WO2018014560A1 - 一种可生物降解聚酯组合物 - Google Patents

一种可生物降解聚酯组合物 Download PDF

Info

Publication number
WO2018014560A1
WO2018014560A1 PCT/CN2017/075357 CN2017075357W WO2018014560A1 WO 2018014560 A1 WO2018014560 A1 WO 2018014560A1 CN 2017075357 W CN2017075357 W CN 2017075357W WO 2018014560 A1 WO2018014560 A1 WO 2018014560A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester composition
biodegradable polyester
styrene
parts
biodegradable
Prior art date
Application number
PCT/CN2017/075357
Other languages
English (en)
French (fr)
Inventor
卢昌利
袁志敏
蔡彤旻
黄险波
曾祥斌
焦健
苑仁旭
钟宇科
熊凯
杨晖
麦开锦
董学腾
Original Assignee
金发科技股份有限公司
珠海万通化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57448899&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018014560(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 金发科技股份有限公司, 珠海万通化工有限公司 filed Critical 金发科技股份有限公司
Priority to EP17764499.4A priority Critical patent/EP3315554B1/en
Priority to US15/580,173 priority patent/US10472515B2/en
Priority to ES17764499T priority patent/ES2769231T3/es
Priority to JP2017559708A priority patent/JP6522788B2/ja
Priority to KR1020187010588A priority patent/KR102037617B1/ko
Publication of WO2018014560A1 publication Critical patent/WO2018014560A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the invention belongs to the field of polymer material modification, and particularly relates to a biodegradable polyester composition having excellent light transmittance, haze effect and suitable degradation rate.
  • Biodegradable polyester is a kind of polymer material which is made from biological resources. Compared with petroleum-based polymers based on petrochemical resources, biodegradable polyesters can be degraded in biological or biochemical processes or in biological environments. It is currently the most active and market-based degradation in biodegradable plastics research. One of the materials.
  • the biodegradable polyester has soft texture, non-toxicity, convenient processing, good chemical stability, certain strength, good chemical solvent resistance and cold resistance, and is widely used in the field of agricultural film. Due to the special role of agricultural mulch film, there is generally a high requirement for transparency, and there is also a special need for its anti-ultraviolet function. At present, a commonly used method for improving the ultraviolet resistance of biodegradable polyester film is to add a certain amount of anti-UV additive or UV absorber, UV stabilizer, etc. to the biodegradable polyester film. UV absorbers and HALS stabilizers, or a combination of light stabilizers, are described in CN 103687902 for providing UV stability to the film.
  • the present inventors have surprisingly found that in the formulation of the biodegradable polyester composition, by adding a trace amount of styrene, the biodegradable polyester composition can be ensured to have excellent light transmittance and haze effect, and at the same time, it can be ensured.
  • the biodegradable polyester composition has suitable UV resistance and does not reduce the rate of degradation of the biodegradable polyester composition.
  • a biodegradable polyester composition comprising, by weight, components:
  • the styrene is present in an amount of from 0.1 ppm to 30 ppm by weight, based on the total weight of the biodegradable polyester composition, preferably from 0.5 ppm to 10 ppm.
  • the weight content of the styrene refers to the weight content that ultimately remains in the biodegradable polyester composition.
  • the weight content of the styrene according to the present invention is tested by accurately weighing 1.2000 g ⁇ 0.005 g of the biodegradable polyester composition into a static headspace test bottle, and testing the biodegradable polyester combination by a static headspace method.
  • the peak area of styrene in the biodegradable polyester composition can be calculated from the peak area of styrene in the biodegradable polyester composition and the styrene standard curve.
  • the styrene standard curve is calculated from Styrene / methanol solution calibration.
  • Styrene is a volatile organic small molecule solvent. After the biodegradable polyester composition with suitable weight content of styrene is blown into a film, styrene will be on the surface of the film under the conditions of light and the like. A small molecular layer is formed. The formation of the small molecular layer can improve the transmittance and haze of the film to a certain extent, but can improve the anti-ultraviolet function of the film to a certain extent.
  • the addition of a suitable weight content of styrene does not substantially alter the structure and properties of the biodegradable polyester composition, the addition of styrene does not substantially affect the degradation rate of the biodegradable polyester composition;
  • the weight content of styrene in the biodegradable polyester composition is more than 30 ppm, that is, the excessive addition amount causes excessive haze of the film, and the transmittance of the film decreases; if styrene is added to the biodegradable polyester composition If the weight content is less than 0.1 ppm, the thickness of the styrene small molecule layer is too small and unevenly distributed, resulting in insufficient resistance to ultraviolet rays, resulting in excessive degradation of the film.
  • the present invention has found through research that the weight content of styrene in the biodegradable polyester composition is controlled to be 0.1 ppm to 30 ppm, thereby ensuring excellent light transmittance and haze effect of the biodegradable polyester composition. At the same time, it is possible to ensure that the biodegradable polyester composition has suitable UV resistance and does not reduce the degradation rate of the biodegradable polyester composition.
  • the styrene obtained by the invention can directly add styrene or styrene-containing substances (such as polystyrene, brominated polystyrene, polybrominated benzene) during the blending process of the biodegradable polyester composition. Ethylene, etc.) to adjust the weight content of styrene in the biodegradable polyester composition.
  • styrene or styrene-containing substances such as polystyrene, brominated polystyrene, polybrominated benzene
  • the biodegradable polyester composition comprises, by weight, components:
  • biodegradable aliphatic-aromatic polyester is selected from the group consisting of polybutylene terephthalate PBAT, polysuccinate terephthalate PBST, and polysebacic acid to benzene.
  • PBAT polybutylene terephthalate
  • PBST polysuccinate terephthalate
  • PBSeT polysebacic acid to benzene.
  • PBSeT butylene dicarboxylate
  • the organic filler is selected from one or more of natural starch, plasticized starch, modified starch, natural fiber, wood flour;
  • the inorganic filler is selected from the group consisting of talc, montmorillonite, kaolin, chalk, carbonic acid
  • talc montmorillonite
  • kaolin chalk
  • carbonic acid One or more of calcium, graphite, gypsum, conductive carbon black, calcium chloride, iron oxide, dolomite, silica, wollastonite, titanium dioxide, silicate, mica, glass fiber, mineral fiber.
  • the biodegradable polyester composition of the present invention may further comprise 0 to 4 parts of at least one of the following materials: a plasticizer, a mold release agent, a surfactant, a wax, an antistatic agent, according to different needs of the use. Dyes, anti-UV additives or other plastic additives.
  • the plasticizer is one of citrate, glycerin, epoxidized soybean oil or a mixture of two or more;
  • the release agent is one of silicone oil, paraffin wax, white mineral oil, petrolatum or a mixture of two or more;
  • the surfactant is one or a mixture of two or more of polysorbate, palmitate or laurate;
  • the wax is one or a mixture of two or more of erucamide, stearic acid amide, behenic acid amide, beeswax or beeswax;
  • the antistatic agent is a permanent antistatic agent, and specifically one of PELESTAT-230, PELESTAT-6500, SUNNICO ASA-2500 or a mixture of two or more;
  • the dye is one of carbon black, black species, titanium white powder, zinc sulfide, indigo blue, fluorescent orange or a mixture of two or more.
  • Anti-UV additives include UV absorbers and UV stabilizers
  • the UV absorber is one or more of UV-944, UV-234, UV531, UV326;
  • the UV stabilizer is one or more of UV-123, UV-3896, UV-328;
  • the other plastic additive may be a nucleating agent, an antifogging agent, a lubricant such as calcium stearate, or the like.
  • the transmissive polyester composition has a light transmittance of from 88.5 to 94.0.
  • the biodegradable polyester composition has a haze of from 28.59 to 33.45.
  • the biodegradable polyester composition After the biodegradable polyester composition is blown into a film of a certain thickness, the higher the light transmittance of the film, the more favorable the penetration of the film by the sunlight, the more favorable the photosynthesis of the plant; The higher the rate, the more obvious the transmission of ultraviolet rays, and the penetration of ultraviolet rays has a detrimental effect on plants, and the penetration of ultraviolet rays will aggravate the degradation of the film, so it is necessary to apply certain anti-ultraviolet measures to the film, such as adding anti- UV additives either increase the haze of the film and reduce its transparency.
  • the preferred biodegradable polyester composition film having the above light transmittance and haze has the most Good protection, and the corresponding membrane also has suitable UV resistance and degradation rate.
  • the biodegradable polyester composition has a thermal oxygen aging time of 30 to 45 days, which is above or below this time range, indicating that the degradation rate of the biodegradable polyester composition is too slow or too fast.
  • the biodegradable polyester composition of the invention is used for preparing shopping bags, compost bags, mulch films, protective covering films, silo films, film strips, fabrics, non-woven fabrics, textiles, fishing nets, load-bearing bags, garbage bags, etc. .
  • the invention has the following beneficial effects:
  • the present invention can ensure that the biodegradable polyester composition is excellent by controlling the weight content of styrene added to the biodegradable polyester composition formulation to be controlled at 0.1 ppm to 30 ppm based on the total weight of the biodegradable polyester composition.
  • the light transmittance and haze effect ensure that the biodegradable polyester composition has suitable UV resistance and does not reduce the degradation rate of the biodegradable polyester composition.
  • Embodiments of the invention employ the following materials, but are not limited to these materials:
  • Component i) PBAT, PBST and PBSeT are selected; component ii) is PLA; component iii) organic filler is selected from starch; component iii) inorganic filler is selected from talc powder, calcium carbonate; plasticizer is selected from citric acid ester; The additive is selected from calcium stearate; the anti-UV additive refers to a UV absorber and a UV stabilizer; the wax is selected from erucamide; the above auxiliary agents, PBAT, PBST, PBSeT, PLA, and styrene are all commercially available.
  • the composting test is replaced by a thermal oxygen aging test to evaluate the degradation rate of the biodegradable polyester composition. It has been found through experiments that the time of normal compost degradation of the biodegradable polyester composition corresponds to the thermal aging time of about 30 to 45 days, which is beyond or below this time range, indicating that the degradation rate of the biodegradable polyester composition has exceeded Slow or too fast.
  • the method for testing the thermo-oxidative aging of the biodegradable polyester composition is as follows: the biodegradable polyester composition is sealed in an un-vacuum aluminum foil bag, and the aluminum foil bag is placed in a blast drying oven at 70 ° C for thermal oxygen aging test. Samples were taken every 3 days and the test samples were melted (190 ° C / 2.16 kg, according to ISO 1133). When the sample melts beyond the normal range of the biodegradable polyester composition, it indicates that the biodegradable polyester composition has undergone significant thermal aging degradation, recording significant thermal aging degradation of the biodegradable polyester composition. Test time.
  • the haze and the transmittance of the biodegradable polyester composition of the present invention were measured by using a single layer film having a thickness of 12 ⁇ m.
  • PBAT or PBST or PBSeT are mixed and put into single screw extrusion.
  • extrusion and granulation were carried out at 140 ° C - 240 ° C to obtain a biodegradable polyester composition.
  • the performance test data is shown in Table 1.
  • the biodegradable polyester composition can have excellent light transmittance and haze effect, and at the same time, The biodegradable polyester composition is guaranteed to have suitable UV resistance without reducing the rate of degradation of the biodegradable polyester composition.
  • Comparative Example 1 was not added with styrene, that is, when the weight content of styrene was 0 ppm, although the biodegradable polyester composition had high light transmittance and haze, the thermal aging time was too short, indicating that the polymer combination was The rate of degradation of the material is fast.
  • Comparative Example 2 When the weight content of styrene of Comparative Example 2 exceeds 30 ppm, the thermal oxygen aging time of the biodegradable polyester composition is too long, indicating that the degradation rate of the composition is too slow, and the light transmittance of the polymer composition is The haze effect is poor. Comparative Example 3 was not added with styrene. When only the anti-UV additive was added, although the light transmittance and haze were suitable, the thermal oxygen aging time was too long, and the degradation rate of the polymer composition was too slow.

Abstract

本发明公开了一种可生物降解聚酯组合物,其中,基于可生物降解聚酯组合物的总重量,苯乙烯的重量含量为0.1ppm-30ppm。本发明通过选用在可生物降解聚酯组合物配方中添加苯乙烯的重量含量基于可生物降解聚酯组合物的总重量控制在0.1ppm-30ppm时,可以保证可生物降解聚酯组合物具有优异的透光率和雾度效果,同时又可以保证可生物降解聚酯组合物具有适宜的抗紫外线功能,且不会降低可生物降解聚酯组合物的降解速率。

Description

一种可生物降解聚酯组合物 技术领域
本发明属于高分子材料改性领域,具体涉及一种具有优异透光率、雾度效果以及合适的降解速率的可生物降解聚酯组合物。
背景技术
可生物降解聚酯是以生物资源为原料的一类高分子材料。相对于以石化资源为原料的石油基高分子,可生物降解聚酯能够在生物或生物化学作用过程中或生物环境中发生降解,是目前生物降解塑料研究中非常活跃和市场应用最好的降解材料之一。
可生物降解聚酯具有质地柔软、无毒,加工方便,化学稳定性好,有一定的强度,具有很好的耐化学溶剂和耐寒性特点,广泛应用于农用地膜领域。出于农用地膜特殊的作用,对其透明性一般有较高的要求,同时对其抗紫外线功能也有特殊的需要。目前,常用的提升可生物降解聚酯薄膜抗紫外线功能的方法为在可生物降解聚酯薄膜中添加一定含量的抗紫外线添加剂或UV吸收剂、UV稳定剂等。如CN 103687902中介绍了UV吸收剂和HALS稳定剂,或两者结合的光稳定剂,用于为地膜提供UV稳定性。但是抗紫外线添加剂或UV吸收剂、UV稳定剂的加入会在一定程度上减慢可生物降解聚酯薄膜的降解速率,导致可生物降解聚酯薄膜无法在期望的时间内完成降解,从而影响了土地的翻新和农作物的耕种,并会在一定程度上降低土壤的肥力。
本发明经研究惊讶地发现,在可生物降解聚酯组合物配方中,通过添加微量的苯乙烯,可以保证可生物降解聚酯组合物具有优异的透光率和雾度效果,同时可以保证可生物降解聚酯组合物具有适宜的抗紫外线功能,且不会降低可生物降解聚酯组合物的降解速率。
发明内容
本发明的目的在于提供一种可生物降解聚酯组合物,通过在该组合物中添加微量的苯乙烯,可以使制备得到的可生物降解聚酯组合物具有优异的透光率、雾度效果和抗紫外线性能,且不会降低可生物降解聚酯组合物的降解速率。
本发明上述目的通过如下技术方案予以实现:
一种可生物降解聚酯组合物,按重量份计,包括组分:
i)60份至100份的可生物降解的脂肪族-芳香族聚酯;
ii)0至40份的聚乳酸;
iii)0至35份的有机填料和/或无机填料。
其中,基于可生物降解聚酯组合物的总重量,苯乙烯的重量含量为0.1ppm-30ppm,优选为0.5ppm-10ppm。所述苯乙烯的重量含量是指最终残留在可生物降解聚酯组合物中的重量含量。
本发明所述苯乙烯的重量含量采用如下方法测试:精确称量1.2000g±0.005g的可生物降解聚酯组合物加入静态顶空测试瓶中,通过静态顶空方法测试可生物降解聚酯组合物中苯乙烯的峰面积,根据可生物降解聚酯组合物中苯乙烯的峰面积和苯乙烯标准曲线即可计算得到可生物降解聚酯组合物中苯乙烯的重量含量;苯乙烯标准曲线由苯乙烯/甲醇溶液标定。
苯乙烯是一种易挥发的有机小分子溶剂,添加有合适重量含量的苯乙烯的可生物降解聚酯组合物吹塑成膜后,在光照等条件的作用下,苯乙烯会在膜材表面形成小分子层。小分子层的形成在一定程度上可提升薄膜的透光率和雾度,但能在一定程度上提升薄膜的抗紫外线功能。由于,合适重量含量的苯乙烯的加入并未在本质上改变可生物降解聚酯组合物的结构和属性,所以苯乙烯的加入基本不会影响可生物降解聚酯组合物的降解速率;但若可生物降解聚酯组合物中苯乙烯的重量含量添加超过30ppm,即添加量过多,会导致膜材雾度过大,薄膜透光率下降;若可生物降解聚酯组合物中加入苯乙烯的重量含量小于0.1ppm,则会导致苯乙烯小分子层厚度过小,且分布不均,导致对紫外线的抵抗能力不足,从而导致膜材降解过快。而本发明通过研究发现,将可生物降解聚酯组合物中的苯乙烯的重量含量控制在0.1ppm-30ppm,既可保证可生物降解聚酯组合物具有优异的透光率和雾度效果,同时,又可以保证可生物降解聚酯组合物具有适宜的抗紫外线功能,且不会降低可生物降解聚酯组合物的降解速率。
本发明所述苯乙烯的获得途径:可以在可生物降解聚酯组合物共混加工过程中直接添加苯乙烯或含苯乙烯的物质(如聚苯乙烯、溴化聚苯乙烯、聚溴化苯乙烯等)来调节可生物降解聚酯组合物中苯乙烯的重量含量。
优选地,所述的一种可生物降解聚酯组合物,按重量份计,包括组分:
i)65份至95份的可生物降解的脂肪族-芳香族聚酯;
ii)5份至35份的聚乳酸;
iii)5份至25份的有机填料和/或无机填料。
其中,所述可生物降解的脂肪族-芳香族聚酯选自聚己二酸对苯二甲酸丁二醇酯PBAT、聚琥珀酸对苯二甲酸丁二醇酯PBST、聚癸二酸对苯二甲酸丁二醇酯PBSeT中的一种或几种。
其中,所述有机填料选自天然淀粉、塑化淀粉、改性淀粉、天然纤维、木粉中的一种或几种;所述无机填料选自滑石粉、蒙脱土、高岭土、白垩、碳酸钙、石墨、石膏、导电炭黑、氯化钙、氧化铁、白云石、二氧化硅、硅灰石、二氧化钛、硅酸盐、云母、玻璃纤维、矿物纤维中的一种或几种。
根据不同的用途需要,本发明的可生物降解聚酯组合物还可以进一步加入0至4份的至少一种下述物质:增塑剂、脱模剂、表面活性剂、蜡、防静电剂、染料、抗UV助剂或其他塑料添加剂。
所述增塑剂为柠檬酸酯、甘油、环氧大豆油中的一种或者两种及以上的混合物;
所述脱模剂为硅油、石蜡、白矿油、凡士林中的一种或者两种及以上的混合物;
所述表面活性剂为聚山梨醇酯、棕榈酸酯或月桂酸酯中的一种或者两种及以上的混合物;
所述蜡为芥酸酰胺、硬脂酰胺、山嵛酸酰胺、蜂蜡或蜂蜡酯中的一种或者两种及以上的混合物;
所述防静电剂为永久性抗静电剂,具体可以列举出PELESTAT-230、PELESTAT-6500、SUNNICO ASA-2500中的一种或者两种及以上的混合物;
所述染料为炭黑、黑种、钛白粉、硫化锌、酞青蓝、荧光橙中的一种或者两种及以上的混合物。
抗UV助剂包括UV吸收剂和UV稳定剂;
所述UV吸收剂为UV-944、UV-234、UV531、UV326中的一种或几种;
所述UV稳定剂为UV-123、UV-3896、UV-328中的一种或几种;
所述其他塑料添加剂可以为成核剂、防雾剂、润滑剂(如硬脂酸钙)等。
所述可生物降解聚酯组合物的透光率为88.5—94.0。
所述可生物降解聚酯组合物的雾度为28.59—33.45。
所述可生物降解聚酯组合物吹塑成一定厚度的薄膜后,膜材的透光率越高,越有利于阳光对膜材的穿透,越利于植物的光合作用;但是膜材透光率越高,紫外线的透过也越明显,而紫外线的穿透对植物具有损害作用,且紫外线的穿透会加剧膜材的降解,所以需对膜材采用一定的抗紫外线措施,如添加抗UV助剂或者提高膜材的雾度,降低其透明度。所以为了更好的利用薄膜的保护作用,需平衡膜材的透光率和雾度的关系,而优选的具有上述透光率和雾度的可生物降解聚酯组合物薄膜具有对植物的最佳保护作用,同时对应的膜材也具有合适的抗紫外线功能和降解速率。
所述可生物降解聚酯组合物的热氧老化时间为30—45天,超出或低于此时间范围,说明可生物降解聚酯组合物的降解速率过慢或过快。
本发明所述的可生物降解聚酯组合物用于制备购物袋、堆肥袋、地膜、保护性覆盖膜、筒仓膜、薄膜带、织物、非织物、纺织品、渔网、承重袋、垃圾袋等。
本发明与现有技术相比,具有如下有益效果:
本发明通过选用在可生物降解聚酯组合物配方中添加苯乙烯的重量含量基于可生物降解聚酯组合物的总重量控制在0.1ppm-30ppm时,可以保证可生物降解聚酯组合物具有优异的透光率和雾度效果,同时又可以保证可生物降解聚酯组合物具有适宜的抗紫外线功能,且不会降低可生物降解聚酯组合物的降解速率。
具体实施方式
下面通过具体实施方式来进一步说明本发明,以下实施例为本发明较佳的实施方式,但本发明的实施方式并不受下述实施例的限制。
本发明的实施例采用如下原料,但不仅限于这些原料:
组分i)选用PBAT、PBST和PBSeT;组分ii)为PLA;组分iii)有机填料选用淀粉;组分iii)无机填料选用滑石粉、碳酸钙;增塑剂选用柠檬酸酯;其他塑料添加剂选自硬脂酸钙;抗UV助剂是指UV吸收剂和UV稳定剂;蜡选用芥酸酰胺;上述助剂、PBAT、、PBST、PBSeT及PLA、苯乙烯均来源于市购。
各性能指标的测试标准或评价方法:
(1)可生物降解聚酯组合物的降解速率的评估方法:
本发明中以热氧老化测试代替堆肥测试,评估可生物降解聚酯组合物的降解速率。经实验发现,可生物降解聚酯组合物正常堆肥降解的时间,对应于热氧老化时间约为30~45天,超出或低于此时间范围,说明可生物降解聚酯组合物的降解速率过慢或过快。
可生物降解聚酯组合物热氧老化测试的方法为:将可生物降解聚酯组合物密封于未抽真空的铝箔袋中,将铝箔袋至于70℃鼓风干燥箱中,进行热氧老化测试,每隔3天取样,测试样品熔指(190℃/2.16kg,根据ISO 1133)。当样品熔指超出可生物降解聚酯组合物正常熔指范围时,说明可生物降解聚酯组合物已经发生了显著了热氧老化降解,记录可生物降解聚酯组合物发生显著热氧老化降解的测试时间。
(2)可生物降解聚酯组合物的雾度和透光率的测试:
参照GB/T2410-2008透明塑料透光率和雾度的测定,本发明中可生物降解聚酯组合物的雾度和透光率的测定选用厚度为12μm的单层膜进行测试。
(3)苯乙烯的测定方法:
精确称量1.2000g±0.005g的可生物降解聚酯组合物加入静态顶空测试瓶中,通过静态顶空方法测试可生物降解聚酯组合物中苯乙烯的峰面积,根据可生物降解聚酯组合物中苯乙烯 的峰面积和苯乙烯标准曲线即可计算得到可生物降解聚酯组合物中苯乙烯的重量含量;苯乙烯标准曲线由苯乙烯/甲醇溶液标定。
静态顶空所用仪器型号和参数如下:
Agilent Technologies 7697Headspace Sampler;
Agilent Technologies 7890AGC System;
色谱柱:J&W 122-7032:250℃:30m x 250μm x 0.25μm;
进样:前SS进样口N2
出样:前检测器FID。
实施例1-23及对比例1-3:
按表1所示配方,将PBAT或PBST或PBSeT、PLA、有机填料、无机填料、增塑剂、抗UV助剂、蜡、其他塑料添加剂等助剂以及苯乙烯混匀后投入单螺杆挤出机中,于140℃-240℃挤出、造粒,得到可生物降解聚酯组合物。性能测试数据见表1。
表1实施例1-23及对比例1-3的各组分配比(重量份)及各性能测试结果
Figure PCTCN2017075357-appb-000001
续表1
Figure PCTCN2017075357-appb-000002
续表1
Figure PCTCN2017075357-appb-000003
从表1中可以看出,可生物降解聚酯组合物中苯乙烯重量含量为0.1ppm-30ppm时,可以保证可生物降解聚酯组合物具有优异的透光率和雾度效果,同时又可以保证可生物降解聚酯组合物具有适宜的抗紫外线性能,且不会降低可生物降解聚酯组合物的降解速率。而对比例1没有添加苯乙烯,即苯乙烯的重量含量为0ppm时,虽然可生物降解聚酯组合物具有较高的透光率和雾度,但热氧老化时间过短,说明聚合物组合物降解速率快。对比例2的苯乙烯的重量含量超出30ppm时,该可生物降解聚酯组合物的热氧老化时间过长,表明该组合物的降解速率过慢,且该聚合物组合物的透光率和雾度效果较差。对比例3没有添加苯乙烯,仅添加抗UV助剂时,虽然具有合适的透光率和雾度,但热氧老化时间过长,该聚合物组合物的降解速率过慢。

Claims (10)

  1. 一种可生物降解聚酯组合物,其特征在于,按重量份计,包括组分:
    i)60份至100份的可生物降解的脂肪族-芳香族聚酯;
    ii)0至40份的聚乳酸;
    iii)0至35份的有机填料和/或无机填料。
  2. 根据权利要求1所述的一种可生物降解聚酯组合物,其特征在于,基于可生物降解聚酯组合物的总重量,苯乙烯的重量含量为0.1ppm-30ppm,优选为0.5ppm-10ppm。
  3. 根据权利要求2所述的一种可生物降解聚酯组合物,其特征在于,所述苯乙烯的重量含量采用如下方法测试:精确称量1.2000g±0.005g的可生物降解聚酯组合物加入静态顶空测试瓶中,通过静态顶空方法测试可生物降解聚酯组合物中苯乙烯的峰面积,根据可生物降解聚酯组合物中苯乙烯的峰面积和苯乙烯标准曲线即可计算得到可生物降解聚酯组合物中苯乙烯的重量含量;苯乙烯标准曲线由苯乙烯/甲醇溶液标定。
  4. 根据权利要求2所述的一种可生物降解聚酯组合物,其特征在于,按重量份计,包括组分:
    i)65份至95份的可生物降解的脂肪族-芳香族聚酯;
    ii)5份至35份的聚乳酸;
    iii)5份至25份的有机填料和/或无机填料。
  5. 根据权利要求1-3任一项所述的一种可生物降解聚酯组合物,其特征在于,所述可生物降解的脂肪族-芳香族聚酯选自聚己二酸对苯二甲酸丁二醇酯PBAT、聚琥珀酸对苯二甲酸丁二醇酯PBST、聚癸二酸对苯二甲酸丁二醇酯PBSeT中的一种或几种。
  6. 根据权利要求1-3任一项所述的一种可生物降解聚酯组合物,其特征在于,所述有机填料选自天然淀粉、塑化淀粉、改性淀粉、天然纤维、木粉中的一种或几种;所述无机填料选自滑石粉、蒙脱土、高岭土、白垩、碳酸钙、石墨、石膏、导电炭黑、氯化钙、氧化铁、白云石、二氧化硅、硅灰石、二氧化钛、硅酸盐、云母、玻璃纤维、矿物纤维中的一种或几种。
  7. 根据权利要求1-3任一项所述的一种可生物降解聚酯组合物,其特征在于,还包括0至4份的至少一种下述物质:增塑剂、脱模剂、表面活性剂、蜡、防静电剂、染料、抗UV助剂或其他塑料添加剂。
  8. 根据权利要求1-7任一项所述的一种可生物降解聚酯组合物,其特征在于,所述可生物降解聚酯组合物的透光率为88.5—94.0。
  9. 根据权利要求1-7任一项所述的一种可生物降解聚酯组合物,其特征在于,所述可生物降解聚酯组合物的雾度为28.59—33.45。
  10. 根据权利要求1-7任一项所述的一种可生物降解聚酯组合物,其特征在于,所述可生物降解聚酯组合物的热氧老化时间为30—45天。
PCT/CN2017/075357 2016-07-22 2017-03-01 一种可生物降解聚酯组合物 WO2018014560A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17764499.4A EP3315554B1 (en) 2016-07-22 2017-03-01 Bio-degradable polyester composition
US15/580,173 US10472515B2 (en) 2016-07-22 2017-03-01 Biodegradable polyester composition
ES17764499T ES2769231T3 (es) 2016-07-22 2017-03-01 Composición de poliéster biodegradable
JP2017559708A JP6522788B2 (ja) 2016-07-22 2017-03-01 生分解性ポリエステル組成物
KR1020187010588A KR102037617B1 (ko) 2016-07-22 2017-03-01 생분해성 폴리에스테르 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610583504.XA CN106084681B (zh) 2016-07-22 2016-07-22 一种可生物降解聚酯组合物
CN201610583504.X 2016-07-22

Publications (1)

Publication Number Publication Date
WO2018014560A1 true WO2018014560A1 (zh) 2018-01-25

Family

ID=57448899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075357 WO2018014560A1 (zh) 2016-07-22 2017-03-01 一种可生物降解聚酯组合物

Country Status (9)

Country Link
US (1) US10472515B2 (zh)
EP (1) EP3315554B1 (zh)
JP (1) JP6522788B2 (zh)
KR (1) KR102037617B1 (zh)
CN (1) CN106084681B (zh)
DE (5) DE202017007555U1 (zh)
ES (1) ES2769231T3 (zh)
PT (1) PT3315554T (zh)
WO (1) WO2018014560A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106084681B (zh) 2016-07-22 2018-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物
CN109810476A (zh) * 2017-11-20 2019-05-28 武汉华丽生物股份有限公司 可完全生物降解膜袋材料及膜袋制备方法
CN108260451B (zh) * 2018-01-18 2020-04-14 浙江大学 一种可除草的生物降解地膜
CN111548611A (zh) * 2020-06-12 2020-08-18 汕头市雷氏塑化科技有限公司 一种高密度竹粉/pbat/聚乳酸生物降解塑料及其制备方法
EP3991864A1 (en) * 2020-10-29 2022-05-04 Gaia Holding AB Biodegradable and compostable composition for use as an agricultural film
JP6916571B1 (ja) 2021-03-25 2021-08-11 株式会社Tbm 樹脂組成物、及び成形品
CN117677290A (zh) * 2021-06-29 2024-03-08 日网株式会社 海洋材料及其制造方法
KR20230063856A (ko) * 2021-11-02 2023-05-09 에스케이씨 주식회사 탄산칼슘을 고함량으로 포함하는 생분해성 수지 조성물
KR102415879B1 (ko) * 2022-03-02 2022-07-01 김연수 친환경 생분해성 목분 플라스틱 및 이의 제조방법
EP4293079A1 (en) 2022-10-27 2023-12-20 Basf Se Biodegradable polymer composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102639594A (zh) * 2009-11-05 2012-08-15 诺瓦蒙特股份公司 包含天然来源的聚合物和脂族-芳族共聚酯的生物可降解的组合物
CN103687902A (zh) 2011-05-10 2014-03-26 巴斯夫欧洲公司 可生物降解的聚酯薄膜
CN104479304A (zh) * 2014-12-10 2015-04-01 金发科技股份有限公司 一种全生物降解复合材料及其制备方法和应用
CN104744898A (zh) * 2015-03-26 2015-07-01 南通龙达生物新材料科技有限公司 一种全生物降解薄膜及其制备方法
CN106084681A (zh) * 2016-07-22 2016-11-09 金发科技股份有限公司 一种可生物降解聚酯组合物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001276597A1 (en) * 2000-08-11 2002-02-25 Bio-Tec Biologische Naturverpackungen Gmbh And Co.Kg Biodegradable polymeric blend
US8003731B2 (en) 2005-01-12 2011-08-23 Basf Se Biologically-degradable polyester mixture
US8188185B2 (en) * 2008-06-30 2012-05-29 Kimberly-Clark Worldwide, Inc. Biodegradable packaging film
WO2010012695A1 (de) 2008-08-01 2010-02-04 Basf Se Erhöhung der hydrolysebeständigkeit von biologisch abbaubaren polyestern
KR100903886B1 (ko) * 2008-12-16 2009-06-24 이상한 폴리유산을 이용한 생분해성 농업용 멀칭필름과 그 제조방법
AU2010314181B2 (en) * 2009-11-09 2014-05-01 Basf Se Method for producing shrink films
US9017587B2 (en) * 2010-07-21 2015-04-28 Minima Technology Co., Ltd. Manufacturing method of biodegradable net-shaped articles
EP2551301A1 (de) * 2011-07-29 2013-01-30 Basf Se Biologisch abbaubare Polyesterfolie
KR20150086491A (ko) 2012-11-15 2015-07-28 바스프 에스이 생분해성 폴리에스테르 혼합물
US9714341B2 (en) * 2013-03-18 2017-07-25 Washington State University Biodegradable polyester-based blends
CN105585827A (zh) * 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物
CN105585826A (zh) 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物
CN105585824A (zh) 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102639594A (zh) * 2009-11-05 2012-08-15 诺瓦蒙特股份公司 包含天然来源的聚合物和脂族-芳族共聚酯的生物可降解的组合物
CN103687902A (zh) 2011-05-10 2014-03-26 巴斯夫欧洲公司 可生物降解的聚酯薄膜
CN104479304A (zh) * 2014-12-10 2015-04-01 金发科技股份有限公司 一种全生物降解复合材料及其制备方法和应用
CN104744898A (zh) * 2015-03-26 2015-07-01 南通龙达生物新材料科技有限公司 一种全生物降解薄膜及其制备方法
CN106084681A (zh) * 2016-07-22 2016-11-09 金发科技股份有限公司 一种可生物降解聚酯组合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3315554A4

Also Published As

Publication number Publication date
US10472515B2 (en) 2019-11-12
PT3315554T (pt) 2020-01-20
DE202017007556U1 (de) 2022-08-29
KR102037617B1 (ko) 2019-10-28
DE202017007555U1 (de) 2022-08-29
CN106084681A (zh) 2016-11-09
EP3315554B1 (en) 2019-11-13
DE202017007552U1 (de) 2022-09-07
JP6522788B2 (ja) 2019-05-29
KR20180054723A (ko) 2018-05-24
CN106084681B (zh) 2018-05-18
ES2769231T3 (es) 2020-06-25
US20180298187A1 (en) 2018-10-18
DE202017007554U1 (de) 2022-08-29
DE202017007557U1 (de) 2022-08-29
EP3315554A1 (en) 2018-05-02
EP3315554A4 (en) 2019-01-09
JP2018527416A (ja) 2018-09-20

Similar Documents

Publication Publication Date Title
WO2018014560A1 (zh) 一种可生物降解聚酯组合物
US10364320B2 (en) Biodegradable polyester composition
US10494521B2 (en) Biodegradable polyester composition
EP3260495B1 (en) Biodegradable polyester composition
US10400100B2 (en) Biodegradable polyester composition
AU2017230218B2 (en) Biodegradable polyester composition
US10479887B2 (en) Biodegradable polyester composition

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2017764499

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017559708

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15580173

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187010588

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE