WO2018021078A1 - 位相差フィルムの製造方法及び位相差フィルム - Google Patents

位相差フィルムの製造方法及び位相差フィルム Download PDF

Info

Publication number
WO2018021078A1
WO2018021078A1 PCT/JP2017/025840 JP2017025840W WO2018021078A1 WO 2018021078 A1 WO2018021078 A1 WO 2018021078A1 JP 2017025840 W JP2017025840 W JP 2017025840W WO 2018021078 A1 WO2018021078 A1 WO 2018021078A1
Authority
WO
WIPO (PCT)
Prior art keywords
retardation
retardation film
heating
film
heating step
Prior art date
Application number
PCT/JP2017/025840
Other languages
English (en)
French (fr)
Inventor
浩二 村田
坂井 彰
雄一 川平
雅浩 長谷川
貴子 小出
中村 浩三
箕浦 潔
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/319,461 priority Critical patent/US20210103083A1/en
Publication of WO2018021078A1 publication Critical patent/WO2018021078A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/03Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used in the form of films, e.g. films after polymerisation of LC precursor

Definitions

  • the present invention relates to a method for producing a retardation film and a retardation film. More specifically, the present invention relates to a retardation film manufacturing method and a retardation film that are preferably used in a liquid crystal display device.
  • the retardation film is one of optical films used for image display devices, and is a film used for the purpose of color tone compensation, viewing angle compensation, and the like.
  • Patent Document 1 discloses a retardation film containing a polymer compound and an orientation control agent, wherein the polymer compound contains one or more azo groups and / or cinnamate groups and three or more and ten or less arylenes. And the side chain further has an optionally substituted amino group or hydrocarbon group at the end, and the content of the polymer compound in the retardation film is 71% by mass. %, And a retardation film having an in-plane retardation at a wavelength of 550 nm of 10 nm to 200 nm is disclosed.
  • a liquid crystal display device Since a liquid crystal display device is generally manufactured through a process including heat treatment, it is important to control fluctuations in the retardation of the retardation film due to heat treatment. Further, since the liquid crystal display device is used in various places such as outdoors, it is important to design the display characteristics of the liquid crystal display device so as not to change depending on the environment. Thus, there is a need for a retardation film that is excellent in retardation controllability that hardly changes in phase due to heat.
  • FIG. 10 is a flowchart showing the manufacturing process of the retardation film in Patent Document 1.
  • FIG. 11 is a schematic cross-sectional view of a retardation film in Patent Document 1.
  • the process of forming an orientation film on a support body the process of apply
  • the phase difference film 1a which has the layer 30a which consists of the support body 10a, the alignment film 20a, and the composition for phase difference films in order is manufactured by performing in order the removal process) and the process of irradiating an ultraviolet-ray.
  • Patent Document 1 does not disclose a technique for controlling a change in phase difference due to heat.
  • This invention is made
  • the inventors of the present invention have made various studies on a retardation film production method and a retardation film that are excellent in retardation control against heat. And in order to improve the phase difference controllability with respect to heat, it discovered that it was an effective method to heat a phase expression layer after the fixing process which forms a phase difference expression layer. As a result, the inventors have conceived that the above problems can be solved brilliantly and have reached the present invention.
  • a retardation film including a fixing step of fixing a liquid crystal compound alignment to form a retardation developing layer and a heating step of heating the retardation developing layer in this order. It may be a method.
  • the heating step may be performed such that the retardation Re of the retardation film is reduced by 5% to 25%.
  • the heating step may be performed at a temperature of 180 ° C. to 220 ° C.
  • the heating step is a first heating step
  • the method for producing the retardation film may further include a second heating step of heating the retardation developing layer after the first heating step.
  • the second heating step may be performed at a temperature not lower than the heating temperature in the first heating step and not higher than 250 ° C.
  • the liquid crystal compound may be irradiated with light.
  • the method for producing a retardation film may further include a coating step of coating a liquid crystal composition containing the liquid crystal compound on a support before the fixing step.
  • the method for producing a retardation film may further include an alignment treatment step of aligning the support before the coating step.
  • the support may include a base material and a photo-alignment film on the base material, and the photo-alignment film may be subjected to a photo-alignment process in the alignment process step.
  • the liquid crystal composition may further contain a solvent
  • the method for producing the retardation film may further include a solvent removal step of removing the solvent between the coating step and the immobilization step.
  • Another embodiment of the present invention may be a retardation film manufactured by the method for manufacturing a retardation film.
  • the contrast of the retardation film may be 4000 or more.
  • the retardation film may have a retardation Re of ⁇ / 4.
  • the retardation film may include a substrate, an alignment film on the substrate, and the retardation layer on the alignment film.
  • the alignment film may be a photo-alignment film.
  • fever can be provided.
  • FIG. 3 is a flowchart showing a method for manufacturing the retardation film of Embodiment 1.
  • 6 is a schematic cross-sectional view of a retardation film of Embodiment 2.
  • FIG. It is the cross-sectional schematic diagram of the phase difference film of Embodiment 2 after each heating process, and the graph which showed the relationship between phase difference and contrast.
  • It is the flowchart which showed the manufacturing method of the phase difference film of Example 1-1A.
  • It is the graph which plotted normalized Re of the phase difference film produced in Example 1 with respect to the heating time in a heating process.
  • 6 is a graph showing the relationship between the retardation of the retardation film and the contrast before and after the second heating step of Example 2-1.
  • FIG. 2 is a photomicrograph of the retardation film of Example 2-1 after performing the second heating step. It is a microscope picture of the retardation film of Example 2-1 before performing a 2nd heating process. It is the graph which plotted normalized Re of the phase difference film produced in Example 3 with respect to the heating time in a heating process.
  • 5 is a flowchart showing a manufacturing process of a retardation film in Patent Document 1. It is a cross-sectional schematic diagram of the retardation film in patent document 1.
  • the phase difference Re of ⁇ / 4 refers to an in-plane phase difference of 1 ⁇ 4 wavelength (strictly, 137.5 nm) with respect to light having a wavelength of 550 nm, and is 100 nm or more and 176 nm or less. Any in-plane retardation may be used.
  • light having a wavelength of 550 nm is light having the highest human visibility.
  • FIG. 1 is a flowchart showing a method for producing a retardation film of Embodiment 1.
  • the method for producing a retardation film of the present embodiment includes a coating process for coating a liquid crystal composition containing a liquid crystal compound and a solvent on a support, and a solvent removal process for removing the solvent. , An immobilization step of fixing the alignment of the liquid crystal compound to form a retardation developing layer, a first heating step of heating the retardation developing layer, and a second heating step of heating the retardation developing layer With. Each step will be described below.
  • the manufacturing method of the retardation film of this invention can be changed suitably, It is not limited to the conditions described in this embodiment, Processes other than the said fixation process and said 1st heating process are Can be omitted.
  • the coating step and the solvent removal step can be omitted by transferring a layer containing a liquid crystal compound formed on another substrate onto a support using an adhesive, an adhesive, or the like.
  • the manufacturing method of the retardation film of this embodiment is equipped with the application
  • a spin coating method when the liquid crystal composition is coated on the support, a spin coating method, a roll coating method, a printing method, a dip pulling method, a die coating method, a casting method, a bar coating method, a blade coating method, A spray coating method, a gravure coating method, a reverse coating method, an extrusion coating method, or the like can be used, and a spin coating method is preferably used.
  • ⁇ n nx ⁇ ny
  • nx and ny each represent a main refractive index (where nx> ny) in the plane of the retardation film.
  • D represents a film thickness (nm).
  • the liquid crystal compound is a compound that exhibits a liquid crystal phase in a specific temperature range, and those usually used in the field of retardation films can be used.
  • the liquid crystal compound is preferably a reactive liquid crystal compound (reactive mesogen (RM)), and more preferably a polymerizable liquid crystal compound.
  • the reactive liquid crystal compound is a liquid crystal compound in which the alignment is fixed by light, heat, or electron beam irradiation, and the polymerizable liquid crystal compound is polymerized by light, heat, or electron beam irradiation, and the alignment is fixed. It is a liquid crystal compound.
  • the polymerizable liquid crystal compound may be polymerized by applying thermal energy, but is preferably a compound that is polymerized by light irradiation.
  • polymerizable liquid crystal compound a polymerizable liquid crystal monomer, a polymerizable liquid crystal oligomer, or a polymerizable liquid crystal polymer can be used, and these can also be mixed and used.
  • a polymerizable liquid crystal monomer is preferably used since it has high sensitivity in alignment and can be easily aligned at a desired angle (direction).
  • the solvent is not particularly limited as long as it can dissolve the liquid crystal compound, and one kind or two or more kinds of solvents can be used.
  • PGMEA PropyleneGlycol Monomethyl Ether Acetate
  • cyclopentanone MIBK (Methyl IsoButyl Ketone), or the like is preferably used singly or in combination.
  • the liquid crystal composition may contain a polymerization initiator and an alignment controller in addition to the liquid crystal compound and the solvent.
  • a polymerization initiator may not be necessary.
  • the polymerization usually starts.
  • An agent is used to accelerate the polymerization.
  • the alignment control agent is a compound that affects the alignment state of the liquid crystal compound or the like in the retardation developing layer.
  • a compound having a 1,3,5-triazine ring is used.
  • said orientation control agent the thing of the said patent document 1 can be used, for example.
  • the liquid crystal composition may include a polymer compound that is not included in the liquid crystal compound, that is, a polymer compound that does not exhibit liquid crystallinity.
  • a polymer compound that is not included in the liquid crystal compound that is, a polymer compound that does not exhibit liquid crystallinity.
  • the polymer compound described in Patent Document 1 is used. Can do.
  • the support to which the liquid crystal composition is applied may be an object having a surface that supports the applied liquid crystal composition, and preferably has transparency.
  • the said support body contains the base material and may contain the alignment film further as needed.
  • the substrate examples include a polymer film, a glass plate, and a quartz plate.
  • the thickness of the substrate is preferably 0.5 mm to 0.7 mm in the case of a glass plate or a quartz plate, and more preferably 0.1 mm to 0.3 mm in the case of a polymer film.
  • the alignment film a photo-alignment film or a rubbing alignment film can be used.
  • the thickness of the alignment film is preferably 50 nm to 200 nm, and more preferably 80 nm to 120 nm.
  • ⁇ Solvent removal step> The manufacturing method of the retardation film of this embodiment is equipped with the solvent removal process (prebaking process) which removes a solvent. In the solvent removal step, at least a part of the solvent contained in the liquid crystal composition is removed. According to this aspect, the liquid crystal compound is more easily fixed.
  • the solvent removal step for example, air drying, heating, reduced pressure, or a combination thereof can be used.
  • the heating temperature is preferably 50 ° C. to 130 ° C., more preferably 60 ° C. to 120 ° C., and further preferably 70 ° C. to 110 ° C.
  • the heating time in the solvent removal step is preferably 10 seconds to 600 seconds, more preferably 30 seconds to 300 seconds, and further preferably 60 seconds to 100 seconds.
  • the method for producing a retardation film of the present embodiment includes an immobilization step of immobilizing the orientation of the liquid crystal compound to form a retardation expression layer.
  • the immobilization step for example, the polymerizable liquid crystal compound is polymerized (cured) with heat or light to fix the alignment, thereby forming a retardation developing layer.
  • the immobilization step is preferably performed by irradiating the liquid crystal compound with light. According to this aspect, the liquid crystal compound can be immobilized efficiently at a low temperature.
  • UV irradiation dose is preferably 30mJ / cm 2 ⁇ 200mJ / cm 2, more preferably 70mJ / cm 2 ⁇ 130mJ / cm 2.
  • the light used for the polymerization of the polymerizable liquid crystal compound may be polarized light or non-polarized light, and is preferably non-polarized light.
  • the light used for polymerization of the polymerizable liquid crystal compound can be generated using a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, a metal halide lamp, an electrodeless lamp, an LED lamp, or the like.
  • the compound contained in a phase difference expression layer does not need to show liquid crystallinity any longer.
  • the polymerizable liquid crystal monomer is immobilized in the process of forming the retardation developing layer, and the compound contained in the retardation developing layer is The liquid crystallinity may not be exhibited.
  • the manufacturing method of the retardation film of this embodiment is equipped with the 1st heating process which heats a phase difference expression layer.
  • a retardation film having excellent retardation controllability to heat can be produced.
  • a retardation film having a small change in retardation Re with respect to a temperature assumed in a manufacturing process of a liquid crystal display device or a normal use environment can be manufactured.
  • the first heating step is preferably performed such that the retardation Re of the retardation film is reduced by 5% to 25%, more preferably 5% to 20%, and more preferably 10% to More preferably, the reduction is performed by 20%.
  • the heating temperature in the first heating step is preferably 180 ° C. to 220 ° C., more preferably 180 ° C. to 215 ° C., further preferably 180 ° C. to 210 ° C., and 200 ° C. to 210 ° C. It is particularly preferred that
  • the heating time in the first heating step is preferably 10 minutes to 150 minutes, more preferably 15 minutes to 80 minutes, and further preferably 30 minutes to 60 minutes.
  • the heating temperature in the first heating step is lower than 180 ° C., the retardation controllability is not sufficiently improved, and heat resistance may not be imparted.
  • the heating temperature is higher than 220 ° C., the contrast cannot be increased. There is a case.
  • the upper limit of the heating temperature substantially corresponds to the upper limit of the heating temperature in the manufacturing process of the liquid crystal display device. It can be made particularly excellent.
  • the first heating step is preferably performed by heating at 180 ° C. to 220 ° C. for 10 minutes to 150 minutes, more preferably by heating at 180 ° C. to 215 ° C. for 15 minutes to 80 minutes, More preferably, it is carried out by heating at 180 ° C. to 210 ° C. for 30 minutes to 60 minutes.
  • the method for producing a retardation film of the present embodiment includes a second heating step for heating the retardation developing layer.
  • a 2nd heating process By performing a 2nd heating process, the orientation of the micro domain in the said phase difference expression layer can be improved, and the contrast of a phase difference film can be raised.
  • the phase difference controllability with respect to heat can be improved and the contrast can be increased only by the first heating step.
  • the orientation of the microdomains in the retardation developing layer is improved when heat is gradually applied, compared to when heat is suddenly applied to the retardation developing layer. Therefore, after the first heating step, by performing the second heating step and performing the heat treatment step by step, a retardation film having excellent phase difference controllability to heat and higher contrast can be obtained. Conceivable.
  • the phase difference controllability is sufficiently improved by the first heating process, the phase difference Re is further reduced by the second heating process, so that the liquid crystal display device can be manufactured in a process or in a normal use environment. Changes in the phase difference Re can be further suppressed.
  • the phase difference Re may suddenly decrease, and the phase difference controllability of the phase difference film may be significantly reduced. Therefore, in order to improve the phase difference controllability and contrast with respect to heat, it is preferable to perform the second heating step after the first heating step as in the present embodiment.
  • the present inventors have found that it is effective to improve the depolarization of the retardation developing layer in the retardation film in order to increase the contrast, and perform the first heating step and the second heating step.
  • the retardation film produced by the method for producing a retardation film of the present embodiment improves the low contrast in a dark room, which is particularly a problem in a low-reflection liquid crystal display device with improved outdoor visibility. Therefore, it can be preferably used.
  • the second heating step is preferably performed at a temperature not lower than the heating temperature in the first heating step and not higher than 250 ° C., and not lower than the heating temperature in the first heating step and not higher than 240 ° C. More preferably, it is performed at a temperature higher than the heating temperature in the first heating step and at 210 ° C. to 240 ° C., more preferably at a temperature higher than the heating temperature in the first heating step and 220 ° C. to 240 ° C. It is particularly preferred that By performing the second heating step as described above, the contrast of the retardation film can be further increased.
  • the heating time in the second heating step can be appropriately set so that the retardation Re of the retardation film after the second heating step becomes a target value, but the heating at the second heating temperature. It is preferable to shorten the heating time in the second heating step as the temperature increases. Specifically, for example, it may be 20 minutes to 500 minutes, 30 minutes to 400 minutes, or 50 minutes to 300 minutes.
  • the second heating step is preferably performed at a temperature not lower than the heating temperature in the first heating step and not higher than 250 ° C. for 20 minutes to 500 minutes, more than the heating temperature in the first heating step and not lower than 240 ° C. More preferably, it is carried out at the following temperature for 30 minutes to 400 minutes, more preferably at the heating temperature in the first heating step or more at 210 ° C. to 240 ° C. for 50 minutes to 300 minutes, in the first heating step. It is particularly preferable that the heating be performed at a heating temperature or higher and at 220 ° C. to 240 ° C. for 50 to 300 minutes.
  • the method for producing a retardation film of the present embodiment may further include an alignment treatment step for aligning the support before the coating step.
  • an alignment treatment step for aligning the support before the coating step.
  • the alignment process used in the alignment process step is, for example, a rubbing alignment process in which an alignment process is performed by rubbing the surface of the alignment film with a roller, or by irradiating light.
  • a photo-alignment process for performing an alignment process is exemplified.
  • the material of the alignment film is not particularly limited, and known materials can be used.
  • the alignment treatment of the alignment film is not particularly limited, and a known method can be used. When performing the rubbing alignment treatment, the rubbing alignment treatment may be performed directly on the substrate without providing an alignment film on the substrate.
  • the alignment treatment step it is preferable to perform a photoalignment treatment on the photoalignment film.
  • Embodiment 2 is a retardation film produced using the method for producing a retardation film of Embodiment 1.
  • features peculiar to the present embodiment will be mainly described, and the description overlapping with the first embodiment will be omitted as appropriate.
  • FIG. 2 is a schematic cross-sectional view of the retardation film of the second embodiment.
  • the retardation film 1 includes a base material 10 and an alignment film 20 as a support, and a retardation expression layer 30 in order.
  • the contrast of the retardation film 1 is preferably 4000 or more, more preferably 4000 to 20000 (maximum value) in a phase difference corresponding to ⁇ / 4. According to this aspect, the contrast of the liquid crystal display device can be further increased.
  • the upper limit of the contrast of the retardation film 1 is the upper limit of the contrast of the two polarizing plates that do not include the retardation developing layer used for the measurement of the contrast of the retardation film 1, that is, the maximum value (measured as described above). It is preferable that the maximum value be obtained). And actually, as a result of calculating the contrast of two polarizing plates which do not contain a phase difference expression layer by following formula (1), the contrast was about 20000 (maximum value).
  • Polarizer contrast (white brightness of parallel Nicol polarizer) ⁇ (black brightness of crossed Nicol polarizer)
  • the contrast (also referred to as CR) of the retardation film 1 is calculated based on the definition of the following formula (2).
  • Formula (2): Contrast of retardation film 1 (white luminance when a retardation film is sandwiched between parallel Nicol polarizing plates) / (black luminance when a retardation film is sandwiched between crossed Nicols polarizing plates)
  • the white luminance in the above formula (2) is measured so that the slow axis of the retardation film 1 is parallel to the polarization axes of both polarizing plates, and the black luminance is measured in the retardation film 1.
  • the slow axis was measured so as to be parallel to the polarization axis of one polarizing plate.
  • the contrast of the retardation film 1 may be 6000 or less or 5000 or less in a phase difference corresponding to ⁇ / 4.
  • the retardation film 1 of the present embodiment preferably has a phase difference Re of ⁇ / 4. According to this aspect, the linearly polarized light can be changed to circularly polarized light by the retardation film 1.
  • the alignment film 20 of the present embodiment is preferably a photo alignment film.
  • FIG. 3 is a schematic cross-sectional view of the retardation film of Embodiment 2 after each heating step, and a graph showing the relationship between the retardation and contrast.
  • the relationship between the phase difference Re and the contrast is shown for the phase difference film after the first heating step and the phase difference film after the second heating step.
  • the retardation film 1b after the first heating step includes a base material 10, an alignment film 20, and a retardation developing layer 31 before the orientation of the microdomain is improved.
  • the phase difference film 1c after the second heating step includes the base material 10, the alignment film 20, and the phase difference expression layer 32 after the microdomain orientation is improved.
  • the retardation Re of the retardation film 1b after the first heating step is the target retardation of the retardation film 1c after the second heating step.
  • the phase difference Re is controlled to be higher than Re.
  • the retardation film 1c after the second heating step has a higher contrast than the retardation film 1b after the first heating step.
  • FIG. 3 if the retardation layer is formed in consideration of the decrease in the retardation Re due to the second heating step, by performing the first heating step and the second heating step, A retardation film having a desired retardation Re and high contrast can be obtained.
  • the retardation film 1 of this embodiment is excellent in the retardation controllability with respect to heat, also when forming layers, such as a polyimide and a polystyrene, on the retardation film 1 of this embodiment, a phase difference is carried out by heating. It can suppress that Re changes.
  • FIG. 4 is a flowchart showing a method for producing the retardation film of Example 1-1A.
  • an alignment process is performed by applying an alignment film on a substrate and aligning the alignment film, and a coating process of applying a liquid crystal composition containing a liquid crystal compound and a solvent on the alignment film.
  • a solvent removal step pre-bake step
  • an immobilization step for fixing the alignment of the liquid crystal compound to form a retardation layer
  • a heating step for heating the retardation layer first step
  • ⁇ Orientation treatment process A photo-alignment material having a photofunctional group derived from an acrylic monomer was applied on a glass substrate having a thickness of 0.7 mm at 2000 rpm / 12 seconds using a spin coating method so that the film thickness was approximately 100 nm. . Subsequently, the solvent was removed by heating at 60 ° C. for 90 seconds. Then, as the ultraviolet irradiation amount is 2J / cm 2, after being irradiated with polarized ultraviolet light having a wavelength of 365 nm, 180 ° C., subjected to preliminary baking of 20 minutes, followed by 220 ° C., subjected to main calcination for 40 minutes, A photo-alignment film was formed on the glass substrate.
  • a liquid crystal composition containing a polymerizable liquid crystal monomer that is a reactive mesogen and a solvent was prepared.
  • the liquid crystal composition was applied onto the alignment film at 2000 rpm / 12 seconds using a spin coating method so that the film thickness after removal of the solvent was approximately 1.0 ⁇ m.
  • the retardation Re of the liquid crystal composition having a thickness of about 1.0 ⁇ m applied on the alignment film was about 180 nm.
  • the polymerizable liquid crystal monomer was fixed in alignment by irradiating the polymerizable liquid crystal monomer with non-polarized ultraviolet light having a wavelength of 313 nm so that the ultraviolet irradiation amount was 100 mJ, thereby forming a retardation developing layer.
  • Heating process (first heating process) >> The retardation developing layer was heated at 210 ° C. for 15 minutes to obtain a retardation film 1-1A of Example 1-1A.
  • ⁇ Phase difference of retardation film 1-1A of Example 1-1A> The value obtained by dividing the retardation Re of the obtained retardation film 1-1A by the retardation Re before the heating step was approximately 0.87. That is, by performing the heating step, the retardation Re of the retardation film 1-1A was reduced by approximately 13%.
  • the value obtained by dividing the retardation Re of the retardation film after the heating step by the retardation Re before the heating step is also referred to as normalized Re.
  • the rate of decrease of the phase difference Re after the heating step with respect to the phase difference Re before the heating step is also referred to as a phase difference drop. That is, the retardation drop of the retardation film 1-1A was about 13%.
  • the retardation films 1-1B to 1-1B of Examples 1-1B to 1-1D are the same as Example 1-1A except that the heating time in the heating step is 30 minutes, 40 minutes, and 80 minutes. -1D was produced.
  • the normalized Re of the obtained retardation films 1-1B to 1-1D were about 0.84, about 0.83, and about 0.80, respectively. That is, due to the heating process, the retardation Re of the retardation films 1-1B to 1-1D decreased by approximately 16%, approximately 17%, and approximately 20%, respectively.
  • Example 1 having a film thickness of about 0.9 ⁇ m was used in the same manner as in Examples 1-1A to 1-1D, except that the coating amount of the liquid crystal composition was 2500 rpm / 12 seconds. 2A to 1-2D retardation films 1-2A to 1-2D were obtained.
  • the normalized Re of the obtained retardation films 1-2A to 1-2D were about 0.87, about 0.84, about 0.83, and about 0.80, respectively. That is, due to the heating process, the retardation Re of the retardation films 1-2A to 1-2D was decreased by approximately 13%, approximately 16%, approximately 17%, and approximately 20%, respectively.
  • Example 1 having a film thickness of about 0.8 ⁇ m was used in the same manner as in Examples 1-1A to 1-1D, except that the coating amount of the liquid crystal composition was 3000 rpm / 12 seconds. Retardation films 1-3A to 1-3D of 3A to 1-3D were obtained.
  • the normalized Re of the obtained retardation films 1-3A to 1-3D were about 0.87, about 0.84, about 0.83, and about 0.80, respectively. That is, due to the heating process, the retardation Re of the retardation films 1-3A to 1-3D was reduced by approximately 13%, approximately 16%, approximately 17%, and approximately 20%, respectively.
  • FIG. 5 is a graph in which the normalized Re of the retardation film produced in Example 1 is plotted against the heating time in the heating process.
  • the phase difference drop is about 13% when the heating time is 15 minutes, but Examples 1-1B, 1-2B, and 1 From the result of -3B, the phase drop is about 16% when the heating time is 30 minutes, and when heated for 30 minutes, the phase drop remains at about 3% in the latter 15 minutes of heating. I understood. From this, it was found that the retardation controllability of the retardation film can be further improved by heating for at least 30 minutes.
  • the retardation film phase difference Re after heating for 80 minutes is about 80% of the phase difference Re before heating, that is, the level. It was confirmed that the phase difference drop was about 20%.
  • Example 1 the retardation step of the retardation film under high temperature is gradually suppressed by performing the heating step of heating the retardation development layer after the fixing step of forming the retardation development layer. It was possible to obtain a retardation film excellent in the retardation controllability to heat. In addition, it was found that the first heating step can be a useful means for designing a high-contrast retardation film with high accuracy by performing the second heating step described later.
  • Example 2-1 ⁇ Retardation Film 2-1 of Example 2-1> The retardation film 1-1B produced in Example 1-1B was further heated at 220 ° C. for 250 minutes to perform the second heating step, whereby the retardation film 2-1 of Example 2-1 was obtained.
  • the retardation Re of the retardation film before the second heating step was 166 nm, and the retardation Re after the second heating step was 133 nm.
  • FIG. 6 is a graph showing the relationship between the retardation of the retardation film and the contrast before and after the second heating step of Example 2-1.
  • two plots surrounded by A are data regarding the retardation film before the second heating step.
  • the two plots surrounded by B are the phase differences obtained by performing the second heating step by heating the samples of the two plots surrounded by A at 220 ° C. for 250 minutes, respectively. This is data relating to the film 2-1.
  • the second heating step is not performed, but the contrast is also measured for three samples whose phase difference Re is close to the data shown by B in FIG. 6, and the result is shown in C in FIG. Indicated.
  • contrast measurement a plurality of samples were prepared, and the contrast was measured once for each sample. Therefore, a plurality of results are plotted in A to C in FIG.
  • the retardation film surrounded by A and C before the second heating step is considered.
  • the contrast was 2938 when the phase difference Re was 166 nm, and the contrast was 3550 when the phase difference Re was 133 nm.
  • the contrast differs depending on the magnitude of the retardation Re (a retardation film having a small retardation Re has a higher contrast). . That is, the contrast is a function of the phase difference Re.
  • the retardation film before and after the second heating step surrounded by A and B in FIG. 6 will be considered.
  • the retardation film had a retardation Re of 166 nm and a contrast of 2938.
  • the retardation Re of the retardation film after the second heating step was 133 nm and the contrast was 4408.
  • the contrast of the retardation film was greatly improved.
  • the contrast (4408) of the sample after the second heating step surrounded by B is the contrast (3550) of the sample before the second heating step and surrounded by C having the same phase difference Re. It turned out to be higher.
  • the contrast of retardation films having the same manufacturing process is a function of retardation Re, and a retardation film having a small retardation Re has a higher contrast, but here, the contrast of samples having the same retardation Re is compared. This shows that the second heating step contributes to the improvement of contrast.
  • the retardation Re after the second heating step was adjusted to 130 to 140 nm so that the retardation Re of the retardation film was ⁇ / 4.
  • FIG. 7 is a photomicrograph of the retardation film of Example 2-1 after performing the second heating step.
  • FIG. 8 is a photomicrograph of the retardation film of Example 2-1 before performing the second heating step.
  • Examples 2-2 to 2 are the same as Example 2-1 except that the thickness of the retardation developing layer and the conditions of the second heating step in Example 2-1 were changed as shown in Table 1. -5 retardation films 2-2 to 2-5 were obtained.
  • the film thickness of the phase difference expression layer was performed by changing the application quantity of the liquid-crystal composition in an application
  • the retardation films 2-1 to 2-5 of Examples 2-1 to 2-5 subjected to the second heating step each have a retardation Re of 133 nm, and the second heating step was not performed.
  • the retardation Re of the retardation film 1-3B of Example 1-3B was also 133 nm.
  • the retardation films 2-1 to 2-3 of Examples 2-1 to 2-3 it is considered that the contrast before the second heating step is different from each other due to individual differences in the retardation films. It is done. Strictly speaking, it is considered that the individual difference of the retardation film is derived from a slightly different film thickness. The reason why the contrast of the retardation films 2-4 and 2-5 of Examples 2-4 and 2-5 before the second heating step is different is considered to be due to the same reason as described above.
  • the CR increase rate before and after the second heating step is approximately 1.50 times to 1.53 times in Examples 2-1 to 2-3. Further, Examples 2-4 and 2-5 were also about 1.24 times to 1.28 times, and in any example, the contrast was increased by performing the second heating step. .
  • Example 2 in which the second heating process was performed on the contrast (3550) of the retardation film of Example 1-3B in which the second heating process was not performed when the retardation Re of 133 nm was used as a reference.
  • the contrast of -1 to 2-3 increased approximately 1.25 times
  • the contrast of Examples 2-4 and 2-5 increased approximately 1.12 times.
  • the increase in the contrast of the retardation films of Examples 2-1 to 2-5 was not only that the retardation Re was small, but also that the second heating step was performed. was also shown to be due.
  • the rate of increase in contrast of the retardation film increases as the heating temperature in the second heating step is higher and the heating time is shorter.
  • Example 3 ⁇ Production of Retardation Films 3-1A to 3-1C of Examples 3-1A to 3-1C>
  • the retardation films 3-1A to 3-1A of Examples 3-1A to 3-1C were the same as those of Examples 1-1A, 1-1C, and 1-1D except that the heating temperature in the heating step was 190 ° C. 3-1C was produced.
  • the normalized Re of the obtained retardation films 3-1A to 3-1C were 0.97, 0.92, and 0.88, respectively. That is, due to the heating process, the retardation Re of the retardation films 3-1A to 3-1C was decreased by 3%, 8%, and 12%, respectively.
  • the retardation films 3-3A to 3-3A of Examples 3-3A to 3-3C are the same as those of Examples 1-3A, 1-3C, and 1-3D except that the heating temperature in the heating step is set to 190 ° C. 3-3C was produced.
  • FIG. 9 is a graph in which the normalized Re of the retardation film produced in Example 3 is plotted against the heating time in the heating process.
  • the heating temperature was 190 ° C.
  • the decrease in the phase difference Re was smaller than 12%
  • the amount of decrease in the phase difference Re was smaller than that in Example 1 in which the heating temperature was 210 ° C. From the results of Examples 1 and 3, it was found that the higher the heating temperature, the greater the reduction range of the phase difference Re, and it is possible to obtain a phase difference film with better phase difference controllability in a short time.
  • One embodiment of the present invention is the production of a retardation film 1 that includes a fixing step of fixing the alignment of a liquid crystal compound to form the retardation developing layer 30 and a heating step of heating the retardation developing layer 30 in this order. It may be a method.
  • the retardation film 1 having excellent retardation controllability to heat is manufactured. Can do.
  • the heating step may be performed such that the retardation Re of the retardation film 1 is reduced by 5% to 25%. According to this aspect, it is possible to manufacture a retardation film 1 that is more excellent in the retardation controllability to heat.
  • the heating step may be performed at a temperature of 180 ° C. to 220 ° C. According to this aspect, it is possible to manufacture a retardation film 1 that is more excellent in the retardation controllability to heat.
  • the heating step is a first heating step
  • the retardation film manufacturing method may further include a second heating step of heating the retardation developing layer 30 after the first heating step.
  • the contrast of the retardation film 1 can be increased.
  • the second heating step may be performed at a temperature not lower than the heating temperature in the first heating step and not higher than 250 ° C. According to this aspect, the contrast of the retardation film 1 can be further increased.
  • the liquid crystal compound may be irradiated with light. According to this aspect, the liquid crystal compound can be immobilized efficiently at a low temperature.
  • the method for producing a retardation film may further include a coating step of coating a liquid crystal composition containing the liquid crystal compound on a support before the fixing step.
  • the retardation film 1 having desired optical characteristics can be produced using various liquid crystal compounds.
  • the method for producing a retardation film may further include an alignment treatment step of orienting the support before the coating step. According to this aspect, the orientation of the liquid crystal compound in the retardation developing layer 30 can be further enhanced.
  • the said support body has the base material 10 and the photo-alignment film on the base material 10, and may perform a photo-alignment process to the said photo-alignment film in the said alignment process process. According to this aspect, since the alignment process can be performed without contacting the surface of the photo-alignment film, generation of dust and the like due to the alignment process can be suppressed.
  • the liquid crystal composition may further contain a solvent, and the method for producing the retardation film may further include a solvent removal step of removing the solvent between the coating step and the immobilization step. According to this aspect, the liquid crystal compound is more easily fixed.
  • Another embodiment of the present invention may be the retardation film 1 manufactured by the above-described method for manufacturing a retardation film.
  • the phase difference film 1 which performed the heating process which heats the phase difference expression layer 30 after the fixing process which forms the phase difference expression layer 30 has phase difference controllability excellent with respect to heat.
  • the contrast of the retardation film 1 may be 4000 or more. According to this aspect, the contrast of the liquid crystal display device can be further increased.
  • the retardation film 1 may have a retardation Re of ⁇ / 4. According to this aspect, the linearly polarized light can be changed to circularly polarized light by the retardation film 1.
  • the phase difference film 1 may include a base material 10, an alignment film 20 on the base material 10, and a phase difference expression layer 30 on the alignment film 20. According to this aspect, the orientation of the liquid crystal compound in the retardation developing layer 30 can be further enhanced.
  • the alignment film 20 may be a photo-alignment film. According to this aspect, since the alignment process can be performed without contacting the surface of the alignment film 20, generation of dust and the like due to the alignment process can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

本発明は、熱に対する位相差制御性に優れた位相差フィルムの製造方法及び位相差フィルムを提供する。 本発明の位相差フィルムの製造方法は、液晶化合物の配向を固定化して位相差発現層を形成する固定化工程と、上記位相差発現層を加熱する加熱工程とを、この順に備える位相差フィルムの製造方法であって、好ましくは、上記加熱工程は、第一の加熱工程であり、上記第一の加熱工程の後、上記位相差発現層を加熱する第二の加熱工程を更に備える。

Description

位相差フィルムの製造方法及び位相差フィルム
本発明は、位相差フィルムの製造方法及び位相差フィルムに関する。より詳しくは、液晶表示装置に好適に用いられる位相差フィルムの製造方法及び位相差フィルムに関するものである。
位相差フィルムは、画像表示装置に用いられる光学フィルムの一つであり、色調の補償、視野角の補償等を目的として用いられるフィルムである。
近年、画像表示装置の分野において幅広く用いられている液晶表示装置は、位相差フィルムを用いて光学補償を行うことが一般的である。例えば、特許文献1では、高分子化合物と配向制御剤とを含む位相差フィルムであって、上記高分子化合物は、1個以上のアゾ基及び/又はシンナメート基と3個以上10個以下のアリーレン基とを有する側鎖を有し、上記側鎖は更に、置換されていてもよいアミノ基又は炭化水素基を末端に有し、上記位相差フィルム中における上記高分子化合物の含有量が71質量%以上であり、かつ、波長550nmにおける面内レタデーションが10nm以上200nm以下である位相差フィルムが開示されている。
特開2016-80965号公報
液晶表示装置は、一般的に加熱処理を含む工程を経て製造されるため、熱処理による位相差フィルムの位相差の変動を制御することが重要である。また、液晶表示装置は、屋外等、様々な場所で用いられるため、環境によって液晶表示装置の表示特性が変化しないよう設計することが重要である。このように、熱によって位相差が変化しにくい位相差制御性に優れた位相差フィルムが求められている。
図10は、特許文献1における位相差フィルムの製造プロセスを示したフローチャートである。図11は、特許文献1における位相差フィルムの断面模式図である。図10及び図11に示したように、特許文献1の実施例では、支持体上に配向膜を形成する工程、位相差フィルム用組成物を塗布する工程、塗膜を加熱するプリベーク工程(溶媒除去工程)、及び、紫外線を照射する工程を順に行うことにより、支持体10a、配向膜20a及び位相差フィルム用組成物からなる層30aを順に有する位相差フィルム1aが製造されている。しかしながら、上記特許文献1には、熱による位相差変化を制御する技術については開示されていない。
本発明は、上記現状に鑑みてなされたものであり、熱に対する位相差制御性に優れた位相差フィルムの製造方法及び位相差フィルムを提供することを目的とするものである。
本発明者らは熱に対する位相差制御性に優れた位相差フィルムの製造方法及び位相差フィルムについて種々の検討を行った。そして、熱に対する位相差制御性を向上させるためには、位相差発現層を形成する固定化工程の後、位相発現層を加熱することが有効な方法であることを見出した。これにより、上記課題をみごとに解決できることに想到し、本発明に到達した。
すなわち、本発明の一態様は、液晶化合物の配向を固定化して位相差発現層を形成する固定化工程と、上記位相差発現層を加熱する加熱工程とを、この順に備える位相差フィルムの製造方法であってもよい。
上記加熱工程は、上記位相差フィルムの位相差Reが5%~25%減少するように行われてもよい。
上記加熱工程は、180℃~220℃の温度で行われてもよい。
上記加熱工程は、第一の加熱工程であり、上記位相差フィルムの製造方法は、上記第一の加熱工程の後、上記位相差発現層を加熱する第二の加熱工程を更に備えてもよい。
上記第二の加熱工程は、上記第一の加熱工程における加熱温度以上、かつ、250℃以下の温度で行われてもよい。
上記固定化工程において、上記液晶化合物に光を照射してもよい。
上記位相差フィルムの製造方法は、上記固定化工程の前に、上記液晶化合物を含有する液晶組成物を支持体上に塗布する塗布工程を更に備えてもよい。
上記位相差フィルムの製造方法は、上記塗布工程の前に、上記支持体を配向処理する配向処理工程を更に備えてもよい。
上記支持体は、基材と、上記基材上の光配向膜とを有し、上記配向処理工程において、上記光配向膜に光配向処理を施してもよい。
上記液晶組成物は、溶媒を更に含有し、上記位相差フィルムの製造方法は、上記塗布工程と上記固定化工程の間に、上記溶媒を除去する溶媒除去工程を更に備えてもよい。
本発明の別の一態様は、上記位相差フィルムの製造方法で製造された位相差フィルムであってもよい。
上記位相差フィルムのコントラストは、4000以上であってもよい。
上記位相差フィルムは、λ/4の位相差Reを有してもよい。
上記位相差フィルムは、基材と、上記基材上の配向膜と、上記配向膜上の上記位相差発現層とを備えてもよい。
上記配向膜は、光配向膜であってもよい。
本発明によれば、熱に対する位相差制御性に優れた位相差フィルムの製造方法及び位相差フィルムを提供することができる。
実施形態1の位相差フィルムの製造方法を示したフローチャートである。 実施形態2の位相差フィルムの断面模式図である。 各加熱工程後の実施形態2の位相差フィルムの断面模式図、及び、位相差とコントラストとの関係を示したグラフである。 実施例1-1Aの位相差フィルムの製造方法を示したフローチャートである。 実施例1で作製した位相差フィルムの規格化Reを、加熱工程における加熱時間に対してプロットしたグラフである。 実施例2-1の第二の加熱工程の前後における、位相差フィルムの位相差とコントラストとの関係を表したグラフである。 第二の加熱工程を行った後の、実施例2-1の位相差フィルムの顕微鏡写真である。 第二の加熱工程を行う前の、実施例2-1の位相差フィルムの顕微鏡写真である。 実施例3で作製した位相差フィルムの規格化Reを、加熱工程における加熱時間に対してプロットしたグラフである。 特許文献1における位相差フィルムの製造プロセスを示したフローチャートである。 特許文献1における位相差フィルムの断面模式図である。
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。また、各実施形態の構成は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよいし、変更されてもよい。
本明細書において、λ/4の位相差Reとは、少なくとも波長550nmの光に対して1/4波長(厳密には、137.5nm)の面内位相差を指し、100nm以上、176nm以下の面内位相差であればよい。ちなみに、波長550nmの光は、人間の視感度が最も高い波長の光である。
[実施形態1]
図1は、実施形態1の位相差フィルムの製造方法を示したフローチャートである。図1に示したように、本実施形態の位相差フィルムの製造方法は、液晶化合物及び溶媒を含有する液晶組成物を支持体上に塗布する塗布工程と、上記溶媒を除去する溶媒除去工程と、上記液晶化合物の配向を固定化して位相差発現層を形成する固定化工程と、上記位相差発現層を加熱する第一の加熱工程と、上記位相差発現層を加熱する第二の加熱工程とを備える。以下に各工程について説明する。
なお、本発明の位相差フィルムの製造方法は、適宜変更することが可能であり、本実施形態に記載された条件に限定されず、上記固定化工程及び上記第一の加熱工程以外の工程は省略することができる。例えば、他の基材に形成した液晶化合物を含む層を、粘着剤、接着剤等を用いて、支持体上に転写することで、上記塗布工程及び上記溶媒除去工程を省略することができる。
<塗布工程>
本実施形態の位相差フィルムの製造方法は、液晶化合物及び溶媒を含有する液晶組成物を支持体上に塗布する塗布工程を備える。この態様によれば、種々の液晶化合物を用いて、所望の光学特性を有する位相差フィルムを作製することができる。
本実施形態の塗布工程において、支持体上に液晶組成物を塗布する際は、スピンコート法、ロールコート法、プリント法、浸漬引き上げ法、ダイコート法、キャスティング法、バーコート法、ブレードコート法、スプレーコート法、グラビアコート法、リバースコート法、又は、押し出しコート法等を用いることができ、スピンコート法を用いることが好ましい。
後述の固定化工程で形成される位相差発現層の位相差Reが、位相差フィルムに求める位相差Reよりも充分に高い値となるよう、上記塗布工程では、液晶組成物を厚めに塗布することが好ましい。なお、位相差Reは面内位相差であり、下記式(R)で表される。
位相差Re=Δn×d  式(R)
上記式(R)において、Δn=nx-nyであり、nx及びnyは、それぞれ、位相差フィルムの面内における主屈折率(ただしnx>ny)を表す。また、dは膜厚(nm)を表す。
上記液晶化合物は、特定の温度範囲において液晶相を示す化合物であり、位相差フィルムの分野において通常使用されるものを用いることができる。上記液晶化合物としては、反応性液晶化合物(反応性メソゲン(RM:Reactive Mesogen))であることが好ましく、重合性液晶化合物であることがより好ましい。ここで、反応性液晶化合物は、光や熱、電子線照射により配向が固定化される液晶化合物であり、重合性液晶化合物は、光や熱、電子線照射により重合し、配向が固定化される液晶化合物である。重合性液晶化合物は、熱エネルギーが与えられることにより重合してもよいが、光の照射によって重合する化合物であることが好ましい。
上記重合性液晶化合物としては、重合性液晶モノマー、重合性液晶オリゴマー又は重合性液晶ポリマーを用いることができ、これらを相互に混合して用いることもできる。
上記重合性液晶化合物としては、配向に際しての感度が高く、所望の角度(方向)に配向させることが容易であることから、重合性液晶モノマーが好適に用いられる。
上記溶媒としては、上記液晶化合物を溶解することが可能な溶媒であれば特に限定されず、一種、又は、二種以上の溶媒を用いることができる。溶媒としては、PGMEA(PropyleneGlycol Monomethyl Ether Acetate)、シクロペンタノン、MIBK(Methyl IsoButyl Ketone)等を一種、又は、二種以上混合して用いることが好ましい。
上記液晶組成物は、上記液晶化合物及び溶媒に加えて、重合開始剤や配向制御剤を含有していてもよい。
電子線照射により重合性液晶化合物を重合させる際には、重合開始剤が不要な場合もあるが、一般的に知られている例えば紫外線(UV)照射による重合を行う場合は、通常、重合開始剤が重合を促進するために用いられる。
上記配向制御剤は、位相差発現層における液晶化合物等の配向状態に影響を及ぼす化合物であり、例えば、1,3,5-トリアジン環を有する化合物等が用いられる。上記配向制御剤としては、例えば、上記特許文献1に記載のものを用いることができる。
また、上記液晶組成物は、上記液晶化合物に含まれない高分子化合物、すなわち液晶性を示さない高分子化合物を含んでいてもよく、例えば、上記特許文献1に記載の高分子化合物を用いることができる。
上記液晶組成物が塗布される支持体は、塗布された液晶組成物を支える面を有する物体であればよく、透明性を有することが好ましい。上記支持体は、基材を含み、必要に応じて更に配向膜を含んでいてもよい。
上記基材としては、例えば、ポリマーフィルム、ガラス板、石英板が挙げられる。基材の厚みは、ガラス板、石英板の場合、0.5mm~0.7mmであることが好ましく、ポリマーフィルムの場合、0.1mm~0.3mmであることがより好ましい。
上記配向膜としては、光配向膜やラビング配向膜を用いることができる。上記配向膜の膜厚は、50nm~200nmであることが好ましく、80nm~120nmであることがより好ましい。
<溶媒除去工程>
本実施形態の位相差フィルムの製造方法は、溶媒を除去する溶媒除去工程(プリベーク工程)を備える。溶媒除去工程では、液晶組成物に含まれる溶媒の少なくとも一部が除去される。この態様によれば、上記液晶化合物がより固定化され易くなる。
溶媒除去工程では、例えば、風乾、加熱、減圧、又は、これらを組み合わせた方法を用いることができる。
溶媒除去工程が加熱により行われる場合、加熱温度は、50℃~130℃であることが好ましく、60℃~120℃であることがより好ましく、70℃~110℃であることが更に好ましい。また、溶媒除去工程における加熱時間は、10秒~600秒であることが好ましく、30秒~300秒であることがより好ましく、60秒~100秒であることが更に好ましい。
<固定化工程>
本実施形態の位相差フィルムの製造方法は、上記液晶化合物の配向を固定化して位相差発現層を形成する固定化工程を備える。固定化工程では、例えば、重合性液晶化合物が熱や光により重合(硬化)して配向が固定化され、位相差発現層が形成される。固定化工程は、液晶化合物に光を照射することにより行われることが好ましい。この態様によれば、低温で効率よく液晶化合物を固定化することができる。
重合性液晶化合物が光により重合する場合、通常は、紫外線又は可視光線が用いられ、紫外線が好ましく用いられる。重合性液晶化合物の重合に用いる紫外線の波長は、260nm~390nmであることが好ましく、280nm~370nmであることがより好ましく、300nm~350nmであることが更に好ましい。紫外線照射量は、30mJ/cm~200mJ/cmであることが好ましく、70mJ/cm~130mJ/cmであることがより好ましい。
重合性液晶化合物の重合に用いられる光は、偏光でも無偏光でもよく、無偏光であることが好ましい。また、重合性液晶化合物の重合に用いられる光は、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、メタルハライドランプ、無電極ランプ、LEDランプなどを用いて発生させることができる。
なお、位相差発現層に含まれる化合物は、もはや液晶性を示す必要はない。例えば、上記位相差発現層の作製に重合性液晶モノマーを用いる場合、上記位相差発現層が形成される過程で、上記重合性液晶モノマーが固定化され、上記位相差発現層に含まれる化合物が液晶性を示さない態様となっていてもよい。
<第一の加熱工程>
本実施形態の位相差フィルムの製造方法は、位相差発現層を加熱する第一の加熱工程を備える。上記固定化工程後に上記第一の加熱工程を行うことにより、熱に対する位相差制御性に優れた位相差フィルムを製造することができる。例えば、液晶表示装置の製造工程や、通常の使用環境で想定される温度に対して、位相差Reの変化が小さい位相差フィルムを製造することができる。
上記第一の加熱工程は、位相差フィルムの位相差Reが5%~25%減少するように行われることが好ましく、5%~20%減少するように行われることがより好ましく、10%~20%減少するように行われることが更に好ましい。第一の加熱工程を上記のように行うことにより、熱に対する位相差制御性により優れた位相差フィルムを製造することができる。
第一の加熱工程における加熱温度は、180℃~220℃であることが好ましく、180℃~215℃であることがより好ましく、180℃~210℃であることが更に好ましく、200℃~210℃であることが特に好ましい。また、第一の加熱工程における加熱時間は、10分~150分であることが好ましく、15分~80分であることがより好ましく、30分~60分であることが更に好ましい。第一の加熱工程における加熱温度が180℃より低いと位相差制御性が充分に向上せず、また、熱耐性を付与できない場合があり、加熱温度が220℃より高いと、コントラストが上がりきらない場合がある。また、加熱温度の上限を220℃とすることで、当該上限が液晶表示装置の製造プロセスにおける加熱温度の上限にほぼ対応することから、液晶表示装置の製造プロセスで加わる温度に対する位相差制御性を特に優れたものとすることができる。
第一の加熱工程は、180℃~220℃で10分~150分加熱することにより行われることが好ましく、180℃~215℃で15分~80分加熱することにより行われることがより好ましく、180℃~210℃で30分~60分加熱することにより行われることが更に好ましい。
<第二の加熱工程>
本実施形態の位相差フィルムの製造方法は、上記第一の加熱工程に加えて、上記位相差発現層を加熱する第二の加熱工程を備える。第二の加熱工程を行うことにより、上記位相差発現層におけるマイクロドメインの配向性を向上させ、位相差フィルムのコントラストを高めることができる。
ここで、第一の加熱工程のみでも、熱に対する位相差制御性を改善し、かつ、コントラストを高めることができると考えられる。しかしながら、位相差発現層に急激に熱を加える場合より、徐々に熱を加える場合の方が、位相差発現層におけるマイクロドメインの配向性が向上すると考えられる。したがって、第一の加熱工程の後、第二の加熱工程を行い、段階的に加熱処理を施すことで、熱に対する位相差制御性に優れ、かつ、コントラストのより高い位相差フィルムが得られると考えられる。また、第一の加熱工程により位相差制御性は充分に改善されるが、第二の加熱工程により位相差Reを更に減少させることで、液晶表示装置の製造工程や、通常の使用環境における位相差Reの変化を更に抑制することができる。
第一の加熱工程を行わず、最初から第二の加熱工程を実施する場合、急激に位相差Reが低下し、位相差フィルムの位相差制御性が著しく低下してしまうことがある。したがって、熱に対する位相差制御性及びコントラストを高めるためには、本実施形態のように第一の加熱工程の後に第二の加熱工程を行うことが好ましい。
従来の液晶表示装置を屋外で用いる場合、液晶表示装置の内部及び表面において外光の反射が大きくなるため、視認性が低下することがある(コントラストが低下し、白茶けて見えることがあった)。したがって、屋外での視認性を向上させるために、低反射液晶表示装置の開発が進められているが、低反射液晶表示装置では、暗室におけるコントラストが低くなってしまうことがある。上記特許文献1では、位相差フィルムに用いられる材料を改良することによりコントラストを高めているが、材料を改良するのみでは、高コントラスト化に限界があった。
本発明者らは、高コントラスト化のために、位相差フィルムにおける位相差発現層の消偏性を改善することが有効であることを見出し、第一の加熱工程及び第二の加熱工程を行うことにより、位相差制御性だけでなく、高コントラスト化も実現することができることを見出した。したがって、本実施形態の位相差フィルムの製造方法で作製された位相差フィルムは、特に、屋外視認性を高めた低反射液晶表示装置で課題となっている暗室でのコントラストの低さを改善するために好ましく用いることができる。
上記第二の加熱工程は、上記第一の加熱工程における加熱温度以上、かつ、250℃以下の温度で行われることが好ましく、第一の加熱工程における加熱温度以上、かつ、240℃以下の温度で行われることがより好ましく、第一の加熱工程における加熱温度以上、かつ、210℃~240℃で行われることが更に好ましく、第一の加熱工程における加熱温度以上、かつ、220℃~240℃で行われることが特に好ましい。第二の加熱工程を上記のように行うことにより、位相差フィルムのコントラストをより高めることができる。
また、第二の加熱工程における加熱時間は、第二の加熱工程後における位相差フィルムの位相差Reが目標とする値になるように適宜設定することができるが、第二の加熱温度における加熱温度が高いほど第二の加熱工程における加熱時間は短くすることが好ましい。具体的には、例えば、20分~500分であってもよく、30分~400分であってもよく、50分~300分であってもよい。
第二の加熱工程は、上記第一の加熱工程における加熱温度以上、かつ、250℃以下の温度で20分~500分行われることが好ましく、第一の加熱工程における加熱温度以上、かつ、240℃以下の温度で30分~400分行われることがより好ましく、第一の加熱工程における加熱温度以上、かつ、210℃~240℃で50分~300分行われることが更に好ましく、第一の加熱工程における加熱温度以上、かつ、220℃~240℃で50分~300分行われることが特に好ましい。
<配向処理工程>
本実施形態の位相差フィルムの製造方法は、上記塗布工程の前に、上記支持体を配向処理する配向処理工程を更に備えていてもよい。このような態様とすることにより、位相差発現層における液晶化合物の配向性を更に高めることができる。
上記支持体が配向膜を含む場合、配向処理工程に用いられる配向処理方法としては、例えば、配向膜の表面をローラー等で擦ることにより配向処理を行うラビング配向処理や、光を照射することによって配向処理を行う光配向処理が挙げられる。配向膜の材料は特に限定されず、公知のものを用いることができる。また、配向膜の配向処理は特に限定されず、公知の方法を用いることができる。なお、ラビング配向処理を行う場合は、基材の上に配向膜を設けず、基材に直接ラビング配向処理を施してもよい。
上記配向処理工程において、光配向膜に光配向処理を施すことが好ましい。このような態様とすることにより、光配向膜の表面に接触することなく配向処理を実施できるので、配向処理によるゴミ等の発生を抑制することができる。
[実施形態2]
実施形態2は、実施形態1の位相差フィルムの製造方法を用いて作製された位相差フィルムである。本実施形態では本実施形態に特有の特徴について主に説明し、実施形態1と重複する内容については適宜説明を省略する。
図2は、実施形態2の位相差フィルムの断面模式図である。図2に示したように、位相差フィルム1は、支持体としての基材10及び配向膜20と、位相差発現層30とを順に備える。
位相差フィルム1のコントラストは、λ/4相当の位相差において、4000以上であることが好ましく、4000~20000(最大値)であることがより好ましい。この態様によれば、液晶表示装置のコントラストをより高めることができる。位相差フィルム1のコントラストの上限は、位相差フィルム1のコントラストの測定に用いられる、位相差発現層を含まない2枚の偏光板のコントラストの上限、すなわち、上述のように最大値(測定され得る最大値)であることが好ましい。そして実際に、位相差発現層を含まない偏光板2枚のコントラストを下記式(1)により算出した結果、コントラストは略20000(最大値)であった。
式(1):
偏光板のコントラスト=(パラレルニコル偏光板の白輝度)÷(クロスニコル偏光板の黒輝度)
位相差フィルム1のコントラスト(CRとも言う)は、下記式(2)の定義に基づき算出する。
式(2):
位相差フィルム1のコントラスト=(パラレルニコル偏光板に位相差フィルムを挟んだときの白輝度)÷(クロスニコル偏光板に位相差フィルムを挟んだときの黒輝度)
なお、上記式(2)における白輝度の測定は、位相差フィルム1の遅相軸が両方の偏光板の偏光軸と平行となるようにして測定し、黒輝度の測定は、位相差フィルム1の遅相軸が一方の偏光板の偏光軸と平行となるようにして測定した。また、位相差フィルム1のコントラストは、λ/4相当の位相差において、6000以下であってもよく、5000以下であってもよい。
本実施形態の位相差フィルム1は、λ/4の位相差Reを有することが好ましい。この態様によれば、位相差フィルム1により、直線偏光を円偏光に変えることができる。
本実施形態の配向膜20は、光配向膜であることが好ましい。このような態様とすることにより、配向膜20の表面に接触することなく配向処理を実施できるので、配向処理によるゴミ等の発生を抑制することができる。
図3は、各加熱工程後の実施形態2の位相差フィルムの断面模式図、及び、位相差とコントラストとの関係を示したグラフである。図3のグラフでは、第一の加熱工程後の位相差フィルム及び第二の加熱工程後の位相差フィルムについて、位相差Reとコントラストとの関係が示されている。
第一の加熱工程後の位相差フィルム1bは、基材10、配向膜20、及び、マイクロドメインの配向性が改善される前の位相差発現層31を順に備える。また、第二の加熱工程後の位相差フィルム1cは、基材10、配向膜20、及び、マイクロドメインの配向性が改善された後の位相差発現層32を順に備える。
第二の加熱工程での位相差Reの変化を考慮し、第一の加熱工程後の位相差フィルム1bの位相差Reは、第二の加熱工程後の位相差フィルム1cが目標とする位相差Reより高めの位相差Reとなるよう制御されている。第二の加熱工程後の位相差フィルム1cは、第一の加熱工程の後の位相差フィルム1bに比べて高いコントラストを有する。図3に示したように、第二の加熱工程による位相差Reの減少を考慮して位相差発現層を形成しておけば、第一の加熱工程及び第二の加熱工程を行うことにより、所望の位相差Re及び高コントラストを有する位相差フィルムを得ることができる。
また、本実施形態の位相差フィルム1は、熱に対する位相差制御性に優れているため、本実施形態の位相差フィルム1上にポリイミドやポリスチレン等の層を形成する際も、加熱により位相差Reが変化することを抑制することができる。
以下に、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらの例によって限定されるものではない。
[実施例1]
<実施例1-1Aの位相差フィルム1-1Aの製造>
図4は、実施例1-1Aの位相差フィルムの製造方法を示したフローチャートである。実施例1-1Aでは、基材上に配向膜を塗布し、上記配向膜を配向処理する配向処理工程と、液晶化合物及び溶媒を含有する液晶組成物を上記配向膜上に塗布する塗布工程と、上記溶媒を除去する溶媒除去工程(プリベーク工程)と、上記液晶化合物の配向を固定化して位相差発現層を形成する固定化工程と、上記位相差発現層を加熱する加熱工程(第一の加熱工程)とを順に行った。各工程について以下に詳細を説明する。
<<配向処理工程>>
アクリル系モノマーに由来する、光官能基を有する光配向材料を、厚さ0.7mmのガラス基板上に、膜厚が略100nmとなるよう、スピンコート法を用いて2000rpm/12秒で塗布した。続いて、60℃にて90秒間加熱し、溶媒を除去した。次に、紫外線照射量が2J/cmとなるよう、波長365nmの偏光紫外光を照射した後、180℃、20分の仮焼成を行い、続いて220℃、40分の本焼成を行い、ガラス基板上に光配向膜を形成した。
<<塗布工程>>
反応性メソゲンである重合性液晶モノマー及び溶媒を含有する液晶組成物を用意した。上記液晶組成物を、上記配向膜上に、溶媒除去後の膜厚が略1.0μmとなるよう、スピンコート法を用いて2000rpm/12秒で塗布した。上記配向膜上に塗布された膜厚略1.0μmの液晶組成物の位相差Reは、略180nmであった。
<<溶媒除去工程>>
続いて、90℃にて80秒間加熱し、上記液晶組成物に含まれる溶媒を除去した。
<<固定化工程>>
次に、紫外線照射量が100mJとなるよう、上記重合性液晶モノマーに波長313nmの無偏光紫外線を照射して重合性液晶モノマーの配向を固定化し、位相差発現層を形成した。
<<加熱工程(第一の加熱工程)>>
上記位相差発現層を210℃で15分加熱し、実施例1-1Aの位相差フィルム1-1Aを得た。
<実施例1-1Aの位相差フィルム1-1Aの位相差>
得られた位相差フィルム1-1Aの位相差Reを加熱工程前の位相差Reで除した値は略0.87であった。すなわち、加熱工程を行うことにより、位相差フィルム1-1Aの位相差Reは略13%減少していた。
ここで、加熱工程後の位相差フィルムの位相差Reを、加熱工程前の位相差Reで除した値は、規格化Reともいう。また、加熱工程前の位相差Reに対する加熱工程後の位相差Reの減少率は、位相差ドロップともいう。すなわち、位相差フィルム1-1Aの位相差ドロップは略13%であった。
<実施例1-1B~1-1Dの位相差フィルム1-1B~1-1Dの製造>
加熱工程における加熱時間を、30分、40分、及び80分としたこと以外は、実施例1-1Aと同様にして、実施例1-1B~1-1Dの位相差フィルム1-1B~1-1Dを作製した。
<実施例1-1B~1-1Dの位相差フィルム1-1B~1-1Dの位相差>
得られた位相差フィルム1-1B~1-1Dの規格化Reは、それぞれ、略0.84、略0.83、及び、略0.80であった。すなわち、加熱工程により、位相差フィルム1-1B~1-1Dの位相差Reが、それぞれ略16%、略17%、及び、略20%減少していた。
<実施例1-2A~1-2Dの位相差フィルム1-2A~1-2Dの製造>
塗布工程において、液晶組成物の塗布量を2500rpm/12秒としたこと以外は実施例1-1A~1-1Dと同様の方法を用いて、膜厚が略0.9μmである実施例1-2A~1-2Dの位相差フィルム1-2A~1-2Dを得た。
<実施例1-2A~1-2Dの位相差フィルム1-2A~1-2Dの位相差>
得られた位相差フィルム1-2A~1-2Dの規格化Reは、それぞれ、略0.87、略0.84、略0.83、及び、略0.80であった。すなわち、加熱工程により、位相差フィルム1-2A~1-2Dの位相差Reが、それぞれ、略13%、略16%、略17%、及び、略20%減少していた。
<実施例1-3A~1-3Dの位相差フィルム1-3A~1-3Dの製造>
塗布工程において、液晶組成物の塗布量を3000rpm/12秒としたこと以外は実施例1-1A~1-1Dと同様の方法を用いて、膜厚が略0.8μmである実施例1-3A~1-3Dの位相差フィルム1-3A~1-3Dを得た。
<実施例1-3A~1-3Dの位相差フィルム1-3A~1-3Dの位相差>
得られた位相差フィルム1-3A~1-3Dの規格化Reは、それぞれ、略0.87、略0.84、略0.83、及び、略0.80であった。すなわち、加熱工程により、位相差フィルム1-3A~1-3Dの位相差Reが、それぞれ、略13%、略16%、略17%、及び、略20%減少していた。
<熱に対する位相差制御性の評価>
図5は、実施例1で作製した位相差フィルムの規格化Reを、加熱工程における加熱時間に対してプロットしたグラフである。
図5における実施例1-1A、1-2A及び1-3Aの結果より、加熱時間が15分の場合の位相差ドロップは13%程度であるが、実施例1-1B、1-2B及び1-3Bの結果より、加熱時間が30分の場合の位相差ドロップは16%程度であり、30分加熱する場合、後半の15分間の加熱では位相差ドロップが3%程度に留まっていることが分かった。このことから、少なくとも30分間の加熱を行えば、位相差フィルムの位相差制御性をより高められることが分かった。
また、図5における実施例1-1C、1-2C及び1-3Cの結果より、加熱時間が40分の場合の位相差ドロップは17%程度であることから、加熱時間30分~40分の10分間の加熱による位相差ドロップは1%程度に抑制されていることが分かった。
更に、図5における実施例1-1D、1-2D及び1-3Dの結果より、80分間加熱した後の位相差フィルム位相差Reは、加熱前の位相差Reの80%程度、すなわち、位相差ドロップが20%程度であることが確認できた。
実施例1では、位相差発現層を形成する固定化工程の後に、上記位相差発現層を加熱する加熱工程を行うことにより、高温下における位相差フィルムの位相差ドロップを徐々に抑制することができ、熱に対する位相差制御性に優れた位相差フィルムを得ることができた。また、後述の第二の加熱工程を行い、高コントラストの位相差フィルムを精度よく設計するためには、第一の加熱工程は有益な手段となり得ることが分かった。
[実施例2-1]
<実施例2-1の位相差フィルム2-1>
実施例1-1Bで作製した位相差フィルム1-1Bを、更に220℃で250分間加熱することにより第二の加熱工程を行い、実施例2-1の位相差フィルム2-1を得た。
<コントラスト評価>
上記第二の加熱工程の前後において、実施例2-1の位相差フィルム2-1の位相差Re及びコントラストを測定した。なお、位相差フィルムのコントラストは、上記式(2)の定義に基づき算出した。また、位相差フィルムのコントラスト測定用の偏光板としては、上述した、位相差発現層を含まない2枚の偏光板(コントラストが略20000のもの)を用いた。輝度の測定は、TOPCON社製の超低輝度分光放射計SR-UL1を用いて行った。
第二の加熱工程前の位相差フィルムの位相差Reは166nmであり、第二の加熱工程後の位相差Reは133nmであった。
図6は、実施例2-1の第二の加熱工程の前後における、位相差フィルムの位相差とコントラストとの関係を表したグラフである。図6中、Aで囲まれた2つのプロットは、第二の加熱工程前の位相差フィルムに関するデータである。図6中、Bで囲まれた2つのプロットは、それぞれ、Aで囲まれた2つのプロットのサンプルに対して、220℃で250分間加熱することにより第二の加熱工程を行った、位相差フィルム2-1に関するデータである。また、参考として、第二の加熱工程を行っていないが、図6中のBで示されたデータと位相差Reが近しいサンプル3つについてもコントラストを測定し、図6中のCに結果を示した。なお、コントラストの測定においては、複数のサンプルを作成し、それぞれのサンプルで1回ずつコントラストを測定したため、図6中、A~Cには各々複数の結果がプロットされている。
図6中、A及びCで囲まれた、第二の加熱工程行う前の位相差フィルムについて考察する。第二の加熱工程行う前は、位相差Reが166nmのときコントラストが2938、位相差Reが133nmのときコントラストが3550であった。このように、位相差発現層の材料が同じであっても、位相差Reの大小によって、コントラストは異なる(小さい位相差Reを有する位相差フィルムの方が、高いコントラストを有する)ことが分かった。すなわち、コントラストは位相差Reの関数となる。
次に、図6中、A及びBで囲まれた、第二の加熱工程前後の位相差フィルムについて考察する。第二の加熱工程を行う前、位相差フィルムの位相差Reは166nm、コントラストは2938であった。しかしながら、第二の加熱工程後の位相差フィルムの位相差Reは133nm、コントラストは4408となり、第二の加熱工程を行うことにより、位相差フィルムのコントラストが大幅に向上した。
また、Bで囲まれた第二の加熱工程後のサンプルのコントラスト(4408)は、第二の加熱工程前であり、かつ、同じ位相差Reを有するCで囲まれたサンプルのコントラスト(3550)よりも高いことが分かった。製造工程が同じ位相差フィルムのコントラストは位相差Reの関数となり、小さい位相差Reを有する位相差フィルムの方が高いコントラストを有するが、ここでは、同じ位相差Reを有するサンプルのコントラストを比較することにより、第二の加熱工程がコントラストの向上に寄与していることが示された。なお、実施例2-1では、位相差フィルムの位相差Reがλ/4となるよう、第二の加熱工程後の位相差Reが130~140nmとなるよう調整した。
<黒輝度評価時の顕微鏡写真>
第二の加熱工程の前後において、実施例2-1の位相差フィルム2-1の顕微鏡写真を撮影した。なお、顕微鏡写真は、黒輝度評価時に撮影したものである。図7は、第二の加熱工程を行った後の、実施例2-1の位相差フィルムの顕微鏡写真である。図8は、第二の加熱工程を行う前の、実施例2-1の位相差フィルムの顕微鏡写真である。
図7及び図8のそれぞれの顕微鏡写真において、白色の粒状物が確認できた。これは、位相差発現層に形成されたマイクロドメインであると考えられる。この粒状物は、第二の加熱工程後の図7の方が、第二の加熱工程前の図8より見え難いことから、第二の加熱工程後において、マイクロドメインの配向性が改善し、高コントラストな位相差フィルムが得られたことが分かった。
[実施例2-2~2-5の位相差フィルム2-2~2-5]
実施例2-1における位相差発現層の膜厚及び第二の加熱工程の条件を、表1のように変更した以外は、実施例2-1と同様にして、実施例2-2~2-5の位相差フィルム2-2~2-5を得た。なお、位相差発現層の膜厚は、塗布工程における液晶組成物の塗布量を変えることにより行った。液晶組成物の塗布量を2500rpm/12秒として、溶媒除去後の膜厚が略0.9μmの位相差発現層を形成した。
第二の加熱工程を行った実施例2-1~2-5の位相差フィルム2-1~2-5の位相差Reは、いずれも133nmであり、第二の加熱工程を行っていない実施例1-3Bの位相差フィルム1-3Bの位相差Reも133nmであった。
位相差フィルムの位相差Reが133nmである実施例2-1~2-5及び実施例1-3Bについて、コントラストを測定した。また、第二の加熱工程前のコントラストに対する、第二の加熱工程後のコントラストを、CR増加率として計算した。結果を下記表1に示した。なお、実施例2-1~2-3の位相差フィルム2-1~2-3について、第二の加熱工程前のコントラストが互いに異なるのは、位相差フィルムの個体差に起因するものと考えられる。位相差フィルムの個体差は、厳密には、膜厚が僅かに異なることに由来するものと考えられる。実施例2-4及び2-5の位相差フィルム2-4及び2-5の第二の加熱工程前のコントラストが互いに異なるのも、上記と同様の理由によるものと考えられる。
Figure JPOXMLDOC01-appb-T000001
第二の加熱工程の前後におけるCR増加率は、実施例2-1~2-3において略1.50倍~1.53倍となっている。さらに、実施例2-4及び2-5についても、略1.24倍~1.28倍となっており、いずれの実施例においても、第二の加熱工程を行うことにより、コントラストが高まった。
また、133nmの位相差Reを基準としたとき、第二の加熱工程を行わなかった実施例1-3Bの位相差フィルムのコントラスト(3550)に対し、第二の加熱工程を行った実施例2-1~2-3のコントラストは略1.25倍に増加し、実施例2-4及び2-5のコントラストは略1.12倍に増加した。実施例1-3Bと比較することにより、実施例2-1~2-5の位相差フィルムのコントラストの増加は、位相差Reが小さいことだけでなく、第二の加熱工程を行ったことにも起因することが示された。また、第二の加熱工程の加熱温度が高く、加熱時間が短いほど、位相差フィルムのコントラストの増加率は大きくなることが示された。
[実施例3]
<実施例3-1A~3-1Cの位相差フィルム3-1A~3-1Cの製造>
加熱工程における加熱温度を、190℃としたこと以外は、実施例1-1A、1-1C及び1-1Dと同様にして、実施例3-1A~3-1Cの位相差フィルム3-1A~3-1Cを作製した。
<実施例3-1A~3-1Cの位相差フィルム3-1A~3-1Cの位相差>
得られた位相差フィルム3-1A~3-1Cの規格化Reは、それぞれ、0.97、0.92、及び、0.88であった。すなわち、加熱工程により、位相差フィルム3-1A~3-1Cの位相差Reが、それぞれ3%、8%、及び、12%減少していた。
<実施例3-2A~3-2Cの位相差フィルム3-2A~3-2Cの製造>
加熱工程における加熱温度を、190℃としたこと以外は、実施例1-2A、1-2C及び1-2Dと同様にして、実施例3-2A~3-2Cの位相差フィルム3-2A~3-2Cを作製した。
<実施例3-2A~3-2Cの位相差フィルム3-2A~3-2Cの位相差>
得られた位相差フィルム3-2A~3-2Cの規格化Reは、それぞれ、0.96、0.91、及び、0.88であった。すなわち、加熱工程により、位相差フィルム3-2A~3-2Cの位相差Reが、それぞれ4%、9%、及び、12%減少していた。
<実施例3-3A~3-3Cの位相差フィルム3-3A~3-3Cの製造>
加熱工程における加熱温度を、190℃としたこと以外は、実施例1-3A、1-3C及び1-3Dと同様にして、実施例3-3A~3-3Cの位相差フィルム3-3A~3-3Cを作製した。
<実施例3-3A~3-3Cの位相差フィルム3-3A~3-3Cの位相差>
得られた位相差フィルム3-3A~3-3Cの規格化Reは、それぞれ、0.95、0.91、及び、0.88であった。すなわち、加熱工程により、位相差フィルム3-3A~3-3Cの位相差Reが、それぞれ5%、9%、及び、12%減少していた。
図9は、実施例3で作製した位相差フィルムの規格化Reを、加熱工程における加熱時間に対してプロットしたグラフである。加熱温度が190℃である実施例3では、位相差Reの減少は12%より小さく、加熱温度が210℃である実施例1と比べて位相差Reの減少幅は小さかった。実施例1及び3の結果より、加熱温度が高い方が、位相差Reの減少幅は大きく、短時間でより位相差制御性に優れた位相差フィルムが得られることが分かった。
[付記]
本発明の一態様は、液晶化合物の配向を固定化して位相差発現層30を形成する固定化工程と、位相差発現層30を加熱する加熱工程とを、この順に備える位相差フィルム1の製造方法であってもよい。
このように、位相差発現層30を形成する固定化工程の後に、位相差発現層30を加熱する加熱工程を備えることにより、熱に対する位相差制御性に優れた位相差フィルム1を製造することができる。
上記加熱工程は、位相差フィルム1の位相差Reが5%~25%減少するように行われてもよい。この態様によれば、熱に対する位相差制御性により優れた位相差フィルム1を製造することができる。
上記加熱工程は、180℃~220℃の温度で行われてもよい。この態様によれば、熱に対する位相差制御性により優れた位相差フィルム1を製造することができる。
上記加熱工程は、第一の加熱工程であり、上記位相差フィルムの製造方法は、上記第一の加熱工程の後、位相差発現層30を加熱する第二の加熱工程を更に備えてもよい。この態様によれば、位相差フィルム1のコントラストを高めることができる。
上記第二の加熱工程は、上記第一の加熱工程における加熱温度以上、かつ、250℃以下の温度で行われてもよい。この態様によれば、位相差フィルム1のコントラストをより高めることができる。
上記固定化工程において、上記液晶化合物に光を照射してもよい。この態様によれば、低温で効率よく液晶化合物を固定化することができる。
上記位相差フィルムの製造方法は、上記固定化工程の前に、上記液晶化合物を含有する液晶組成物を支持体上に塗布する塗布工程を更に備えてもよい。この態様によれば、種々の液晶化合物を用いて、所望の光学特性を有する位相差フィルム1を作製することができる。
上記位相差フィルムの製造方法は、上記塗布工程の前に、上記支持体を配向処理する配向処理工程を更に備えていてもよい。この態様によれば、位相差発現層30における液晶化合物の配向性を更に高めることができる。
上記支持体は、基材10と、基材10上の光配向膜とを有し、上記配向処理工程において、上記光配向膜に光配向処理を施してもよい。この態様によれば、光配向膜の表面に接触することなく配向処理を実施できるので、配向処理によるゴミ等の発生を抑制することができる。
上記液晶組成物は、溶媒を更に含有し、上記位相差フィルムの製造方法は、上記塗布工程と上記固定化工程の間に、上記溶媒を除去する溶媒除去工程を更に備えてもよい。この態様によれば、上記液晶化合物がより固定化され易くなる。
本発明の別の一態様は、上記位相差フィルムの製造方法で製造された位相差フィルム1であってもよい。このように、位相差発現層30を形成する固定化工程の後に、位相差発現層30を加熱する加熱工程を行った位相差フィルム1は、熱に対して優れた位相差制御性を有する。
位相差フィルム1のコントラストは、4000以上であってもよい。この態様によれば、液晶表示装置のコントラストをより高めることができる。
位相差フィルム1は、λ/4の位相差Reを有してもよい。この態様によれば、位相差フィルム1により、直線偏光を円偏光に変えることができる。
位相差フィルム1は、基材10と、基材10上の配向膜20と、配向膜20上の位相差発現層30とを備えてもよい。この態様によれば、位相差発現層30における液晶化合物の配向性を更に高めることができる。
配向膜20は、光配向膜であってもよい。この態様によれば、配向膜20の表面に接触することなく配向処理を実施できるので、配向処理によるゴミ等の発生を抑制することができる。
1、1a:位相差フィルム
1b:第一の加熱工程後の位相差フィルム
1c:第二の加熱工程後の位相差フィルム
10:基材
10a:支持体
20、20a:配向膜
30:位相差発現層
30a:位相差フィルム用組成物からなる層
31:マイクロドメインの配向性が改善される前の位相差発現層
32:マイクロドメインの配向性が改善された後の位相差発現層

Claims (15)

  1. 液晶化合物の配向を固定化して位相差発現層を形成する固定化工程と、
    前記位相差発現層を加熱する加熱工程とを、この順に備えることを特徴とする位相差フィルムの製造方法。
  2. 前記加熱工程は、前記位相差フィルムの位相差Reが5%~25%減少するように行われることを特徴とする請求項1に記載の位相差フィルムの製造方法。
  3. 前記加熱工程は、180℃~220℃の温度で行われることを特徴とする請求項1又は2に記載の位相差フィルムの製造方法。
  4. 前記加熱工程は、第一の加熱工程であり、
    前記第一の加熱工程の後、前記位相差発現層を加熱する第二の加熱工程を更に備えることを特徴とする請求項1~3のいずれかに記載の位相差フィルムの製造方法。
  5. 前記第二の加熱工程は、前記第一の加熱工程における加熱温度以上、かつ、250℃以下の温度で行われることを特徴とする請求項4に記載の位相差フィルムの製造方法。
  6. 前記固定化工程において、前記液晶化合物に光を照射することを特徴とする請求項1~5のいずれかに記載の位相差フィルムの製造方法。
  7. 前記固定化工程の前に、前記液晶化合物を含有する液晶組成物を支持体上に塗布する塗布工程を更に備えることを特徴とする請求項1~6のいずれかに記載の位相差フィルムの製造方法。
  8. 前記塗布工程の前に、前記支持体を配向処理する配向処理工程を更に備えることを特徴とする請求項7に記載の位相差フィルムの製造方法。
  9. 前記支持体は、基材と、前記基材上の光配向膜とを有し、
    前記配向処理工程において、前記光配向膜に光配向処理を施すことを特徴とする請求項8に記載の位相差フィルムの製造方法。
  10. 前記液晶組成物は、溶媒を更に含有し、
    前記塗布工程と前記固定化工程の間に、前記溶媒を除去する溶媒除去工程を更に備えることを特徴とする請求項7~9のいずれかに記載の位相差フィルムの製造方法。
  11. 請求項1~10のいずれかに記載の位相差フィルムの製造方法で製造されたことを特徴とする位相差フィルム。
  12. 前記位相差フィルムのコントラストは、4000以上であることを特徴とする請求項11に記載の位相差フィルム。
  13. 前記位相差フィルムは、λ/4の位相差Reを有することを特徴とする請求項11又は12に記載の位相差フィルム。
  14. 前記位相差フィルムは、基材と、前記基材上の配向膜と、前記配向膜上の前記位相差発現層とを備えることを特徴とする請求項11~13のいずれかに記載の位相差フィルム。
  15. 前記配向膜は、光配向膜であることを特徴とする請求項14に記載の位相差フィルム。
PCT/JP2017/025840 2016-07-25 2017-07-18 位相差フィルムの製造方法及び位相差フィルム WO2018021078A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/319,461 US20210103083A1 (en) 2016-07-25 2017-07-18 Method for producing a retardation film, and retardation film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-145377 2016-07-25
JP2016145377 2016-07-25

Publications (1)

Publication Number Publication Date
WO2018021078A1 true WO2018021078A1 (ja) 2018-02-01

Family

ID=61016229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025840 WO2018021078A1 (ja) 2016-07-25 2017-07-18 位相差フィルムの製造方法及び位相差フィルム

Country Status (2)

Country Link
US (1) US20210103083A1 (ja)
WO (1) WO2018021078A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118730A (ja) * 2019-01-18 2020-08-06 日東電工株式会社 配向液晶フィルムおよびその製造方法、ならびに画像表示装置
JP2022501654A (ja) * 2019-01-09 2022-01-06 エルジー・ケム・リミテッド 光学異方性フィルムの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109757A (ja) * 2007-10-30 2009-05-21 Lintec Corp 位相差フィルムの製造方法
JP2009244546A (ja) * 2008-03-31 2009-10-22 Toppan Printing Co Ltd カラーフィルタ基板及びそれを用いた液晶表示装置
JP2010138282A (ja) * 2008-12-11 2010-06-24 Fujifilm Corp 重合性液晶組成物、位相差フィルム、画像表示装置用基板、及び液晶表示装置
JP2011075817A (ja) * 2009-09-30 2011-04-14 Toppan Printing Co Ltd 複屈折率制御インセルカラーフィルタ基板とその製造法及び、立体映像表示装置
JP2016060857A (ja) * 2014-09-19 2016-04-25 林テレンプ株式会社 液晶高分子膜およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109757A (ja) * 2007-10-30 2009-05-21 Lintec Corp 位相差フィルムの製造方法
JP2009244546A (ja) * 2008-03-31 2009-10-22 Toppan Printing Co Ltd カラーフィルタ基板及びそれを用いた液晶表示装置
JP2010138282A (ja) * 2008-12-11 2010-06-24 Fujifilm Corp 重合性液晶組成物、位相差フィルム、画像表示装置用基板、及び液晶表示装置
JP2011075817A (ja) * 2009-09-30 2011-04-14 Toppan Printing Co Ltd 複屈折率制御インセルカラーフィルタ基板とその製造法及び、立体映像表示装置
JP2016060857A (ja) * 2014-09-19 2016-04-25 林テレンプ株式会社 液晶高分子膜およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022501654A (ja) * 2019-01-09 2022-01-06 エルジー・ケム・リミテッド 光学異方性フィルムの製造方法
EP3929635A4 (en) * 2019-01-09 2022-06-08 LG Chem, Ltd. PROCESS FOR MAKING AN OPTICALLY ANISOTROPIC FILM
JP7191439B2 (ja) 2019-01-09 2022-12-19 エルジー・ケム・リミテッド 光学異方性フィルムの製造方法
JP2020118730A (ja) * 2019-01-18 2020-08-06 日東電工株式会社 配向液晶フィルムおよびその製造方法、ならびに画像表示装置

Also Published As

Publication number Publication date
US20210103083A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP6667983B2 (ja) 積層体およびその製造方法、偏光板、液晶表示装置、有機el表示装置
US20220035086A1 (en) Method for generating alignment on top of a liquid crystal polymer material
Zhang et al. 4D chiral photonic actuators with switchable hyper‐reflectivity
US10414982B2 (en) Retardation film, method of manufacturing retardation film, laminate, composition, polarizing plate and liquid crystal display device
US20060033861A1 (en) Optical device
TW202326188A (zh) 光學膜及其製造方法
JP2007004120A5 (ja)
CN110869827A (zh) 椭圆偏光板
CN111033330B (zh) 带光学补偿功能的相位差板
US20220163853A1 (en) Photo-alignable positive c-plate retarder
JP6507072B2 (ja) 光学異方性層の製造方法および偏光板の製造方法
WO2018193952A1 (ja) 光学フィルム、積層型光学フィルムおよびこの積層型光学フィルムを備えた空中結像装置
WO2018021078A1 (ja) 位相差フィルムの製造方法及び位相差フィルム
CN109891279A (zh) 光学物品的制造方法及光学物品
JPWO2017110631A1 (ja) 光学異方性層及びその製造方法、光学異方性積層体並びに円偏光板
JP7182627B2 (ja) 光学異方性層の製造方法
JP6967083B2 (ja) 長尺液晶フィルム、長尺偏光板、画像表示装置、および、長尺液晶フィルムの製造方法
TWI808131B (zh) 聚合性液晶組合物、液晶硬化膜、相位差膜、橢圓偏光板及顯示裝置
CN111954836B (zh) 光学各向异性膜
JP6045421B2 (ja) 位相差フィルムの製造方法
JP2020052411A (ja) 積層体およびその製造方法、偏光板、液晶表示装置、有機el表示装置
JP4947532B2 (ja) 位相差フィルムの製造方法
JP6434692B2 (ja) 光学異方性を有する光学素子の製造方法及び光学異方性を有する光学素子
TWI548896B (zh) 長型圖案配向膜及使用其之長型圖案相位差薄膜
JP2010049192A (ja) 液晶表示装置および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17834086

Country of ref document: EP

Kind code of ref document: A1