のプリプレグを2枚重ね、この両面に金属箔として銅箔(厚み12μm)を積層して、真空条件下、2.94MPa(30kgf/cm)で加圧しながら、220℃で60分間加熱して成形することによって、金属張積層板として銅張積層板(CCL)を製造した。金属張積層板の絶縁層の厚みは200μmであった。さらに金属張積層板の両面の金属箔をエッチングにより除去することによって、厚み0.2mmのアンクラッド板を製造した。
 <基板特性>
 以下の物性評価を行った。その結果を表1に示す。
 (吸湿耐熱性)
 上記のアンクラッド板を正方形状に切断して試験片(大きさ5cm×5cm)を得た。この試験片の端面を研磨して滑らかにした。さらに前処理としてこの試験片を100℃のオーブンに1時間入れて乾燥させた。その後、60℃、湿度60%、1気圧(101.3kPa)の条件で0時間、12時間、24時間吸湿させた。次にこのように吸湿時間の異なる3種の試験片を288℃のはんだ槽に120秒間浸漬させた。そして、はんだ槽から取り出した試験片に膨れが発生しているか目視により確認した。表1中では、試験片に膨れが発生しなかったものを「S」、試験片に1mm以下の膨れが発生したものを「A」、試験片に5mm以下の膨れが発生したものを「B」、試験片に5mmを超える膨れが発生したものを「C」として示す。
 (分散性)
 上記のアンクラッド板を切断し、その断面を研磨して、織布基材の存在しない箇所を電子顕微鏡(SEM)により3000倍で観察することにより、無機充填材の分散性の良否を評価した。図9Aは実施例1の電子顕微鏡写真であり、図9Bは比較例1の電子顕微鏡写真である。白い部分が無機充填材であり、図9Aでは分散性が良く、図9Bでは分散性が良くないことが分かる。実施例2~5の結果は、実施例1の結果と同様であり、比較例2の結果は、比較例1の結果と同様であった。
 (損失正接(tanδ)≧0.05となるピークトップ温度)
 上記のアンクラッド板を、織布基材の縦糸方向に対して45°傾けた方向(バイアス方向)に5mm幅で短冊状に切り出して、長さ25mmの試料を作製した。この試料について、動的粘弾性測定装置(エスアイアイ・ナノテクノロジー株式会社製「DMS6100」)を用いて、チャッキング間距離10mm、昇温速度5℃/分、引張モードの条件で動的粘弾性測定(DMA:dynamic mechanical analysis)を行った。この測定により得られた損失正接(tanδ)のチャートを読み取ることによって、tanδ≧0.05となるピークトップ温度を求めた。
 (弾性率)
 上記の測定により得られた損失正接(tanδ)のチャートから、25℃における貯蔵弾性率(E’)を読み取り、これを弾性率とした。
 (熱膨張率(CTE))
 上記のアンクラッド板を、織布基材の縦糸方向と平行に5mm幅で短冊状に切り出して、長さ25mmの試料を作製した。この試料について、熱機械分析装置(エスアイアイ・ナノテクノロジー株式会社製「TMA6100」)を用いて、プローブ間距離15mm、引張荷重5mNの条件で測定を行った。この測定により得られた膨張曲線の50~100℃の平均熱膨張率を熱膨張率(CTE)とした。
 (引張り伸び率)
 上記のアンクラッド板を、織布基材の縦糸方向に対して45°傾けた方向(バイアス方向)に5mm幅で短冊状に切り出して、長さ80mmの試料を作製した。この試料について、引張試験機(株式会社島津製作所製「オートグラフAGS-X」)を用いて、標線間距離60mm、5mm/分の条件で引張試験を行った。そして、引張試験を行う前の初期の試料の長さ(L)と、引張試験により試料が破断する直前の長さ(L)とから、次の式によって引張り伸び率を算出した。
 引張り伸び率(%)={(L-L)/L}×100
 (引張り破断強度)
 上記の引張試験において、試料が破断した際の荷重F(N)と、試料の断面積S(mm)とから、次の式によって引張り破断強度を算出した。
 引張り破断強度(MPa)=F(N)/S(mm
 (難燃性)
 UL94規格により垂直燃焼試験を行った。
Figure JPOXMLDOC01-appb-T000010
 表1から明らかなように、比較例1、2に比べて、実施例1~5の方が無機充填材の分散性が良好であるため、吸湿耐熱性及び引張り破断強度に優れていることが確認された。
 実施例1、2の対比から、(C1)成分におけるシランカップリング剤がイソシアネート基を有していても、グリシジル基を有していても、吸湿耐熱性を向上させることができることが確認された。
 実施例1、3の対比から、(C2)成分におけるシランカップリング剤がビニル基を有していても、メタクリロイル基を有していても、吸湿耐熱性を向上させることができることが確認された。
 実施例1、4の対比から、(A1)成分及び(A2)成分がナフタレン骨格を有していても、ビフェニル骨格を有していても、吸湿耐熱性を向上させることができることが確認された。
 実施例1、5の対比から、リン系難燃剤の有無にかかわらず、吸湿耐熱性を向上させることができることが確認された。
 1 プリプレグ
 2 金属張積層板
 3 プリント配線板
 4 樹脂組成物
 5 織布基材
 6 金属箔
 7 導体パターン
 51 縦糸
 52 横糸

Claims (16)

  1.  織布基材と、
     前記織布基材に含浸された樹脂組成物の半硬化物と、を備えたプリプレグであって、
     前記樹脂組成物は、下記(A1)成分及び下記(A2)成分のうちの少なくともいずれかの成分と、下記(B)成分と、下記(C1)成分と、下記(C2)成分と、を含有する、
     プリプレグ。
     (A1)ナフタレン骨格及びビフェニル骨格のうちの少なくともいずれかの骨格を有するエポキシ樹脂、
     (A2)ナフタレン骨格及びビフェニル骨格のうちの少なくともいずれかの骨格を有するフェノール樹脂、
     (B)下記式(b1)、下記式(b2)及び下記式(b3)のうちの少なくとも下記式(b2)及び下記式(b3)で表される構造を有し、重量平均分子量が20万~85万である高分子量体、
    Figure JPOXMLDOC01-appb-C000001
     式(b1)中のx、式(b2)中のy及び式(b3)中のzは、次の関係式を満たす。x:y:z(モル分率)=0:0.95:0.05~0.2:0.6:0.2(ただし、x+y+z≦1、0≦x≦0.2、0.6≦y≦0.95、0.05≦z≦0.2)である。式(b2)中、R1は水素原子又はメチル基、R2は、水素原子、アルキル基、グリシジル基及びエポキシ化されたアルキル基のうち、少なくともグリシジル基及びエポキシ化されたアルキル基のうちの1つを含む。式(b3)中、R3は水素原子又はメチル基、R4はPh(フェニル基)、-COOCHPh又は-COO(CHPhである。
     (C1)下記式(c1)で表される第1シランカップリング剤で第1無機充填材を表面処理して得られた第1充填材、
    Figure JPOXMLDOC01-appb-C000002
     式(c1)中、R5はメトキシ基又はエトキシ基であり、R6は炭素数3以上18以下の脂肪族アルキル基の末端にイソシアネート基、グリシジル基又はアミノ基を有する。
     (C2)下記式(c2)で表される第2シランカップリング剤で第2無機充填材を表面処理して得られた第2充填材。
    Figure JPOXMLDOC01-appb-C000003
     式(c2)中、R7はメトキシ基又はエトキシ基であり、R8は炭素数3以上18以下の脂肪族アルキル基の末端にメタクリロイル基又はビニル基を有する。
  2.  前記(C1)成分又は前記(C2)成分は、平均粒子径が100nm以下のナノフィラーである、
     請求項1に記載のプリプレグ。
  3.  前記(A1)成分、前記(A2)成分及び前記(B)成分の合計100質量部に対して、前記ナノフィラーは、1~30質量部の範囲内である、
     請求項2に記載のプリプレグ。
  4.  前記樹脂組成物は、平均粒子径が45μm以上の無機充填材を含有しない、
     請求項1~3のいずれか1項に記載のプリプレグ。
  5.  前記(A1)成分及び前記(A2)成分の合計と前記(B)成分の質量比は、90:10~50:50である、
     請求項1~4のいずれか1項に記載のプリプレグ。
  6.  前記(C1)成分及び前記(C2)成分の合計の含有量は、前記樹脂組成物の全量に対して80質量%以下である、
     請求項1~5のいずれか1項に記載のプリプレグ。
  7.  前記(C1)成分と前記(C2)成分の質量比は、98:2~60:40である、
     請求項1~6のいずれか1項に記載のプリプレグ。
  8.  前記(A1)成分及び前記(A2)成分と前記(B)成分とは、相溶しないで相分離している、
     請求項1~7のいずれか1項に記載のプリプレグ。
  9.  前記(B)成分のエポキシ価は、0.01~0.80eq/kgの範囲内である、
     請求項1~8のいずれか1項に記載のプリプレグ。
  10.  前記(B)成分は、隣り合う炭素原子間に不飽和結合を有しない、
     請求項1~9のいずれか1項に記載のプリプレグ。
  11.  前記樹脂組成物は、リン系難燃剤を更に含有する、
     請求項1~10のいずれか1項に記載のプリプレグ。
  12.  前記織布基材の厚みは、10~200μmの範囲内である、
     請求項1~11のいずれか1項に記載のプリプレグ。
  13.  硬化状態において、損失弾性率と貯蔵弾性率の比は100℃以下の温度域と200℃以上の温度域とにおいて0.05以上である、
     請求項1~12のいずれか1項に記載のプリプレグ。
  14.  硬化状態において、前記織布基材の縦糸又は横糸に対して斜め45°方向における引張り伸び率は5%以上である、
     請求項1~13のいずれか1項に記載のプリプレグ。
  15.  請求項1~14のいずれか1項に記載のプリプレグの硬化物と、
     前記硬化物に接着されている金属箔と、を備えている、
     金属張積層板。
  16.  請求項1~14のいずれか1項に記載のプリプレグの硬化物と、
     前記硬化物に設けられた導体パターンと、を備えている、
     プリント配線板。
PCT/JP2017/026113 2016-07-29 2017-07-19 プリプレグ、金属張積層板及びプリント配線板 WO2018021113A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018529808A JP6861377B2 (ja) 2016-07-29 2017-07-19 プリプレグ、金属張積層板及びプリント配線板
US16/316,579 US11059260B2 (en) 2016-07-29 2017-07-19 Prepreg, metal-clad laminated board, and printed wiring board
CN201780043922.2A CN109476862B (zh) 2016-07-29 2017-07-19 预浸料、覆金属层压板和印刷线路板
KR1020197001678A KR102346231B1 (ko) 2016-07-29 2017-07-19 프리프레그, 금속 클래드 적층판 및 프린트 배선판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-150047 2016-07-29
JP2016150047 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018021113A1 true WO2018021113A1 (ja) 2018-02-01

Family

ID=61016171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026113 WO2018021113A1 (ja) 2016-07-29 2017-07-19 プリプレグ、金属張積層板及びプリント配線板

Country Status (6)

Country Link
US (1) US11059260B2 (ja)
JP (1) JP6861377B2 (ja)
KR (1) KR102346231B1 (ja)
CN (1) CN109476862B (ja)
TW (1) TWI719229B (ja)
WO (1) WO2018021113A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105691A1 (ja) * 2016-12-09 2018-06-14 パナソニックIpマネジメント株式会社 プリプレグ、金属張積層板及びプリント配線板
WO2020026694A1 (ja) * 2018-08-03 2020-02-06 パナソニックIpマネジメント株式会社 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2020133472A1 (zh) * 2018-12-29 2020-07-02 广东生益科技股份有限公司 树脂组合物、预浸料、层压板以及覆金属箔层压板
CN111378098A (zh) * 2018-12-29 2020-07-07 广东生益科技股份有限公司 树脂组合物、预浸料、层压板以及覆金属箔层压板
WO2021220684A1 (ja) * 2020-04-27 2021-11-04 パナソニックIpマネジメント株式会社 絶縁フィルム、金属張積層部材及び再配線層

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI759144B (zh) * 2020-12-28 2022-03-21 大陸商中山台光電子材料有限公司 樹脂組合物及其製品

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162615A (ja) * 2010-02-05 2011-08-25 Kyocera Chemical Corp プリプレグおよび金属張り積層板
JP2014070156A (ja) * 2012-09-28 2014-04-21 Panasonic Corp プリプレグ、金属張積層板、プリント配線板
WO2014141689A1 (ja) * 2013-03-13 2014-09-18 パナソニック株式会社 プリプレグ、金属張積層板、プリント配線板
JP2015082535A (ja) * 2013-10-21 2015-04-27 味の素株式会社 回路基板の製造方法
JP2015189834A (ja) * 2014-03-27 2015-11-02 パナソニックIpマネジメント株式会社 プリプレグ、金属張積層板、プリント配線板
WO2016031205A1 (ja) * 2014-08-27 2016-03-03 パナソニックIpマネジメント株式会社 プリプレグ及び金属張積層板、プリント配線板
JP2016210856A (ja) * 2015-05-01 2016-12-15 味の素株式会社 硬化性組成物
JP2017002305A (ja) * 2015-06-12 2017-01-05 パナソニックIpマネジメント株式会社 プリプレグ、金属張積層板、プリント配線板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645948A (en) * 1979-09-20 1981-04-25 Mitsubishi Gas Chem Co Inc Production of composite material
JP2006137942A (ja) 2004-10-14 2006-06-01 Hitachi Chem Co Ltd プリプレグ、積層板、金属箔張積層板及びこれを使用した印刷回路板
JP5082373B2 (ja) 2005-10-18 2012-11-28 日立化成工業株式会社 プリント配線板用樹脂組成物、プリプレグ、基板、金属箔張積層板、樹脂付金属箔及びプリント配線板
JP2008007756A (ja) 2006-05-30 2008-01-17 Hitachi Chem Co Ltd 粘弾性樹脂組成物、プリプレグ、導体張積層板、樹脂付き金属箔及び樹脂フィルム
CN101376734B (zh) * 2008-09-27 2010-08-25 腾辉电子(苏州)有限公司 一种环氧树脂胶液、使用该胶液制成的印刷线路板用层压板及其制作方法
CN101368077B (zh) * 2008-10-09 2011-11-30 腾辉电子(苏州)有限公司 一种环氧树脂胶液
CN102807658B (zh) * 2012-08-09 2014-06-11 广东生益科技股份有限公司 聚苯醚树脂组合物及使用其制作的半固化片与覆铜箔层压板
CN103694642B (zh) * 2013-12-27 2015-11-25 广东生益科技股份有限公司 一种热固性树脂组合物及其用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162615A (ja) * 2010-02-05 2011-08-25 Kyocera Chemical Corp プリプレグおよび金属張り積層板
JP2014070156A (ja) * 2012-09-28 2014-04-21 Panasonic Corp プリプレグ、金属張積層板、プリント配線板
WO2014141689A1 (ja) * 2013-03-13 2014-09-18 パナソニック株式会社 プリプレグ、金属張積層板、プリント配線板
JP2015082535A (ja) * 2013-10-21 2015-04-27 味の素株式会社 回路基板の製造方法
JP2015189834A (ja) * 2014-03-27 2015-11-02 パナソニックIpマネジメント株式会社 プリプレグ、金属張積層板、プリント配線板
WO2016031205A1 (ja) * 2014-08-27 2016-03-03 パナソニックIpマネジメント株式会社 プリプレグ及び金属張積層板、プリント配線板
JP2016210856A (ja) * 2015-05-01 2016-12-15 味の素株式会社 硬化性組成物
JP2017002305A (ja) * 2015-06-12 2017-01-05 パナソニックIpマネジメント株式会社 プリプレグ、金属張積層板、プリント配線板

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105691A1 (ja) * 2016-12-09 2018-06-14 パナソニックIpマネジメント株式会社 プリプレグ、金属張積層板及びプリント配線板
US11407869B2 (en) 2016-12-09 2022-08-09 Panasonic Intellectual Property Management Co., Ltd. Prepreg, metal-clad laminate and printed wiring board
WO2020026694A1 (ja) * 2018-08-03 2020-02-06 パナソニックIpマネジメント株式会社 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2020133472A1 (zh) * 2018-12-29 2020-07-02 广东生益科技股份有限公司 树脂组合物、预浸料、层压板以及覆金属箔层压板
CN111378098A (zh) * 2018-12-29 2020-07-07 广东生益科技股份有限公司 树脂组合物、预浸料、层压板以及覆金属箔层压板
US20220056260A1 (en) * 2018-12-29 2022-02-24 Shengyi Technology Co., Ltd. Resin composition, prepreg, laminate and metal foil-clad laminate
WO2021220684A1 (ja) * 2020-04-27 2021-11-04 パナソニックIpマネジメント株式会社 絶縁フィルム、金属張積層部材及び再配線層

Also Published As

Publication number Publication date
CN109476862B (zh) 2021-07-16
US11059260B2 (en) 2021-07-13
CN109476862A (zh) 2019-03-15
TW201823323A (zh) 2018-07-01
JPWO2018021113A1 (ja) 2019-05-16
KR20190038538A (ko) 2019-04-08
TWI719229B (zh) 2021-02-21
US20190263087A1 (en) 2019-08-29
JP6861377B2 (ja) 2021-04-21
KR102346231B1 (ko) 2022-01-03

Similar Documents

Publication Publication Date Title
WO2018021113A1 (ja) プリプレグ、金属張積層板及びプリント配線板
KR101763975B1 (ko) 회로 기판용 에폭시 수지 조성물, 프리프레그, 적층판, 수지 시트, 프린트 배선판용 적층기재, 프린트 배선판, 및 반도체 장치
JP6358533B2 (ja) プリプレグ、金属張積層板、プリント配線板
JP5234195B2 (ja) プリプレグ、積層板、プリント配線板及び半導体装置
JP5942261B2 (ja) プリプレグ、金属張積層板、プリント配線板
US9894761B2 (en) Prepreg, metal-clad laminated plate and printed wiring board
CN111465638B (zh) 预浸料、基底、覆金属层压体、半导体封装体和印刷电路板
JP6948623B2 (ja) プリプレグ、金属張積層板及びプリント配線板
US8309636B2 (en) Flame retardant resin composition for multilayer wiring board and multilayer wiring board including the same
JP6778889B2 (ja) プリプレグ、金属張積層板及びプリント配線板
WO2021220684A1 (ja) 絶縁フィルム、金属張積層部材及び再配線層
JP2004058419A (ja) プリプレグ及び積層板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018529808

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197001678

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834121

Country of ref document: EP

Kind code of ref document: A1