WO2018014590A1 - Oled显示装置及其压力触控驱动方法 - Google Patents

Oled显示装置及其压力触控驱动方法 Download PDF

Info

Publication number
WO2018014590A1
WO2018014590A1 PCT/CN2017/079291 CN2017079291W WO2018014590A1 WO 2018014590 A1 WO2018014590 A1 WO 2018014590A1 CN 2017079291 W CN2017079291 W CN 2017079291W WO 2018014590 A1 WO2018014590 A1 WO 2018014590A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
output
coupled
signal
Prior art date
Application number
PCT/CN2017/079291
Other languages
English (en)
French (fr)
Inventor
王鹏鹏
董学
陈小川
王海生
刘英明
丁小梁
赵卫杰
杨盛际
李昌峰
刘伟
高健
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/563,426 priority Critical patent/US10698555B2/en
Priority to JP2017552130A priority patent/JP7050492B2/ja
Priority to EP17771323.7A priority patent/EP3489820B1/en
Publication of WO2018014590A1 publication Critical patent/WO2018014590A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04144Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position using an array of force sensing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/023Display panel composed of stacked panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0408Integration of the drivers onto the display substrate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0267Details of drivers for scan electrodes, other than drivers for liquid crystal, plasma or OLED displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/067Special waveforms for scanning, where no circuit details of the gate driver are given
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes

Definitions

  • Embodiments of the present invention relate to an OLED display device and a pressure touch driving method thereof.
  • a pressure sensitive sensor can be integrated in the display device.
  • most of the pressure sensitive sensors using the electromagnetic induction type module laminated structure adopt a rectangular coil to receive the sensing method.
  • a rectangular coil can only be configured to receive a stronger signal from the magnetic pen, or it can only barely sense that the finger touches the weak signal, and cannot stress-grade the finger pressure.
  • embodiments of the present invention provide an organic light emitting diode (OLED) display device and a pressure touch driving method to achieve a better pressure touch operation in an OLED display device.
  • OLED organic light emitting diode
  • An embodiment of the present invention provides an organic light emitting diode (OLED) display device including: a silicon substrate; a pixel unit and a magnetic sensor on a side of the silicon substrate; and a magnetic field generating device configured to the magnetic
  • OLED organic light emitting diode
  • a sensitivity sensor provides a magnetic field through a plane in which the magnetic sensor is located; the magnetic sensor is configured to detect the change in the magnetic field and convert the change in the magnetic field into a voltage difference output.
  • Another embodiment of the present invention further provides a pressure touch driving method, comprising: providing a magnetic sensitive sensor with a magnetic field passing through a plane of the magnetic sensitive sensor; detecting a change of the magnetic field by a magnetic sensitive sensor; Converting the change in the magnetic field into a voltage; outputting the voltage; identifying the touch position and pressure value.
  • Still another embodiment of the present invention is also a signal detecting circuit for a circuit to be detected, the detected circuit including a first pair of terminals and a second pair of terminals, the first pair of terminals and the second pair of terminals being Electrically symmetrically disposed
  • the signal detection circuit includes: a detection voltage input sub-circuit and an induction signal output sub-circuit, the detection voltage input sub-circuit configured to be connected to the first pair of terminals and the second pair of terminals,
  • the sensing signal output sub-circuit includes a first output end and a second output end, The first pair of terminals and the second pair of terminals are connected, and are configured to output the first detection voltage and the second detection voltage, respectively, at different time periods.
  • FIG. 1 is a schematic diagram of a magnetic sensor provided by an embodiment of the present invention.
  • FIG. 2 shows an equivalent circuit diagram of a magnetic sensor provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an OLED pixel unit of a display device according to an embodiment of the invention.
  • FIG. 4 is a top plan view of an OLED display device according to an embodiment of the invention.
  • FIG. 5 is a schematic diagram of a sensor circuit according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of still another sensor circuit according to an embodiment of the present invention.
  • FIG. 7a and 7b are schematic diagrams showing still another sensor circuit according to an embodiment of the present invention.
  • FIG. 8 is a timing diagram showing first to fifth control signals provided by an embodiment of the present invention.
  • FIG. 9 shows a schematic diagram of a driving circuit of an OLED pixel unit.
  • embodiments of the present invention provide an OLED display device incorporating a magnetic sensor and a detection circuit of the magnetic sensor.
  • a conventional active matrix OLED (AMOLED) display device utilizes a glass plate as a back plate and uses a thin film transistor (TFT) as a switching element or the like, and the thin film crystal utilizes amorphous silicon, microcrystalline silicon, low temperature polysilicon or an oxide semiconductor as an active material.
  • TFT thin film transistor
  • Silicon-based organic light emitting diode (OLED) display devices are distinguished from these AMOLEDs.
  • the silicon-based OLED display device is based on a single crystal silicon wafer, on which a driver circuit, an OLED device and the like are fabricated, and the pixel size can be reduced to 1/10 of that of a conventional AMOLED display device, and the resolution is much higher than that of the conventional one.
  • the silicon-based OLED display device can adopt the existing mature silicon substrate integrated circuit process, can not only realize the active addressing matrix of the display pixel, but also realize, for example, SRAM memory, T-CON (timing controller) on the silicon chip.
  • the control circuit of various functions thus greatly reducing the external connection of the display device, increasing the reliability of the display device, and realizing the weight reduction of the display device.
  • FIG. 1 is a schematic plan view showing a magnetic sensor 100 formed on a silicon substrate according to an embodiment of the present invention.
  • the pressure applied to the display device can be measured according to the Hall effect, thereby implementing touch detection.
  • the Hall effect refers to a physical phenomenon in which a lateral voltage difference occurs when a magnetic field of a magnetic field generating device acts on a metal conductor or a carrier in a semiconductor.
  • the magnetic field generating means may be, for example, an energized coil and a magnetic material such as a magnetic ink, a magnet (a natural magnet or an artificial magnet).
  • the magnetic field generating means may be an energized coil.
  • the magnetic field generating device is disposed below the magnetic sensor (eg, facing away from the user). An example of a magnetic field generating device for a magnetic sensor in an embodiment of the present invention will be described in more detail below.
  • the magnetic sensor 100 In the case where the magnetic sensor 100 is subjected to a magnetic field provided by the magnetic field generating means, if the distance d of the magnetic sensor 100 from the magnetic field generating means is changed (for example, pressed, see Fig. 3), on a plane perpendicular to the direction of the magnetic field The magnetic flux sensed by the magnetic sensor 100 also changes. At this time, according to the Hall effect, the magnetic sensor 100 will generate an induced current, that is, a voltage difference occurs, which corresponds to the pressure acting on the OLED display device. The displacement of the magnetosensitive sensor 100 with respect to the magnetic field generating means can be determined based on the voltage difference, that is, the pressure applied to the magnetosensitive sensor 100 can be measured.
  • the magnetic sensor 100 is formed on a silicon substrate.
  • the magnetic sensor 100 is square, but may be formed in other shapes such as a circular shape or the like.
  • the magnetic sensor 100 includes a first pair of terminals and a second pair of terminals, wherein the first pair of terminals includes a first end H1 and a third end H3 on a diagonal line of the square, and the second pair of terminals includes another pair of squares The second end H2 and the fourth end H4 on the corner line.
  • the Hall voltage difference U H is:
  • R H is the Hall coefficient
  • I is the current magnitude
  • B is the magnetic field strength perpendicular to the current direction
  • d is the thickness of the Hall element in the magnetosensitive sensor 100
  • I and B are both vectors.
  • the Hall voltage difference U H is proportional to the magnetic field strength B, so that the change in the magnetic field can be detected by calculating the voltage difference of the output, thereby obtaining the magnitude or amount of change of the pressure applied to the device.
  • the equivalent circuit of the magnetic sensor 100 of FIG. 1 is as shown in FIG. 2, which includes four Venturi bridges composed of resistors R1, R2, R3, and R4.
  • the first terminal H1 is connected to the power source V dd
  • the third terminal H3 is grounded (GND).
  • the resistances of the resistors R1, R2, R3, and R4 are the same as each other, that is, an equal arm bridge circuit.
  • the potential of the second terminal H2 and the fourth terminal H4 with respect to the ground (GND) is V dd /2, and the potential difference between the second terminal H2 and the fourth terminal H4 is zero.
  • the magnetic sensor 100 When the magnetic sensor 100 is subjected to pressure, displacement occurs with respect to the magnetic field generating means, that is, the magnetic flux passing through the magnetic sensor 100 changes, and an induced current is generated between the second end H2 and the fourth end H4 to form a Hall potential difference. .
  • the direction of the Hall potential is determined by the direction of the magnetic field and the direction of the current.
  • the origin of the lower right corner represents the direction of the magnetic field perpendicular to the magnetic sensor 100. The plane exits outward.
  • the direction of the magnetic field generated by the energized wire coil is substantially perpendicular to the plane of the coil, i.e., perpendicular to the magnetic sensor 100. Therefore, by detecting the potential difference generated between the second end H2 and the fourth end H4, that is, detecting the voltage difference between the fourth end H4 and the second end H2 (ie, V o+ -V o- ), it can be calculated The displacement of the magnetic sensor 100 is derived, and the pressure received by the magnetic sensor 100 is calculated.
  • each of the magnetic sensors may be disposed on the display device corresponding to the sub-pixels in the one or more pixel units of the display device, for example, each magnetic The sensor is disposed adjacent to one or more of the pixel units to form a repeating unit in the array arrangement.
  • an OLED display device will be taken as an example to describe a magnetic sensor integrated in a display device.
  • FIG. 3 is a cross-sectional view showing a pixel unit 300 of a silicon-based OLED display device according to an embodiment of the present invention.
  • the pixel unit 300 includes a pixel driving circuit, one or more electrical connection layers, an OLED, and the like, and the OLED is connected to the pixel driving circuit through an electrical connection layer through which the magnetic sensing sensor is connected to its detecting circuit.
  • the pixel unit 300 may be a white light pixel unit, or may be a sub-pixel unit that can emit light of other colors. As shown in FIG. 3, the pixel unit 300 is a white light pixel unit including red, blue, and green filter units (filter color resin layers) to form red sub-pixels (R) and blue sub-pixels (B), respectively. Green sub-pixels (G), which emit red, blue, and green lights respectively during operation, thereby achieving color display.
  • the white light pixel unit includes an OLED device capable of emitting white light, which may include a cathode, an organic light emitting function layer (EL) and an anode which are sequentially stacked, and may further include an electron transport layer, a hole transport layer, an electron injection layer, and hole injection as needed. One or more organic functional layers in the layer.
  • the pixel unit 300 may include a silicon substrate 302 and a P-type semiconductor substrate 303 disposed in the silicon substrate 302, and a pixel including one or more MOS transistors formed on the P-type semiconductor substrate 303.
  • the drive circuit 304, the magnetic sensor 305 in the silicon substrate 302, and for example, may also include a magnetic field generating device 306 (such as an energized coil in FIG. 3) configured to generate a magnetic field.
  • the silicon substrate 302 may be a single crystal silicon substrate or a single crystal silicon layer or the like prepared on a sapphire substrate or the like by an epitaxial growth method, for example, an SOI substrate.
  • the magnetic field generating device 306 may be disposed under the substrate 302, but embodiments of the present invention are not limited thereto.
  • the magnetic field generating device 306 can also be formed in the silicon substrate 302. That is, the magnetic field generating device may be disposed on one side of the silicon substrate 302 or formed in the silicon substrate 302, and the magnetic field formed by the magnetic field generating device passes through (for example, vertically passes through) the plane where the magnetic sensor is located. So that it can be detected.
  • the magnetic field generating device 306 can, for example, employ other devices or structures that can generate a magnetic field, such as a coating of a permanent magnetic material (e.g., a magnetic ink coating).
  • the magnetic sensor 305 is integrated into the silicon substrate along with the sub-pixels of the pixel unit 300 so as to be juxtaposed with the pixel unit.
  • Driver circuit 304 may, for example, include transistors 3041, 3042, and 3043 configured to control the OLED and transistor 3044 configured to control magnetic sensor 305.
  • the above transistors 3041-3044 may be MOS transistors (NMOS transistors or PMOS transistors) as switching elements or driving elements. These transistors are spaced apart from one another, for example by insulating material field oxides (FOX) or shallow trenches.
  • MOS transistors NMOS transistors or PMOS transistors
  • These transistors are spaced apart from one another, for example by insulating material field oxides (FOX) or shallow trenches.
  • FOX insulating material field oxides
  • the magnetic sensor 305 can include a low doped N-type semiconductor region (eg, an n-well) 3021 formed in a P-type semiconductor substrate 303.
  • the N-type semiconductor region 3021 can be fabricated by implanting phosphorus or other pentavalent elements into the P-type semiconductor substrate 303.
  • the N-type semiconductor region 3021 is square, circular, or the like like the magnetic sensor 305.
  • N + implantation is performed at four vertices of the N-type semiconductor region 3021 to form first to fourth n + ion implantation regions, thereby forming first to fourth terminals H1 to H4 of the magnetic sensor.
  • a layer of p + ion shallow doping layer 3022 may also be formed on N-type semiconductor region 3021 prior to n + implantation.
  • the p + ion shallow doping layer 3022 is generally disposed on a central region of the N-type semiconductor region 3021 surrounded by the remaining portion of the N-type semiconductor region 3021, and the area of the p + ion shallow doped layer is smaller than the N The area of the semiconductor region is as shown in FIG.
  • the p + ion shallow doping layer 3022 can increase the average resistivity of the magnetic sensor and reduce the thickness of the magnetic sensor 305, thereby improving the sensitivity of the magnetic sensor 305.
  • the p + ion shallow doping layer 3022 also electrostatically shields between the N-type semiconductor region and the silicon dioxide layer because a layer of silicon dioxide can usually be overlaid on each layer structure during the fabrication process. The effect of the layer improves the stability of the magnetic sensor 305.
  • one or more electrical connection layers are formed on the silicon substrate, and the electrical connection layers include conductive patterns (for example, metal layers 3201, 3202, etc. in the figure) formed on the insulating layer 330, and different insulating layers.
  • the conductive patterns on 330 may be electrically connected to each other through vias 3203.
  • the fabrication of the magnetic sensor 305 can be accomplished in the same semiconductor fabrication process as the fabrication of MOS transistors in an OLED display device. For example, when fabricating a PMOS transistor, it is necessary to first fabricate an N-type semiconductor region. The N-type semiconductor region 3021 of the magnetic sensor 305 can be fabricated while the N-type semiconductor region of the PMOS transistor is fabricated. Similarly, for example, when p + implantation is performed for fabricating a PMOS, a p + ion shallow doped layer 3022 may be simultaneously formed; and when n + is implanted for extracting a MOS transistor, it may be simultaneously in the N type semiconductor region 3021.
  • N + ion implantation is performed at the four vertices to obtain an n + ion implantation region, thereby forming four end points of the magnetic sensor. Integrating the fabrication process of the magnetic sensor 305 into the fabrication process of the MOS transistor can reduce the manufacturing cost of the panel.
  • the process of fabricating the magnetic sensor 305 can be various, and is not limited to the above description. For example, in order to achieve better performance, a separate process can be used to fabricate the magnetic sensor. Since the magnetic sensor can be fabricated by a separate process, the magnetic sensor provided by the embodiment of the present invention can also be disposed in other types of display devices, such as an LCD display device. It should be understood by those skilled in the art that the example of FIG. 3 is only for better explanation that the process of fabricating the magnetic sensor can be integrated with the process of fabricating the OLED display device, and the magnetic sensor of the embodiment of the present invention can only be applied. For OLED display devices.
  • FIG. 4 shows a top view of an OLED display device 400 including a plurality of pixel units 300 (including magnetic sensors) as shown in FIG. 3 according to an embodiment of the present invention.
  • the OLED display device 400 may include a plurality of OLED pixel units of the embodiment shown in FIG. 3, the pixel units are arranged in an array, and the plurality of magnetic sensitive sensors 401 are arranged side by side with a plurality of pixel units, but Embodiments of the invention may include less or more magnetic sensitive sensors 401 than those shown in FIG.
  • the OLED display device 400 includes at least one coil as a magnetic field generating device.
  • the at least one coil is a rectangular coil.
  • the rectangular coil includes a first coil 402 extending in a first direction (eg, lateral) on the first layer and a second coil 403 extending in a second direction (eg, longitudinal) on the second layer
  • the first direction and the second direction intersect, for example, perpendicular to each other.
  • the first coil 402 and the second coil 403 cross each other (and are insulated) such that a rectangular area is defined in the intersection area.
  • Each rectangular area corresponds to a magnetic sensor, for example one or more pixel units and one or more magnetic sensors.
  • the rectangular area 404 is shown in FIG.
  • a magnetic field can be applied to a specific region by energizing one or more first layer coils 402 and one or more second layer coils 403.
  • coil L1 and coil C5 are selected to apply a current
  • a magnetic field may be applied only to the rectangular region 404 in the upper right corner.
  • the coil L4 and the coil C4-C5 are selected to apply a current, and the magnetic field can be applied only to the rectangular region 405 in the lower right corner.
  • the rectangular coil described above can also be energized only when detection is required, so that pressure can be detected in a specific area and the work can be saved as much as possible. Consumption. Moreover, by positioning the coil, it is also possible to measure the position at which the pressure is applied to the display device, thereby realizing the detection of the touch position.
  • the rectangular coil provided by the embodiment of the present invention may include only the laterally arranged coils or only the longitudinally arranged coils, and even any other shape of the magnetic field generating device, as long as a magnetic field of sufficient strength can be provided.
  • the magnetic sensor In order to detect the position of the pressure applied to the display device and its size, the magnetic sensor can be uniformly distributed as a sub-pixel throughout the display device. As shown in FIG. 2, the displacement of the magnetic sensor relative to the magnetic field generating means can be obtained by detecting the potential difference generated between each of the magnetic sensors at the second end H2 and the fourth end H4. Therefore, it is necessary to connect the second terminal H2 and the fourth terminal H4 to the signal detecting circuit for detection.
  • FIG. 5 is a schematic diagram of a sensor circuit 500 in an OLED display device according to an embodiment of the present invention.
  • the sensor circuit 500 includes a magnetic sensor 501 and a signal detection circuit 502.
  • the magnetic sensor 501 includes a first end H1, a second end H2, a third end H3, and a fourth end H4.
  • the signal detecting circuit 502 includes a power terminal (V dd ), a ground terminal (GND), a first signal detecting terminal, and a second signal detecting terminal.
  • V dd power terminal
  • GND ground terminal
  • the first end H1 of the magnetic sensor 501 can be connected to the power terminal
  • the third end H3 of the magnetic sensor 501 can be connected to the ground (GND).
  • the second end H2 and the fourth end H4 of the magnetic sensor 501 may be respectively connected to the first signal detecting end and the second signal detecting end of the signal detecting circuit 502 and amplified to output the amplified signal.
  • the signal detecting circuit 502 includes, for example, an operational amplifier.
  • the non-inverting input terminal (+) of the operational amplifier is connected to the second signal detecting end, and the inverting input terminal (-) of the operational amplifier is connected to the first signal detecting end, and the output end of the operational amplifier. (Vout) Outputs the amplified voltage signal.
  • Resistor R4, R5, R6 and R7 are respectively provided for the operational amplifier, and the resistor R4 is connected to the first signal detecting terminal and the opposite phase input terminal of the operational amplifier, and the resistor R5 is connected to the second signal detecting terminal and the non-inverting input of the operational amplifier. end.
  • Resistor R7 is connected to the reference voltage and the non-inverting input of the operational amplifier.
  • Resistor R6 is connected to the inverting input and output of the op amp.
  • the second end H2 and the fourth end H4 of the magnetic sensor 501 may be led out to the detecting circuit 502 through an electrical connection layer (metal layer) (for example, including the transistor 3034 shown in FIG. 3, etc.).
  • an electrical connection layer metal layer
  • the magnetic sensor and the pixel driving circuit for the OLED pixel unit may be formed at least partially in the same layer.
  • signal detection circuit 502 includes an operational amplifier to form a differential amplifier circuit.
  • the signal amplified by the signal detecting circuit 502 can be further read by the peripheral circuit to detect a change in the magnetic field passing through the magnetic sensor 501, and further calculate and display the magnetic sensor 501. The location of the pressure and its size.
  • FIG. 6 is a schematic diagram of a sensor circuit 600 of an OLED display device according to another embodiment of the present invention.
  • the sensor circuit 600 can include a magnetic sensor 601, a signal detection circuit 602, and a power switching element 603.
  • the power switching element 603 can be a PMOS transistor.
  • the first end H1 of the magnetic sensor 601 is connected to the power supply terminal V dd via the power switching element 603.
  • the control terminal of the power switching element 603 is connected to the control line.
  • the OLED display device includes a plurality of gate lines and a plurality of data lines, and may further include a plurality of power lines connected to a gate driving circuit (such as a gate driver or a gate driving chip), and the data lines are connected to the data driving circuit.
  • a gate driving circuit such as a gate driver or a gate driving chip
  • These power cords are connected to a power source to power the pixel cells.
  • the gate lines and the data lines cross each other to define a sub-pixel unit.
  • the control line connected to the control terminal of the power switching element 603 is, for example, one of the gate lines, which is connected to the gate driving circuit, so that a gate driving signal can be applied thereto.
  • control line of the power switching element 603 is one of the gate lines or controlled by the gate driving circuit
  • pressure sensing can be performed when the gate signal applied on the control line is at a high level.
  • This example can allow the pixel unit and the magnetic sensor to share the gate line and the gate signal, the preparation process is simple, and the pressure touch driving method can also be made simpler, thereby making the cost low.
  • FIG. 9 shows a schematic diagram of a driving circuit of an OLED pixel unit.
  • the driving circuit of the OLED pixel unit includes two transistors T1 and T2 and a storage capacitor Cs.
  • the control terminal of the transistor T1 is connected to the gate line, that is, the selection voltage Vsel is applied, the first end of the transistor T1 is connected to the data line to be applied with the gray data voltage, and the second end of the transistor T1 is connected to the first end of the storage capacitor Cs.
  • the control terminal of the transistor T2 is connected to the second end of the transistor T1 and the first end of the storage capacitor Cs.
  • the first end of the transistor T2 is connected to the OLED device, and the second end of the transistor T2 is connected to the second end of the storage capacitor Cs and grounded.
  • One end of the OLED device is connected to the power source through a power line, and the other end is connected to the first end of the transistor T2.
  • the embodiments of the present invention are not limited to the driving circuit applicable to the OLED pixel unit shown in FIG. 9, but may also use any known driving circuit of the OLED pixel unit, for example, including more. Transistors and / or capacitors.
  • the sensor circuit of the embodiment shown in Figs. 5 and 6 can sample, amplify and output the pressure applied to the display device, thereby detecting the magnitude or amount of change of the pressure and the like.
  • a sensor eg, a magnetic sensor provided by an embodiment of the present invention
  • the offset voltage is usually caused by the fabrication process, including anisotropy of the material, uneven diffusion of impurities, and asymmetry in geometry.
  • the sensor circuit shown in FIGS. 5 and 6 amplifies the offset voltage component included therein while amplifying the detection voltage, such a detection voltage will cause voltage Force sensing is not accurate enough. Therefore, it is necessary to eliminate the offset voltage component in the detection voltage.
  • two identical magnetic sensors can be prepared while simultaneously detecting the output signals of the two magnetic sensors, and then, for example, averaging the two output signals. Make compensation.
  • embodiments of the present invention provide an OLED. A scheme in which the offset voltage is eliminated by using only one magnetic sensor in the display device.
  • Figure 7a shows a schematic diagram of a sensor circuit provided by an embodiment of the present invention
  • Figure 7b further adds a schematic diagram of the offset voltage cancellation circuit based on the embodiment shown in Figure 7a.
  • the detection signals detected by the magnetic sensor are periodically and alternately outputted from two pairs of ports that are symmetric with each other, thereby making it possible to utilize detection.
  • the induced voltage component of the voltage and the polarity of the offset voltage component are then compensated for the offset voltage component.
  • the structure and the pressure touch driving method of the sensing circuit 700 of the OLED display device provided by one embodiment of the present invention are specifically described below.
  • sensor circuit 700 can include a sensor 701, a signal detection circuit 702 coupled to the sensor 701.
  • the offset voltage cancellation circuit 703 can also be added to the sensor circuit 700 shown in Figure 7a. The offset voltage cancellation circuit 703 amplifies and offsets the signal from the signal detection circuit 702.
  • FIG. 7a shows sensor circuit 700 including sensor 701 and signal detection circuit 702.
  • the sensor 701 is a magnetic sensor formed on a silicon substrate in an embodiment of the present invention, but may be other types of sensors.
  • the signal detection circuit 702 can include a detection voltage input sub-circuit 7021 and an inductive signal output sub-circuit 7022.
  • the sensor 701 can include a first pair of terminals (H1, H3) and a second pair of terminals (H2, H4).
  • the detection voltage input sub-circuit 7021 may be configured to be connected to the first pair of terminals during the first period P1 and to the second pair of terminals during the second period P2. For the relationship between the first period P1 and the second period P2, for example, see FIG.
  • the sensing signal output sub-circuit 7022 includes a first output end 7023 and a second output end 7024, and is configured to cause the first and second output ends to be respectively connected with the second pair of terminals of the sensor 701 to output the first time during the first period P1 Detecting the voltage, in the second period P2, causing the first and second output ends to respectively correspond to the first pair of the sensor 701
  • the sub-connections are to output a second detection voltage, and the first period P1 and the second period P2 are different from each other.
  • the detection voltage input sub-circuit 7021 may include a first switching element M1 and a second switching element respectively connected to the first end H1, the second end H2, the third end H3, and the fourth end H4 of the sensor 701. M2, third switching element M3 and fourth switching element M4.
  • the sensing signal output sub-circuit 7022 may include a fifth switching element T1, a sixth switching element T2, a seventh switching element T3, and an eighth switching element T4.
  • sensor 701 is a square magnetic sensor.
  • first end H1, the second end H2, the third end H3, and the fourth end H4 are structurally substantially equivalent endpoints.
  • One end of the first switching element M1 is coupled to the power supply voltage V dd , the other end is coupled to the first end H1 of the sensor 701, the control terminal is connected to the timing controller (not shown), and is turned on or off according to the second control signal CK2. .
  • the first switching element M1 may be a PMOS transistor and is turned on when the second control signal CK2 is at a low level.
  • One end of the second switching element M2 is coupled to the power supply voltage V dd , and the other end is coupled to the second end H2 of the sensor 701 , and the control terminal is connected to the timing controller and is turned on or off according to the first control signal CK1 .
  • the second switching element M2 may be a PMOS transistor and is turned on when the second control signal CK2 is at a low level.
  • the power supply voltage V dd can be set as needed.
  • One end of the third switching element M3 is coupled to the ground, and the other end is coupled to the third end H3 of the sensor 701.
  • the control terminal is connected to the timing controller and is turned on or off according to the second control signal CK2.
  • the third switching element M3 may be an NMOS transistor and turned on when the inverted signal of the second control signal CK2 is high.
  • One end of the fourth switching element M4 is coupled to the ground, and the other end is coupled to the fourth end H4 of the sensor 701.
  • the control terminal is connected to the timing controller and is turned on or off according to the first control signal CK1.
  • the fourth switching element M4 may be an NMOS transistor and is turned on when the inverted signal of the first control signal CK1 is high.
  • One end of the fifth switching element T1 is coupled to the first end H1 of the sensor 701, and the other end is coupled to the first output end 7023.
  • the control terminal is connected to a timing controller (not shown) and is turned on according to the first control signal CK1 or cutoff.
  • One end of the sixth switching element T2 is coupled to the second end H2 of the sensor 701, and the other end is coupled to the first output end 7023.
  • the control terminal is connected to the timing controller and is turned on or off according to the second control signal CK2.
  • One end of the seventh switch T3 is coupled to the third end H3, and the other end is coupled to the second output end 7024.
  • the control terminal is connected to the timing controller and is turned on or off according to the first control signal CK1.
  • One end of the eighth switching element T4 is coupled to the fourth end H4, and the other end is coupled to the second output end 7024.
  • the control terminal is connected to the timing controller and is turned on or off according to the second control signal CK2.
  • the fifth switching element T1 and the seventh switching element T3 are configured to be turned on in response to the first control signal CK1 being at a low level
  • the sixth switching element T2 and the eighth switching element T4 are configured to be responsive in response to The second control signal CK2 is turned on at a low level
  • the above fifth to eighth switching elements may be transmission gates, but embodiments of the present invention are not limited to the specific types of the above switching elements.
  • FIG. 8 An example of the level relationship of the first control signal CK1 and the second control signal CK2 and the timing relationship is shown in FIG. In FIG. 8, in a preferred mode, the first control signal CK1 and the second control signal CK2 are mutually inverted signals of the same frequency. That is, when the first control signal CK1 is at a high level, the second control signal CK2 is at a low level.
  • the voltage input sub-circuit 7021 is detected in the first period P1 and the first pair of terminals of the sensor 701 (H1, H3)
  • the sensing signal output sub-circuit 7022 is connected to the second pair of terminals (H2, H4) to output the first detection voltage during the first period P1.
  • the detection voltage input sub-circuit 7021 is connected to the second pair of terminals of the sensor in the second period P2, and the sensing signal output is The circuit 7022 is connected to the first pair of terminals to output a second detection voltage during the second period P2.
  • the signal detecting circuit 702 By setting the timings of the first control signal CK1 and the second control signal CK2, the signal detecting circuit 702 alternately applies a detection voltage to the first pair and the second pair of terminals of the sensor 701, and the sensing signal output sub-circuit 7022 alternately from the sensor 701
  • the second pair and the first pair of terminals read the first detection voltage and the second detection voltage, and output the first detection voltage in the first period P1, and output the second detection voltage in the second period P2.
  • the first detection voltage includes an induced voltage component and an offset voltage component
  • the second detection voltage includes an induced voltage component and an offset voltage component, wherein the induced voltage component of the first detected voltage and the induced voltage component of the second detected voltage are opposite in polarity, however The offset voltage components of the two are in phase.
  • first control signal CK1 and the second control The timing relationship, the level relationship, and the like of the signal CK2 are not limited to the example shown in FIG. 8, as long as the first detection voltage and the second detection voltage can be alternately read from the sensor 701 and output.
  • the offset voltage cancellation circuit 703 can include a first input terminal Vi1, a second input terminal Vi2, an amplification sub-circuit 7031, a selection sub-circuit 7032, a first capacitor C1, a second capacitor C2, and an output sub-circuit 7033.
  • the first output terminal 7023 and the second output terminal 7024 of the sensing signal output sub-circuit 7022 are respectively connected to the first input terminal Vi1 and the second input terminal Vi2 of the offset voltage eliminating circuit 703.
  • the amplification sub-circuit 7031 may be configured to amplify the first detection voltage and output as a first amplification voltage, inversely amplify the second detection voltage, and output as a second amplification voltage.
  • the amplification sub-circuit 7031 may include a first-stage amplification sub-circuit 7031a, a second-stage amplification sub-circuit 7031b, and a control circuit 7031c disposed therebetween.
  • the first stage amplification sub-circuit 7031a includes a first operational amplifier A1 and a second operational amplifier A2.
  • the control circuit 7031c includes four switching elements, that is, a ninth switching element to a twelfth switching element, which are labeled as T5, T6, T7, and T8, respectively, in FIG. 7b.
  • the second stage amplifying subcircuit includes a third operational amplifier A3.
  • the non-inverting input terminal (+) of the first operational amplifier A1 is connected to the first output terminal 7023 of the signal detecting circuit 702, and the output terminal of the first operational amplifier A1 and the first terminal of the ninth switching element T5 and the tenth switching component T6 The first end is connected.
  • the non-inverting input terminal (+) of the second operational amplifier A2 is connected to the second output terminal 7024 of the signal detecting circuit 702, and the output terminal of the second operational amplifier A2 and the first end and the twelfth switching element of the eleventh switching element T7 The first end of the T8 is connected.
  • the inverting input terminal (-) of the first operational amplifier A1 and the inverting input terminal (-) of the second operational amplifier A2 are connected to each other, for example, via a resistor R1.
  • one end of the resistor R2 is connected to the inverting input terminal (-) of the first operational amplifier A1, and the other end is connected to the output terminal of the first operational amplifier A1, and thus to the ninth switching element T5.
  • One end of the resistor R3 is connected to the inverting input terminal (-) of the second operational amplifier A2, and the other end is connected to the output terminal of the second operational amplifier A2, and thus to the first end and the tenth of the eleventh switching element T7.
  • the first end of the second switching element T8 is connected to the inverting input terminal (-) of the first operational amplifier A1, and the other end is connected to the output terminal of the first operational amplifier A1, and thus to the ninth switching element T5.
  • One end of the resistor R3 is connected to the inverting input terminal (-) of the second operational amplifier A2, and the other end is connected to the output terminal of the second
  • the second end of the ninth switching element T5 and the second end of the twelfth switching element T8 are connected to the non-inverting input terminal (+) of the third operational amplifier A3 via a resistor R5.
  • the second end of the tenth switching element T6 and the second end of the eleventh switching element T7 are connected to the inverting input terminal (-) of the third operational amplifier A3 via a resistor R4.
  • the output of the third operational amplifier A3 is connected to the selected sub-electric The input of the path 7032.
  • the control terminals of the ninth to twelfth switching elements T5 to T3 are respectively connected to a timing control controller (not shown).
  • the ninth switching element T5 and the eleventh switching element T7 are applied with the third control signal CK3, thereby being turned on during the third period P3; for example, the tenth switching element T6 and the twelfth switching element T8
  • the fourth control signal CK4 is applied so as to be turned on during the fourth period P4.
  • the first detection voltage and the second detection voltage are respectively amplified by the first operational amplifier A1 and the second operational amplifier A2 in the first-stage amplification sub-circuit.
  • the amplified first detection voltage and the second detection voltage are respectively connected to the non-inverting input terminal and the inverting input terminal of the second-stage amplification sub-circuit (for example, the third operational amplifier A3), and respectively output the first amplification voltage and the second Amplify the voltage.
  • the amplification sub-circuit 7031 may only include the second stage amplification sub-circuit (e.g., the third operational amplifier A3) without the need to further set the first stage amplification sub-circuit.
  • the second stage amplification sub-circuit e.g., the third operational amplifier A3
  • Any of the amplification sub-circuits that can amplify the first detection voltage in the same direction and output as the first amplification voltage and inversely amplify the second detection voltage and output as the second amplification voltage can be used as the amplification sub-circuit 7031.
  • the selection sub-circuit 7032 may include a thirteenth switching element T9 and a fourteenth T10.
  • the output ends of the switching elements T9 and T10 are respectively connected to the second end of the second capacitor C1 and the second end of the first capacitor C2, and the input terminals of the switching elements T9 and T10 are
  • the output terminal of the amplifying sub-circuit 7031 is connected, and the control terminals of the switching elements T9 and T10 are both connected to the timing controller.
  • the first end of the first capacitor C1 and the first end of the second capacitor C2 are both connected to the ground to be connected to each other.
  • the signal input to the non-inverting input will be amplified in the same direction, and the signal input to the inverting input will be amplified in the opposite direction.
  • the selection sub-circuit 7032 may be configured to be turned on according to the third control signal CK3 during the third period P3, thereby The first amplification voltage is stored in the second capacitor C2, is turned on in the fourth period P4 according to the fourth control signal CK4, and stores the reverse voltage of the second amplified voltage in the first capacitor C1.
  • the third control signal CK3 during the third period P3
  • the first amplification voltage is stored in the second capacitor C2
  • is turned on in the fourth period P4 according to the fourth control signal CK4 stores the reverse voltage of the second amplified voltage in the first capacitor C1.
  • the third control signal CK3 is at a low level
  • the switching element T9 is turned on in response to the third control signal CK3 being at a low level (for example, a switching element)
  • T9 may be a PMOS transistor in which the third control signal CK3 is connected to the control gate), so that the first amplification voltage is stored in the second capacitor C2 during the third period P3 (ie, the third control signal CK3 is at a low level).
  • the fourth control signal CK4 is at a low level
  • the switching element T10 is turned on in response to the fourth control signal CK4 being at a low level (for example, the switching element T10 may be a transmission gate), so that the second amplification voltage is in the fourth period P4 (ie, the fourth control signal CK4 is low)
  • the level is stored in the second capacitor C2.
  • the first detection voltage includes an induced voltage component and an offset voltage component
  • the second detected voltage includes an induced voltage component and an offset voltage component, wherein the induced voltage component of the first detected voltage and the induced voltage component polarity of the second detected voltage
  • the offset voltage components of the two are in phase. Since the first amplified voltage is an inverse amplified signal of the first detected voltage and the second amplified voltage is a non-directional amplified signal of the second detected voltage, the first amplified voltage and the second amplified voltage have opposite induced voltage components and the same Offset voltage component.
  • the capacitor C1 After the power is re-distributed by the capacitor C2, the offset voltage is eliminated, and only the induced voltage component of the first detected voltage and the induced voltage component of the second detected voltage are retained, thereby obtaining an accurate induced voltage component that eliminates the offset voltage.
  • the output sub-circuit 7033 may include a fifteenth switching element T11 and a sixteenth switching element T12. One end of the first capacitor C1 is also connected to the sixteenth switching element T12, one end of the second capacitor C2 is also connected to the fifteenth switching element T11, and the output ends of the fifteenth switching element T11 and the sixteenth switching element T12 are connected to each other. And the control terminals of the fifteenth switching element off element T11 and the sixteenth switching element T12 are connected to the timing controller.
  • the output sub-circuit 7033 may be configured to connect the first end of the first capacitor C1 and the first end of the second capacitor C2 in the fifth period P5 according to the fifth control signal CK5.
  • the first capacitor C1 and the second capacitor C2 are connected in parallel via the output sub-circuit 7033, so that the offset voltage components of the same magnitude and opposite polarity in the first capacitor C1 and the second capacitor C2 cancel each other out.
  • the third period P3-the fifth period P5 partially overlaps with the first period P1 and the second period P2 of the next period.
  • a person skilled in the art may know that the third period P3 - the fifth period P5 and the first period P1 and the second period P2 of the next period may not overlap.
  • the detection signals are transmitted at different periods and the same direction and reverse amplification are performed, so that the offset voltage inherent to the sensor itself is eliminated by using only one sensor.
  • the operation of the display device is divided into display phase and voltage Force detection phase.
  • the display phase the display device performs an operation of displaying a screen (for example, progressive scanning or interlaced scanning), a magnetic field generating device (in the embodiment of the present invention, a metal coil) for generating a magnetic field is not energized, and a signal detecting circuit of the sensor and the sensor Not working either.
  • the pressure detection phase the display device does not perform the operation of displaying the screen, the magnetic field generating device is energized, and the sensor and the signal detecting circuit of the sensor operate.
  • the magnetic sensor provided by the embodiment of the present invention can detect a slight change of the magnetic field from the inside of the display device, and detect the pressure received by the magnetic sensor according to the slight change of the magnetic field.
  • the magnetic sensor provided by the embodiment of the present invention can also detect a magnetic field from the outside of the display device, such as a magnetic pen.
  • the cathode layer above the magnetic sensor may be cut by laser ablation to form a window, or in a magnetic sensor No cathode layer is formed in the area directly above.
  • An embodiment of the present invention also provides a sensor circuit including a sensor and a signal detecting circuit connected to the sensor; the sensor including a first pair of terminals and a second pair of terminals, the first pair of terminals and The second pair of segments are electrically symmetrical, for example, the first pair of terminals are configured to receive an input signal and the second terminal is configured to output an inductive signal, or the second pair of terminals are configured to receive an input signal and the first end The terminal is configured to output an inductive signal, the first pair of terminals includes a first end and a third end, the second pair of terminals includes a second end and a fourth end; the signal detecting circuit includes a detection voltage input sub-circuit and The sensing signal output sub-circuit is configured to be connected to the first pair of terminals during a first time period and to the second pair of terminals during a second time period; the sensing signal output sub-circuit includes a first output end and a second output end, and configured to cause the first and second output ends to be respectively connected to the
  • the induced voltage component of the first detected voltage output by the second pair of terminals and the induced voltage component of the second detected voltage of the first pair of terminals are opposite in polarity.
  • the senor is a magnetically sensitive sensor.
  • the detection voltage input sub-circuit includes first to fourth switching elements, one end of the first switching element being coupled to a power supply voltage and the other end coupled to the first end And being turned on during the second period; one end of the second switching element is coupled to the power supply voltage, the other end is coupled to the second end, and is turned on during the first period; Third One end of the switching element is coupled to the ground, the other end is coupled to the third end, and is turned on during the second period; one end of the fourth switching element is coupled to the ground, and the other end is coupled to the fourth And turned on during the first period of time.
  • the sensing signal output sub-circuit further includes fifth to eighth switching elements, one end of the fifth switching element being coupled to the first end, and the other end being opposite to the first An output end is coupled and is turned on during the first time period; one end of the sixth switching element is coupled to the second end, and the other end is coupled to the first output end, and in the Turning on the second period; one end of the seventh switching element is coupled to the third end, the other end is coupled to the second output end, and is turned on during the first period; the eighth switching element One end is coupled to the fourth end, the other end is coupled to the second output end, and is turned on during the second period of time.
  • the first to eighth switching elements are NMOS transistors and/or PMOS transistors.
  • the illustrated sensor circuit further includes an offset voltage cancellation circuit;
  • the offset voltage cancellation circuit includes a first input, a second input, an amplification sub-circuit, a selection sub-circuit, a first capacitance, and a second capacitor and an output sub-circuit, wherein the first input end and the second input end of the offset voltage canceling circuit correspond to the first output end and the second output end of the sensing signal output sub-circuit to respectively receive the a first detection voltage and the second detection voltage;
  • the amplification sub-circuit is configured to respectively amplify the first detection voltage as a first amplification voltage and inversely amplify the second detection signal and as a second Enlarging a voltage;
  • the selection sub-circuit is configured to store the first amplification voltage in the second capacitor for a third period of time and to store the second amplification voltage at the first capacitor for a fourth period of time The third period is different from the fourth period; the first end of the first capacitor and the first end of the second capacitor are connected to
  • the amplification sub-circuit includes a first amplification sub-circuit and a second amplification sub-circuit in series with the first amplification sub-circuit; the first amplification sub-circuit will be the first The detection voltage and the second detection voltage are amplified and input to the second amplification sub-circuit, the second amplification sub-circuit further amplifies the amplified first detection voltage in the same direction, and the amplified second detection voltage Further reverse amplification.
  • the first amplifying sub-circuit includes a first operational amplifier, a second operational amplifier, and ninth to twelfth switching elements
  • the second amplifying sub-circuit includes a third operational amplifier
  • the non-inverting input terminal of the first operational amplifier is connected to the offset voltage cancellation a first input end of the circuit
  • the non-inverting input terminal of the second operational amplifier is connected to the second input end of the offset voltage canceling circuit, and the inverting input end of the first operational amplifier and the second operational amplifier are opposite
  • the phase input terminals are connected to each other; one end of the ninth switching element is connected to the output end of the first operational amplifier and the inverting input terminal, and the other end is connected to the non-inverting input terminal of the third operational amplifier, and is configured to be
  • the third time period is turned on; one end of the tenth switching element is connected to the output end and the inverting input end of the first operational amplifier, and the other end is connected to the inverting input end of the third operational amplifier, and is configured
  • the selection sub-circuit includes thirteenth and fourteenth switching elements, one end of the thirteenth switching element being connected to an output end of the amplifying sub-circuit, and the other end being connected to the a second end of the second capacitor, and configured to be turned on during the third period; one end of the fourteenth switching element is connected to an output end of the amplifying sub-circuit, and the other end is connected to a second end of the first capacitor And configured to be turned on during the fourth time period.
  • the output sub-circuit includes fifteenth and sixteenth switching elements, one end of the fifteenth switching element being connected to an output of the output sub-circuit, and the other end being connected to the a second end of the second capacitor, and configured to be turned on during the fifth period; one end of the sixteenth switching element is connected to an output end of the output sub-circuit, and the other end is connected to a second end of the second capacitor And configured to be turned on during the fifth period of time.
  • the sensor circuit provided by the embodiment of the invention can be used to detect the magnitude of the pressure applied by the display device, and the offset voltage that may be inherent to the sensor itself can be eliminated by using only one sensor through the corresponding signal detection circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of El Displays (AREA)

Abstract

一种有机发光二极管(OLED)显示装置(400)及其压力触控驱动方法,有机发光二极管(OLED)显示装置(400)包括:硅基板(302);形成在硅基板(302)上的像素单元(300)和磁敏传感器(100,305,401,501,601,701);磁场发生装置(306)。磁场发生装置(306)被配置为向磁敏传感器(100,305,401,501,601,701)提供磁场,磁场穿过磁敏传感器(100,305,401,501,601,701)所在的平面。磁敏传感器(100,305,401,501,601,701)被配置为检测磁场变化且将磁场变化转化为电压差(V o+-V o-)输出。

Description

OLED显示装置及其压力触控驱动方法 技术领域
本发明的实施例涉及OLED显示装置及其压力触控驱动方法。
背景技术
在显示装置中实现压力触控以实现更加丰富的触控操作是业内的研究热点以及市场开发的重点。为了实现压力触控,可在显示装置中集成压敏传感器。目前采用电磁感应式的模组叠层结构的压敏传感器大多采用矩形线圈接收感应的方式。但是,这种矩形线圈要么只能被配置为接收磁性笔发出的较强信号,要么则只能勉强感应到手指触摸微弱信号,而无法对手指压力进行压力等级区分。
发明内容
鉴于上述问题,本发明的实施例提供了一种有机发光二极管(OLED)显示装置及压力触控驱动方法,以在OLED显示装置中实现更好的压力触控操作。
本发明的实施例提供了一种有机发光二极管(OLED)显示装置,包括:硅基板;在所述硅基板一侧的像素单元和磁敏传感器;以及磁场发生装置,被配置为向所述磁敏传感器提供穿过所述磁敏传感器所在的平面的磁场;所述磁敏传感器被配置为检测所述磁场变化且将所述磁场变化转化为电压差输出。
本发明的另一个实施例还提供了一种压力触控驱动方法,包括:向磁敏传感器提供磁场方向穿过所述磁敏传感器所在平面的磁场;通过磁敏传感器检测所述磁场的变化;将磁场的变化转化为电压;输出所述电压;识别触控位置和压力值。
本发明的再一个实施例还一种用于被检测电路的信号检测电路,所述被检测电路包括第一对端子和第二对端子,所述第一对端子和所述第二对端子在电气上是对称设置的,所述信号检测电路包括:检测电压输入子电路和感应信号输出子电路,所述检测电压输入子电路配置为连接到第一对端子和所述第二对端子,所述感应信号输出子电路包括第一输出端和第二输出端,连 接到所述第一对端子和所述第二对端子,且被配置为可在不同时段分别输出第一检测电压和第二检测电压。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1示出了本发明实施例提供的磁敏传感器的示意图。
图2示出了本发明实施例提供的磁敏传感器的等效电路图。
图3示出了本发明实施例提供的显示装置的OLED像素单元的示意图。
图4示出了本发明实施例提供的OLED显示装置的俯视图。
图5示出了本发明实施例提供的一种传感器电路的示意图。
图6示出了本发明实施例提供的又一种传感器电路的示意图。
图7a和7b示出了本发明实施例提供的又一种传感器电路的示意图。
图8示出了本发明实施例提供的第一-第五控制信号的时序图。
图9示出了一种OLED像素单元的驱动电路的示意图。
具体实施例方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,本公开所使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中,“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”、“耦接”或者“相连”等类似的词语并非限定于物理或者机械连接,而是可以包括电性耦接,不管是直接还是间接的耦接。“上”、“下”、“左”、“右”等用语仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了提高压力检测的精度并且降低具有压力触控功能的显示装置的价格,本发明的实施例提供一种整合了磁敏传感器的OLED显示装置并且提供了磁敏传感器的检测电路。
常规的有源矩阵OLED(AMOLED)显示器件利用玻璃板作为背板,且利用薄膜晶体管(TFT)作为开关元件等,薄膜晶体利用非晶硅、微晶硅、低温多晶硅或氧化物半导体作为有源层。硅基有机发光二极管(OLED)显示器件区别于这些AMOLED。硅基OLED显示器件以单晶硅硅片为基底,在该硅基底上制备驱动电路、OLED等器件,像素尺寸可以缩小为常规的AMOLED显示器件的1/10,分辨率远远高于常规的AMOLED器件,由此可以实现微显示。而且,硅基OLED显示器件可以采用现有成熟的硅基板集成电路工艺,不但可以实现显示屏像素的有源寻址矩阵,还可以在硅芯片上实现例如SRAM存储器、T-CON(时序控制器)等多种功能的控制电路,因此大大减少了显示器件的外部连线,增加了显示器件的可靠性,实现了显示器件轻量化。
图1示出了本发明的一个实施例提供的一种形成在硅基板上的磁敏传感器100的平面示意图。本发明的实施例提供的磁敏传感器100在整合到例如硅基OLED显示装置中后,可以根据霍尔效应测量施加在显示装置上的压力,从而实现触控检测。所谓霍尔效应是指当磁场发生装置的磁场作用于金属导体、半导体中的载流子时,产生横向电压差的物理现象。磁场发生装置例如可以是通电的线圈以及诸如磁性油墨、磁体(天然磁体或人工磁体)等的磁性材料。在本发明的实施例中,磁场发生装置可以是通电的线圈。通常,磁场发生装置设置在磁敏传感器的下方(例如背对使用者一侧)。本发明实施例中用于磁敏传感器的磁场发生装置的示例将在以下更详细的描述。
在磁敏传感器100受到磁场发生装置提供的磁场作用的情况下,如果磁敏传感器100与磁场发生装置的距离d发生变化(例如受到按压,参见图3),则在垂直于磁场方向的平面上,磁敏传感器100感应到的磁通量也发生变化。此时,根据霍尔效应,磁敏传感器100将产生感应电流,即出现电压差,该电压差对应于作用于所述OLED显示装置上的压力。根据该电压差可以确定磁敏传感器100的相对于磁场发生装置的位移,也就是说可以测量施加到该磁敏传感器100的压力。
如图1所示,在本发明的实施例中,该磁敏传感器100形成于硅基板上, 且例如磁敏传感器100为正方形,但也可以形成为其他形状,例如圆形等。该磁敏传感器100包括第一对端子和第二对端子,其中,第一对端子包括位于正方形一条对角线上的第一端H1和第三端H3,第二对端子包括正方形另一条对角线上的第二端H2和第四端H4。
对于上述磁敏传感器,例如,当在垂直于磁敏传感器的磁场所在平面的方向施加电压Vdd,也就是在第一端H1和第三端H3之间施加电压Vdd时,在磁场的作用下,运动的电子受到磁场的洛仑兹力的作用,发生偏移,在第二端H2和第四端H4之间建立起霍尔电压差UH。根据霍尔效应,该霍尔电压差UH为:
Figure PCTCN2017079291-appb-000001
其中,RH为霍尔系数,I为电流大小,B为垂直于电流方向的磁场强度,d为该磁敏传感器100中霍尔元件的厚度,并且I和B均为矢量。
从公式可以看出,该霍尔电压差UH与磁场强度B成正比,因此可以通过计算输出的电压差,来检测出磁场的变化,进而得到施加在器件上的压力的大小或变化量。
更具体地,图1中的磁敏传感器100的等效电路如图2所示,其包括4个电阻R1、R2、R3和R4构成的文氏桥。如图2所示,例如,第一端H1接电源Vdd,第三端H3接地(GND)。在图2的示例中,电阻R1、R2、R3和R4的阻值彼此相同,即为等臂电桥电路。第二端H2和第四端H4相对于地(GND)的电位为Vdd/2,且第二端H2和第四端H4之间的电势差为0。当磁敏传感器100受到压力,则会相对于磁场发生装置产生位移,即通过磁敏传感器100的磁通量发生变化,在第二端H2和第四端H4之间会产生感应电流,形成霍尔电势差。根据上述公式1,该霍尔电势的方向由磁场方向和电流方向共同决定。在本示例中,由于磁敏传感器100水平放置,因此可以感应垂直于该磁敏传感器100所在平面的磁场,如图2所示,右下角的原点代表磁场的方向为垂直于磁敏传感器100所在平面向外出射。通电的导线线圈产生的磁场方向大体垂直于线圈平面,即,垂直于该磁敏传感器100。因此,通过检测在第二端H2和第四端H4之间产生的电势差,即检测在第四端H4和第二端H2之间的电压差(即,Vo+-Vo-),可以计算出磁敏传感器100的位移,进而计算出磁敏传感器100所受到的压力。
当本发明实施例的磁敏传感器被集成在硅基OLED显示装置中时,每个磁敏传感器可以与显示装置一个或多个像素单元中的子像素对应设置在显示装置上,例如每个磁敏传感器与一个或多个像素单元相邻设置,构成阵列布置中的一个重复单元。以下以OLED显示装置为例,描述在显示装置中集成的磁敏传感器。
图3示出了本发明一个实施例提供的硅基OLED显示装置的像素单元300的剖面示意图。像素单元300包括像素驱动电路、一个或多个电连接层和OLED等,OLED通过电连接层连接到像素驱动电路,磁敏传感器通过所述电连接层连接到其检测电路。
像素单元300可以是白光像素单元,也可以是可发出其他颜色的光的子像素单元。如图3所示,该像素单元300为白光像素单元,包括红色、蓝色和绿色滤光单元(滤色树脂层),从而分别形成红色子像素(R)、蓝色子像素(B)和绿色子像素(G),这些子像素在工作时分别发出红光、蓝光和绿光,由此实现彩色显示。白光像素单元包括能发出白光的OLED器件,其可以包括依次堆叠的阴极、有机发光功能层(EL)和阳极,根据需要还可以包括电子传输层、空穴传输层、电子注入层、空穴注入层中的一个或多个有机功能层。
如图3所示,该像素单元300可以包括硅基板302以及设置在该硅基板302中的P型半导体衬底303、在P型半导体衬底303上形成的包括一个或多个MOS晶体管的像素驱动电路304、该硅基板302中的磁敏传感器305,并且例如,还可以包括被配置为产生磁场的磁场发生装置306(在图3中例如为通电线圈)。硅基板302可以为单晶硅基板,或者为通过外延生长方法制备在蓝宝石基板等之上的单晶硅层等,例如为SOI基板。
例如,磁场发生装置306可以设置在基板302的下方,但是本发明的实施例不限于此。例如,该磁场发生装置306也可以形成在硅基板302中。也就说,该磁场发生装置可以设置在硅基板302的一侧或形成在硅基板302之中,该磁场发生装置工作时所形成的磁场穿过(例如垂直穿过)磁敏传感器所在的平面,从而可以被检测。除了可通电的通电线圈之外,该磁场发生装置306还可以例如采用其他可以产生磁场的装置或结构,例如永磁材料涂层(例如磁性油墨涂层)等。如图3所示,磁敏传感器305随着像素单元300的子像素而被集成到硅基板之中,从而与像素单元并列布置。
驱动电路304可以例如包括被配置为控制OLED的晶体管3041、3042和3043以及被配置为控制磁敏传感器305的晶体管3044。上述晶体管3041-3044可以是MOS晶体管(NMOS晶体管或PMOS晶体管),作为开关元件或驱动元件。这些晶体管彼此间隔开,例如可以通过绝缘材料场氧化物(FOX)或浅沟槽等方式彼此隔离。
例如,该磁敏传感器305可以包括在P型半导体衬底303中形成的低掺杂的N型半导体区(例如n阱)3021。例如,可以通过向P型半导体衬底303注入磷或其他五价元素来制作该N型半导体区3021。例如,该N型半导体区3021与该磁敏传感器305一样为正方形、圆形等。在该N型半导体区3021的四个顶点处进行n+注入,形成第一至第四n+离子注入区域,从而形成磁敏传感器的第一至第四端H1~H4。
例如,在该实施例的一个示例中,在进行n+注入之前,在N型半导体区3021上还可以形成一层p+离子浅掺杂层3022。该p+离子浅掺杂层3022通常设置在N型半导体区3021的中心区域上,其四周由N型半导体区3021的其余部分围绕,所述p+离子浅掺杂层的面积小于所述N型半导体区的面积,如图1所示。在该p+离子浅掺杂层3022可以增大磁敏传感器的平均电阻率并且减小磁敏传感器305的厚度,进而可提高磁敏传感器305的灵敏度。此外,由于在制作工艺中通常可以在每一层结构上方覆盖一层二氧化硅层,所以该p+离子浅掺杂层3022还在N型半导体区和二氧化硅层之间起到静电屏蔽层的作用,提高了该磁敏传感器305的稳定性。
如图3所示,硅基板上形成有一个或多个电连接层,这些电连接层包括形成在绝缘层330上的导电图案(例如图中的金属层3201、3202等),并且不同绝缘层330上的导电图案可以通过过孔3203彼此电连接。
磁敏传感器305的制作可以与OLED显示装置中的MOS晶体管的制作在相同的半导体制备工艺中完成。例如,在制作PMOS晶体管时,需要首先制作N型半导体区。在制作PMOS晶体管的N型半导体区的同时,可以制作磁敏传感器305的N型半导体区3021。类似地,例如,在为了制作PMOS而进行p+注入时,可以同时制作p+离子浅掺杂层3022;在为了将MOS晶体管引出而注入n+时,可以同时在该N型半导体区3021的四个顶点处进行n+离子注入得到n+离子注入区域,从而形成磁敏传感器的四个端点。将磁敏传感器305制作工艺集成在MOS晶体管的制作工艺中可以降低面板的制造成 本。
制作磁敏传感器305的工艺可以有多种,而不限于以上描述。例如,为了实现更好地性能,也可以采用单独的工艺制作磁敏传感器。由于磁敏传感器可以通过单独的工艺来制作,因此本发明实施例提供的磁敏传感器还可以设置在其他类型的显示装置中,例如,LCD显示装置。本领域技术人员应当理解,图3的示例仅为了更好地说明制作磁敏传感器的工艺可以与制作OLED显示装置的工艺整合在一起,而非限制本发明实施例提供的磁敏传感器仅能应用于OLED显示装置。
如上所述,只有磁敏传感器305处在磁场中,才能够将受到的压力感应并转换成电压进行输出。在图3的实施例中,用作磁场发生装置的线圈306被设置在磁敏传感器100一侧。例如,该线圈306被设置在基板302下方。为了更好地说明线圈与显示装置之间的关系,图4示出了本发明实施例提供的包括多个如图3所示的像素单元300(包括磁敏传感器)的OLED显示装置400的俯视图。如图4所示,OLED显示装置400可以包括多个如图3所示的实施例的OLED像素单元,这些像素单元排列为阵列,多个磁敏传感器401与多个像素单元并列布置,但是本发明实施例可以包括比图4所示的情形更少或更多的磁敏传感器401。
OLED显示装置400包括至少一个线圈作为磁场发生装置。在图4的示例中,例如,该至少一个线圈为矩形线圈。例如,在该示例中,该矩形线圈包括在第一层上的第一方向(例如横向)延伸的第一线圈402和在第二层上的第二方向(例如纵向)延伸的第二线圈403,第一方向和第二方向相交叉,例如彼此垂直。第一线圈402和第二线圈403彼此交叉(且绝缘),从而在交叉区域定义了一个矩形区域。每个矩形区域对应于磁敏传感器,例如可以覆盖一个或多个像素单元以及一个或多个磁敏传感器。图4中示出矩形区域404中包括4个像素单元。本领域技术人员应当知道,图4的示例仅为示例性,矩形区域可以根据设计需要包括更多或更少的像素单元。通过以上布置,通过向一个或多个第一层线圈402以及一个或多个第二层线圈403通电,可以向特定区域施加磁场。例如,选择线圈L1和线圈C5以施加电流,可以仅向右上角的矩形区域404施加磁场。又例如,选择线圈L4和线圈C4-C5以施加电流,可以仅向右下角的矩形区域405施加磁场。上述矩形线圈还可以仅在需要进行检测时通电,从而可以在特定区域检测压力并尽可能的节约功 耗。而且,通过对线圈进行定位,还可以测定显示装置上被施加压力的位置,从而实现触控位置的检测。
本领域技术人员应当知道,本发明实施例提供的矩形线圈可以只包含横向布置的线圈或者只包含纵向布置的线圈,甚至采用其他任何形状的磁场发生装置,只要能够提供足够强度的磁场即可。
为了检测显示装置所承受压力的位置及其大小,可以将磁敏传感器作为亚像素均匀地分布在整个显示装置中。如图2所示,通过检测每个磁敏传感器在第二端H2和第四端H4之间产生的电势差,可以得到磁敏传感器的相对于磁场发生装置的位移。因此,需要将第二端H2和第四端H4连接到信号检测电路以进行检测。
图5示出了本发明一个实施例提供的OLED显示装置中的传感器电路500的示意图。该传感器电路500包括磁敏传感器501和信号检测电路502。磁敏传感器501包括第一端H1、第二端H2、第三端H3和第四端H4。信号检测电路502包括电源端(Vdd)、接地端(GND)、第一信号检测端和第二信号检测端。如图5所示,磁敏传感器501的第一端H1可以连接到电源端,磁敏传感器501的第三端H3可以连接到接地端(GND)。磁敏传感器501的第二端H2和第四端H4可以分别连接到信号检测电路502的第一信号检测端和第二信号检测端并被放大,以将放大后的信号输出。例如,该信号检测电路502例如包括运算放大器,运算放大器的同相输入端(+)接第二信号检测端,运算放大器的反相输入端(-)接第一信号检测端,运算放大器的输出端(Vout)输出放大后的电压信号。对于该运算放大器相应地设置了电阻R4、R5、R6和R7,并且电阻R4连接第一信号检测端和运算放大器的反向相输入端,电阻R5连接第二信号检测端和运算放大器的同相输入端。电阻R7连接参考电压和运算放大器的同相输入端。电阻R6连接运算放大器的反相输入端和输出端。
磁敏传感器501的第二端H2和第四端H4可以通过电连接层(金属层)引出到检测电路502(例如包括图3所示的晶体管3034等)。如图3所示,磁敏传感器与用于OLED像素单元的像素驱动电路可以至少部分同层形成。在图5的示例中,信号检测电路502包括运算放大器以构成差分放大器电路。经过信号检测电路502放大以后的信号可以被外围电路进一步读取以检测通过磁敏传感器501的磁场变化,并且进而计算并显示磁敏传感器501所承受 压力的位置及其大小。
图6示出了本发明另一个实施例提供的OLED显示装置的传感器电路600的示意图。传感器电路600可以包括磁敏传感器601、信号检测电路602和电源开关元件603。例如,该电源开关元件603可以为PMOS晶体管。与图5的实施例相比,磁敏传感器601的第一端H1经由电源开关元件603连接到电源端Vdd。该电源开关元件603的控制端连接到控制线。OLED显示装置包括多条栅线和多条数据线,还可以包括多条电源线,这些栅线连接到栅驱动电路(例如栅驱动器或栅极驱动芯片),这些数据线连接到数据驱动电路,这些电源线连接到电源以给像素单元供电。例如,栅线和数据线彼此交叉从而界定了子像素单元。与该电源开关元件603的控制端连接的控制线例如为栅线之一,后者连接到栅驱动电路,因此其上可以施加栅驱动信号。当该电源开关元件603的控制线为栅线之一或由栅驱动电路控制,例如可以在控制线上施加的栅信号为高电平时进行压力感测。该示例可以允许像素单元和磁敏传感器共用栅线和栅极信号,制备工艺简单,并且压力触控驱动方法也可以变得更简单,从而使得成本低廉。
图9示出了一种OLED像素单元的驱动电路的示意图。如图9所示,该OLED像素单元的驱动电路包括两个晶体管T1和T2以及一个存储电容Cs。晶体管T1的控制端接栅线也即被施加选择电压Vsel,晶体管T1的第一端连接数据线从而被施加灰度数据电压,晶体管T1的第二端接存储电容Cs的第一端。晶体管T2的控制端接晶体管T1的第二端和存储电容Cs的第一端,晶体管T2的第一端连接OLED器件,晶体管T2的第二端接存储电容Cs的第二端并接地。OLED器件一端通过电源线与电源连接,另一端与晶体管T2的第一端连接。本领域技术人员应该理解,本发明的实施例并不限于适用于图9所示的OLED像素单元的驱动电路,而是还可以使用任何已知的OLED像素单元的驱动电路,例如包括更多的晶体管和/或电容等。
图5和图6所示的实施例的传感器电路,可以对施加在显示装置上的压力进行采样、放大并且输出,从而检测压力的大小或变化量等。但是,传感器(例如,本发明实施例提供的磁敏传感器)在工作中可能存在失调电压。失调电压通常由制备工艺引起,包括材料的各向异性、杂质扩散的不均匀、几何结构的非对称等因素。因而,图5和图6所示的传感器电路在放大检测电压的同时,也放大了其中包括的失调电压成分,这样的检测电压将使得压 力感测不够精确。因此,需要消除检测电压中的失调电压成分。
例如,为了消除失调电压,在本发明的实施例的示例中,可以制备两个完全相同的磁敏传感器,同时检测这两个磁敏传感器的输出信号,然后例如将两个输出信号进行平均来进行补偿。但是,从工艺的角度而言,制备两个完全相同的磁敏传感器本身也很难实现,并且在像素单元中缺乏足够的空间设置两个磁敏传感器,因此本发明实施例提供一种在OLED显示装置中仅使用一个磁敏传感器就消除失调电压的方案。
图7a示出了本发明一个实施例提供的传感器电路的示意图;图7b在图7a所示的实施例的基础上进一步增加了失调电压消除电路的示意图。在图7a的示例和图7b的示例中,通过交替地改变输入检测电压的通路,使得磁敏传感器检测到的检测信号周期性、交替地分别从彼此对称的两对端口输出,从而可以利用检测电压中的感应电压成分和失调电压成分的极性,然后实现对于失调电压成分的补偿。
以下具体描述本发明一个实施例提供的OLED显示装置的传感电路700的示例的结构及压力触控驱动方法。
如图7a所示,在该实施例的一个示例中,传感器电路700可以包括传感器701、连接到该传感器701的信号检测电路702。如图7b所示,在该实施例的另一个示例中,还可以在图7a所示的传感器电路700基础上增加失调电压消除电路703。失调电压消除电路703对来自信号检测电路702的信号进行放大和失调电压消除。
图7a示出了传感器电路700包括传感器701和信号检测电路702。在本示例中,例如传感器701是本发明的实施例中形成在硅基板上的磁敏传感器,但是也可以是其他类型的传感器。
如图7a所示,该信号检测电路702可以包括检测电压输入子电路7021和感应信号输出子电路7022。如上所述,传感器701可以包括第一对端子(H1,H3)和第二对端子(H2,H4)。检测电压输入子电路7021可以配置为在第一时段P1与第一对端子连接,而在第二时段P2与第二对端子连接。第一时段P1和第二时段P2的关系例如请参见图8。感应信号输出子电路7022包括第一输出端7023和第二输出端7024,且配置为,在第一时段P1使得第一和第二输出端分别与传感器701的第二对端子连接以输出第一检测电压,在第二时段P2使得第一和第二输出端分别与传感器701的第一对端 子连接以输出第二检测电压,第一时段P1与第二时段P2彼此不同。
在一些实施例中,检测电压输入子电路7021可以包括与传感器701的第一端H1、第二端H2、第三端H3和第四端H4分别连接的第一开关元件M1、第二开关元件M2、第三开关元件M3和第四开关元件M4。感应信号输出子电路7022可以包括第五开关元件T1、第六开关元件T2、第七开关元件T3和第八开关元件T4。
在图7a的示例中,传感器701为正方形的磁敏传感器。因此,第一端H1、第二端H2、第三端H3和第四端H4在结构上是实质上等同的端点。
检测电压输入子电路7021包括的第一开关元件M1、第二开关元件M2、第三开关元件M3和第四开关元件M4的示例说明如下。
第一开关元件M1的一端耦接到电源电压Vdd,另一端耦接到传感器701的第一端H1,控制端接时序控制器(未示出)并且根据第二控制信号CK2导通或截止。在图6a的示例中,第一开关元件M1可以是PMOS晶体管,并且当第二控制信号CK2为低电平时导通。
第二开关元件M2的一端耦接到电源电压Vdd,另一端耦接到传感器701的第二端H2,控制端接时序控制器并且根据第一控制信号CK1导通或截止。在图6a的示例中,第二开关元件M2可以是PMOS晶体管,并且当第二控制信号CK2为低电平时导通。这里,电源电压Vdd可以根据需要进行设置。
第三开关元件M3的一端耦接到地,另一端耦接到传感器701的第三端H3,控制端接时序控制器并且根据第二控制信号CK2导通或截止。在图6a的示例中,第三开关元件M3可以是NMOS晶体管,并且当第二控制信号CK2的反相信号为高电平时导通。
第四开关元件M4的一端耦接到地,另一端耦接到传感器701的第四端H4,控制端接时序控制器并且根据第一控制信号CK1导通或截止。在图6a的示例中,第四开关元件M4可以是NMOS晶体管,并且当第一控制信号CK1的反相信号为高电平时导通。
感应信号输出子电路7022包括的第五开关元件T1、第六开关元件T2、第七开关元件T3和第八开关元件T4的示例说明如下。
第五开关元件T1的一端与传感器701的第一端H1耦接,另一端与第一输出端7023耦接,控制端接时序控制器(未示出)并且根据第一控制信号CK1导通或截止。
第六开关元件T2的一端与传感器701的第二端H2耦接,另一端与第一输出端7023耦接,控制端接时序控制器并且根据第二控制信号CK2导通或截止。
第七开关T3的一端与第三端H3耦接,另一端与第二输出端7024耦接,控制端接时序控制器并且根据第一控制信号CK1导通或截止。
第八开关元件T4的一端与第四端H4耦接,另一端与第二输出端7024耦接,控制端接时序控制器并且根据第二控制信号CK2导通或截止。
在图7a中,例如,第五开关元件T1和第七开关元件T3配置为响应于第一控制信号CK1为低电平而导通,第六开关元件T2和第八开关元件T4配置为响应于第二控制信号CK2为低电平而导通。例如,上述第五到第八开关元件可以是传输门,但是本发明的实施例不限于上述开关元件的具体类型。
第一控制信号CK1和第二控制信号CK2的电平关系以及时序关系的示例如图8所示。在图8中,一种优选的方式中,第一控制信号CK1和第二控制信号CK2互为频率相同的反相信号。即,当第一控制信号CK1为高电平时,第二控制信号CK2为低电平。因此,在第一控制信号CK1为高电平且第二控制信号CK2为低电平的第一时段P1,检测电压输入子电路7021在第一时段P1与传感器701的第一对端子(H1,H3)连接,感应信号输出子电路7022与第二对端子(H2,H4)连接以在该第一时段P1输出第一检测电压。在第一控制信号CK1为低电平且第二控制信号CK2为高电平的第二时段P2,检测电压输入子电路7021在第二时段P2与传感器的第二对端子连接,感应信号输出子电路7022与第一对端子连接以在该第二时段P2输出第二检测电压。
通过设置第一控制信号CK1和第二控制信号CK2的时序,信号检测电路702交替向传感器701的第一对和第二对端子施加检测电压,感应信号输出子电路7022则交替地从传感器701的第二对和第一对端子读取第一检测电压和第二检测电压,并且在第一时段P1输出该第一检测电压,在第二时段P2输出该第二检测电压。该第一检测电压包括感应电压成分和失调电压成分,第二检测电压包括感应电压成分和失调电压成分,其中第一检测电压的感应电压成分和第二检测电压的感应电压成分极性相反,然而二者的失调电压成分同相。本领域技术人员应当知道,第一控制信号CK1和第二控制 信号CK2的时序关系和电平关系等并不限制为图8所示的示例,只要可以从传感器701交替读取第一检测电压和第二检测电压并且输出即可。
由信号检测电路702检测得到的第一检测电压和第二检测电压被输入给失调电压消除电路703。如图7b所示,该失调电压消除电路703可以包括第一输入端Vi1、第二输入端Vi2、放大子电路7031、选择子电路7032、第一电容C1、第二电容C2以及输出子电路7033。感应信号输出子电路7022的第一输出端7023和第二输出端7024与失调电压消除电路703的第一输入端Vi1、第二输入端Vi2分别连接。
放大子电路7031可以配置为将第一检测电压放大并作为第一放大电压而输出,将第二检测电压反向放大并且作为第二放大电压而输出。
在图7b的示例中,放大子电路7031可以包括第一级放大子电路7031a、第二级放大子电路7031b以及设置在它们之间的控制电路7031c。第一级放大子电路7031a包括第一运算放大器A1和第二运算放大器A2。控制电路7031c包括4个开关元件,即第九开关元件至第十二开关元件,在图7b中分别标注为T5、T6、T7和T8。第二级放大子电路包括第三运算放大器A3。
第一运算放大器A1的同相输入端(+)与信号检测电路702的第一输出端7023连接,第一运算放大器A1的输出端与第九开关元件T5的第一端和第十开关元件T6的第一端连接。第二运算放大器A2的同相输入端(+)与信号检测电路702的第二输出端7024连接,第二运算放大器A2的输出端与第十一开关元件T7的第一端和第十二开关元件T8的第一端连接。第一运算放大器A1的反相输入端(-)和第二运算放大器A2的反相输入端(-)彼此连接,例如经由电阻R1连接。
另外,在图7b中,电阻R2的一端连接到第一运算放大器A1的反相输入端(-),另一端连接到第一运算放大器A1的输出端,并且因此连接到第九开关元件T5的第一端和第十开关元件T6的第一端。电阻R3的一端连接到第二运算放大器A2的反相输入端(-),另一端连接到第二运算放大器A2的输出端,并且因此连接到第十一开关元件T7的第一端和第十二开关元件T8的第一端。第九开关元件T5的第二端和第十二开关元件T8的第二端经由电阻R5连接到第三运算放大器A3的同相输入端(+)。第十开关元件T6的第二端和第十一开关元件T7的第二端经由电阻R4连接到第三运算放大器A3的反相输入端(-)。第三运算放大器A3的输出则连接到选择子电 路7032的输入端。
第九开关元件T5至第十二开关元件T3的控制端分别连接到时序控制控制器(未示出)。在工作中,例如,第九开关元件T5和第十一开关元件T7被施加第三控制信号CK3,从而在第三时段P3被导通;例如,第十开关元件T6和第十二开关元件T8被施加第四控制信号CK4,从而在第四时段P4被导通。
因此,第一检测电压和第二检测电压由第一级放大子电路中的第一运算放大器A1和第二运算放大器A2分别放大。放大后的第一检测电压和第二检测电压分别接入第二级放大子电路(例如,第三运算放大器A3)的同相输入端和反相输入端,并分别输出第一放大电压和第二放大电压。
本领域普通技术人员应当知道,如果放大能力足够,则放大子电路7031可以仅包含第二级放大子电路(例如,第三运算放大器A3),而无需再设置第一级放大子电路。可以将第一检测电压同向放大并作为第一放大电压输出且将第二检测电压反向放大并且作为第二放大电压输出的任何放大子电路,均可以用作放大子电路7031。
该选择子电路7032可以包括第十三开关元件T9和第十四T10。开关元件T9和T10的输出端(即,选择子电路7032的输出端)分别连接到第二电容C1的第二端和第一电容C2的第二端,开关元件T9和T10的输入端均与放大子电路7031的输出端连接,开关元件T9和T10的控制端均与时序控制器连接。第一电容C1的第一端和第二电容C2的第一端均连接到地,从而彼此连接。根据运算放大器的特性,输入到同相输入端的信号将被同向放大,而输入到反相输入端的信号将被反向放大。
为了将获得的第一放大电压和第二放大电压分别存储到第一电容C1和第二电容C2中,选择子电路7032可以配置为根据第三控制信号CK3在第三时段P3导通,从而将第一放大电压存储在第二电容C2中,根据第四控制信号CK4在第四时段P4导通,将第二放大电压的反向电压存储在第一电容C1中。例如,如图6b和图7所示,在第三时段P3,第三控制信号CK3为低电平,开关元件T9响应于该第三控制信号CK3为低电平而导通(例如,开关元件T9可以是第三控制信号CK3连接到控制栅的PMOS晶体管),从而第一放大电压在第三时段P3(即,第三控制信号CK3为低电平)被存储到第二电容C2中。类似地,在第四时段P4,第四控制信号CK4为低电平, 开关元件T10响应于该第四控制信号CK4为低电平而导通(例如,开关元件T10可以是传输门),从而第二放大电压在第四时段P4(即,第四控制信号CK4为低电平)被存储到第二电容C2中。
如上所述,第一检测电压包括感应电压成分和失调电压成分,第二检测电压包括感应电压成分和失调电压成分,其中第一检测电压的感应电压成分和第二检测电压的感应电压成分极性相反,但是二者的失调电压成分同相。由于第一放大电压是第一检测电压的反向放大信号而第二放大电压是第二检测电压的同向放大信号,所以第一放大电压和第二放大电压具有相反的感应电压成分和相同的失调电压成分。
因此,当第一电容C1的第一端和第二电容C2的第一端连接时,由于第一放大电压和第二放大电压具有相反的感应电压成分和相同的失调电压成分,因此在电容C1和电容C2重新分配电量后,恰好消除了失调电压,仅保留第一检测电压的感应电压成分和第二检测电压中的感应电压成分,从而得到消除了失调电压的精确的感应电压成分。
因此,输出子电路7033可以包括第十五开关元件T11和第十六开关元件T12。第一电容C1的一端还连接到第十六开关元件T12,第二电容C2的一端还连接到第十五开关元件T11,第十五开关元件T11和第十六开关元件T12的输出端彼此相连,并且第十五开关元件关元件T11和第十六开关元件T12的控制端与时序控制器连接。例如,输出子电路7033可以配置为根据第五控制信号CK5在第五时段P5将第一电容C1的第一端和第二电容C2的第一端连接。也就是说,在第五时段P5,第一电容C1和第二电容C2经由输出子电路7033并联,从而第一电容C1和第二电容C2中幅值相同且极性相反的失调电压成分互相抵消。
以上关于第一-第五控制信号的时序关系例如请参见图8。在图8中可以看到,为了提高传感器电路的效率,第三时段P3-第五时段P5与下一个周期的第一时段P1和第二时段P2部分重叠。本领域技术人员可以知道,第三时段P3-第五时段P5与下一个周期的第一时段P1和第二时段P2也可以不重叠。
如上所述,通过设置第一电容C1和第二电容C2,在不同时段传输检测信号并且进行同向和反向放大,从而仅利用一个传感器就消除了传感器本身固有的失调电压。
为了节约功耗以及避免信号的串扰,显示装置的操作分为显示阶段和压 力检测阶段。在显示阶段,显示装置进行显示画面的操作(例如逐行扫描或隔行扫描),用于生成磁场的磁场发生装置(在本发明实施例中为金属线圈)不通电,传感器以及传感器的信号检测电路也不工作。在压力检测阶段,显示装置不进行显示画面的操作,磁场发生装置被通电,传感器以及传感器的信号检测电路工作。
因此,本发明实施例提供的磁敏传感器可以检测来自显示装置内部的磁场的细微变化,并根据该磁场的细微变化来检测磁敏传感器受到的压力。除此之外,本发明实施例提供的磁敏传感器还可以检测来自显示装置外部的磁场,例如磁性笔。例如,为了更好地检测来自外部的磁场,如来自显示装置的与基板相对另一侧的磁场,可以通过激光烧蚀将磁敏传感器上方的阴极层切割开以形成窗口,或在磁敏传感器正上方的区域中不形成阴极层。
本发明的一个实施例还提供了一种传感器电路,其包括传感器和连接到所述传感器的信号检测电路;所述传感器包括第一对端子和第二对端子,所述第一对端子和所述第二对段子在电气上是对称的,例如第一对端子被配置为接收输入信号而第二端端子被配置为输出感应信号,或者第二对端子被配置为接收输入信号而第一端端子被配置为输出感应信号,所述第一对端子包括第一端和第三端,所述第二对端子包括第二端和第四端;所述信号检测电路包括检测电压输入子电路和感应信号输出子电路;所述检测电压输入子电路配置为,在第一时段与所述第一对端子连接,在第二时段与所述第二对端子连接;所述感应信号输出子电路包括第一输出端和第二输出端,且配置为,在第一时段使得所述第一和第二输出端分别与所述第二对端子连接以输出第一检测电压,在第二时段使得所述第一和第二输出端分别与所述第一对端子连接以输出第二检测电压,所述第一时段与所述第二时段不同。
在所述传感器电路的一个示例中,所述第二对端子输出的第一检测电压中的感应电压成分和所述第一对端子输出的第二检测电压中的感应电压成分极性相反。
在所述传感器电路的一个示例中,所述传感器为磁敏传感器。
在所述传感器电路的一个示例中,所述检测电压输入子电路包括第一至第四开关元件,所述第一开关元件的一端耦接到电源电压,另一端耦接到所述第一端,并且在所述第二时段导通;所述第二开关元件的一端耦接到所述电源电压,另一端耦接到所述第二端,并且在所述第一时段导通;所述第三 开关元件的一端耦接到地,另一端耦接到所述第三端,并且在所述第二时段导通;第四开关元件的一端耦接到地,另一端耦接到所述第四端,并且在所述第一时段导通。
在所述传感器电路的一个示例中,所述感应信号输出子电路还包括第五至第八开关元件,所述第五开关元件的一端与所述第一端耦接,另一端与所述第一输出端耦接,并且在所述第一时段导通;所述第六开关元件的一端与所述第二端耦接,另一端与所述第一输出端耦接,并且在所述第二时段导通;所述第七开关元件的一端与所述第三端耦接,另一端与所述第二输出端耦接,并且在所述第一时段导通;所述第八开关元件的一端与所述第四端耦接,另一端与所述第二输出端耦接,并且在所述第二时段导通。
在所述传感器电路的一个示例中,上述第一至第八开关元件是NMOS晶体管和/或PMOS晶体管。
在所述传感器电路的一个示例中,所示传感器电路还包括失调电压消除电路;所述失调电压消除电路包括第一输入端、第二输入端、放大子电路、选择子电路、第一电容和第二电容、输出子电路,所述失调电压消除电路的第一输入端和第二输入端,对应于所述感应信号输出子电路的第一输出端和第二输出端,以分别接收所述第一检测电压和所述第二检测电压;所述放大子电路配置为,分别将所述第一检测电压放大并作为第一放大电压以及将所述第二检测信号反向放大并且作为第二放大电压;所述选择子电路配置为,在第三时段将所述第一放大电压存储在所述第二电容中,并且在第四时段将所述第二放大电压存储在所述第一电容中,所述第三时段与所述第四时段不同;所述第一电容的第一端和所述第二电容的第一端彼此相连;所述输出子电路配置为在第五时段将所述第一电容和所述第二电容并联并输出电压。
在所述传感器电路的一个示例中,所述放大子电路包括第一放大子电路和与所述第一放大子电路串联的第二放大子电路;所述第一放大子电路将所述第一检测电压和所述第二检测电压放大并且输入到所述第二放大子电路,所述第二放大子电路将已放大的第一检测电压进一步同向放大,并且将已放大的第二检测电压进一步反向放大。
在所述传感器电路的一个示例中,所述第一放大子电路包括第一运算放大器、第二运算放大器以及第九至第十二开关元件,所述第二放大子电路包括第三运算放大器;所述第一运算放大器的同相输入端接所述失调电压消除 电路的第一输入端,所述第二运算放大器的同相输入端接所述失调电压消除电路的第二输入端,所述第一运算放大器的反相输入端和所述第二运算放大器的反相输入端彼此连接;所述第九开关元件的一端接所述第一运算放大器的输出端和反相输入端,另一端接所述第三运算放大器的同相输入端,并且配置为在所述第三时段导通;所述第十开关元件的一端接所述第一运算放大器的输出端和反相输入端,另一端接所述第三运算放大器的反相输入端,并且配置为在所述第四时段导通;所述第十一开关元件的一端接所述第二运算放大器的输出端和反相输入端,另一端接所述第三运算放大器的反相输入端,并且配置为在所述第三时段导通;所述第十二开关元件的一端接所述第二运算放大器的输出端和反相输入端,另一端接所述第三运算放大器的同相输入端,并且配置为在所述第四时段导通。
在所述传感器电路的一个示例中,所述选择子电路包括第十三和第十四开关元件,所述第十三开关元件的一端接所述放大子电路的输出端,另一端接所述第二电容的第二端,并且配置为在所述第三时段导通;所述第十四开关元件的一端接所述放大子电路的输出端,另一端接所述第一电容的第二端,并且配置为在所述第四时段导通。
在所述传感器电路的一个示例中,所述输出子电路包括第十五和第十六开关元件,所述第十五开关元件的一端接所述输出子电路的输出端,另一端接所述第二电容的第二端,并且配置为在所述第五时段导通;所述第十六开关元件的一端接所述输出子电路的输出端,另一端接所述第二电容的第二端,并且配置为在所述第五时段导通。
本发明实施例提供的传感器电路可以用来检测显示装置所别施加的压力的大小,并且仅用一个传感器通过相应的信号检测电路就可以消除该传感器本身可能固有的失调电压。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由权利要求确定。
本申请要求于2016年7月22日提交的中国专利申请第201610585740.5的优先权,该中国专利申请的全文通过引用的方式结合于此以作为本申请的一部分。

Claims (25)

  1. 一种有机发光二极管(OLED)显示装置,包括:
    硅基板;
    在所述硅基板一侧的像素单元和磁敏传感器;以及
    磁场发生装置,被配置为向所述磁敏传感器提供穿过所述磁敏传感器所在的平面的磁场;
    其中,所述磁敏传感器被配置为检测所述磁场变化且将所述磁场变化转化为电压差输出。
  2. 如权利要求1所述的OLED显示装置,其中,所述磁场发生装置
    在所述硅基板的另一侧和/或硅基板内部,且与所述磁敏传感器具有至少部分重叠。
  3. 如权利要求1或2所述的OLED显示装置,其中,所述磁敏传感器包括第一端、第二端、第三端、第四端,所述第一端与所述第三端相对设置构成第一对端子,所述第二端与所述第四端相对设置构成第二对端子,
    所述第一对端子被配置为接收输入信号而所述第二端端子被配置为输出感应信号,或者,所述第二对端子被配置为接收输入信号而所述第一端端子被配置为输出感应信号。
  4. 如权利要求3所述的OLED显示装置,其中,所述磁敏传感器包括:P型半导体衬底、在所述P型半导体衬底中设置的N型半导体区以及在所述N型半导体区中设置的第一n+离子注入区域、第二n+离子注入区域、第三n+离子注入区域和第四n+离子注入区域,
    所述第一n+离子注入区域为所述磁敏传感器的第一端,所述第二n+离子注入区域为所述磁敏传感器的第二端,所述第三n+离子注入区域为所述磁敏传感器的第三端,所述第四n+离子注入区域为所述磁敏传感器的第四端。
  5. 如权利要求4所述的OLED显示装置,其中,所述N型半导体区为正方形N型半导体区,且所述第一n+离子注入区域、所述第二n+离子注入区域、所述第三n+离子注入区域和所述第四n+离子注入区域分别依次设置在所述正方形N型半导体区的四个角。
  6. 如权利要求5所述的OLED显示装置,其中,在所述P型半导体衬底和N型半导体区之间还包括p+离子浅掺杂层,所述p+离子浅掺杂层的面 积小于所述N型半导体区的面积,并且所述p+离子浅掺杂层覆盖在所述N型半导体区的中心区域上。
  7. 如权利要求1或2所述的OLED显示装置,其中,所述磁场发生装置包括至少一个通电线圈。
  8. 如权利要求7所述的OLED显示装置,其中,所述至少一个通电线圈包括沿第一方向布置的第一层线圈和沿第二方向布置的第二层线圈,所述第一方向与所述第二方向相交叉,所述第一层线圈和所述第二层线圈存在交叠区域,所述交叠区域在所述硅基板上的正投影至少部分与所述磁敏传感器在所述硅基板上的正投影重合。
  9. 如权利要求1或2所述的OLED显示装置,其中,每个所述磁敏传感器与一个或多个所述像素单元对应设置。
  10. 如权利要求3所述的OLED显示装置,还包括信号检测电路,其中,所述信号检测电路与所述磁敏传感器连接。
  11. 如权利要求10所述的OLED显示装置,其中,所述信号检测电路包括电源端、接地端、第一信号检测端和第二信号检测端,
    所述电源端与所述磁敏传感器的第一端连接;
    所述接地端与所述磁敏传感器的第三端连接;
    所述第一信号检测端与所述磁敏传感器的第二端连接;
    所述第二信号检测端与所述磁敏传感器的第四端连接。
  12. 如权利要求11所述的OLED显示装置,其中,所述信号检测电路还包括运算放大器,
    所述运算放大器的同相输入端接所述第二信号检测端,所述运算放大器的反相输入端接所述第一信号检测端。
  13. 如权利要求11所述的OLED显示装置,其中,所述信号检测电路还包括电源开关元件和控制线,
    所述电源开关元件的一端接所述电源端,所述电源开关元件的另一端接所述磁敏传感器的第一端,所述电源开关元件的控制端接所述控制线。
  14. 如权利要求13所述的OLED显示装置,还包括栅驱动电路,其中,所述控制线被配置为接收由所述栅驱动电路提供的控制信号。
  15. 如权利要求10所述的OLED显示装置,其中,所述信号检测电路包括检测电压输入子电路和感应信号输出子电路,
    所述检测电压输入子电路连接到所述第一对端子和所述第二对端子,
    所述感应信号输出子电路包括第一输出端和第二输出端,连接到所述第一对端子和所述第二对端子,且被配置为可在不同时段分别输出第一检测电压和第二检测电压。
  16. 如权利要求15所述的OLED显示装置,其中,所述检测电压输入子电路包括第一至第四开关元件,
    所述第一开关元件的一端耦接到电源电压,另一端耦接到所述第一端,其控制端配置接收第二控制信号;
    所述第二开关元件的一端耦接到电源电压,另一端耦接到所述第二端,其控制端配置接收第一控制信号;
    所述第三开关元件的一端耦接到地,另一端耦接到所述第三端,其控制端配置接收所述第二控制信号;
    所述第四开关元件的一端耦接到地,另一端耦接到所述第四端,其控制端配置接收所述第一控制信号。
  17. 如权利要求16所述的OLED显示装置,其中,所述感应信号输出子电路包括第五至第八开关元件,
    所述第五开关元件的一端与所述第一端耦接,另一端与所述第一输出端耦接,其控制端配置接收所述第一控制信号;
    所述第六开关元件的一端与所述第二端耦接,另一端与所述第一输出端耦接,其控制端配置接收所述第二控制信号;
    所述第七开关元件的一端与所述第三端耦接,另一端与所述第二输出端耦接,其控制端配置接收所述第一控制信号;
    所述第八开关元件的一端与所述第四端耦接,另一端与所述第二输出端耦接,其控制端配置接收所述第二控制信号。
  18. 如权利要求17所述的OLED显示装置,还包括失调电压消除电路,其中,所述失调电压消除电路包括第一和第二输入端、放大子电路、选择子电路、第一电容和第二电容、输出子电路,其中,
    所述失调电压消除电路的第一和第二输入端,连接到所述感应信号输出子电路的第一和第二输出端,以分别接收所述第一检测电压和所述第二检测电压;
    所述放大子电路配置为分别将所述第一检测电压放大并作为第一放大 电压而输出到第二电容,以及将所述第二检测信号反向放大并且作为第二放大电压而输出到第一电容,
    所述选择子电路配置为将所述第一放大电压存储在所述第二电容中,并且将所述第二放大电压存储在所述第一电容中;
    所述第一电容的第一端和所述第二电容的第一端彼此相连;
    所述输出子电路配置为可将所述第一电容和所述第二电容并联并输出电压。
  19. 一种如权利要求1所述的OLED显示装置的压力触控驱动方法,包括:
    向磁敏传感器提供磁场方向穿过所述磁敏传感器所在平面的磁场;
    通过磁敏传感器检测所述磁场的变化;
    将磁场的变化转化为电压并输出;
    识别触控位置和压力值。
  20. 如权利要求19所述的压力触控驱动方法,其中,所述磁敏传感器包括第一端、第二端、第三端、第四端,所述第一端与所述第三端相对设置构成第一对端子,所述第二端与所述第四端相对设置构成第二对端子,所述压力触控驱动方法还包括:
    在第一检测时段,控制所述磁敏传感器的第一对端子接收输入信号,第二对端子输出第一检测电压;
    在第二检测时段,控制所述磁敏传感器的第二对端子接收输入信号,第一对端子输出第二检测电压;
    其中,所述第一检测电压中的感应电压成分和所述第二检测电压中的感应电压成分极性相反。
  21. 如权利要求20所述的压力触控驱动方法,其中,所述OLED显示装置还包括第一电容和第二电容,所述压力触控驱动方法还包括:
    将所述第一检测电压放大并作为第一放大电压而输出到第二电容;
    将所述第二检测信号反向放大并且作为第二放大电压而输出到第一电容;
    将所述第一电容和所述第二电容并联并输出电压。
  22. 一种用于被检测电路的信号检测电路,所述被检测电路包括第一对端子和第二对端子,所述第一对端子和所述第二对端子在电气上是对称设置 的,所述信号检测电路包括:检测电压输入子电路和感应信号输出子电路,
    其中,所述检测电压输入子电路配置为连接到第一对端子和所述第二对端子,所述感应信号输出子电路包括第一输出端和第二输出端,连接到所述第一对端子和所述第二对端子,且被配置为可在不同时段分别输出第一检测电压和第二检测电压。
  23. 如权利要求22所述的信号检测电路,其中,所述检测电压输入子电路包括第一至第四开关元件,
    所述第一开关元件的一端耦接到电源电压,另一端耦接到所述第一端,其控制端配置接收第二控制信号,
    所述第二开关元件的一端耦接到电源电压,另一端耦接到所述第二端,其控制端配置接收第一控制信号,
    所述第三开关元件的一端耦接到地,另一端耦接到所述第三端,其控制端配置接收所述第二控制信号,
    所述第四开关元件的一端耦接到地,另一端耦接到所述第四端,其控制端配置接收所述第一控制信号。
  24. 如权利要求23所述的信号检测电路,其中,所述感应信号输出子电路包括第五至第八开关元件,
    所述第五开关元件的一端与所述第一端耦接,另一端与所述第一输出端耦接,其控制端配置接收所述第一控制信号;
    所述第六开关元件的一端与所述第二端耦接,另一端与所述第一输出端耦接,其控制端配置接收所述第二控制信号;
    所述第七开关元件的一端与所述第三端耦接,另一端与所述第二输出端耦接,其控制端配置接收所述第一控制信号;
    所述第八开关元件的一端与所述第四端耦接,另一端与所述第二输出端耦接,其控制端配置接收所述第二控制信号。
  25. 如权利要求24所述的信号检测电路,还包括失调电压消除电路,其中,所述失调电压消除电路包括第一和第二输入端、放大子电路、选择子电路、第一电容和第二电容、输出子电路,其中,
    所述失调电压消除电路的第一和第二输入端,连接到所述感应信号输出子电路的第一和第二输出端,以分别接收所述第一检测电压和所述第二检测电压;
    所述放大子电路配置为分别将所述第一检测电压放大并作为第一放大电压而输出到第二电容,以及将所述第二检测信号反向放大并且作为第二放大电压而输出到第一电容,
    所述选择子电路配置为将所述第一放大电压存储在所述第二电容中,并且将所述第二放大电压存储在所述第一电容中;
    所述第一电容的第一端和所述第二电容的第一端彼此相连;
    所述输出子电路配置为可将所述第一电容和所述第二电容并联并输出电压。
PCT/CN2017/079291 2016-07-22 2017-04-01 Oled显示装置及其压力触控驱动方法 WO2018014590A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/563,426 US10698555B2 (en) 2016-07-22 2017-04-01 Organic light-emitting diode (OLED) display device and pressure touch driving method thereof
JP2017552130A JP7050492B2 (ja) 2016-07-22 2017-04-01 Oled表示装置、及びその感圧タッチ駆動方法
EP17771323.7A EP3489820B1 (en) 2016-07-22 2017-04-01 Oled display device and pressure touch-control drive method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610585740.5A CN107644611B (zh) 2016-07-22 2016-07-22 Oled显示装置及其压力触控驱动方法
CN201610585740.5 2016-07-22

Publications (1)

Publication Number Publication Date
WO2018014590A1 true WO2018014590A1 (zh) 2018-01-25

Family

ID=60992838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079291 WO2018014590A1 (zh) 2016-07-22 2017-04-01 Oled显示装置及其压力触控驱动方法

Country Status (5)

Country Link
US (1) US10698555B2 (zh)
EP (1) EP3489820B1 (zh)
JP (1) JP7050492B2 (zh)
CN (1) CN107644611B (zh)
WO (1) WO2018014590A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293553B (zh) * 2017-06-19 2020-11-24 京东方科技集团股份有限公司 阵列基板及其制备方法、显示面板和显示装置
CN107315502B (zh) * 2017-06-30 2020-05-19 上海天马微电子有限公司 显示面板、显示装置和压力检测方法
CN107329615B (zh) * 2017-06-30 2020-06-16 上海天马微电子有限公司 显示面板及显示装置
CN108762598B (zh) 2018-07-02 2021-08-13 京东方科技集团股份有限公司 电磁触控检测方法及相关装置
CN108987417B (zh) * 2018-07-26 2020-12-08 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
KR102637687B1 (ko) * 2018-11-30 2024-02-20 삼성디스플레이 주식회사 표시장치
US11245067B2 (en) * 2019-11-01 2022-02-08 Globalfoundries Singapore Pte. Ltd. Hall sensors with a three-dimensional structure
CN112669775B (zh) * 2020-12-30 2024-04-19 视涯科技股份有限公司 一种显示面板、驱动方法及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101243383A (zh) * 2005-08-18 2008-08-13 伊斯曼柯达公司 触控显示装置
CN101813757A (zh) * 2009-02-23 2010-08-25 精工电子有限公司 磁检测电路
CN102340299A (zh) * 2011-04-27 2012-02-01 灿瑞半导体(上海)有限公司 基于cmos工艺的霍尔开关失调电压消除方法及其电路
US20120032909A1 (en) * 2010-08-06 2012-02-09 Wang Tzu-Ming Power saving touch electronic book
CN103412654A (zh) * 2013-09-03 2013-11-27 黄雪昀 一种电脑键盘及使用该键盘的平板电脑
CN105739806A (zh) * 2016-05-06 2016-07-06 京东方科技集团股份有限公司 触摸显示面板及其驱动方法、以及显示装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373986B1 (en) 1998-04-08 2002-04-16 Ncr Corporation Compression of data transmission by use of prime exponents
CN1147719C (zh) * 1999-04-07 2004-04-28 株式会社山武 半导体压力传感器
EP1971845A1 (en) * 2006-01-04 2008-09-24 Koninklijke Philips Electronics N.V. Microelectronic device with magnetic excitation wires
JP4994365B2 (ja) * 2006-04-03 2012-08-08 旭化成エレクトロニクス株式会社 ホール素子及び磁気センサ
JP2009198764A (ja) * 2008-02-21 2009-09-03 Seiko Epson Corp 発光装置及び電子機器
CN101751164B (zh) * 2008-12-01 2014-03-26 周正三 具多输入信息的微型触控装置
KR20120116403A (ko) * 2009-11-06 2012-10-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 터치 패널 및 터치 패널의 구동 방법
US9246486B2 (en) * 2011-12-16 2016-01-26 Apple Inc. Electronic device with noise-cancelling force sensor
JP5802187B2 (ja) * 2012-01-30 2015-10-28 旭化成エレクトロニクス株式会社 ホール起電力信号検出回路及びその電流センサ
TWI460629B (zh) * 2012-05-11 2014-11-11 Au Optronics Corp 觸控顯示面板及其製造方法
CN103777798B (zh) * 2012-10-23 2016-09-07 瀚宇彩晶股份有限公司 有机发光二极管触控显示面板
JP2014163692A (ja) 2013-02-21 2014-09-08 Seiko Instruments Inc 磁気センサ装置
TWI509471B (zh) * 2013-07-15 2015-11-21 Au Optronics Corp 觸控顯示系統以及具有觸控功能之顯示面板
US20170234910A1 (en) 2014-09-26 2017-08-17 Asahi Kasei Microdevices Corporation Hall electromotive force signal detection circuit and current sensor
CN104409467B (zh) * 2014-10-13 2018-04-24 上海天马有机发光显示技术有限公司 一种触控面板及其制作方法和显示装置
WO2017037564A1 (en) * 2015-08-28 2017-03-09 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor, transistor, and semiconductor device
CN105630235B (zh) 2015-12-23 2018-11-23 宸鸿科技(厦门)有限公司 压力感测方法及其系统
US9986217B2 (en) * 2016-03-15 2018-05-29 Sutherland Cook Ellwood, JR. Magneto photonic encoder
CN105739790B (zh) * 2016-04-25 2018-10-19 上海天马微电子有限公司 一种触控显示面板
CN105867699B (zh) 2016-06-20 2019-02-19 上海天马微电子有限公司 显示面板及触控压力检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101243383A (zh) * 2005-08-18 2008-08-13 伊斯曼柯达公司 触控显示装置
CN101813757A (zh) * 2009-02-23 2010-08-25 精工电子有限公司 磁检测电路
US20120032909A1 (en) * 2010-08-06 2012-02-09 Wang Tzu-Ming Power saving touch electronic book
CN102340299A (zh) * 2011-04-27 2012-02-01 灿瑞半导体(上海)有限公司 基于cmos工艺的霍尔开关失调电压消除方法及其电路
CN103412654A (zh) * 2013-09-03 2013-11-27 黄雪昀 一种电脑键盘及使用该键盘的平板电脑
CN105739806A (zh) * 2016-05-06 2016-07-06 京东方科技集团股份有限公司 触摸显示面板及其驱动方法、以及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3489820A4 *

Also Published As

Publication number Publication date
JP2019530906A (ja) 2019-10-24
EP3489820A1 (en) 2019-05-29
US10698555B2 (en) 2020-06-30
US20180348917A1 (en) 2018-12-06
CN107644611A (zh) 2018-01-30
EP3489820A4 (en) 2020-04-01
EP3489820B1 (en) 2023-01-25
CN107644611B (zh) 2020-04-03
JP7050492B2 (ja) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2018014590A1 (zh) Oled显示装置及其压力触控驱动方法
US7782050B2 (en) Hall effect device and method
CN107204172B (zh) 像素电路及其驱动方法、显示面板
US8829900B2 (en) Low offset spinning current hall plate and method to operate it
CN203519808U (zh) 磁场传感器
CN106952612B (zh) 像素电路、显示面板及其驱动方法
KR101929590B1 (ko) 3차원 구조로 배치된 복수의 홀 센서를 이용한 센싱 시스템 및 이를 이용한 장치
US20120169329A1 (en) Hall sensor element and method for measuring a magnetic field
CN101369009A (zh) 磁传感器及其制造方法
CN102630313B (zh) 显示装置
US10690733B2 (en) Magnetic image sensor
EP2610630A2 (en) Low hysteresis high sensitivity magnetic field sensor
US10558286B2 (en) Array substrate, touch display panel, and touch display device thereof
JP6161027B2 (ja) 有機薄膜トランジスタを用いたセンサーデバイス
CN105448243A (zh) 像素电路及其驱动方法以及显示装置
US11307270B2 (en) Spin valve with built-in electric field and spintronic device comprising the same
KR102601137B1 (ko) 플렉서블 표시패널 및 이를 이용한 플렉서블 표시장치
JP5594086B2 (ja) 変位検出装置
US20130009637A1 (en) Magnetoresistance element and magnetic sensor using the same
JP2014011343A (ja) ホール素子およびホール素子を用いた半導体装置
US8957680B2 (en) Magnetic sensor and pattern for magnetic sensor
CN203858698U (zh) 一种低飞移高度面内磁性图像识别传感器芯片
US8513760B2 (en) Image sensor
CN114616675A (zh) 一种显示基板及其制作方法、显示装置
WO2022252094A1 (zh) 显示基板及其制作方法、显示装置

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2017771323

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017552130

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17771323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE