WO2018012428A1 - ヒートパイプ式の熱交換装置、およびサーバーシステム用の空気調和装置 - Google Patents

ヒートパイプ式の熱交換装置、およびサーバーシステム用の空気調和装置 Download PDF

Info

Publication number
WO2018012428A1
WO2018012428A1 PCT/JP2017/024980 JP2017024980W WO2018012428A1 WO 2018012428 A1 WO2018012428 A1 WO 2018012428A1 JP 2017024980 W JP2017024980 W JP 2017024980W WO 2018012428 A1 WO2018012428 A1 WO 2018012428A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat exchange
air
heat exchanger
chamber
Prior art date
Application number
PCT/JP2017/024980
Other languages
English (en)
French (fr)
Inventor
山蔭 久明
真一 犀川
剛志 竹市
Original Assignee
中部抵抗器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中部抵抗器株式会社 filed Critical 中部抵抗器株式会社
Publication of WO2018012428A1 publication Critical patent/WO2018012428A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present invention relates to a heat pipe type heat exchange device and an air conditioner for a server system equipped with the same.
  • the cooling device of Patent Document 1 is known.
  • the cooling device is arranged on the ceiling wall of a housing that houses communication equipment.
  • the cooling device includes a hollow box-like case, and is divided into an inside air side space for circulating the air inside the housing and an outside air side space for circulating outside air by a partition plate that inclines the inside of the case.
  • a heat pipe is fixed to the partition plate so as to penetrate the plate, a heat absorption part of the pipe faces the inside air side space, and a heat radiation part of the pipe faces the outside air side space.
  • An inside air suction port and an inside air return port for sending out the cool air after heat exchange into the housing are opened on the bottom surface of the inside air side space, and a first fan is disposed on the upper surface side of the heat absorbing part. Further, a second fan is disposed at an outside air inlet provided in a side surface of the outside air side space, and the heat air after the heat exchange that has passed through the heat radiating section is discharged from the outside air outlet that is opened on the upper surface of the case. .
  • Patent Document 2 It is disclosed in Patent Document 2 that heat exchange is performed by a heat pipe type heat exchange device in a server system.
  • the air conditioner of Patent Document 2 includes a heat exchange device installed on the ceiling wall of each server rack, an outside air duct that supplies outside air to the heat exchange device, and an exhaust duct that sends heat exhaust to the outside of the building. , Equipped with outdoor water supply equipment.
  • the heat exchange device includes an outside air-cooled first heat exchanger that uses a heat pipe as a heat transfer element, a water-cooled second heat exchanger, an air-conditioning case that accommodates these, a blower fan, a circulation fan, and the like. Has been.
  • the heat pipe is bent in a “ ⁇ ” shape, and a partition is disposed at the bent portion to divide the inside of the air conditioning case into an upper heat radiating chamber and a lower heat absorbing chamber.
  • outside air is supplied to the heat exchange device by a blower fan, and heat exchange is performed only by the first heat exchange body to perform air conditioning in the server rack.
  • the cooling water is supplied to the second heat exchange body by the water supply facility, and the air in the server rack is conditioned by both the first heat exchange body and the second heat exchange body.
  • Japanese Patent Laying-Open No. 2010-206098 paragraph numbers 0025 to 0027, FIG. 1
  • Japanese Unexamined Patent Publication No. 2016-024539 paragraph numbers 0026 to 0030, FIG. 1
  • the heat exchange device of Patent Document 2 uses a second heat exchanger that is cooled by the cooling water supplied from the water supply facility in addition to the first heat exchanger that is cooled by the outside air. Even when the heat load on the exchange device is large, the air in the server rack can be conditioned without problems.
  • a water-cooled second heat exchanger is disposed inside the heat radiating chamber cooled by outside air, that is, on the side of the heat radiating portion of the heat pipe. Therefore, after the outside air supplied to the heat radiating chamber is cooled by the second heat exchanger, the heat radiation portion of the heat pipe is indirectly cooled by the cooled outside air, so that it circulates between the heat exchange device and the server rack. The air cannot be cooled effectively.
  • the heat exchange efficiency is about 50%.
  • the temperature of the outside air supplied to the heat radiating chamber is set to 5 to 10 with the second heat exchanger. Even if the temperature is lowered, the temperature drop of the air supplied to the server rack is only about half of the previous drop temperature, and the cooling heat of the cooling water cannot be used effectively.
  • the air conditioner of Patent Document 2 since it is necessary to install a heat exchange device, an outside air duct, and an exhaust duct on the ceiling wall of each server rack, it takes a lot of labor and time to install each device, The overall cost of the air conditioner for the server system increases.
  • An object of the present invention is to improve the heat exchange efficiency by improving the heat transport amount of the heat pipe while simplifying the structure of the entire apparatus, and further, it is possible to reliably cool the object to be cooled according to the outside air temperature. It is to provide a heat exchange device of the type.
  • the object of the present invention is to simplify the overall structure of the air conditioning apparatus, significantly reduce the introduction cost and installation cost of the entire system, and further favorably perform the air conditioning in the server rack to provide power for air conditioning.
  • An object of the present invention is to provide an air conditioner for a server system that can significantly reduce consumption and contribute to energy saving.
  • the object of the present invention is to eliminate the need to install a heat exchange device or a duct for sending outside air or hot air around the server rack, thus simplifying the structure of the server room and facilitating server rack installation and facility renewal.
  • An object of the present invention is to provide an air conditioner for a server system.
  • the heat exchanging device includes a first heat exchanger 14 of the outside air cooling type using the heat pipe 13 as a heat transfer element, a second heat exchanger 15 of the water cooling type, and a hollow box shape that accommodates both of them.
  • a case main body 16 and a water supply facility 17 for supplying low-temperature cooling water to the second heat exchanger 15 are provided.
  • the inside of the case body 16 is divided into an internal air supply chamber 21 and an external air supply chamber 22 by an inclined partition plate 20.
  • An inside air inlet 23 and an inside air outlet 24 are provided in the case body 16 facing the inside air feeding chamber 21, and an outside air inlet 25 and an outside air outlet 26 are opened in the case body 16 facing the outside air feeding chamber 22.
  • the case main body 16 is provided with a first blower fan 27 for feeding hot air to the inside air feed chamber 21 and a second blower fan 28 for feeding outside air to the outside air feed chamber 22.
  • the first heat exchanger 14 is inclined and the partition plate 20 in a state where the heat absorbing portion 13a of the heat pipe 13 is located in the inside air feeding chamber 21 and the heat radiating portion 13b of the heat pipe 13 is located in the outside air feeding chamber 22. Intersects.
  • the second heat exchanger 15 is disposed between the first heat exchanger 14 and the inside air outlet 24.
  • the inclination angle of the first heat exchanger 14 is set to an angle of 30 degrees or more and 60 degrees or less with respect to the horizontal plane.
  • the second heat exchange body 15 is configured in a square block shape with a water flow pipe 34 that is repeatedly bent in an inverted shape and a group of heat radiation fins 35 that are fixed to the outer surface of the water flow pipe 34. As shown in FIG. 7, the second heat exchanger 15 is arranged at the bottom of the outlet region of the inside air feeding chamber 21, and its vent outlet surface faces the inside air outlet 24 opened at the bottom of the inside air feeding chamber 21. It is.
  • a bent portion of the water flow pipe 34 bent in an inverted shape is exposed outside one of the opposing side portions of the square block-shaped second heat exchange body 15, and the cooling water inlet 48 is formed on one of the opposing side portions.
  • a cooling water outlet 49 is led out.
  • the second heat exchanger 15 is arranged in a state where the cooling water inlet 48 and the cooling water outlet 49 face the corner sandwiched between the partition plate 20 and the bottom of the inside air supply chamber 21.
  • a heat exchange chamber 32 that accommodates the second heat exchanger 15 is provided adjacent to the bottom of the outlet region of the inside air supply chamber 21, and the inside air outlet 24 is opened at the bottom of the heat exchange chamber 32.
  • the second heat exchanger 15 is disposed in an inclined manner inside the heat exchange chamber 32, and a drain receiver 33 that discharges drain water is disposed facing the inclined lower end of the second heat exchanger 32.
  • two second heat exchange bodies 15, 15 are inclinedly arranged in a V shape inside the heat exchange chamber 32.
  • the inclined upper ends of the two second heat exchangers 15, 15 inclined in a V shape are supported by a hinge 50 fixed to the case body 16 so as to be tiltable.
  • the two second heat exchangers 15, 15 are between the use posture in which the tilted lower end is adjacent to the V shape and the non-use posture in which each second heat exchanger 15, 15 is along the peripheral wall of the heat exchange chamber 32. Can be tilted.
  • the second heat exchangers 15 and 15 are placed in a non-use posture, and the hot air supplied to the inside air supply chamber 21 is cooled only by the first heat exchanger 14.
  • the second heat exchange body 15 is disposed adjacent to the ventilation outlet surface of the first heat exchange body 14 in the outlet region of the inside air supply chamber 21.
  • the heat exchange device includes an outside air temperature sensor 61 that detects the outside air temperature, and a control device 64 that controls the operating states of the first blower fan 27, the second blower fan 28, and the water supply facility 17. .
  • the control device 64 operates the water supply equipment 17 based on the output signal from the outside air temperature sensor 61 to supply the cooling water to the second heat exchanger.
  • the hot air supplied to the inside air supply chamber 21 is cooled by both the first heat exchanger 14 and the second heat exchanger 15.
  • the air conditioner for a server system forms a rack row 3 in which server racks 1 that house a group of servers 2 are arranged in a row inside a server room S.
  • the heat exchange device C is provided outside the server room S.
  • a cold air inlet 6 of each server rack 1 is provided on one side of the rack row 3, and a hot air outlet 7 of each server rack 1 is provided on the other side of the rack row 3.
  • the cool air space 6A facing the cool air inlet 6 of the rack row 3 and the hot air space 7A facing the hot air outlet 7 of the rack row 3 are separated by a partition wall 10 provided along the rack row 3.
  • the inside air inlet 23 of the heat exchange device C is connected to the hot air space 7A, and the inside air outlet 24 is connected to the cold air space 6A.
  • the heat exchange device includes an outside air temperature sensor 61 that detects the outside air temperature, and a control device 64 that controls the operating states of the first blower fan 27, the second blower fan 28, and the water supply facility 17. In a state where the outside air temperature sensor 61 detects that the outside air temperature has reached the set temperature, the control device 64 operates the water supply equipment 17 based on the output signal from the outside air temperature sensor 61 to supply the cooling water to the second heat exchanger.
  • the hot air supplied to the inside air supply chamber 21 is cooled by both the first heat exchanger 14 and the second heat exchanger 15.
  • the partition wall 10 is provided between the ceiling surface of the server room S and the upper surface of the floor F and the rack row 3 facing the ceiling surface, and divides the cold air space 6A and the hot air space 7A.
  • the partition wall 10 in a plan view includes a front and rear wall 10a passing through the upper surface of the rack row 3, and a left and right wall 10b bent at the front end or the rear end of the rack row 3 continuously to the front and rear wall 10a. Being a continuous stroke.
  • a cold air supply port 11 communicating with the cold air space 6A and a hot air recovery port 12 communicating with the hot air space 7A are formed.
  • the internal air outlet 24 and the cold air supply port 11 of the internal air supply chamber 21 and the internal air inlet 23 and the hot air recovery port 12 of the internal air supply chamber 21 are connected via a supply duct 46 and a recovery duct 47, respectively.
  • a cold air guide passage 53 is formed under the floor facing the cold air space 6A, the inlet 54 of the passage 53 is connected to the internal air outlet 24 of the heat exchanger C, and the outlet 55 of the passage 53 is connected to the cold air space. Open in multiple places on the floor F facing 6A.
  • the hot air recovery port 12 opened in the peripheral wall of the server room S in communication with the hot air space 7 ⁇ / b> A and the internal air inlet 23 of the internal air supply chamber 21 are connected via a recovery duct 47.
  • the outside air-cooled first heat exchanger 14, the water-cooled second heat exchanger 15, the case body 16 that accommodates these, and the low-temperature cooling water are supplied to the second heat exchanger 15.
  • the heat exchange device C is constituted by the water supply equipment 17 and the like.
  • the inside of the case body 16 is divided into an internal air supply chamber 21 and an external air supply chamber 22 by a partition plate 20 that inclines, and the heat absorption part 13a of the heat pipe 13 is located in the internal air supply chamber 21, and the heat pipe 13
  • the first heat exchanger 14 is disposed in an inclined manner in a state where the heat radiating portion 13 b is located in the outside air supply chamber 22.
  • the second heat exchange body 15 is disposed between the first heat exchange body 14 and the inside air outlet 24.
  • the second heat exchanger 15 is disposed between the first heat exchanger 14 and the inside air outlet 24, and the hot air that has passed through the first heat exchanger 14 is transferred to the second heat exchanger 15. It was made to cool directly.
  • a heat exchange device C compared with the conventional device in which the water-cooled second heat exchanger is arranged on the heat radiating part side of the heat pipe, the hot air is effectively cooled and sent out from the inside air outlet 24. The temperature of the cold air can be lowered sufficiently.
  • the inclination angle of the first heat exchanger 14 is set to an angle of 30 degrees or more and 60 degrees or less with respect to the horizontal plane so that the working fluid condensed in the heat radiating section 13b can flow down quickly to the heat absorbing section 13a. Therefore, the heat transport amount of the first heat exchange body 14 can be improved, and the cooling capacity of the heat exchange device C can be enhanced.
  • the first heat exchanger 14 is cooled by the outside air taken in from the outside air inlet 25, and the hot air after the heat exchange is released into the atmosphere from the outside air outlet 26.
  • an accompanying structure such as a duct can be omitted, and the heat exchange device
  • the structure of C can be simplified.
  • the heat exchange device C of the present invention while simplifying the structure of the entire device, the heat transfer amount of the heat pipe 13 is improved and the heat exchange efficiency is improved. Accordingly, it is possible to provide a heat pipe type heat exchange device that can reliably cool the object to be cooled.
  • the second heat exchanger 15 configured in the form of a square block is arranged at the bottom of the outlet region of the inside air supply chamber 21, the second heat exchanger 15 is vented to the first heat exchanger 14 as shown in FIG.
  • the left and right dimensions of the heat dissipating fins 35 can be increased, and the number of water pipes 34 can be increased to enhance the cooling capacity.
  • the pressure loss when the inside air passes through the second heat exchanger 15 can be reduced, the power consumption for air conditioning in the season (autumn to spring) when the second heat exchanger 15 is not used can be reduced. It can contribute to energy saving.
  • the second heat exchanger 15 When the heat exchange chamber 32 is provided adjacent to the inside air supply chamber 21, the second heat exchanger 15 is disposed in an inclined manner, and the drain receiver 33 is disposed at the inclined lower end of the second heat exchanger 32, FIG.
  • the ventilation area of the 2nd heat exchange body 15 can be expanded, and heat exchange efficiency can be improved.
  • moisture condensed on the surface of the radiating fin 35 flows down along the inclination of the heat exchanger 15 and is quickly discharged to the drain receiver 33, so that the condensed water film adhering to the surface of the radiating fin 35 is always removed. Can be kept thin. Therefore, the pressure loss of the heat exchange air passing through the second heat exchanger 15 can be reduced while improving the heat exchange efficiency of the second heat exchanger 15.
  • the total ventilation area of the second heat exchanger 15 can be increased.
  • the pressure loss of the heat exchange air passing through the inside air supply chamber 21 can be reduced and the cooling capacity of the heat exchange device C can be enhanced.
  • the moisture condensed on the surface of the radiating fin 35 can flow down along the inclination of each heat exchanger 15, 15, the condensed water film adhering to the surface of the radiating fin 35 can always be kept thin. Therefore, the pressure loss of the heat exchange air passing through the second heat exchanger 15 can be reduced while improving the heat exchange efficiency of the second heat exchanger 15.
  • the upper end side of the two second heat exchangers 15, 15 inclined in a V shape is supported by a heat exchanger C that is tiltably supported by a hinge 50 fixed to the case body 16. Accordingly, like the heat exchange device C described above, the total ventilation area of the second heat exchange body 15 can be increased, and the pressure loss of the heat exchange air passing through the internal air supply chamber 21 can be reduced to reduce the heat exchange device. C cooling capacity can be increased. In addition, since the cooling capacity of the heat exchange device C can be adjusted by switching the second heat exchangers 15 and 15 between the use posture and the non-use posture according to the outside air temperature, the season when the second heat exchanger 15 is not used.
  • the exchanger 15 By setting the exchanger 15 to the non-use posture (from autumn to spring), the resistance to the inside air passing through the heat exchange chamber 32 can be further reduced. Therefore, the pressure loss of the 1st ventilation fan 27 can be made small, the power consumption for the air conditioning from autumn to spring can be reduced, and it can contribute to energy saving.
  • the heat exchange apparatus C which has arrange
  • the first heat exchange is performed in a state where the outside air temperature is low. Only the body 14 is operated, and the hot air supplied to the inside air supply chamber 21 can be cooled by outside air. Further, in a state where the outside air temperature sensor 61 detects that the outside air temperature has reached the set temperature, the control device 64 operates the water supply facility 17 to supply the cooling water to the second heat exchanger 15, and The hot air supplied to the inside air supply chamber 21 can be cooled by both the heat exchanger 14 and the second heat exchanger 15. As described above, according to the heat exchange device of the present invention, the object to be cooled can be reliably cooled without waste according to the state of the outside air temperature, so that it is possible to reduce the power consumption for heat exchange throughout the year and contribute to energy saving. .
  • a rack row 3 for accommodating a group of servers 2 is arranged inside the server room S, and the heat exchange apparatus C is provided outside the server room S. It was. Further, the interior of the server room S was divided by a partition wall 10 provided along the rack row 3 to partition a cold air space 6A facing the cold air inlet 6 of the server rack 1 and a hot air space 7A facing the hot air outlet 7. After that, the cooling of the hot air is performed by the heat exchange device C arranged outside the server room S, the cooled cold air is supplied to the cold air space 6A, and the hot air space 7A after the cooling of the server 2 is performed. Hot air was circulated to the heat exchanger C.
  • the rack 1 can be easily installed and equipment can be updated.
  • the entire structure of the air conditioner can be simplified to the extent that the internal structure of the server room S can be simplified by omitting the heat exchange device and the duct structure, and the introduction cost and installation cost of the entire system can be significantly reduced.
  • the outside air temperature is low, only the first heat exchanger 14 is operated to cool the hot air supplied to the inside air feeding chamber 21 with the outside air, and the outside air temperature sensor indicates that the outside air temperature has reached the set temperature.
  • the control device 64 operates the water supply equipment 17 to supply cooling water to the second heat exchange body 15, and the inside air is generated by both the first heat exchange body 14 and the second heat exchange body 15.
  • the hot air fed to the feeding chamber 21 can be cooled. Therefore, according to the air conditioning apparatus of the present invention, the object to be cooled can be reliably cooled without waste according to the outside air temperature, so that it is possible to reduce power consumption for heat exchange throughout the year and contribute to energy saving.
  • the partition wall 10 is constituted by the front and rear walls 10a and the left and right walls 10b that are continuous in a single stroke, for example, compared to the case where the cool air space 6A and the hot air space 7A are divided for each rack row, the one end to the other end of the partition wall 10 are provided.
  • the overall structure of the partition wall 10 can be simplified and the cost required for the construction can be reduced while shortening the length of the wall leading to. Further, since the interior of the server room S can be divided almost equally into the cool air space 6A and the hot air space 7A by the partition wall 10, the cool air and the hot air can be smoothly circulated to effectively cool the hot air by the heat exchange device C. Yes.
  • the air in the server rack 1 can be efficiently conditioned by effectively circulating the cool air and hot air.
  • the cold air guide passage 53 When the cold air guide passage 53 is formed under the floor facing the cold air space 6A, its inlet 54 is connected to the internal air outlet 24 of the heat exchange device C, and the outlets 55 are opened at a plurality of locations on the floor F facing the cold air space 6A. Since cold air only needs to be supplied to 6A, the heat load of the heat exchange device C can be reduced, and the power consumption for air conditioning can be reduced by that amount, thereby contributing to energy saving.
  • FIG. 2 is a view taken along line aa in FIG. 1.
  • 3 is a chart illustrating a control example of the heat exchange device according to the first embodiment.
  • It is a vertical front view which shows schematic structure of the heat exchange apparatus which concerns on Example 2 of this invention.
  • It is a vertical front view which shows schematic structure of the heat exchange apparatus which concerns on Example 3 of this invention. It is a bb line arrow figure in FIG.
  • FIG. 10 is a view taken along line cc in FIG. 9. It is a vertical front view which shows schematic structure of the heat exchange apparatus which concerns on Example 5 of this invention. It is a vertical front view which shows schematic structure of the heat exchange apparatus which concerns on Example 6 of this invention. It is a vertical front view which shows schematic structure of the air conditioning apparatus of the server system which concerns on Example 7 of this invention.
  • FIGS. 1 to 5 show Embodiment 1 in which the heat exchange apparatus according to the present invention is applied to an air conditioner of a server system.
  • “front / rear”, “left / right”, and “upper / lower” refer to the cross arrows shown in FIG. 2 and FIG. 2 and 3
  • reference numeral 1 denotes a server rack installed on the floor F, and a group of servers 2 are accommodated in a multistage manner inside (see FIG. 3).
  • the group of server racks 1 installed in the server room S are arranged in a straight line to form a rack line 3, and the left and right rack lines 3 are opposed to each other with a maintenance passage 4 interposed therebetween.
  • the rack row 3 is composed of three server racks 1 is illustrated.
  • the actual rack row 3 is composed of a large number of server racks 1 in the front-rear direction. It is configured in a long linear row, the number of rack rows L installed is large, and the size of the server room S is also greatly increased. Further, the number of installed heat exchange devices C is increased according to the scale of the server group accommodated in the server room S.
  • the server rack 1 is configured in a hollow vertically long rectangular box shape, and doors that can be opened and closed are provided on both sides thereof, and the server 2 is inspected or replaced by opening the doors when necessary. It can be performed.
  • the door wall of the door is formed of a plate-like body such as a net or punching metal, and cool air is introduced into the rack from the cold air inlet 6 of one of the left and right doors facing each other. After the heat exchange is performed by the air blowing action of the server fan built in the housing, the hot air after the heat exchange is discharged from the hot air outlet 7 of the other door.
  • the air conditioning apparatus includes a heat exchange device C installed outside the server room S, and cool air cooled by the heat exchange device C is supplied to the server room S to perform air conditioning in the server rack 1.
  • the inside of the server room S is cooled by the partition wall 10 provided along the rack row 3. It is divided into a space 6A and a hot air space 7A.
  • the partition wall 10 separates the ceiling surface of the server room S and the floor F facing the ceiling surface and the top surface of the rack row 3 to partition the cold air space 6A and the hot air space 7A.
  • FIG. 2 in this embodiment, there are three front and rear walls 10a passing through the left and right center of the upper surface of the rack row 3, and four front and rear walls 10a that are bent at the front end or the rear end of the rack row 3.
  • the partition wall 10 is configured by the left and right walls 10b so that the partition wall 10 in a plan view is continuous in a single stroke. All the previous cold air inlets 6 face the cold air space 6A, and all the hot air outlets 7 face the hot air space 7A.
  • a cold air supply port 11 communicating with the cold air space 6A and a hot air recovery port 12 communicating with the hot air space 7A are formed on the peripheral wall of the server room S adjacent to the heat exchange device C.
  • the left and right walls 10b may be provided with doors for going back and forth between the cold air space 6A and the hot air space 7A.
  • the partition wall 10 is constituted by the front and rear walls 10a and the left and right walls 10b that are continuous in a single stroke, the entire partition wall 10 is shortened while shortening the length of the wall from one end to the other end of the partition wall 10.
  • the structure can be simplified and the cost required for the construction can be reduced.
  • the inside of the server room S can be divided almost equally into the cold air space 6A and the hot air space 7A by the partition wall 10, the circulation of the cold air and the hot air can be performed smoothly to effectively cool the hot air by the heat exchange device C. Yes.
  • the heat exchanging device C includes an outside air-cooled first heat exchanger 14 having a heat pipe 13 as a heat transfer element, a water-cooled second heat exchanger 15, and both of these 14 and 15.
  • a hollow box-shaped case main body 16 to be accommodated and a water supply facility 17 (see FIG. 2) for recovering after supplying low-temperature cooling water to the second heat exchanger 15 are provided.
  • the inside of the case main body 16 is divided into an internal air supply chamber 21 and an external air supply chamber 22 by a partition plate 20 inclined at 45 degrees, and an internal air inlet 23 is formed on the peripheral wall of the case main body 16 facing each of the supply chambers 21 and 22.
  • the outside air inlet 25 and the outside air outlet 26 are opened.
  • the inside air inlet 23 is opened in the left case wall and the outside air inlet 25 is opened in the right case wall as viewed in FIG.
  • an outside air outlet 26 was opened in the upper case wall.
  • the inside air outlet 24 is opened at the bottom of a heat exchange chamber 32 described later.
  • a first blower fan 27 that supplies hot air in the server room S toward the first heat exchanger 14 is disposed inside the inside air inlet 23, and hot air after heat exchange is placed inside the outside air outlet 26.
  • a second blower fan 28 for releasing the air into the atmosphere is disposed.
  • the first heat exchanger 14 is configured in a flat square block shape by a group of heat pipes 13 and a group of heat radiation fins 18 fixed to the outer surface of the heat pipes 13, and the whole is orthogonal to the previous partition plate 20.
  • the upper and lower ends are supported by brackets 29.
  • three heat pipes 13 were arranged in the thickness direction of the first heat exchanger 14 and a large number of heat pipes 13 were arranged in the front-rear direction of the first heat exchanger 14 to constitute the first heat exchanger 14.
  • the heat absorption part 13 a on the lower side of the heat pipe 13 is located in the inside air feeding chamber 21, and the heat radiation part 13 b on the upper side of the heat pipe 13 is located in the outside air feeding chamber 22.
  • the first heat exchange body 14 is inclined 45 degrees with respect to the horizontal plane, and the intersection of the first heat exchange body 14 and the partition plate 20 is sealed with a seal body (not shown).
  • a seal body (not shown).
  • sequence form of the heat pipe 13 is not limited to said form, According to the cooling capacity of the 1st heat exchange body 14, it adjusts suitably.
  • a space inside the inside air feeding chamber 21 and the outside air feeding chamber 22 is divided into an inlet region and an outlet region by the first heat exchanger 14, and is adjacent to the bottom of the outlet region of the inner air feeding chamber 21.
  • a heat exchange chamber 32 for accommodating the heat exchanger 15 is provided.
  • the heat exchange chamber 32 is formed by extending the case main body 16 downward, and an inside air outlet 24 through which cool air after heat exchange is sent toward the server chamber 2 is opened at the bottom.
  • two second heat exchangers 15, 15 are inclined in a V shape inside the heat exchange chamber 32, and drain water is discharged facing the inclined lower ends of both 15, 15.
  • a drain receiver 33 is disposed.
  • the second heat exchanging body 15 is configured in a flat square block shape by a copper water flow pipe 34 that is repeatedly bent in an inverted shape and a group of heat radiation fins 35 that are fixed to the outer surface of the water flow pipe 34. is there.
  • the radiating fins 35 are arranged at regular intervals in a state orthogonal to the straight portion of the water flow pipe 34, but the stacking direction of the radiating fins 18 of the first heat exchanger 14 and the radiating fins 35 of the second heat exchanger 15 are arranged.
  • the 2nd heat exchange body 15 is arrange
  • the water supply facility 17 connects a tank 38 that stores cooling water, a pump 39 that pressurizes and supplies the cooling water in the tank 38 to the second heat exchanger 15, and the pump 39 and the second heat exchanger 15.
  • the water supply pipe 40 to be recovered the recovery pipe 41 for recovering the cooling water after heat exchange, the chiller (cooling device) 42 for cooling the recovered cooling water, and the like.
  • the cooling water cooled by the chiller 42 is returned to the tank 38.
  • the cool air chamber 45 and the cool air chamber 45 which are partitioned the inside air outlet 24 and the cool air supply port 11 of the inside air feeding chamber 21 below the heat exchange chamber 32 are supplied. Connection is made via a duct 46. Further, in order to return the hot air in the server room S to the heat exchange device C, the internal air inlet 23 of the internal air supply chamber 21 and the hot air recovery port 12 are connected by a recovery duct 47.
  • the heat exchanging device C and the server room S by the supply duct 46 and the recovery duct 47, the cool air and the hot air in the server room S are effectively circulated, and the air in the server rack 1 is conditioned. It can be done efficiently.
  • the heat exchange device C includes an outside air temperature sensor 61 that detects the outside air temperature, a water temperature sensor 62 that detects the temperature of the cooling water in the tank 38, and the amount of cold air supplied to the cold air space.
  • a cold air temperature sensor 63 for detecting the temperature is provided.
  • the control apparatus 64 which controls the operating state of the 1st ventilation fan 27, the 2nd ventilation fan 28, and the water supply equipment 17 is provided.
  • the heat exchange device C is operated to circulate the outside air and the air in the server room S, thereby cooling the inside air circulating inside the heat exchange device C.
  • cold air is taken into the enclosure from the cold air inlet 6 facing the cold air space 6 ⁇ / b> A by a server fan provided in the housing of the server 2, and then the hot air outlet 7 To the hot air space 7A.
  • This hot air is supplied to the internal air supply chamber 21 by the suction action of the first blower fan 27, and releases heat at the heat absorption part 13 a of the first heat exchanger 14.
  • the heat of the hot air supplied by the first blower fan 27 is transmitted to the working fluid held inside the heat absorbing portion 13a via the heat radiation fin 18 and the pipe wall of the heat pipe 13, and vaporizes the working fluid. .
  • the temperature of the hot air at this time is lowered by being cooled by the amount of heat (about 10 ° C.) released while passing through the endothermic portion 13a.
  • the cold air after the heat exchange passes through the second heat exchanger 15 and is then sent out from the inside air outlet 24 and circulates into the server room S again.
  • the vapor of the working fluid vaporized in the heat absorbing portion 13a flows along the heat pipe 13 toward the heat radiating portion 13b. Low temperature outside air introduced from the outside air inlet 25 is always supplied to the heat radiating portion 13b.
  • the radiating fins 18 and the heat pipe 13 that are in contact with the outside air are cooled by the outside air, and the vapor inside the radiating portion 13b is condensed and liquefied.
  • the temperature of the outside air after the heat exchange rises by the amount of heat taken from the radiating fins 18 and the heat pipe 13, and is discharged from the outside air outlet 26 by the blowing action of the second blower fan 28.
  • the condensed hydraulic fluid flows down to the heat absorption part 13a along the inclined pipe inner surface.
  • the hot air supplied from the server rack 1 can be cooled mainly by the heat exchange action of the first heat exchanger 14, but the outside air temperature is not about 10 ° C. lower than the temperature of the hot air, A sufficient cooling effect cannot be exhibited.
  • the temperature of hot air supplied to the inside air supply chamber 21 is 40 ° C.
  • the outside air temperature exceeds 30 ° C.
  • the amount of heat exchange decreases according to the temperature difference, so the first heat exchange
  • the cooling action of hot air by the body 14 is reduced.
  • the control device 64 operates the pump 39 of the water supply equipment 17 to supply the cooling water to the second heat exchanger 15, and the inside air supply chamber 21 is provided by both the first heat exchanger 14 and the second heat exchanger 15.
  • the hot air sent to the is cooled.
  • the drive rotational speed of the pump 39 is gradually increased to increase the amount of cooling water supplied to the second heat exchanger 15, thereby cooling the second heat exchanger 15. Increase ability.
  • the amount of cooling water supplied by the pump 39 is maximized, and the hot air is mainly cooled by the second heat exchanger 15.
  • the server 2 can be operated normally by sufficiently reducing the temperature in the server rack 1.
  • the cooling water after heat exchange recovered by the chiller 42 via the recovery pipe 41 is cooled by the chiller 42 and supplied to the tank 38.
  • FIG. 5 shows how the cooling capacities of the first heat exchanger 14 and the second heat exchanger 15 are changed with respect to changes in the outside air temperature when the operation state of the water supply equipment 17 is controlled under control conditions different from the above. The result of examining whether it should be changed is shown. However, assuming that the temperature of the hot air supplied to the inside air supply chamber 21 is 50 ° C. and the temperature of the cold air sent from the inside air supply chamber 21 to the cold air space is 32 degrees, each heat exchanger The cooling capacity of 14.15 was examined.
  • the control device 64 operates the pump 39 of the water supply equipment 17 based on the output signal from the outside air temperature sensor 61 to supply the cooling water to the second temperature.
  • the hot air supplied to the heat exchanger 15 is cooled by both the first heat exchanger 14 and the second heat exchanger 15 to the inside air supply chamber 21. Further, as the outside air temperature rises above 18 ° C., the cooling capacity of the first heat exchanger 14 gradually decreases, so the amount of cooling water supplied to the second heat exchanger 15 is increased. The decrease in the cooling capacity of the first heat exchanger 14 is compensated by the increase in the cooling capacity of the second heat exchanger 15.
  • the cooling capacity of the first heat exchanger 14 and the cooling capacity of the second heat exchanger 15 are antagonized, and both the heat exchangers 14 cooperate to cool the hot air.
  • the second heat exchanger 15 bears 70% of the cooling capacity and the first heat exchanger 14 bears the remaining 30% of the cooling capacity.
  • the cold air temperature sensor 63 constantly detects the temperature of the cold air after heat exchange. For this reason, if the temperature of the cool air supplied to the cool air space 6A is higher than a predetermined temperature in spite of the operation of the first heat exchanger 14 and the second heat exchanger 15, some abnormality occurs. Can be determined. When such an abnormality is detected, for example, a spare heat exchange device may be activated to cool the server room S. Further, the water temperature sensor 62 constantly detects the temperature of the cooling water in the tank 38. Therefore, when the temperature of the cooling water in the tank 38 exceeds a predetermined temperature (about 18 ° C.), the cooling capacity of the chiller 42 can be increased and the temperature of the cooling water in the tank 38 can be maintained at an appropriate temperature. Alternatively, when the temperature of the cooling water in the tank 38 is lower than a predetermined temperature (about 18 ° C.), the operation of the chiller 42 is stopped until the temperature of the cooling water reaches the predetermined temperature, and energy is wasted. Can be eliminated.
  • a predetermined temperature about
  • the internal air of the server rack 1 may be air conditioned, so that the heat load of the heat exchange device C can be reduced. Therefore, compared with the conventional air conditioner which needed to supply cold air to the whole server room S, it can be set as the air conditioner which can reduce the power consumption for air conditioning significantly and can contribute to energy saving. . Furthermore, even if the outside air temperature is high, the cooling water can be supplied to the second heat exchanger 15 by the water supply equipment 17 and the inside of the server rack 1 can be maintained at an appropriate temperature, so that it is always stable throughout the year. The server system can be operated.
  • the two second heat exchangers 15 are inclined in a V shape, for example, when the second heat exchanger 15 is arranged at the bottom of the outlet region of the inside air feeding chamber 21 as shown in FIG.
  • the total ventilation area of the second heat exchange body 15 can be increased, and the pressure loss of the heat exchange air passing through the inside air supply chamber 21 can be reduced to enhance the cooling capacity of the heat exchange device C.
  • the water condensed on the surface of the radiating fin 35 flows down along the inclinations of the heat exchangers 15 and 15 and is quickly discharged to the drain receiver 33, so the condensed water adhering to the surface of the radiating fin 35.
  • the membrane can always be kept thin.
  • the pressure loss of the heat exchange air passing through the second heat exchanger 15 can be reduced while improving the heat exchange efficiency of the second heat exchanger 15.
  • the second heat exchange body 15 is arranged so that the stacking direction of the radiation fins 18 of the first heat exchange body 14 and the stacking direction of the radiation fins 35 of the second heat exchange body 15 coincide with each other, FIG. As shown in FIG. 5, the airflow resistance of the second heat exchange body 15 can be reduced as compared with the case where the stacking directions of the radiation fins 18 and 35 are orthogonal to each other.
  • the inside air and the outside air pass through the first heat exchanger 14 while flowing in opposite directions, and are sent out from the inside air outlet 24 at the lower part of the device and the outside air outlet 26 at the upper part of the device.
  • the inlets 23 and 25 and the outlets 24 and 26 can be positioned on the left and right side surfaces and the upper and lower surfaces of the case body 16, so that the supply duct 46 and the recovery duct 47 can be easily connected. Yes.
  • the inclination angle of the first heat exchange body 14 is set to 45 degrees so as to avoid the increase in the vertical dimension of the heat exchange device C while sufficiently improving the heat transport amount of the first heat exchange body 14.
  • the inclination angle of the first heat exchange element 14 is set to an angle of 30 degrees or more and 60 degrees or less with respect to the horizontal plane.
  • the inclination angle of the first heat exchanger 14 is less than 30 degrees, the return force of the working fluid condensed in the heat radiating portion 13b to the heat absorbing portion 13a is low, so that the amount of heat transported by the first heat exchanger 14 is sufficient. It cannot be improved.
  • the inclination angle of the first heat exchange body 14 exceeds 60 degrees, although the reflux force of the condensed hydraulic fluid to the heat absorbing portion 13a can be secured to some extent, the vertical dimension of the heat exchange device C becomes large and the overall device becomes large. Inevitable.
  • FIG. 6 shows Example 2 in which a part of the heat exchange device C is changed.
  • the second heat exchange body 15 is arranged adjacent to the ventilation outlet surface of the first heat exchange body 14 in the outlet region of the inside air supply chamber 21.
  • an inside air outlet 24 was opened in the bottom wall of the inside air feeding chamber 21. Since others are the same as those of the first embodiment, the same members are denoted by the same reference numerals and the description thereof is omitted. The same applies to the following embodiments.
  • the first heat exchanging body 14 and the second heat exchanging body 15 can be disposed along the diagonal line of the case body 16 with the first heat exchanging body 14 and the second heat exchanging body 15 inclined by 45 degrees with respect to the horizontal plane.
  • An increase in the height of the exchange device C can be avoided.
  • the hydraulic fluid condensed in the heat radiating portion 13b is caused to flow quickly to the heat absorbing portion 13a below the heat pipe 13 to improve the heat transport amount of the first heat exchanger 14 and enhance the cooling capacity of the heat exchanging device C. it can.
  • the inlets 23 and 25 and the outlets 24 and 26 for the inside air and the outside air can be positioned on the left and right side surfaces and the top and bottom surfaces of the case body 16, the connection between the case body 16 and the supply duct 46 and the recovery duct 47 is easy. It can be done.
  • FIGS. 7 and 8 show Example 3 in which a part of the heat exchange device C is changed.
  • the second heat exchanger 15 is arranged at the bottom of the outlet region of the inside air feeding chamber 21 so that the vent outlet surface faces the inside air outlet 24 opened at the bottom of the inside air feeding chamber 21.
  • the second heat exchange body 15 includes a water pipe 34 that is repeatedly bent in an inverted manner and a group of heat radiation fins that are fixed to the outer surface of the water pipe 34. 35 was formed into a square block shape.
  • the 2nd heat exchange body 15 is arrange
  • FIGS. 9 and 10 show Example 4 in which a part of the heat exchange device C is changed.
  • the second heat exchanger 15 is arranged at the bottom of the outlet region of the inside air feeding chamber 21 as in the heat exchange device of the third embodiment.
  • the cooling water inlet 48 and the cooling water outlet 49 of the water flow pipe 34 are provided.
  • the second heat exchanger 15 is different in that it faces the corner sandwiched between the partition plate 20 and the bottom of the inside air supply chamber 21.
  • cooling water inlet 48 and the cooling water outlet 49 of the water flow pipe 34 are positioned at the lower corner of the partition plate 20, while exhibiting the same effect as the heat exchange device C of the third embodiment, It is possible to increase the overall area of the radiating fins 35 that are in contact with each other and improve the heat exchange efficiency. This is because the cooling water inlet 48 and the cooling water outlet 49 can be arranged using the above-mentioned corner.
  • FIG. 11 shows Example 5 in which a part of the heat exchange device C is changed.
  • the heat exchange chamber 32 is provided adjacent to the bottom of the outlet region of the inside air supply chamber 21, and the second heat exchange body 15 is disposed in an inclined manner inside the second heat exchange body.
  • a drain receiver 33 is provided so as to face the lower end of the slope 15. Further, an inside air outlet 24 was opened in the bottom wall of the heat exchange chamber 32.
  • the air exchange area of the second heat exchange body 15 is expanded and the heat exchange efficiency is exhibited while exhibiting the same effect as the heat exchange device C of the fourth embodiment. Can be improved.
  • moisture condensed on the surface of the heat radiation fin 35 flows down along the inclination of the heat exchanger 15 and is quickly discharged to the drain receiver 33.
  • the condensed water film adhering to the surface of the fin 35 can always be kept thin. Therefore, the pressure loss of the heat exchange air passing through the second heat exchanger 15 can be reduced while improving the heat exchange efficiency of the second heat exchanger 15.
  • FIG. 12 shows Example 6 in which a part of the heat exchange device C is changed.
  • the two second heat exchangers 15 and 15 are inclined in a V shape inside the heat exchange chamber 32, so that the total ventilation area of the second heat exchanger 15 is increased.
  • the cooling capacity of the heat exchange device C can be increased by increasing the pressure and reducing the pressure loss of the heat exchange air passing through the inside air supply chamber 21.
  • the inclined upper ends of the two second heat exchange elements 15 inclined in a V shape are supported by a hinge 50 fixed to the case body 16 so as to be tiltable.
  • the two second heat exchangers 15 and 15 have a use posture in which the tilting lower ends are adjacent to each other in a V shape as indicated by an imaginary line in FIG. Can be tilted between unused postures along the left and right walls (peripheral walls).
  • the second heat exchangers 15 and 15 are switched between the use posture and the non-use posture according to the outside air temperature while exhibiting the same effect as the heat exchange device C of the first embodiment.
  • the cooling capacity of the heat exchange device C can be adjusted.
  • the ventilation resistance of the inside air passing through the heat exchange chamber 32 can be reduced by keeping the exchanger 15 in a non-use posture. Therefore, the pressure loss of the 1st ventilation fan 27 can be made small, the power consumption for the air conditioning from autumn to spring can be reduced, and it can contribute to energy saving.
  • FIG. 13 shows Example 7 which changed a part of air conditioning apparatus for server systems.
  • a cold air guide passage 53 is formed under the floor facing the cold air space 6A
  • the inlet 54 of the passage 53 is connected to the internal air outlet 24 of the heat exchanger C
  • the outlet 55 of the passage 53 faces the cold air space 6A. Openings were made at several locations on F.
  • the partition wall 10 in this embodiment covers the upper wall 10c that covers the upper surface of the rack row 3 that sandwiches the cold air space 6A, and the upper surface of the rack row 3 that sandwiches the cold air space 6A and the upper surface of the side end wall.
  • the upper wall 10d and front and rear walls (not shown) covering the front and rear ends of the cool air space 6A are configured in a sealed space.
  • Doors for entering and exiting the cool air space 6A may be provided on front and rear walls that cover the front and rear ends of the cool air space 6A.
  • the hot air recovery port 12 opened in the surrounding wall of the server room S in communication with the hot air space 7 ⁇ / b> A was connected to the indoor air inlet 23 of the internal air supply chamber 21 via the recovery duct 47.
  • the air conditioner of the seventh embodiment configured as described above it is only necessary to supply the cold air to the cool air space 6A partitioned into a sealed space, so that compared to the air conditioner of the first embodiment, The heat load of the exchange device C can be further reduced, and the power consumption for air conditioning can be reduced correspondingly, thereby contributing to energy saving.
  • the heat exchanging device C according to the present invention is suitable for air conditioning the server system, but can also be applied, for example, to cooling the inside of a power conditioner installed in a mega solar. In that case, the second heat exchanger 15 can be omitted unless the outside air temperature is high throughout the year.
  • the water supply facility 17 can use a cooling tower (cooling device) instead of the chiller 42.
  • the water supply facility 17 can be configured by a water circulation unit that uses groundwater, river water, or seawater as cooling water.
  • the chiller 42 is omitted, and the heat exchange recovered after the recovery pipe 41 is used.
  • the cooling water may be discharged to the outside.
  • the first blower fan 27 need not be disposed on the inside air inlet 23 side, and can be disposed on the inside air outlet 24 side.
  • a fan can be provided to facilitate the circulation of hot air.
  • the server room S is cooled by one heat exchange device C.
  • the heat exchange device C may be installed in a necessary number according to the cooling load of the server room S. That's fine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Central Air Conditioning (AREA)

Abstract

全体装置の構造を簡素化しながら、ヒートパイプの熱輸送量を向上して熱交換効率を向上し、外気温の状況に応じて冷却対象を確実に冷却できるヒートパイプ式の熱交換装置を提供する。 ヒートパイプ13を伝熱要素とする第1熱交換体14と、水冷式の第2熱交換体15と、ケース本体16と、送水設備17を備えている。ケース本体16の内部は傾斜する仕切板20で内気送給室21と外気送給室22に区分されて、吸熱部13aが内気送給室21に位置し、放熱部13bが外気送給室22に位置する状態で、第1熱交換体14を傾斜配置する。第2熱交換体15は、第1熱交換体14と内気出口24の間に配置する。外気温が高い状態では、冷却水を送水設備17で第2熱交換体15に送給し、第1熱交換体14と第2熱交換体15を作動させて熱気を冷却する。

Description

ヒートパイプ式の熱交換装置、およびサーバーシステム用の空気調和装置
 本発明は、ヒートパイプ式の熱交換装置と、同装置を備えているサーバーシステム用の空気調和装置に関する。
 ヒートパイプ式の熱交換装置に関して、特許文献1の冷却装置が公知である。特許文献1の冷却装置は、通信機器を収容する筐体の天井壁に冷却装置を配置している。冷却装置は、中空箱状のケースを備えており、ケースの内部を傾斜する仕切板で、筺体内部の空気を循環させる内気側空間と、外気を循環させる外気側空間に区分している。仕切板には、同板を貫通する状態でヒートパイプが固定してあり、同パイプの吸熱部が内気側空間に臨んでおり、同パイプの放熱部が外気側空間に臨んでいる。内気側空間の底面には内気吸入口と、熱交換後の冷気を筐体内へ送出する内気戻し口が開口してあり、吸熱部の上面側に第1のファンが配置されている。また、外気側空間の側面に設けた外気吸入口に第2のファンが配置され、放熱部を通過した熱交換後の熱気をケースの上面に開口した外気排気口からケース外へ放出している。
 サーバーシステムにおいて、ヒートパイプ式の熱交換装置で熱交換を行うことは特許文献2に開示されている。特許文献2の空気調和装置は、各サーバーラックの天井壁に設置される熱交換装置と、外気を熱交換装置へ送給する外気ダクトと、熱排気を建屋の外へ送給する排気ダクトと、屋外に設けた送水設備を備えている。熱交換装置は、ヒートパイプを伝熱要素とする外気冷却式の第1熱交換体と、水冷式の第2熱交換体と、これらを収容する空調ケースと、送風ファンおよび循環ファンなどで構成されている。ヒートパイプは「く」字状に折曲げて形成されており、折曲部分に隔壁を配置して、空調ケースの内部を上側の放熱室と下側の吸熱室に区分している。通常は、外気を送風ファンで熱交換装置へ送給して、第1熱交換体のみで熱交換を行ってサーバーラック内の空気調和を行う。また、外気温が高いときは、冷却水を送水設備で第2熱交換体に送給して、第1熱交換体と第2熱交換体の両者でサーバーラック内の空気調和を行う。
特開2010-206098号公報(段落番号0025~0027、図1) 特開2016-024539号公報(段落番号0026~0030、図1)
 特許文献1の冷却装置は、冷却ケース内にヒートパイプを斜めに配置するので、冷却装置の高さ寸法が大きくなることを解消できる。また、筐体内に収容した通信機器が発生した熱を、ヒートパイプを介して筺体の外へ放出できる。しかし、冷却装置の外の空気のみでヒートパイプの放熱部の冷却を行うので、外気の温度が高くなった場合の冷却能力に限界があり、冷却対象が比較的小型の電気機器を収容する筐体に限られる。
 その点、特許文献2の熱交換装置は、外気で冷却される第1熱交換体とは別に、送水設備から送給された冷却水で冷却される第2熱交換体を併用するので、熱交換装置に対する熱負荷が大きい場合でも、問題なくサーバーラック内の空気調和を行える。しかし、特許文献2の熱交換装置では、外気によって冷却される放熱室の内部、つまりヒートパイプの放熱部の側に水冷式の第2熱交換体を配置している。そのため、放熱室に送給された外気を第2熱交換体で冷却したのち、冷却された外気でヒートパイプの放熱部を間接的に冷却するので、熱交換装置とサーバーラックの間を循環する空気を効果的に冷却できない。通常のヒートパイプ式の熱交換装置の例では、熱交換効率(温度効率)は50%程度であるので、例えば、放熱室に送給された外気の温度を第2熱交換体で5~10℃下げたとしても、サーバーラックに送給される空気の温度低下は、先の低下温度の半分程度にしか下がらず、冷却水の冷熱を有効に利用できない。また、特許文献2の空気調和装置では、個々のサーバーラックの天井壁に熱交換装置、外気ダクト、および排気ダクトを設置する必要があるので、各機器の据付けに多くの手間と時間が掛かり、サーバーシステム用の空気調和装置の全体コストが嵩む。
 本発明の目的は、全体装置の構造を簡素化しながら、ヒートパイプの熱輸送量を向上して熱交換効率を向上し、さらに、外気温の状況に応じて冷却対象を確実に冷却できるヒートパイプ式の熱交換装置を提供することにある。
 本発明の目的は、空気調和装置の全体構造を簡素化して、全体システムの導入コストや設置コストを著しく削減でき、さらに、サーバーラック内の空気調和を好適に行って、空気調和のための電力消費量を著しく削減して省エネルギーに寄与できるサーバーシステム用の空気調和装置を提供することにある。
 本発明の目的は、サーバーラックの周辺に熱交換装置や、外気や熱気を送るためのダクトを設置する必要がなく、従って、サーバー室の構造を簡素化し、サーバーラックの設置や設備更新を容易に行えるサーバーシステム用の空気調和装置を提供することにある。
 本発明に係る熱交換装置は、ヒートパイプ13を伝熱要素とする外気冷却式の第1熱交換体14と、水冷式の第2熱交換体15と、これら両者を収容する中空箱状のケース本体16と、低温の冷却水を第2熱交換体15へ供給する送水設備17を備える。図1に示すように、ケース本体16の内部は傾斜する仕切板20で内気送給室21と外気送給室22に区分する。内気送給室21に臨むケース本体16に内気入口23と内気出口24が設けられ、外気送給室22に臨むケース本体16に、外気入口25と外気出口26を開口する。内気送給室21に熱気を送給する第1送風ファン27と、外気送給室22に外気を送給する第2送風ファン28のそれぞれをケース本体16に設ける。第1熱交換体14は傾斜配置されて、ヒートパイプ13の吸熱部13aが内気送給室21に位置し、ヒートパイプ13の放熱部13bが外気送給室22に位置する状態で仕切板20と交差している。第2熱交換体15は、第1熱交換体14と内気出口24の間に配置する。第1熱交換体14の傾斜角度は水平面に対して30度以上で60度以下の角度に設定する。
 第2熱交換体15は、繰返し反転状に折曲げられた通水パイプ34と、通水パイプ34の外面に固定される一群の放熱フィン35とで四角ブロック状に構成する。図7に示すように、第2熱交換体15は内気送給室21の出口領域の底部に配置されて、その通気出口面が内気送給室21の底部に開口した内気出口24に臨ませてある。
 反転状に折曲げられた通水パイプ34の屈曲部が、四角ブロック状の第2熱交換体15の一方の対向辺部の外に露出され、対向辺部のいずれか一方に冷却水入口48および冷却水出口49が導出してある。図9に示すように、冷却水入口48および冷却水出口49が、仕切板20と内気送給室21の底部で挟まれる隅部に臨む状態で第2熱交換体15を配置する。
 内気送給室21の出口領域の底部に隣接して第2熱交換体15を収容する熱交換室32を設け、熱交換室32の底部に内気出口24を開口する。図11に示すように、第2熱交換体15を熱交換室32の内部に傾斜配置して、第2熱交換体32の傾斜下端に臨んでドレン水を排出するドレン受33を配置する。
 図4に示すように、熱交換室32の内部に2個の第2熱交換体15・15をV字状に傾斜配置する。
 図12に示すように、V字状に傾斜配置した2個の第2熱交換体15・15の傾斜上端側を、ケース本体16に固定したヒンジ50で傾動可能に支持する。2個の第2熱交換体15・15は、傾動下端がV字状に隣接する使用姿勢と、各第2熱交換体15・15が熱交換室32の周囲壁に沿う不使用姿勢の間で傾動できる。外気温が低い状態において、第2熱交換体15・15を不使用姿勢にして、第1熱交換体14のみで内気送給室21に送給される熱気を冷却する。
 図6に示すように、第2熱交換体15は、内気送給室21の出口領域のうち、第1熱交換体14の通気出口面に隣接して配置する。
 図2に示すように熱交換装置は、外気温度を検知する外気温度センサー61と、第1送風ファン27、第2送風ファン28および送水設備17の作動状態を制御する制御装置64を備えている。外気温度が設定温度に達したことを外気温度センサー61が検知した状態において、外気温度センサー61からの出力信号に基づき、制御装置64が送水設備17を作動させて冷却水を第2熱交換体15に送給し、第1熱交換体14と第2熱交換体15の両者で内気送給室21に送給される熱気を冷却する。
 本発明に係るサーバーシステム用の空気調和装置は、図2に示すように、サーバー室Sの内部に、一群のサーバー2を収容するサーバーラック1が列状に配置されてラック列3を構成しており、サーバー室Sの外に上記の熱交換装置Cが設けてある。ラック列3の一側に各サーバーラック1の冷気入口6が設けられ、ラック列3の他側に各サーバーラック1の熱気出口7が設けてある。ラック列3の冷気入口6に臨む冷気空間6Aと、ラック列3の熱気出口7に臨む熱気空間7Aは、ラック列3に沿って設けた仕切壁10で区分されている。熱交換装置Cの内気入口23は熱気空間7Aに接続され、内気出口24は冷気空間6Aに接続されている。熱交換装置は、外気温度を検知する外気温度センサー61と、第1送風ファン27、第2送風ファン28および送水設備17の作動状態を制御する制御装置64を備えている。外気温度が設定温度に達したことを外気温度センサー61が検知した状態において、外気温度センサー61からの出力信号に基づき、制御装置64が送水設備17を作動させて冷却水を第2熱交換体15に送給し、第1熱交換体14と第2熱交換体15の両者で内気送給室21に送給される熱気を冷却する。
 仕切壁10は、サーバー室Sの天井面と、天井面と対向する床Fおよびラック列3の上面との間に設けられて、冷気空間6Aと熱気空間7Aを区分している。図2に示すように、平面視における仕切壁10は、ラック列3の上面を通る前後壁10aと、前後壁10aに連続してラック列3の前端または後端で折曲がる左右壁10bで構成されて、一筆書き状に連続している。
 サーバー室Sの周囲壁に、冷気空間6Aに連通する冷気供給口11と、熱気空間7Aに連通する熱気回収口12を形成する。内気送給室21の内気出口24と冷気供給口11、および内気送給室21の内気入口23と熱気回収口12を、それぞれ供給ダクト46と回収ダクト47を介して接続する。
 図13に示すように、冷気空間6Aに臨む床下に冷気案内通路53を形成し、同通路53の入口54を熱交換装置Cの内気出口24に連通し、同通路53の出口55を冷気空間6Aに臨む床Fの複数個所に開口する。熱気空間7Aと連通する状態でサーバー室Sの周
囲壁に開口した熱気回収口12と内気送給室21の内気入口23を、回収ダクト47を介して接続する。
 本発明においては、外気冷却式の第1熱交換体14と、水冷式の第2熱交換体15と、これらを収容するケース本体16と、低温の冷却水を第2熱交換体15へ供給する送水設備17などで熱交換装置Cを構成した。また、ケース本体16の内部を傾斜する仕切板20で内気送給室21と外気送給室22に区分して、ヒートパイプ13の吸熱部13aが内気送給室21に位置し、ヒートパイプ13の放熱部13bが外気送給室22に位置する状態で、第1熱交換体14を傾斜配置した。さらに、第2熱交換体15は、第1熱交換体14と内気出口24の間に配置した。
 上記のように本発明においては、第1熱交換体14と内気出口24の間に第2熱交換体15を配置して、第1熱交換体14を通過した熱気を第2熱交換体15で直接冷却するようにした。こうした熱交換装置Cによれば、水冷式の第2熱交換体をヒートパイプの放熱部の側に配置した従来装置に比べて、熱気の冷却を効果的に行って、内気出口24から送出される冷気の温度を充分に下げることができる。また、第1熱交換体14の傾斜角度を水平面に対して30度以上で60度以下の角度に設定して、放熱部13bで凝縮した作動液を吸熱部13aへ速やかに流下できるようにするので、第1熱交換体14の熱輸送量を向上し、熱交換装置Cの冷却能力を増強できる。
 因みに、第1熱交換体14の傾斜角度が30度未満であると、放熱部13bで凝縮した作動液を吸熱部13aへ速やかに流下させることができず、第1熱交換体14の熱輸送量を十分に向上できない。一方で、第1熱交換体14の傾斜角度が60度を越えると、凝縮した作動液を吸熱部13aへ速やかに流下できるものの、熱交換装置Cの上下寸法が大きくなり全体装置が大型化するのを避けられない。さらに、外気入口25から取込んだ外気で第1熱交換体14を冷却し、熱交換後の熱気を外気出口26から大気中に放出するので、ダクトなどの付随構造を省略でき、熱交換装置Cの構造を簡素化できる。以上のように、本発明の熱交換装置Cによれば、全体装置の構造を簡素化しながら、ヒートパイプ13の熱輸送量を向上して熱交換効率を向上し、さらに、外気温の状況に応じて冷却対象を確実に冷却できるヒートパイプ式の熱交換装置を提供できる。
 四角ブロック状に構成した第2熱交換体15を、内気送給室21の出口領域の底部に配置すると、図6に示すように、第2熱交換体15が第1熱交換体14の通気出口面に隣接して配置してある場合に比べて、放熱フィン35の左右寸法を大きくして、通水パイプ34の配列数を増加して冷却能力を増強できる。さらに、内気が第2熱交換体15を通過するときの圧力損失を小さくできるので、第2熱交換体15を使用しない季節(秋から春)における空気調和のための電力消費量を削減して省エネルギーに寄与できる。
 冷却水入口48および冷却水出口49が、仕切板20と内気送給室21の底部で挟まれる隅部に臨む状態で第2熱交換体15を配置すると、図7に示すように送水管路40および回収管路41が、内気送給室21の出口領域の底部左右に配置してある場合に比べて、内気と接触する放熱フィン35の全体面積を大きくして、熱交換効率を向上できる。先の隅部を利用して冷却水入口48および冷却水出口49を配置できるからである。
 内気送給室21に隣接して熱交換室32を設け、その内部に第2熱交換体15を傾斜配置し、第2熱交換体32の傾斜下端にドレン受33を配置すると、図7、図9に示すように、第2熱交換体15が出口領域の底部に配置してある場合に比べて、第2熱交換体15の通気面積を拡大して熱交換効率を向上できる。また、放熱フィン35の表面に凝縮した水分が、熱交換体15の傾斜に沿って流下し、ドレン受33へと速やかに排出されるので、放熱フィン35の表面に付着する凝縮水膜を常に薄く保つことができる。従って、第2熱交換体15の熱交換効率を向上しながら、第2熱交換体15を通過する熱交換風の圧力損失を低減できる。
 図4に示すように、熱交換室32の内部に2個の第2熱交換体15・15をV字状に傾斜配置すると、第2熱交換体15の合計の通風面積を大きくでき、しかも内気送給室21を通過する熱交換風の圧力損失を低減して熱交換装置Cの冷却能力を増強できる。また、放熱フィン35の表面に凝縮した水分が、各熱交換体15・15の傾斜に沿って流下できるので、放熱フィン35の表面に付着する凝縮水膜を常に薄く保つことができる。従って、第2熱交換体15の熱交換効率を向上しながら、第2熱交換体15を通過する熱交換風の圧力損失を低減できる。
 図12に示すように、V字状に傾斜配置した2個の第2熱交換体15・15の傾斜上端側を、ケース本体16に固定したヒンジ50で傾動可能に支持した熱交換装置Cによれば、上記の熱交換装置Cと同様に、第2熱交換体15の合計の通風面積を大きくでき、しかも内気送給室21を通過する熱交換風の圧力損失を低減して熱交換装置Cの冷却能力を増強できる。また、外気温の状況に応じて第2熱交換体15・15を使用姿勢と不使用姿勢に切換えて、熱交換装置Cの冷却能力を調整できるので、第2熱交換体15を使用しない季節(秋から春)に、同交換体15を不使用姿勢にしておくことにより、熱交換室32を通過する内気の通気抵抗をさらに小さくできる。従って、第1送風ファン27の圧力損失を小さくして、秋から春における空気調和のための電力消費量を削減して省エネルギーに寄与できる。
 図6に示すように、第2熱交換体15を第1熱交換体14の通気出口面に隣接して配置した熱交換装置Cによれば、第1熱交換体14および第2熱交換体15を水平面に対して傾斜した状態で、ケース本体16の対角線に沿って配置できるので、熱交換装置Cの高さ寸法が大きくなるのを回避できる。また、放熱部13bで凝縮した作動液を、ヒートパイプ13の下部の吸熱部13aへ速やかに流下させて第1熱交換体14の熱輸送量を向上し、熱交換装置Cの冷却能力を増強できる。
 外気温度センサー61と、第1送風ファン27、第2送風ファン28および送水設備17の作動状態を制御する制御装置64を備えている熱交換装置においては、外気温が低い状態では第1熱交換体14のみを作動させて、内気送給室21に送給された熱気を外気で冷却できる。また、外気温度が設定温度に達したことを外気温度センサー61が検知した状態においては、制御装置64が送水設備17を作動させて冷却水を第2熱交換体15に送給し、第1熱交換体14と第2熱交換体15の両者で内気送給室21に送給される熱気を冷却できる。このように、本発明の熱交換装置によれば、外気温の状況に応じて冷却対象を無駄なく確実に冷却できるので、年間を通じて熱交換のための電力消費量を削減して省エネルギーに寄与できる。
 本発明に係るサーバーシステム用の空気調和装置においては、サーバー室Sの内部に、一群のサーバー2を収容するラック列3を配置し、サーバー室Sの外には上記の熱交換装置Cを設けた。また、サーバー室Sの内部をラック列3に沿って設けた仕切壁10で区分して、サーバーラック1の冷気入口6に臨む冷気空間6Aと、熱気出口7に臨む熱気空間7Aを区画した。そのうえで、サーバー室Sの外に配置した熱交換装置Cで熱気の冷却を集約して行い、冷却された冷気を冷気空間6Aへ送給し、サーバー2の冷却を行った後の熱気空間7Aの熱気を、熱交換装置Cへ循環させるようにした。
 上記の空気調和装置によれば、サーバーラック1の周辺に熱交換装置や、外気や熱気を送るためのダクト構造を設置する必要がなく、従って、サーバー室Sの内部構造を簡素化して、サーバーラック1の設置や設備更新を容易に行うことができる。また、熱交換装置やダクト構造を省いてサーバー室Sの内部構造を簡素化できる分だけ、空気調和装置の全体構造を簡素化して、全体システムの導入コストや設置コストを著しく削減できる。さらに、外気温が低い状態では第1熱交換体14のみを作動させて、内気送給室21に送給された熱気を外気で冷却でき、外気温度が設定温度に達したことを外気温度センサー61が検知した状態においては、制御装置64が送水設備17を作動させて冷却水を第2熱交換体15に送給し、第1熱交換体14と第2熱交換体15の両者で内気送給室21に送給される熱気を冷却できる。従って、本発明の空気調和装置によれば、外気温の状況に応じて冷却対象を無駄なく確実に冷却できるので、年間を通じて熱交換のための電力消費量を削減して省エネルギーに寄与できる。
 一筆書き状に連続する前後壁10aと左右壁10bで仕切壁10を構成すると、例えば、ラック列ごとに冷気空間6Aと熱気空間7Aを区画する場合に比べて、仕切壁10の一端から他端に至る壁の長さを短くしながら、仕切壁10の全体構造を簡素化して、その構築に要するコストを削減できる。また、サーバー室Sの内部を冷気空間6Aと熱気空間7Aに仕切壁10でほぼ均等に区分できるので、冷気および熱気の循環を円滑に行って、熱交換装置Cによる熱気の冷却を効果的に行える。
 内気送給室21の内気出口24と冷気供給口11、および内気送給室21の内気入口23と熱気回収口12を、それぞれ供給ダクト46と回収ダクト47を介して接続すると、サーバー室S内の冷気および熱気を効果的に循環させて、サーバーラック1内の空気調和を効率よく行える。
 冷気空間6Aに臨む床下に冷気案内通路53を形成し、その入口54を熱交換装置Cの内気出口24に連通し、出口55を冷気空間6Aに臨む床Fの複数個所に開口すると、冷気空間6Aに限って冷気を送給すればよいので、熱交換装置Cの熱負荷を小さくして、その分だけ空気調和のための電力消費量を削減して省エネルギーに寄与できる。
本発明の実施例1に係る熱交換装置の概略構造を示す縦断正面図である。 本発明に係るサーバーシステムの空気調和装置の概略平面図である。 熱交換装置とサーバー室の接続構造の概略を示す縦断正面図である。 図1におけるa-a線矢示図である。 実施例1に係る熱交換装置の制御例を示す図表である。 本発明の実施例2に係る熱交換装置の概略構造を示す縦断正面図である。 本発明の実施例3に係る熱交換装置の概略構造を示す縦断正面図である。 図7におけるb-b線矢示図である。 本発明の実施例4に係る熱交換装置の概略構造を示す縦断正面図である。 図9におけるc-c線矢示図である。 本発明の実施例5に係る熱交換装置の概略構造を示す縦断正面図である。 本発明の実施例6に係る熱交換装置の概略構造を示す縦断正面図である。 本発明の実施例7に係るサーバーシステムの空気調和装置の概略構造を示す縦断正面図である。
(実施例1) 図1ないし図5は、本発明に係る熱交換装置をサーバーシステムの空気調和装置に適用した実施例1を示す。本発明における前後、左右、上下とは、図2、図3に示す交差矢印と、交差矢印の近傍の前後・左右・上下の表記に従う。図2および図3において、符号1は床Fに設置したサーバーラックであり、その内部に一群のサーバー2が多段状に収容されている(図3参照)。サーバー室Sに設置した一群のサーバーラック1は、直線列状に配置されてラック列3を構成しており、左右のラック列3はメンテナンス用の通路4を間に挟んで対向している。なお、この実施例では図面を単純化するために、ラック列3が3個のサーバーラック1で構成してある場合を例示したが、実際のラック列3は多数個のサーバーラック1で前後に長い直線列状に構成され、ラック列Lの設置数は多数個となり、サーバー室Sの大きさも格段に大きなものとなる。また、サーバー室Sに収容されるサーバー群の規模に応じて、熱交換装置Cの設置個数が増加される。
 図3に示すようにサーバーラック1は中空の縦長四角箱状に構成されて、その両側面に開閉可能なドアが設けられており、必要時にドアを開放することによりサーバー2の点検や交換などを行うことができる。ドアのドア壁は、網体またはパンチングメタルなどの通気自在な板状体で形成されており、対向する左右のドアのいずれか一方の冷気入口6から冷気をラック内へ導入し、サーバー2の筐体に内蔵してあるサーバーファンの送風作用で熱交換を行ったのち、他方のドアの熱気出口7から熱交換後の熱気を排出する。
 各サーバーラック1内の空気調和を行うために空気調和装置を設けている。空気調和装置は、サーバー室Sの外に設置した熱交換装置Cを備えており、熱交換装置Cで冷却した冷気をサーバー室Sに送給してサーバーラック1内の空気調和を行う。サーバー室S内で冷気と熱交換後の熱気が混じるのを避けて、冷気による熱交換を効果的に行うために、サーバー室Sの内部をラック列3に沿って設けた仕切壁10で冷気空間6Aと熱気空間7Aに区分している。詳しくは、サーバー室Sの天井面と、天井面と対向する床Fおよびラック列3の上面との間を仕切壁10で区分して、冷気空間6Aと熱気空間7Aを区分している。
 図2に示すように、この実施例ではラック列3の上面の左右中央を通る3個の前後壁10aと、前後壁10aに連続してラック列3の前端または後端で折曲がる4個の左右壁10bで仕切壁10を構成して、平面視における仕切壁10が一筆書き状に連続するようにした。先の冷気入口6は全て冷気空間6Aに臨んでおり、熱気出口7は全て熱気空間7Aに臨んでいる。熱交換装置Cに隣接するサーバー室Sの周囲壁には、冷気空間6Aに連通する冷気供給口11と、熱気空間7Aに連通する熱気回収口12が形成してある。なお、左右壁10bには、冷気空間6Aと熱気空間7Aを行き来するためのドアが設けてあってもよい。上記のように、一筆書き状に連続する前後壁10aと左右壁10bで仕切壁10を構成すると、仕切壁10の一端から他端に至る壁の長さを短くしながら、仕切壁10の全体構造を簡素化して、その構築に要するコストを削減できる。さらに、サーバー室Sの内部を冷気空間6Aと熱気空間7Aに仕切壁10でほぼ均等に区分できるので、冷気および熱気の循環を円滑に行って、熱交換装置Cによる熱気の冷却を効果的に行える。
 図1に示すように熱交換装置Cは、ヒートパイプ13を伝熱要素とする外気冷却式の第1熱交換体14と、水冷式の第2熱交換体15と、これら両者14・15を収容する中空箱状のケース本体16と、低温の冷却水を第2熱交換体15へ供給したのち回収する送水設備17(図2参照)を備えている。ケース本体16の内部は45度傾斜する仕切板20で内気送給室21と外気送給室22に区分されており、各送給室21・22に臨むケース本体16の周囲壁に内気入口23と、外気入口25および外気出口26が開口してある。この実施例では、図1に向かって左側のケース壁に内気入口23を開口し、右側のケース壁に外気入口25を開口した。また、上側のケース壁に外気出口26を開口した。内気出口24は、後述する熱交換室32の底に開口してある。内気入口23の内部には、サーバー室S内の熱気を第1熱交換体14へ向かって送給する第1送風ファン27が配置してあり、外気出口26の内部には熱交換後の熱気を大気に放出する第2送風ファン28が配置してある。
 第1熱交換体14は、一群のヒートパイプ13と、ヒートパイプ13の外面に固定される一群の放熱フィン18で扁平な四角ブロック状に構成してあり、全体が先の仕切板20と直交する状態で配置されて、その上下端がブラケット29で支持してある。この実施例では、ヒートパイプ13を第1熱交換体14の厚み方向へ3列、第1熱交換体14の前後方向へは多数個を配置して第1熱交換体14を構成した。ヒートパイプ13の下側の吸熱部13aは内気送給室21に位置させてあり、ヒートパイプ13の上側の放熱部13bは外気送給室22に位置させてある。第1熱交換体14は水平面に対して45度傾斜しており、第1熱交換体14と仕切板20の交差部分は、図示していないシール体で封止してある。このように、第1熱交換体14を45度傾斜させると、ヒートパイプ13の放熱部13bで凝縮した作動液が下部の吸熱部13aへ還流する能力を、ヒートパイプ13が水平に近い状態、あるいは垂直に近い状態で配置してある場合に比べて増強できるので、第1熱交換体14の熱輸送量を向上し、熱交換装置Cの冷却能力を増強できる。また、第1熱交換体14をケース本体16の対角線に沿って配置することにより、ケース本体16の高さ寸法が大きくなるのを回避できる。なお、ヒートパイプ13の配列形態は、上記の形態に限定するものではなく、第1熱交換体14の冷却能力に応じて適宜調整される。
 内気送給室21と外気送給室22の内部の空間は、第1熱交換体14によって入口領域と出口領域に区分されており、内気送給室21の出口領域の底部に隣接して第2熱交換体15を収容する熱交換室32が設けてある。熱交換室32は、ケース本体16を下方に延長して形成してあり、その底部には、熱交換後の冷気をサーバー室2へ向かって送出する内気出口24が開口してある。図4に示すように、熱交換室32の内部には2個の第2熱交換体15・15がV字状に傾斜配置されて、両者15・15の傾斜下端に臨んでドレン水を排出するドレン受33が配置してある。第2熱交換体15は、繰返し反転状に折曲げられた銅製の通水パイプ34と、通水パイプ34の外面に固定される一群の放熱フィン35とで扁平な四角ブロック状に構成してある。放熱フィン35は通水パイプ34の直線部分と直交する状態で一定間隔おきに配置するが、第1熱交換体14の放熱フィン18の積層方向と、第2熱交換体15の放熱フィン35の積層方向が一致するように、第2熱交換体15を配置している。
 図2において送水設備17は、冷却水を貯留するタンク38と、タンク38内の冷却水を第2熱交換体15へ加圧送給するポンプ39と、ポンプ39と第2熱交換体15を接続する送水管路40と、熱交換後の冷却水を回収する回収管路41と、回収した冷却水を冷却するチラー(冷却装置)42などで構成してある。チラー42で冷却された冷却水はタンク38へ戻される。
 熱交換装置Cで冷却した冷気をサーバー室Sへ送給するために、内気送給室21の内気出口24と冷気供給口11を、熱交換室32の下側に区画した冷気室45と供給ダクト46を介して接続している。また、サーバー室S内の熱気を熱交換装置Cへ戻すために、内気送給室21の内気入口23と熱気回収口12を、回収ダクト47で接続している。このように、熱交換装置Cとサーバー室Sを供給ダクト46と回収ダクト47で接続することにより、サーバー室S内の冷気および熱気を効果的に循環させて、サーバーラック1内の空気調和を効率よく行える。
 図2に示すように、熱交換装置Cには、外気温度を検知する外気温度センサー61と、タンク38内の冷却水の温度を検知する水温センサー62と、冷気空間へ送給される冷気の温度を検知する冷気温度センサー63が設けてある。さらに、第1送風ファン27、第2送風ファン28および送水設備17の作動状態を制御する制御装置64を備えている。
 次に、空気調和装置で空気調和を行うときの外気および熱気の流れと、熱交換装置Cによる熱交換動作を説明する。サーバー2の一群が稼働している状態では、熱交換装置Cを作動させて、外気およびサーバー室S内の空気を循環させて、熱交換装置Cの内部において循環する内気を冷却する。サーバーラック1の内部においては、サーバー2の筐体内に設けたサーバーファンによって、冷気空間6Aに臨む冷気入口6から冷気が筺体内へ取込まれ、発熱部品の熱を奪ったのち、熱気出口7から熱気空間7Aへ排出される。この熱気は、第1送風ファン27の吸込み作用によって内気送給室21へ送給され、第1熱交換体14の吸熱部13aにおいて熱を放出する。
 第1送風ファン27で送給された熱気の熱は、放熱フィン18とヒートパイプ13のパイプ壁を介して、吸熱部13aの内部に保持されている作動液に伝えられ、作動液を気化させる。このときの熱気の温度は、吸熱部13aを通過する間に放出した熱の分(約10℃)だけ冷却されて低下する。熱交換後の冷気は、第2熱交換体15を通過したのち内気出口24から送出されて、再びサーバー室S内へ循環する。吸熱部13aで気化した作動液の蒸気は、ヒートパイプ13に沿って放熱部13bの側へ流動する。放熱部13bには、外気入口25から導入された低温の外気が常に送給されている。そのため、外気と接触した放熱フィン18およびヒートパイプ13は外気によって冷却されて、放熱部13bの内部の蒸気が凝縮されて液化する。熱交換後の外気は放熱フィン18とヒートパイプ13から奪った熱の分だけ温度が上昇し、第2送風ファン28の送風作用で外気出口26から放出される。凝縮した作動液は、傾斜するパイプ内面に沿って吸熱部13aへと流下する。
 上記のように、サーバーラック1から送給された熱気は、主に第1熱交換体14の熱交換作用で冷却することができるが、外気温度が熱気の温度より10℃程度低くないと、充分な冷却作用を発揮することができなくなる。例えば、内気送給室21へ送給される熱気の温度が40℃であるとき、外気温度が30℃を越えて高くなると、温度差に応じて熱交換量が減少するため、第1熱交換体14による熱気の冷却作用が低下する。
 上記のような状況を避けるために、この実施例においては、外気温度が25℃(設定温度)に達したことを外気温度センサー61で検知した状態において、外気温度センサー61からの出力信号に基づき、制御装置64が送水設備17のポンプ39を作動させて冷却水を第2熱交換体15に送給し、第1熱交換体14と第2熱交換体15の両者で内気送給室21に送給された熱気を冷却する。また、外気温度が上昇するのに対応してポンプ39の駆動回転数を徐々に増加して、第2熱交換体15に送給される冷却水量を増加し、第2熱交換体15の冷却能力を高める。そして、外気温度が35度に達した状態では、ポンプ39による冷却水の送水量を最大量にして、主に第2熱交換体15で熱気を冷却する。
 以上のように、吸熱部13aを通過した内気を第2熱交換体15で強制的に冷却すると、第1熱交換体14による冷却作用の不足分を補って、低温の内気(約25℃)を冷気空間6Aへ送給できる。従って、サーバーラック1内の温度を充分に低下させて、サーバー2を正常に作動させることができる。なお、回収管路41を介してチラー42に回収された熱交換後の冷却水は、チラー42で冷却されてタンク38へ送給される。
 図5は上記とは異なる制御条件で送水設備17の作動状態を制御した場合に、外気温度の変化に対して、第1熱交換体14と第2熱交換体15の冷却能力をどのように変化させれば良いかを検討した結果を示している。但し、内気送給室21へ送給される熱気の温度は50℃であり、内気送給室21から冷気空間へ送出される冷気の温度は32度であると想定して、各熱交換体14・15の冷却能力を検討した。
 上記の制御では、外気温度が18℃(設定温度)に達した時点で、外気温度センサー61からの出力信号に基づき、制御装置64が送水設備17のポンプ39を作動させて冷却水を第2熱交換体15に送給し、第1熱交換体14と第2熱交換体15の両者で内気送給室21に送給された熱気を冷却する。また、外気温度が18℃を越えて上昇するのに伴って、第1熱交換体14の冷却能力が漸減するので、第2熱交換体15に送給される冷却水の量を増加して、第1熱交換体14の冷却能力の低下を第2熱交換体15の冷却能力の増強で補うようにする。外気温度が約33℃に達した状態では、第1熱交換体14の冷却能力と第2熱交換体15の冷却能力は拮抗し、両熱交換体14が協同して熱気の冷却を行う。また、外気温度が約40℃に達した状態では、冷却能力の70%を第2熱交換体15が負担し、冷却能力の残りの30%を第1熱交換体14が負担する。このように、内気送給室21へ送給される熱気の温度、タンク38内の冷却水の温度などの違いに応じて、サーバーセンターごとに最適の制御を行うことにより、サーバーラック1内の温度を充分に低下させて、サーバー2を正常に作動させることができる。
 冷気温度センサー63は、熱交換後の冷気の温度を常時検知している。そのため、第1熱交換体14および第2熱交換体15が作動しているにも関わらず、冷気空間6Aに送給される冷気の温度が所定の温度より高い場合には、何らかの異常が起こっていると判断することができる。こうした異常が検知された場合には、例えば、予備の熱交換装置を起動してサーバー室Sを冷却するとよい。また、水温センサー62は、タンク38内の冷却水の温度を常時検知している。そのため、タンク38内の冷却水の温度が所定温度(約18℃)を越える場合に、チラー42の冷却能力を高めて、タンク38内の冷却水の温度を適温に維持することができる。あるいは、タンク38内の冷却水の温度が所定温度(約18℃)未満である場合に、冷却水の温度が所定温度に達するまでの間チラー42の作動を停止して、エネルギーの無駄な消費を解消することができる。
 以上のように構成した空気調和装置によれば、サーバーラック1の内部空気を空気調和すればよいので、熱交換装置Cの熱負荷を小さくできる。従って、サーバー室Sの全体に冷気を供給する必要があった従来の空気調和装置に比べて、空気調和のための電力消費量を著しく削減して省エネルギーに寄与できる空気調和装置とすることができる。さらに、外気温が高い状態であっても、第2熱交換体15に送水設備17で冷却水を送給して、サーバーラック1内を適温に保持できるので、1年を通じて常に安定した状態でサーバーシステムを稼働できる。
 2個の第2熱交換体15をV字状に傾斜配置するので、例えば図7に示すように第2熱交換体15が内気送給室21の出口領域の底部に配置してある場合に比べて、第2熱交換体15の合計の通風面積を大きくでき、しかも内気送給室21を通過する熱交換風の圧力損失を低減して熱交換装置Cの冷却能力を増強できる。また、放熱フィン35の表面に凝縮した水分が、各熱交換体15・15の傾斜に沿って流下し、ドレン受33へと速やかに排出されるので、放熱フィン35の表面に付着する凝縮水膜を常に薄く保つことができる。従って、第2熱交換体15の熱交換効率を向上しながら、第2熱交換体15を通過する熱交換風の圧力損失を低減できる。加えて、第1熱交換体14の放熱フィン18の積層方向と、第2熱交換体15の放熱フィン35の積層方向が一致するように、第2熱交換体15を配置するので、図8に示すように、放熱フィン18・35の積層方向が直交している場合に比べて、第2熱交換体15の通気抵抗を減少できる。
 熱交換装置Cにおいては、内気と外気がそれぞれ互いに逆向きに流動しながら第1熱交換体14を通過し、装置下部の内気出口24と装置上部の外気出口26から送出される。こうした熱交換装置Cによれば、ケース本体16の左右側面と上下面に各入口23・25と各出口24・26を位置させることができるので、供給ダクト46および回収ダクト47の接続を容易に行える。
 実施例1では、第1熱交換体14の傾斜角度を45度として、第1熱交換体14の熱輸送量を十分に向上しながら、熱交換装置Cの上下寸法が大きくなるのを避けるようにしたが、第1熱交換体14の傾斜角度は水平面に対して30度以上で60度以下の角度に設定してあれば足りる。第1熱交換体14の傾斜角度が30度未満であると、放熱部13bで凝縮した作動液の吸熱部13aへの還流力が低くなるので、第1熱交換体14の熱輸送量を十分に向上できない。内気入口23や外気入口25の開口面積が小さくなる不利もある。また、第1熱交換体14の傾斜角度が60度を越えると、凝縮した作動液の吸熱部13aへの還流力はある程度確保できるものの、熱交換装置Cの上下寸法が大きくなり全体装置が大型化するのを避けらない。
(実施例2) 図6は熱交換装置Cの一部を変更した実施例2を示す。そこでは、第2熱交換体15を、内気送給室21の出口領域のうち、第1熱交換体14の通気出口面に隣接して配置するようにした。また、内気送給室21の底壁に内気出口24を開口した。他は実施例1と同じであるので、同じ部材に同じ符号を付してその説明を省略する。以下の実施例においても同じとする。
 実施例2の熱交換装置Cによれば、第1熱交換体14および第2熱交換体15を水平面に対して45度傾斜した状態で、ケース本体16の対角線に沿って配置できるので、熱交換装置Cの高さ寸法が大きくなるのを回避できる。また、放熱部13bで凝縮した作動液を、ヒートパイプ13の下部の吸熱部13aへ速やかに流下させて第1熱交換体14の熱輸送量を向上し、熱交換装置Cの冷却能力を増強できる。さらに、内気および外気の各入口23・25および各出口24・26をケース本体16の左右側面と上下面に位置させることができるので、ケース本体16と供給ダクト46および回収ダクト47の接続を容易に行える。
(実施例3) 図7および図8は熱交換装置Cの一部を変更した実施例3を示す。そこでは、第2熱交換体15を内気送給室21の出口領域の底部に配置して、その通気出口面を内気送給室21の底部に開口した内気出口24に臨ませるようにした。第2熱交換体15は、実施例1の第2熱交換体15と同様に、繰返し反転状に折曲げられた通水パイプ34と、通水パイプ34の外面に固定される一群の放熱フィン35で四角ブロック状に構成した。上記のように第2熱交換体15を内気送給室21の出口領域の底部に配置すると、実施例2の熱交換装置Cと同様の作用効果を発揮しながら、実施例2の第2熱交換体15に比べて、放熱フィン35の左右寸法を大きくして、通水パイプ34の配列数を増加して冷却能力を増強できる。さらに、内気が第2熱交換体15を通過するときの圧力損失を小さくできるので、第2熱交換体15を使用しない季節(秋から春)における空気調和のための電力消費量を削減して省エネルギーに寄与できる。
(実施例4) 図9および図10は熱交換装置Cの一部を変更した実施例4を示す。そこでは、実施例3の熱交換装置と同様に第2熱交換体15を内気送給室21の出口領域の底部に配置するが、通水パイプ34の冷却水入口48および冷却水出口49が、仕切板20と内気送給室21の底部で挟まれる隅部に臨む状態で第2熱交換体15を配置する点が異なる。上記のように、通水パイプ34の冷却水入口48および冷却水出口49を仕切板20の下隅に位置させると、実施例3の熱交換装置Cと同様の作用効果を発揮しながら、内気と接触する放熱フィン35の全体面積を大きくして、熱交換効率を向上できる。先の隅部を利用して冷却水入口48および冷却水出口49を配置できるからである。
(実施例5) 図11は熱交換装置Cの一部を変更した実施例5を示す。そこでは、実施例1と同様に、内気送給室21の出口領域の底部に隣接して熱交換室32を設け、その内部に第2熱交換体15を傾斜配置し、第2熱交換体15の傾斜下端に臨んでドレン受33を設けるようにした。また、熱交換室32の底壁に内気出口24を開口した。上記のように、第2熱交換体15を傾斜配置すると、実施例4の熱交換装置Cと同様の作用効果を発揮しながら、第2熱交換体15の通気面積を拡大して熱交換効率を向上できる。また、実施例1の熱交換装置Cと同様に、放熱フィン35の表面に凝縮した水分が、熱交換体15の傾斜に沿って流下し、ドレン受33へと速やかに排出されるので、放熱フィン35の表面に付着する凝縮水膜を常に薄く保つことができる。従って、第2熱交換体15の熱交換効率を向上しながら、第2熱交換体15を通過する熱交換風の圧力損失を低減できる。
(実施例6) 図12は熱交換装置Cの一部を変更した実施例6を示す。そこでは、実施例1と同様に、熱交換室32の内部に2個の第2熱交換体15・15をV字状に傾斜配置して、第2熱交換体15の合計の通風面積を大きくし、しかも内気送給室21を通過する熱交換風の圧力損失を低減して熱交換装置Cの冷却能力を増強できるようにした。また、V字状に傾斜配置した2個の第2熱交換体15の傾斜上端側を、ケース本体16に固定したヒンジ50で傾動可能に支持した。これにより、2個の第2熱交換体15・15は、図12に想像線で示すように傾動下端がV字状に隣接する使用姿勢と、各熱交換体15・15が熱交換室32の左右壁(周囲壁)に沿う不使用姿勢の間で傾動できる。こうした熱交換装置Cによれば、実施例1の熱交換装置Cと同じ作用効果を発揮しながら、外気温の状況に応じて第2熱交換体15・15を使用姿勢と不使用姿勢に切換えて、熱交換装置Cの冷却能力を調整できる。例えば、第2熱交換体15を使用しない季節(秋から春)に、同交換体15を不使用姿勢にしておくことにより、熱交換室32を通過する内気の通気抵抗を小さくできる。従って、第1送風ファン27の圧力損失を小さくして、秋から春における空気調和のための電力消費量を削減して省エネルギーに寄与できる。
(実施例7) 図13はサーバーシステム用の空気調和装置の一部を変更した実施例7を示す。そこでは、冷気空間6Aに臨む床下に冷気案内通路53を形成し、同通路53の入口54を熱交換装置Cの内気出口24に連通し、同通路53の出口55を冷気空間6Aに臨む床Fの複数個所に開口した。この実施例における仕切壁10は、冷気空間6Aを間に挟むラック列3の上面の間を覆う上壁10cと、冷気空間6Aを間に挟むラック列3と側端壁の上面の間を覆う上壁10dと、冷気空間6Aの前後端を覆う前後壁(図示していない)で密閉空間状に構成してある。冷気空間6Aの前後端を覆う前後壁には、冷気空間6Aに出入りするためのドアが設けてあってもよい。熱気空間7Aと連通する状態でサーバー室Sの周囲壁に開口した熱気回収口12は、回収ダクト47を介して内気送給室21の内気入口23に接続した。以上のように構成した実施例7の空気調和装置によれば、密閉空間状に区画した冷気空間6Aに限って冷気を送給すればよいので、実施例1の空気調和装置に比べて、熱交換装置Cの熱負荷をさらに小さくでき、その分だけ空気調和のための電力消費量を削減して省エネルギーに寄与できる。
 本発明に係る熱交換装置Cは、サーバーシステムの空調を行うのに適しているが、例えば、メガソーラーに設置されるパワーコンディショナーの内部を冷却する用途にも適用できる。その場合には、年間を通じて外気温が高い地域でない限り、第2熱交換体15を省略することができる。
 送水設備17は、チラー42に換えてクーリングタワー(冷却装置)を使用できる。また、地下水、河川水、または海水を冷却水として利用する水循環ユニットで送水設備17を構成することができ、その場合にはチラー42を省略して、回収管路41で回収した熱交換後の冷却水を外部へ放出してもよい。第1送風ファン27は内気入口23の側に配置する必要はなく、内気出口24の側に配置することができ、必要があれば、熱気回収口12に第1送風ファン27とは別の送風ファンを設けて、熱気の循環を促進することができる。実施例1では、サーバー室S内の冷却を1個の熱交換装置Cで行う場合を示したが、熱交換装置Cはサーバー室Sの冷却負荷に応じて、必要な数だけ設置してあればよい。
1 サーバーラック
2 サーバー
3 ラック列
6 冷気入口
6A 冷気空間
7 熱気出口
7A 熱気空間
10 仕切壁
11 冷気供給口
12 熱気回収口
13 ヒートパイプ
14 第1熱交換体
15 第2熱交換体
16 ケース本体
17 送水設備
20 仕切板
21 内気送給室
22 外気送給室
23 内気入口
24 内気出口
25 外気入口
26 外気出口
27 第1送風ファン
28 第2送風ファン
32 熱交換室
F 床
S サーバー室
C 熱交換装置

Claims (12)

  1.  ヒートパイプ(13)を伝熱要素とする外気冷却式の第1熱交換体(14)と、水冷式の第2熱交換体(15)と、これら両者を収容する中空箱状のケース本体(16)と、低温の冷却水を第2熱交換体(15)へ供給する送水設備(17)を備えているヒートパイプ式の熱交換装置であって、
     ケース本体(16)の内部は傾斜する仕切板(20)で内気送給室(21)と外気送給室(22)に区分されており、
     内気送給室(21)に臨むケース本体(16)に内気入口(23)と内気出口(24)が設けられ、外気送給室(22)に臨むケース本体(16)に、外気入口(25)と外気出口(26)が開口されており、
     内気送給室(21)に熱気を送給する第1送風ファン(27)と、外気送給室(22)に外気を送給する第2送風ファン(28)のそれぞれがケース本体(16)に設けてあり、
     第1熱交換体(14)は傾斜配置されて、ヒートパイプ(13)の吸熱部(13a)が内気送給室(21)に位置し、ヒートパイプ(13)の放熱部(13b)が外気送給室(22)に位置する状態で仕切板(20)と交差しており、
     第2熱交換体(15)は、第1熱交換体(14)と内気出口(24)の間に配置されており、
     第1熱交換体(14)の傾斜角度が水平面に対して30度以上で60度以下の角度に設定してあることを特徴とするヒートパイプ式の熱交換装置。
  2.  第2熱交換体(15)が、繰返し反転状に折曲げられた通水パイプ(34)と、通水パイプ(34)の外面に固定される一群の放熱フィン(35)とで四角ブロック状に構成されており、
     第2熱交換体(15)は内気送給室(21)の出口領域の底部に配置されて、その通気出口面が内気送給室(21)の底部に開口した内気出口(24)に臨ませてある請求項1に記載のヒートパイプ式の熱交換装置。
  3.  反転状に折曲げられた通水パイプ(34)の屈曲部が、四角ブロック状の第2熱交換体(15)の一方の対向辺部の外に露出され、前記対向辺部のいずれか一方に冷却水入口(48)および冷却水出口(49)が導出されており、
     冷却水入口(48)および冷却水出口(49)が、仕切板(20)と内気送給室(21)の底部で挟まれる隅部に臨む状態で第2熱交換体(15)が配置してある請求項2に記載のヒートパイプ式の熱交換装置。
  4.  内気送給室(21)の出口領域の底部に隣接して第2熱交換体(15)を収容する熱交換室(32)が設けられ、熱交換室(32)の底部に内気出口(24)が開口されており、
     第2熱交換体(15)が熱交換室(32)の内部に傾斜配置されて、第2熱交換体(15)の傾斜下端に臨んでドレン水を排出するドレン受(33)が配置してある請求項1に記載のヒートパイプ式の熱交換装置。
  5.  熱交換室(32)の内部に2個の第2熱交換体(15・15)がV字状に傾斜配置してある請求項4に記載のヒートパイプ式の熱交換装置。
  6.  V字状に傾斜配置した2個の第2熱交換体(15・15)の傾斜上端側が、ケース本体(16)に固定したヒンジ(50)で傾動可能に支持されており、
     2個の第2熱交換体(15・15)は、傾動下端がV字状に隣接する使用姿勢と、各第2熱交換体(15・15)が熱交換室(32)の周囲壁に沿う不使用姿勢の間で傾動でき、
     外気温が低い状態において、第2熱交換体(15・15)を不使用姿勢にして、第1熱交換体(14)のみで内気送給室(21)に送給される熱気を冷却する請求項5に記載のヒートパイプ式の熱交換装置。
  7.  第2熱交換体(15)が、内気送給室(21)の出口領域のうち、第1熱交換体(14)の通気出口面に隣接して配置してある請求項1に記載のヒートパイプ式の熱交換装置。
  8.  熱交換装置が、外気温度を検知する外気温度センサー(61)と、第1送風ファン(27)、第2送風ファン(28)および送水設備(17)の作動状態を制御する制御装置(64)を備えており、
     外気温度が設定温度に達したことを外気温度センサー(61)が検知した状態において、外気温度センサー(61)からの出力信号に基づき、制御装置(64)が送水設備(17)を作動させて冷却水を第2熱交換体(15)に送給し、第1熱交換体(14)と第2熱交換体(15)の両者で内気送給室(21)に送給される熱気を冷却する請求項1から7のいずれかひとつに記載のヒートパイプ式の熱交換装置。
  9.  サーバー室(S)の内部に、一群のサーバー(2)を収容するサーバーラック(1)が列状に配置されてラック列(3)を構成しており、サーバー室(S)の外に請求項1から8のいずれかひとつに記載した熱交換装置(C)が設けてあるサーバーシステム用の空気調和装置であって、
     ラック列(3)の一側に各サーバーラック(1)の冷気入口(6)が設けられ、ラック列(3)の他側に各サーバーラック(1)の熱気出口(7)が設けられており、
     ラック列(3)の冷気入口(6)に臨む冷気空間(6A)と、ラック列(3)の熱気出口(7)に臨む熱気空間(7A)が、ラック列(3)に沿って設けた仕切壁(10)で区分されており、
     熱交換装置(C)の内気入口(23)が熱気空間(7A)に接続され、内気出口(24)が冷気空間(6A)に接続されており、
     外気温度が設定温度に達したことを外気温度センサー(61)が検知した状態において、外気温度センサー(61)からの出力信号に基づき、制御装置(64)が送水設備(17)を作動させて冷却水を第2熱交換体(15)に送給し、第1熱交換体(14)と第2熱交換体(15)の両者で内気送給室(21)に送給される熱気を冷却することを特徴とするサーバーシステム用の空気調和装置。
  10.  仕切壁(10)が、サーバー室(S)の天井面と、天井面と対向する床(F)およびラック列(3)の上面との間に設けられて、冷気空間(6A)と熱気空間(7A)を区分しており、
     平面視における仕切壁(10)が、ラック列(3)の上面を通る前後壁(10a)と、前後壁(10a)に連続してラック列(3)の前端または後端で折曲がる左右壁(10b)で構成されて、一筆書き状に連続している請求項9に記載のサーバーシステム用の空気調和装置。
  11.  サーバー室(S)の周囲壁に、冷気空間(6A)に連通する冷気供給口(11)と、熱気空間(7A)に連通する熱気回収口(12)が形成されており、
     内気送給室(21)の内気出口(24)と冷気供給口(11)、および内気送給室(21)の内気入口(23)と熱気回収口(12)が、それぞれ供給ダクト(46)と回収ダクト(47)を介して接続してある請求項9、または10に記載のサーバーシステム用の空気調和装置。
  12.  冷気空間(6A)に臨む床下に冷気案内通路(53)が形成され、同通路(53)の入口(54)が熱交換装置(C)の内気出口(24)に連通され、同通路(53)の出口(55)が冷気空間(6A)に臨む床(F)の複数個所に開口されており、
     熱気空間(7A)と連通する状態でサーバー室(S)の周囲壁に開口した熱気回収口(12)と内気送給室(21)の内気入口(23)が、回収ダクト(47)を介して接続してある請求項9、または10に記載のサーバーシステム用の空気調和装置。
PCT/JP2017/024980 2016-07-11 2017-07-07 ヒートパイプ式の熱交換装置、およびサーバーシステム用の空気調和装置 WO2018012428A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-137113 2016-07-11
JP2016137113A JP6808384B2 (ja) 2016-07-11 2016-07-11 ヒートパイプ式の熱交換装置

Publications (1)

Publication Number Publication Date
WO2018012428A1 true WO2018012428A1 (ja) 2018-01-18

Family

ID=60952058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024980 WO2018012428A1 (ja) 2016-07-11 2017-07-07 ヒートパイプ式の熱交換装置、およびサーバーシステム用の空気調和装置

Country Status (2)

Country Link
JP (1) JP6808384B2 (ja)
WO (1) WO2018012428A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109062380A (zh) * 2018-09-19 2018-12-21 唐山师范学院 一种大数据服务器散热装置
CN109219316A (zh) * 2018-09-13 2019-01-15 珠海格力电器股份有限公司 一种换热装置、电器盒及空调器
CN109769379A (zh) * 2019-02-27 2019-05-17 依米康科技集团股份有限公司 一种制冷装置及服务器机柜一体化数据机房
CN109862759A (zh) * 2019-03-19 2019-06-07 桐城市畅润电力工程有限公司 一种通信设备用机柜
EP3703477A1 (en) * 2019-02-28 2020-09-02 Ovh Heat extraction system for a computing equipment enclosure
WO2020176746A1 (en) 2019-02-27 2020-09-03 Dantherm Cooling Inc. Passive heat exchanger with single microchannel coil
CN113453510A (zh) * 2021-06-28 2021-09-28 航天科技控股集团股份有限公司 一种逆变器的散热结构
CN115135101A (zh) * 2020-06-09 2022-09-30 葛俊 具有上下叠放的服务器容置腔的服务器冷却机柜
CN117835677A (zh) * 2024-03-04 2024-04-05 山西中云智谷数据科技有限责任公司 一种服务器设备的散热系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7013019B2 (ja) * 2018-05-24 2022-01-31 篠原電機株式会社 ヒートパイプ式の熱交換装置、および同装置を備えるサーバーシステム用の空気調和装置
KR20200081006A (ko) * 2018-12-27 2020-07-07 삼성전자주식회사 실외 디스플레이 장치
JP7255855B2 (ja) * 2019-04-26 2023-04-11 株式会社アイピーコア研究所 空調装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162421A (en) * 1981-03-16 1982-10-06 Atlantic Richfield Co Depositing method
JPH11135972A (ja) * 1997-10-30 1999-05-21 Denso Corp 筐体冷却装置
JP2001041503A (ja) * 1999-08-03 2001-02-16 Mitsubishi Electric Corp 通信基地局の筐体冷却システム
JP2011247573A (ja) * 2010-04-26 2011-12-08 Gac Corp 冷房システム
JP2013008888A (ja) * 2011-06-27 2013-01-10 Ntt Facilities Inc サーバラック冷却装置
JP2013134032A (ja) * 2011-12-27 2013-07-08 Dai-Dan Co Ltd 機器冷却システムおよび機器冷却方法
JP2014156981A (ja) * 2013-02-18 2014-08-28 Ntt Facilities Inc 情報通信機械室の空調システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162421U (ja) * 1981-04-07 1982-10-13

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162421A (en) * 1981-03-16 1982-10-06 Atlantic Richfield Co Depositing method
JPH11135972A (ja) * 1997-10-30 1999-05-21 Denso Corp 筐体冷却装置
JP2001041503A (ja) * 1999-08-03 2001-02-16 Mitsubishi Electric Corp 通信基地局の筐体冷却システム
JP2011247573A (ja) * 2010-04-26 2011-12-08 Gac Corp 冷房システム
JP2013008888A (ja) * 2011-06-27 2013-01-10 Ntt Facilities Inc サーバラック冷却装置
JP2013134032A (ja) * 2011-12-27 2013-07-08 Dai-Dan Co Ltd 機器冷却システムおよび機器冷却方法
JP2014156981A (ja) * 2013-02-18 2014-08-28 Ntt Facilities Inc 情報通信機械室の空調システム

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109219316A (zh) * 2018-09-13 2019-01-15 珠海格力电器股份有限公司 一种换热装置、电器盒及空调器
CN109062380A (zh) * 2018-09-19 2018-12-21 唐山师范学院 一种大数据服务器散热装置
WO2020176746A1 (en) 2019-02-27 2020-09-03 Dantherm Cooling Inc. Passive heat exchanger with single microchannel coil
CN109769379A (zh) * 2019-02-27 2019-05-17 依米康科技集团股份有限公司 一种制冷装置及服务器机柜一体化数据机房
EP3931510A4 (en) * 2019-02-27 2022-11-16 Dantherm Cooling Inc. PASSIVE HEAT EXCHANGER WITH A SINGLE MICROCHANNEL COIL
EP3703477A1 (en) * 2019-02-28 2020-09-02 Ovh Heat extraction system for a computing equipment enclosure
CN111625066A (zh) * 2019-02-28 2020-09-04 Ovh公司 用于计算设备封围件的排热系统
US11089720B2 (en) 2019-02-28 2021-08-10 Ovh Heat extraction system for a computing equipment enclosure
CN111625066B (zh) * 2019-02-28 2022-09-23 Ovh公司 用于计算设备封围件的排热系统
CN109862759A (zh) * 2019-03-19 2019-06-07 桐城市畅润电力工程有限公司 一种通信设备用机柜
CN115135101A (zh) * 2020-06-09 2022-09-30 葛俊 具有上下叠放的服务器容置腔的服务器冷却机柜
CN115135101B (zh) * 2020-06-09 2024-05-03 葛俊 具有上下叠放的服务器容置腔的服务器冷却机柜
CN113453510A (zh) * 2021-06-28 2021-09-28 航天科技控股集团股份有限公司 一种逆变器的散热结构
CN113453510B (zh) * 2021-06-28 2022-10-11 航天科技控股集团股份有限公司 一种逆变器的散热结构
CN117835677A (zh) * 2024-03-04 2024-04-05 山西中云智谷数据科技有限责任公司 一种服务器设备的散热系统
CN117835677B (zh) * 2024-03-04 2024-05-10 山西中云智谷数据科技有限责任公司 一种服务器设备的散热系统

Also Published As

Publication number Publication date
JP6808384B2 (ja) 2021-01-06
JP2018009715A (ja) 2018-01-18

Similar Documents

Publication Publication Date Title
WO2018012428A1 (ja) ヒートパイプ式の熱交換装置、およびサーバーシステム用の空気調和装置
KR102055644B1 (ko) 자동 항온 제습 장치
JP6283276B2 (ja) サーバーシステム用の空気調和装置
EP2171385B1 (en) Auxiliary cooling system
CN109564018B (zh) 热泵设备模块
WO2014041819A1 (ja) 空調システム
US11355796B2 (en) Thermal management system for battery module
EP3499621B1 (en) Fuel cell device
JP5669348B2 (ja) 電子通信機器室の冷却システム
JP2010108359A (ja) サーバ室用空調システム
WO2015186343A1 (ja) 電池室
JP2012021741A (ja) 空調システム
US8341966B2 (en) Climate control device
CN110785057A (zh) 一种具有立式风道的集成组机柜
JP2009543241A (ja) 冷却装置および冷却方法
JP6283277B2 (ja) サーバーシステム用の空気調和装置
JP5283453B2 (ja) 電子通信機器室等の空調システム
JP7030483B2 (ja) クリーンルームの空調システム
KR101125882B1 (ko) 후방 탑재용 버스 에어컨 시스템
JP5578664B2 (ja) 電算室用空気調和機
JP5283602B2 (ja) 電子通信機器室等の空調システム
CN211047677U (zh) 一种具有立式风道的集成组机柜
JP2014047962A (ja) 空調システム
JP6447941B2 (ja) 情報通信機器の収容室
CN214481977U (zh) 一种高速公路机电用辅助散热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827556

Country of ref document: EP

Kind code of ref document: A1