WO2018011862A1 - 耐応力腐食割れ性に優れたボイラー用電縫鋼管及びその製造方法 - Google Patents

耐応力腐食割れ性に優れたボイラー用電縫鋼管及びその製造方法 Download PDF

Info

Publication number
WO2018011862A1
WO2018011862A1 PCT/JP2016/070453 JP2016070453W WO2018011862A1 WO 2018011862 A1 WO2018011862 A1 WO 2018011862A1 JP 2016070453 W JP2016070453 W JP 2016070453W WO 2018011862 A1 WO2018011862 A1 WO 2018011862A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
hardness
stress corrosion
corrosion cracking
Prior art date
Application number
PCT/JP2016/070453
Other languages
English (en)
French (fr)
Inventor
原 卓也
新山 文彦
真也 澤田
津留 英司
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020197000299A priority Critical patent/KR20190014081A/ko
Priority to CN201680087535.4A priority patent/CN109477173A/zh
Priority to PCT/JP2016/070453 priority patent/WO2018011862A1/ja
Priority to JP2018527267A priority patent/JP6597901B2/ja
Publication of WO2018011862A1 publication Critical patent/WO2018011862A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to an electric-welded steel pipe for boilers having excellent stress corrosion cracking resistance on the outer surface of the steel pipe. Moreover, this invention relates to the manufacturing method of such an electric-resistance-welded steel pipe.
  • Boiler piping made of carbon steel heat transfer tubes may be used in nitrate environments. For this reason, such boiler piping may be damaged due to stress corrosion cracking caused by ammonium nitrate. Therefore, the boiler piping is required to have stress corrosion cracking resistance (hereinafter sometimes referred to as “SCC resistance”).
  • SCC resistance stress corrosion cracking resistance
  • Boiler piping damage is caused by ammonium nitrate, which is generated when NO 2 or NH 3 in the exhaust gas dissolves in the condensed condensed water on the piping when starting up the plant, and tensile residual stress due to bending or fin winding welding. It is a phenomenon that these causes occur in synergy.
  • Patent Document 1 discloses a method for evaluating and diagnosing SCC damage due to nitrate in a carbon steel heat transfer tube of a waste heat recovery boiler with high accuracy. Specifically, the number of start / stop times in each mode of the plant and each The wet time in each mode and the concentration of nitrogen oxides in the exhaust gas in each mode are calculated, the concentration of accumulated nitrate during the entire wet time is calculated, and the calculated concentration of accumulated nitrate is determined by stress corrosion cracking. A nitrate stress corrosion cracking diagnosis method is disclosed that evaluates the degree of damage by calculating the operating period until a possible generation limit nitrate concentration is reached.
  • Patent Document 2 discloses a high-strength boiler electric resistance steel pipe excellent in high-temperature characteristics and corrosion resistance.
  • the component composition is C: 0.15 to 0.30% by weight%, Si: 0.05-0.50%, Mn: 0.25-1.5%, N: 0.005-0.010%, Cu: 0.02-0.10%, Ca: 0.001-0. 004%, Mo: 0.01-0.10%, S: 0.003% or less as basic components, remaining Fe and unavoidable elements.
  • a boiler ERW steel pipe having a uniform structure is disclosed.
  • Patent Document 3 discloses a steel material having excellent resistance to nitric acid stress corrosion cracking, and specifically, C: 0.005 to 0.05%, Si: 0.1 to 0.00 by weight%. 8%, Mn: 0.2 to 1.5%, P: 0.015% or less, S: 0.015% or less, Cr: 3.5 to 5.0%, Mo: 0.2 to 1.2 %, Nb: 0.01 to 0.15%, Al: 0.01 to 0.20%, N: 0.015% or less, with the remainder consisting of Fe containing unavoidable components for resistance to nitric acid stress corrosion cracking Excellent steel materials are disclosed.
  • the above-described damage to the boiler piping is caused by cracks extending along the ferrite grain boundary of the welded part when used in a nitrate environment. This damage occurs in the weld due to the lower carbon concentration in the weld compared to the base metal, and the ferrite grain boundary strength is such that the weld can withstand use in a nitrate environment. This is because it is not sufficiently obtained.
  • the present invention has been made in view of the above circumstances, and provides an electric resistance welded steel pipe for a boiler that has excellent stress corrosion cracking resistance by increasing the ferrite grain boundary strength of the weld and suppressing cracks in the weld. And providing a method for manufacturing the ERW steel pipe.
  • the inventors of the present invention can increase the ferrite grain boundary strength of the welded portion, suppress cracking at the welded portion, and thus exhibit excellent stress corrosion cracking resistance (SCC resistance).
  • SCC resistance stress corrosion cracking resistance
  • the inventors of the present invention can increase the carbon concentration of the weld abutting portion and improve the ferrite grain boundary strength of the weld abutting portion by performing a predetermined heat treatment after the electric resistance welding, and thus improve the SCC resistance. The knowledge that it can be made was acquired.
  • the present inventors evaluated the hardness difference between different depth positions from the surface of the base material part and the hardness of the weld contact part for the presence or absence of decarburization affecting the ferrite grain boundary strength.
  • a method of evaluating the difference between the hardness of the base metal part (Evaluation Method 1), or evaluating the pearlite area ratio of the weld interface, and the pearlite area ratio of the weld interface and the pearlite area ratio of the base material part
  • evaluation method 2 A method of evaluating the difference between the hardness of the base metal part (Evaluation Method 1), or evaluating the pearlite area ratio of the weld interface, and the pearlite area ratio of the weld interface and the pearlite area ratio of the base material part.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • Ingredient composition is mass%, C: 0.05 to 0.35%, Si: 0.10 to 0.35%, Mn: 0.25 to 1.50%, S: 0.035% or less, P: 0.035% or less, Al: 0.005 to 0.050%, N: 0.010% or less, and O: 0.010% or less, Further optionally, Cr: 1.00% or less, Mo: 1.00% or less, Ni: 2.00% or less, Cu: 2.00% or less, B: 0.0030% or less, Nb: 0.0.
  • Ingredient composition is mass%, C: 0.05 to 0.35%, Si: 0.10 to 0.35%, Mn: 0.25 to 1.50%, S: 0.035% or less, P: 0.035% or less, Al: 0.005 to 0.050%, N: 0.010% or less, and O: 0.010% or less, Further optionally, Cr: 1.00% or less, Mo: 1.00% or less, Ni: 2.00% or less, Cu: 2.00% or less, B: 0.0030% or less, Nb: 0.0.
  • [5] A method for producing an electric-welded steel pipe for boilers having excellent stress corrosion cracking resistance according to any one of [1] to [4], A step (i) of forming a steel material having the composition described in [1] or [2] into a pipe; And a step (ii) of subjecting the tube to a heat treatment for 30 seconds or more at a temperature of not less than Ac3 and not more than 1250 ° C. in an atmosphere furnace. Manufacturing method of sewn steel pipe.
  • the hardness difference between different depth positions from the surface of the base material part is set to a predetermined range, and the welding abutting part
  • the difference between the hardness and the hardness of the base material portion is set within a predetermined range.
  • the pearlite area ratio of the welding contact portion is set within a predetermined range after setting a specific component composition.
  • the method for manufacturing an electric resistance welded steel pipe for boiler according to the present invention uses a predetermined atmosphere furnace and sets a holding temperature and a holding time in a predetermined range in the heat treatment. Yes. Therefore, according to the technology related to the electric-welded steel pipe for boilers according to the present invention, the ferrite grain boundary strength is increased by increasing the carbon concentration of the weld abutting portion, cracking at the welded portion is suppressed, and excellent stress corrosion resistance is achieved. An electric resistance welded steel pipe for boiler having cracking properties can be obtained.
  • FIG. 1 is a schematic view showing a portion of a steel pipe targeted in the investigation of a crack occurrence portion
  • (a) is a cross-sectional view showing a weld abutting portion in the steel pipe
  • (b) is a drawing of (a). It is an enlarged view of a circled part.
  • FIG. 2 is a cross-sectional photograph of a welded contact portion of an ERW steel pipe, where (a) is an example in which no cracking occurred and (b) is an example in which cracking has occurred.
  • Fig. 3 is a graph showing the relationship between the hardness of the ERW steel pipe for boiler and the distance from the weld surface.
  • FIG. 4A shows a steel pipe where stress corrosion cracking has not occurred
  • FIG. 4B shows stress corrosion cracking.
  • the steel pipe which is doing is shown.
  • 4A and 4B are schematic views showing the carbon concentration at the weld abutting portion of the pipe.
  • FIG. 4A shows a state before the heat treatment
  • FIG. 4B shows a state after the heat treatment.
  • the present electric resistance steel pipe for boilers which is excellent in the stress corrosion cracking resistance according to the present invention
  • the manufacturing method thereof hereinafter sometimes referred to as “the present application manufacturing method”.
  • the constituent elements of the above embodiment include those that can be easily replaced by those skilled in the art or those that are substantially the same.
  • various forms included in the above-described embodiments can be arbitrarily combined within a range obvious to those skilled in the art.
  • the ERW steel pipe of the present application contains C, Si, Mn, S, P, Al, N, and O, and Fe and unavoidable impurities in the following ranges.
  • C 0.05 to 0.35%
  • C is an element necessary for ensuring the strength of the steel pipe. If it is less than 0.05%, the strength of the steel pipe is insufficient, so C is made 0.05% or more. Preferably it is 0.06% or more. On the other hand, if it exceeds 0.35%, the hardness of the steel pipe increases and the workability deteriorates, so C is made 0.35% or less. Preferably it is 0.32% or less.
  • Si 0.10 to 0.35%
  • Si is an element that contributes to improving the strength of the steel pipe by solid solution strengthening. If it is less than 0.10%, the effect of addition is not sufficiently exhibited, so Si is made 0.10% or more. Preferably it is 0.15% or more. On the other hand, if it exceeds 0.35%, the strength of the steel pipe will increase too much and the workability will deteriorate, so Si is made 0.35% or less. Preferably it is 0.30% or less.
  • Mn 0.25 to 1.50%
  • Mn is an element that ensures hardenability and contributes to improving the strength of the steel pipe. If it is less than 0.25%, the effect of addition is not sufficiently exhibited, so Mn is made 0.25% or more. Preferably it is 0.27% or more. On the other hand, if it exceeds 1.50%, the hardness of the steel pipe increases so much that the workability deteriorates, so Mn is made 1.50% or less. Preferably it is 1.45% or less.
  • S 0.035% or less
  • S is an element that forms MnS that is a starting point of cracking. For this reason, it is preferable that S is as small as possible. Preferably it is 0.030% or less.
  • the lower limit includes 0%, but if it is attempted to reduce S to less than 0.0001%, the manufacturing cost increases significantly, so practically 0.0001% is the practical lower limit.
  • P 0.035% or less
  • P is an element that causes grain boundary segregation or center segregation which causes ductile deterioration. For this reason, it is preferable that P is as small as possible. Preferably it is 0.030% or less.
  • the lower limit includes 0%, but if P is reduced to less than 0.0010%, the manufacturing cost increases significantly. Therefore, in practice, 0.0010% is the practical lower limit.
  • Al 0.005 to 0.050%
  • Al is a deoxidizing element. If it is less than 0.005%, deoxidation becomes insufficient, so Al is made 0.005% or more. Preferably it is 0.010% or more. On the other hand, if it exceeds 0.050%, the workability deteriorates due to the coarsening of the alumina-based oxide, so Al is made 0.050% or less. Preferably it is 0.040% or less.
  • N 0.010% or less
  • N is an unavoidable element. If it exceeds 0.010%, inclusions become coarse and workability deteriorates, so N is made 0.010% or less. Preferably it is 0.008% or less.
  • the lower limit includes 0%, but if N is reduced to less than 0.0010%, the manufacturing cost increases significantly, so practically 0.0010% is the practical lower limit.
  • O 0.010% or less
  • O is an element unavoidably present after deoxidation. If it exceeds 0.010%, inclusions become coarse and workability deteriorates, so O is made 0.010% or less. Preferably it is 0.005% or less.
  • the lower limit includes 0%, but if O is reduced to less than 0.0005%, the manufacturing cost is significantly increased, so practically 0.0005% is the practical lower limit.
  • the balance Fe and inevitable impurities
  • the balance is Fe and inevitable impurities.
  • the inevitable impure part is not an impurity that is intentionally mixed, but also an impurity contained in a raw material or an impurity that can be mixed in each manufacturing process.
  • Examples of inevitable impurities in the ERW steel pipe of the present application include As, Na, Zr, and Sb.
  • the content (upper limit value) of these inevitable impurities is particularly limited as follows.
  • the contents of As are 0.01% or less, Na is 0.01% or less, Zr is 0.01% or less, and Sb is 0.01% or less.
  • the present electric resistance welded steel pipe is at least one of Cr, Mo, Ni, Cu, B, Nb, V, Ti, and Mg, as long as the characteristics of the present electric resistance welded steel pipe are not impaired. You may contain in each range shown.
  • Cr 0.05-1.00% Cr is an element that ensures hardenability and contributes to improving the strength of the steel pipe. If it is less than 0.05%, the effect of addition is not sufficiently exhibited, so Cr is preferably made 0.05% or more. More preferably, it is 0.10% or more. On the other hand, if it exceeds 1.00%, the hardness of the steel pipe will increase too much and the workability will deteriorate, so Cr is preferably made 1.00% or less. More preferably, it is 0.80% or less.
  • Mo 0.05-1.00%
  • Mo is an element that ensures hardenability and contributes to improving the strength of the steel pipe. If it is less than 0.05%, the effect of addition is not sufficiently exhibited, so Mo is preferably made 0.05% or more. More preferably, it is 0.10% or more. On the other hand, if it exceeds 1.00%, the hardness of the steel pipe will increase excessively and the workability will deteriorate, so Mo is preferably made 1.00% or less. More preferably, it is 0.80% or less.
  • Ni 0.10 to 2.00%
  • Ni is an element that ensures hardenability and contributes to improving the strength of the steel pipe. If it is less than 0.10%, the effect of addition is not sufficiently exhibited, so Ni is preferably made 0.10% or more. More preferably, it is 0.15% or more. On the other hand, since the hardness of the steel pipe exceeding 2.00% increases excessively and the workability deteriorates, Ni is preferably made 2.00% or less. More preferably, it is 1.50% or less.
  • Cu 0.10 to 2.00%
  • Cu is an element that ensures hardenability and contributes to improving the strength of the steel pipe. If it is less than 0.10%, the effect of addition is not sufficiently exhibited, so Cu is preferably made 0.10% or more. More preferably, it is 0.15% or more. On the other hand, if it exceeds 2.00%, the hardness of the steel pipe will increase too much and the workability will deteriorate, so Cu is preferably made 2.00% or less. More preferably, it is 1.50% or less.
  • B 0.0003 to 0.0030%
  • B is an element that ensures hardenability and contributes to improving the strength of the steel pipe. If it is less than 0.0003%, the effect of addition is not sufficiently exhibited, so B is preferably made 0.0003% or more. More preferably, it is 0.0005% or more. On the other hand, if it exceeds 0.0030%, grain boundary embrittlement may be caused, so B is preferably made 0.0030% or less. More preferably, it is 0.0020% or less.
  • Nb 0.005 to 0.20%
  • Nb is an element that has a strong affinity between C and N, precipitates NbCN, and contributes to improving the strength of the steel pipe. If it is less than 0.005%, the effect of addition is not sufficiently exhibited, so Nb is preferably 0.005% or more. More preferably, it is 0.010% or more. On the other hand, if it exceeds 0.20%, precipitation hardening by NbC becomes remarkable and workability deteriorates, so Nb is preferably 0.20% or less. More preferably, it is 0.10% or less.
  • V 0.005 to 0.20%
  • V is an element that has a strong affinity between C and N, precipitates VN and VC, and contributes to improving the strength of the steel pipe. If it is less than 0.005%, the effect of addition is not sufficiently exhibited, so V is preferably set to 0.005% or more. More preferably, it is 0.010% or more. On the other hand, if it exceeds 0.20%, precipitation hardening due to VN or VC becomes remarkable and workability deteriorates. Therefore, V is preferably 0.20% or less. More preferably, it is 0.10% or less.
  • Ti 0.005 to 0.20%
  • Ti is an element that has a strong affinity for N and precipitates TiN to contribute to the refinement of the structure. If it is less than 0.005%, the effect of addition is not sufficiently exhibited, so Ti is preferably made 0.005% or more. More preferably, it is 0.008% or more. On the other hand, if it exceeds 0.20%, precipitation hardening by TiC becomes remarkable and workability deteriorates, so Ti is preferably 0.20% or less. More preferably, it is 0.10% or less.
  • Ca 0.0001 to 0.0050% Ca is an element that adjusts the form of inclusions in the base material and the ERW weld and contributes to improvement in workability. If it is less than 0.0001%, the effect of addition is not sufficiently exhibited, so Ca is preferably made 0.0001% or more. More preferably, it is 0.0005% or more. On the other hand, if it exceeds 0.0050%, the inclusions in the steel increase and the workability deteriorates, so Ca is preferably 0.0050% or less. More preferably, it is 0.0040% or less.
  • Mg 0.0050% or less
  • Mg is a deoxidizing element, and the generated oxide functions as a precipitation nucleus of MnS. Therefore, Mg is an element contributing to miniaturization and uniform dispersion of MnS. If it exceeds 0.0050%, the yield decreases and the effect of addition is saturated. Therefore, Mg is preferably 0.0050% or less. More preferably, it is 0.0040% or less.
  • the welding abutting portion is a portion in the vicinity of the welding surface, and a portion whose distance from the welding surface is a distance of 0 ⁇ m to about 100 ⁇ m among the portions where the microstructure is thermally affected by the electric resistance welding.
  • the base material portion is a portion that is further away from the welding surface than the welding abutting portion, and means a portion in which the microstructure is not affected by heat due to the electric resistance welding.
  • the inventors of the present invention have stress corrosion cracking (SCC) in a nitrate environment. Welds were photographed for steel pipes where no SCC occurred and steel pipes where SCC occurred in a nitrate environment, and the cracked portions of the steel pipe where SCC occurred were investigated.
  • SCC stress corrosion cracking
  • FIG. 1 is a schematic diagram showing a portion of a steel pipe targeted in the investigation of a crack occurrence portion, and is a diagram drawn by increasing the horizontal scale relative to the vertical scale.
  • Fig.1 (a) has shown a part of cross-sectional area
  • FIG.1 (b) is an enlarged view of the encircled part X of Fig.1 (a). It is.
  • FIG.1 (b) it is an area
  • the weld abutting portion can be defined by specifying the positions of 100 ⁇ m on both sides of the weld surface by making indentations after specifying the weld surface by performing metal flow etching.
  • FIG. 2 is a cross-sectional photograph of a welded contact portion of an ERW steel pipe, where (a) is an example in which no cracking occurred, and (b) is an example in which cracking has occurred.
  • the crack propagated from the outer surface to the deep part at the weld abutting portion of the steel pipe, and specifically, occurred in a region from the outer surface to a depth of 1 mm.
  • the hardness of the weld abutting portion at a specific depth position is measured by measuring the Vickers hardness (Hv) at a depth position of 0.5 mm from the outer surface of the steel pipe in a range of 0.6 mm on both sides across the weld surface. did. This hardness is measured at a test load of 100 g at each position of 0.1 mm pitch in an arc shape around the weld surface.
  • the hardness of the member portion at the specific depth position is Vickers hardness (Hv) at a depth position of 0.5 mm from the outer surface of the steel pipe, and both sides of the position rotated 90 ° around the steel pipe center from the weld surface. Measurements were made in the range of 0.6 mm.
  • FIG. 3 is a graph showing the results of item (1-2) above. That is, FIG. 3 is a graph showing the relationship between the hardness of the ERW steel pipe for boiler (Vickers hardness at a depth of 0.5 mm from the outer surface of the steel pipe) and the distance from the weld surface. The steel pipe which has not generate
  • a positive (negative) number on the horizontal axis means that the welding surface is separated from the welding surface by a predetermined distance.
  • each figure shown in figure shows the result about two examples from which the measurement position differs although it is the same steel pipe.
  • the hardness when the distance from the weld surface is “0 (mm)” is the hardness of the weld abutting portion, and the distance from the weld surface is “ ⁇ 0.1, ⁇ 0. .2, ⁇ 0.3, ⁇ 0.4, ⁇ 0.5, ⁇ 0.6 (mm) ”is the hardness of the base material portion.
  • the depth difference in hardness in the base material portion and the weld abutting portion at the specific depth position By setting the hardness difference from the base metal part within a predetermined range, the carbon concentration of the welded part (more specifically, the weld abutting part) is increased to increase the ferrite grain boundary strength, and cracks at the welded part are prevented. It is possible to suppress and realize excellent stress corrosion cracking resistance.
  • the pearlite area ratio of the weld contact area is determined by performing metal flow etching to identify the weld surface, demarcating the weld contact area, further performing nital etching, and analyzing the structure of the weld contact area with an optical microscope ( (Magnification 200 times) was taken continuously, and the photographed image was derived by image analysis.
  • the pearlite area ratio of the weld abutting portion from the outer surface to 1 mm is 5% or more, Then, it was confirmed that stress corrosion cracking (SCC) does not occur.
  • the item (2) is an effect that carbon is diffused by a heat treatment to be described later, and the carbon concentration of the weld contact portion is increased.
  • the pearlite area ratio of the weld abutting portion from the outer surface to 1 mm is set within a predetermined range.
  • the ferrite grain boundary strength of the welded portion (more specifically, the weld abutting portion) can be increased, and cracking at the welded portion can be suppressed to achieve excellent stress corrosion cracking resistance.
  • the pearlite area ratio is 8% or more, it is preferable in that it can be said to be an excellent electric-welded steel pipe for boilers.
  • the upper limit of the pearlite area ratio is not particularly limited because it is determined by the amount of carbon.
  • the residual stress in the surface layer portion of the weld contact portion was measured by measuring the stress on the outer surface of the steel pipe using X-ray diffraction (irradiation diameter: 0.5 mm), and this value was adopted.
  • the residual stress on the outer surface of the steel pipe is uniform in the circumferential direction including the welded portion.
  • the surface layer of the weld interface is not used in steel pipes where no SCC has occurred.
  • the residual stress in the surface layer portion of the weld contact portion was over 200 MPa.
  • Such low residual stress is realized because the residual stress generated when the heat-treated tube is bent and straightened is sufficiently reduced by the subsequent final heat treatment, as will be described later. Thereby, even if the hardness difference between the weld contact portion and the base material portion exceeds 20 Hv, the occurrence of SCC can be prevented if the residual stress of the surface layer portion of the weld contact portion is within an appropriate range. .
  • the dendrite area ratio of the weld contact portion from the outer surface to 1 mm is 1% or less. The reason will be described below.
  • the ERW steel pipe is a steel pipe formed through ERW welding.
  • dendride does not exist in the welding contact portion in an area ratio exceeding 1% in the first place. Therefore, the steel pipe of the present embodiment obtained by electric resistance welding has an advantage that the productivity is extremely high as compared with a steel pipe formed through beam welding or the like.
  • the dendrite area ratio is continuously photographed using an optical microscope (200 magnifications) of the structure of the weld abutting portion in a depth region from the outer surface of the steel pipe to 1 mm in the same manner as the method for deriving the pearlite area ratio.
  • the captured image can be derived by image analysis.
  • the manufacturing method of the present application includes at least a process using a steel material as a pipe (process (i)) and a heat treatment process of the pipe (process (ii)).
  • the production method of the present application optionally includes a step (step (iii)) of correcting the bending of the tube and then subjecting the tube to a final heat treatment.
  • This step is an essential step and is a step of forming a steel material (hot rolled coil) having a predetermined component composition into a tube.
  • the predetermined component composition is the above-described component composition.
  • the apparatus for forming a pipe is a commonly used apparatus, for example, ⁇ Forming equipment (equipment with a plurality of roll pairs that press steel from its up-down direction or left-right direction to form an open tube in sequence), ⁇ Welding machine (equipment for welding the ends of open pipes), ⁇ Cutting equipment (equipment that removes weld beads), ⁇ Cooling equipment (equipment for cooling pipes), -Stylization equipment (equipment for shaping welded pipes), ⁇ Non-destructive inspection equipment (equipment for non-destructive inspection of standardized pipes), and traveling cutting equipment (equipment for cutting pipes after non-destructive inspection to a predetermined length) Can be used.
  • ⁇ Forming equipment equipment with a plurality of roll pairs that press steel from its up-down direction or left-right direction to form an open tube in sequence
  • ⁇ Welding machine equipment for welding the ends of open pipes
  • ⁇ Cutting equipment equipment that removes weld beads
  • Cooling equipment equipment for cooling pipes
  • This step is an essential step and is a step in which heat treatment is performed on the above-described tube after traveling cutting. Since ERW steel pipes for boilers may crack at welds with low carbon concentration when used in nitrate environments, etc., this process is effective in converting the base material carbon to the weld contact area in a short time. This is a process for increasing the stress corrosion cracking resistance by suppressing the generation of SCC by increasing the ferrite grain boundary strength of the weld abutting portion. Specifically, the tube is subjected to a heat treatment (hereinafter sometimes simply referred to as “main heat treatment”) for 30 seconds or more at a temperature of Ac3 or higher and 1250 ° C. or lower in an atmosphere furnace. In addition, after this heat processing, the electric-resistance-welded steel pipe for boilers as a final product is obtained through standing to cool.
  • main heat treatment hereinafter sometimes simply referred to as “main heat treatment”
  • FIG. 4 is a schematic diagram showing the carbon concentration at the weld abutting portion of the pipe, where (a) shows the state before the heat treatment, and (b) shows the state after the heat treatment.
  • carbon diffuses in the weld abutting portion, and as a result, the ferrite grain boundary strength of the weld abutting portion is increased and the occurrence of SCC is suppressed, and as a result, the stress corrosion cracking resistance. Can be increased.
  • the heat treatment temperature in this step is less than Ac3 point, the structure is not homogenized, and carbon diffusion to the weld interface becomes insufficient, so the heat treatment temperature is set to Ac3 point or higher.
  • the heat treatment temperature is preferably (Ac3 point + 10) ° C. or higher.
  • the heat treatment temperature in this step exceeds 1250 ° C., it will adversely affect the weld abutting part due to the generation of scale during welding and excessive decarburization at the welding abutting part.
  • the temperature is 1250 ° C. or lower.
  • the heat treatment temperature is preferably set to 1150 ° C. or lower.
  • the holding time in this heat treatment is 30 seconds or more.
  • the holding time refers to the time that has passed since the furnace temperature reached (target temperature ⁇ 20 ° C.).
  • target temperature ⁇ 20 ° C. target temperature ⁇ 20 ° C.
  • the atmosphere in the atmosphere furnace may be an atmosphere composed of at least one of argon, nitrogen, carbon dioxide, and hydrogen.
  • oxygen is inevitably mixed.
  • the present inventors have an item (1) (limitation on hardness) or item (2) (limitation on pearlite area ratio) if the amount of oxygen is unavoidably mixed (oxygen concentration is about 1%). It was experimentally confirmed that the above-mentioned predetermined range was obtained, and that the heat treatment effect was not hindered. For this reason, it is preferable that the oxygen concentration in the atmospheric furnace in this step is 1% or less.
  • Step (iii) This step is an optional step, and is a step in which a steel material is used as a pipe, the pipe is bent after being subjected to the main heat treatment described above, and a finish heat treatment is performed. If the steel material remains in a tubular state, the tube may not be straight enough to fit the desired use in its longitudinal direction and may be somewhat curved. If this bending occurs, the residual stress of the surface layer of the welded joint becomes high for the ERW steel pipe after production is finished, and the residual stress increases due to straightening of the bending, and stress corrosion cracking (SCC) is likely to occur. Become.
  • a steel pipe having a bend cannot be distributed to the market in the first place. For this reason, by adopting this step, the bending can be suppressed, and the occurrence of SCC can be effectively suppressed.
  • amendment of the said curvature can be performed using a normal correction apparatus.
  • the final heat treatment is applied.
  • the residual stress of a steel pipe can be reduced, generation
  • the final heat treatment is performed at a temperature of 400 ° C. or higher and Ac1 point or lower.
  • the heat treatment temperature in this step is less than 400 ° C, the residual stress is not effectively reduced, so the heat treatment temperature is 400 ° C or higher. In order to further reduce the residual stress, the heat treatment temperature is more preferably 450 ° C. or higher.
  • the heat treatment temperature in this step exceeds the Ac1 point, transformation is performed and the structure uniformity is impaired, so the heat treatment temperature is set to Ac1 point or less.
  • the heat treatment temperature is preferably set to (Ac1 point ⁇ 10) ° C. or lower.
  • the effect of the present invention will be verified by comparing the characteristics of the inventive example (invented steel pipe) with the characteristics of the comparative example (comparative steel pipe). Since various conditions used when manufacturing the steel pipe of the invention are examples of conditions adopted to confirm the feasibility and effects of the present invention, the present invention is not limited to these example conditions. In addition, the present invention can adopt various conditions as long as it does not depart from the gist and achieve the object.
  • each of the 20 types of steel strips obtained as described above was continuously formed into a tubular shape, and the edges of the tubular steel strips were welded by high-frequency welding to produce 20 types of tubes (outer diameter 38 mm, meat A thickness of 2.5 mm) was obtained. Thereafter, each pipe was heat-treated under the conditions shown in Table 2 to obtain invention steel pipes 1 to 13 and comparative steel pipes 14 to 20. In Table 2, a blank part means that the final heat treatment was not performed.
  • index A Difference between the hardness at the surface layer of the base material part and the hardness at the 1/2 thickness depth position of the base material part
  • Index B Difference (Hv) between the hardness of the weld abutting portion 0.5 mm from the outer surface and the hardness of the base metal portion 1 mm from the outer surface
  • Index C Perlite area ratio (%) of the weld contact portion 0.5 mm from the outer surface
  • Index D Residual stress (MPa) at the surface layer of the weld contact
  • the indicators A to D were measured by the method described above or according to the method described above.
  • the surface layer part was decarburized both in the base metal part and in the welding contact part. Since the surface layer hardness is reduced, the values of the index A and the index B in Table 3 are not any desired 20 Hv or less. For this reason, the sample of the steel pipe number 13 and the steel pipe number 14 is not an invented steel pipe but a comparative steel pipe.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 溶接部のフェライト粒界強度を高めて、溶接部での割れを抑制して優れた耐応力腐食割れ性を有するボイラー用電縫鋼管を提供する。成分組成が、質量%で、C:0.05~0.35%、Si:0.10~0.35%、Mn:0.25~1.50%、S:0.035%以下、P:0.035%以下、Al:0.005~0.050%、N:0.010%以下、及びO:0.010%以下を含み、さらに任意選択的に、Cr:1.00%以下、Mo:1.00%以下、Ni:2.00%以下、Cu:2.00%以下、B:0.0030%以下、Nb:0.20%以下、V:0.20%以下、Ti:0.20%以下、Ca:0.0050%以下、Mg:0.0050%以下の少なくとも1種を含み、残部:Fe及び不可避的不純物であり、母材部の表層での硬度と母材部の1/2厚み深さ位置での硬度との差が20Hv以下であり、外表面から1mmまでの溶接衝合部の硬度と、外表面から1mmまでの母材部の硬度と、の差が20Hv以下である。

Description

耐応力腐食割れ性に優れたボイラー用電縫鋼管及びその製造方法
 本発明は、鋼管外面の耐応力腐食割れ性に優れたボイラー用電縫鋼管に関する。また、本発明は、このような電縫鋼管の製造方法に関する。
 炭素鋼製の伝熱管からなるボイラー配管は、硝酸塩環境等で使用されることがある。このため、このようなボイラー配管は、硝酸アンモニウムによる応力腐食割れが原因で損傷するおそれがある。そこで、当該ボイラー配管には、耐応力腐食割れ性(以下「耐SCC性」と称する場合がある)が要求される。
 ボイラー配管の損傷は、プラントを起動する際に、配管上の結露凝縮水に排ガス中のNO2やNH3が溶解して生じた硝酸アンモニウムと、曲げやフィン巻き溶接による引張残留応力とが原因となり、これらの原因が相乗して起こる現象である。
 一般的なプラントにおいては、硝酸アンモニウムにより応力腐食割れ(以下「SCC」と称する場合がある)が発生し得るボイラー配管は、約200~500本ほど存在する。このため、通常約50日間で行われる定期検査中に全配管を精度良く検査することは困難である。また、このようなボイラー配管を含む熱交換装置は、その構造上、検査ができない部位(配管)もある。
 近年、定期検査のインターバルが長くなり、プラントによっては、4年間検査なしで運転する場合もある。そのような場合、プラント運転中にボイラー配管にSCCが発生する可能性は高く、場合によっては当該配管が噴破するおそれもある。
 ボイラー配管に関する技術は、例えば、以下の特許文献1~3に開示されている。
特開2005-091029号公報 特開平06-287678号公報 特開平10-096050号公報
 特許文献1には、廃熱回収ボイラーの炭素鋼製伝熱管における硝酸塩によるSCC損傷を高精度で評価診断する方法が開示されており、具体的には、プラントの各モードの起動停止回数と各モードでの湿潤時間及び各モードでの排ガス中の窒素酸化物濃度を求め、全湿潤時間中における蓄積硝酸塩の濃度を算定し、該算定された蓄積硝酸塩の濃度が予め決められた応力腐食割れが起こり得る発生限界硝酸塩濃度に達するまでの運転期間を算出して損傷度を評価する、硝酸塩応力腐食割れ損傷診断法が開示されている。
 特許文献2には、高温特性及び耐食性に優れた高強度ボイラー用電縫鋼管が開示されており、具体的には、成分組成が重量%でC:0.15~0.30%、Si:0.05~0.50%、Mn:0.25~1.5%、N:0.005~0.010%、Cu:0.02~0.10%、Ca:0.001~0.004%、Mo:0.01~0.10%、S:0.003%以下を基本成分とし、残部Fe及び不可避的元素よりなり、造管後焼準により電縫溶接部と母材部が均一組織になっている、ボイラー電縫鋼管が開示されている。
 特許文献3には、耐硝酸応力腐食割れ性に優れた鋼材が開示されており、具体的には、重量%で、C:0.005~0.05%、Si:0.1~0.8%、Mn:0.2~1.5%、P:0.015%以下、S:0.015%以下、Cr:3.5~5.0%、Mo:0.2~1.2%、Nb:0.01~0.15%、Al:0.01~0.20%、N:0.015%以下を含み、残りが不可避成分を含むFeからなる耐硝酸応力腐食割れ性に優れた鋼材が開示されている。
 上述したボイラー配管の損傷は、硝酸塩環境等での使用時に、溶接部のフェライト粒界に沿って割れが伸展することにより発生ずる。このように損傷が溶接部で発生するのは、溶接部では母材部と比較して炭素濃度が低いことに起因し、溶接部では硝酸塩環境での使用に耐え得る程度にフェライト粒界強度が十分に得られていないためである。
 本発明は上記事情に鑑みてなされたものであって、溶接部のフェライト粒界強度を高めて溶接部での割れを抑制し、優れた耐応力腐食割れ性を有するボイラー用電縫鋼管を提供すること、及び当該電縫鋼管の製造方法を提供すること、を目的とする。
 本発明者らは、上記課題を解決するため、溶接部のフェライト粒界強度を高めて、溶接部での割れを抑制し、ひいては優れた耐応力腐食割れ性(耐SCC性)を発揮し得るボイラー用電縫鋼管について鋭意検討し、以下の知見(a)、(b)を得た。
 (a)電縫溶接時には、溶接衝合部において脱炭が生じ、これによって溶接衝合部のフェライト粒界強度が低下する。本発明者らは、電縫溶接後に所定の熱処理を施すことで、溶接衝合部の炭素濃度を高め、溶接衝合部のフェライト粒界強度を向上させることができ、ひいては耐SCC性を向上させることができるとの知見を得た。なお、本発明者らは、フェライト粒界強度に影響を及ぼす脱炭の有無については、母材部の表面からの異なる深さ位置同士間の硬度差を評価するとともに、溶接衝合部の硬度と母材部の硬度との差を評価する方法(評価方法1)、或いは、溶接衝合部のパーライト面積率を評価するとともに、溶接衝合部のパーライト面積率と母材部のパーライト面積率とを比較評価する方法(評価方法2)によって判断できる、との知見を得た。
 (b)また、本発明者らは、耐SCC性の向上には、知見(a)に示した脱炭の有無についての評価方法1、2に加えて、鋼管表層部の残留応力を評価する方法(評価方法3)によって判断できる、との知見を得た。
 本発明は、上記の各知見に基づいてなされたものであり、その要旨は以下のとおりである。
 [1]  成分組成が、質量%で、
 C :0.05~0.35%、
 Si:0.10~0.35%、
 Mn:0.25~1.50%、
 S :0.035%以下、
 P :0.035%以下、
 Al:0.005~0.050%、
 N :0.010%以下、及び
 O :0.010%以下
を含み、
 さらに任意選択的に、Cr:1.00%以下、Mo:1.00%以下、Ni:2.00%以下、Cu:2.00%以下、B:0.0030%以下、Nb:0.20%以下、V:0.20%以下、Ti:0.20%以下、Ca:0.0050%以下、Mg:0.0050%以下の少なくとも1種を含み、
 残部:Fe及び不可避的不純物であり、
 母材部の表層での硬度と母材部の1/2厚み深さ位置での硬度との差が20Hv以下であり、
 外表面から1mmまでの溶接衝合部の硬度と、外表面から1mmまでの母材部の硬度と、の差が20Hv以下である
ことを特徴とする、耐応力腐食割れ性に優れたボイラー用電縫鋼管。
 [2] 成分組成が、質量%で、
 C :0.05~0.35%、
 Si:0.10~0.35%、
 Mn:0.25~1.50%、
 S :0.035%以下、
 P :0.035%以下、
 Al:0.005~0.050%、
 N :0.010%以下、及び
 O :0.010%以下
を含み、
 さらに任意選択的に、Cr:1.00%以下、Mo:1.00%以下、Ni:2.00%以下、Cu:2.00%以下、B:0.0030%以下、Nb:0.20%以下、V:0.20%以下、Ti:0.20%以下、Ca:0.0050%以下、Mg:0.0050%以下の少なくとも1種を含み、
 残部:Fe及び不可避的不純物であり、
 外表面から1mmまでの溶接衝合部のパーライト面積率が5%以上である、耐応力腐食割れ性に優れたボイラー用電縫鋼管。
 [3] 上記溶接衝合部の表層部の残留応力が200MPa以下である、上記[1]又は[2]に記載の耐応力腐食割れ性に優れたボイラー用電縫鋼管。
 [4] 上記外表面から1mmまでの溶接衝合部のデンドライト面積率が1%以下である、上記[1]から[3]のいずれか1つに記載の耐応力腐食割れ性に優れたボイラー用電縫鋼管。
 [5] 上記[1]から[4]のいずれか1つに記載の耐応力腐食割れ性に優れたボイラー用電縫鋼管の製造方法であって、
 上記[1]又は[2]に記載の成分組成の鋼材を成形して管とする工程(i)と、
 上記管に、雰囲気炉で、Ac3点以上1250℃以下の温度で30秒以上保持する熱処理を施す工程(ii)と、を含む
ことを特徴とする、耐応力腐食割れ性に優れたボイラー用電縫鋼管の製造方法。
 [6] 上記工程(ii)の後に、上記管の曲がりを矯正し、その後に400℃以上Ac1点以下の温度で熱処理を施す工程(iii)を含む、上記[5]に記載の耐応力腐食割れ性に優れたボイラー用電縫鋼管の製造方法。
 [7] 上記雰囲気炉の雰囲気が酸素を含まない、上記[5]又は[6]に記載の耐応力腐食割れ性に優れたボイラー用電縫鋼管の製造方法。
 [8] 上記雰囲気炉の雰囲気が、アルゴン、窒素、二酸化炭素、及び水素の少なくとも1種である、上記[7]に記載の耐応力腐食割れ性に優れたボイラー用電縫鋼管の製造方法。
 本発明に係るボイラー用電縫鋼管では、特定の成分組成を設定した上で、母材部の表面からの異なる深さ位置同士間の硬度差を所定範囲に設定するとともに、溶接衝合部の硬度と母材部の硬度との差を所定範囲に設定している。代替的に、本発明に係るボイラー用電縫鋼管では、特定の成分組成を設定した上で、溶接衝合部のパーライト面積率を所定範囲に設定している。また、これら硬度やパーライト面積率を実現すべく、本発明に係るボイラー用電縫鋼管の製造方法では、所定の雰囲気炉を用いるとともに、熱処理において保持温度及び保持時間を所定の範囲に設定している。従って、本発明に係るボイラー用電縫鋼管に関する技術によれば、溶接衝合部の炭素濃度を高めることでフェライト粒界強度を高めて、溶接部での割れを抑制し、優れた耐応力腐食割れ性を有するボイラー用電縫鋼管を得ることできる。
図1は、割れの発生部分の調査において対象とした鋼管の部位を示す模式図であり、(a)は鋼管中の溶接衝合部を示す断面図であり、(b)は(a)の丸囲み部分の拡大図である。 図2は、電縫鋼管の溶接衝合部の断面写真であり、(a)は割れが発生しなかった例であり、(b)は割れが発生した例である。 図3はボイラー用電縫鋼管の硬度と溶接面からの距離との関係を示すグラフであり、(a)は応力腐食割れが発生していない鋼管を示し、(b)は応力腐食割れが発生している鋼管を示す。 図4は、管の溶接衝合部における炭素濃度を示す模式図であり、(a)は熱処理前の状態を示し、(b)は熱処理後の状態を示す。
 以下に、本発明に係る耐応力腐食割れ性に優れたボイラー用電縫鋼管(以下「本願電縫鋼管」と称する場合がある)、及びその製造方法(以下「本願製法」と称する場合がある)の実施形態を詳細に説明する。なお、以下の実施形態は、本発明を限定するものではない。また、上記実施形態の構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。さらに、上記実施形態に含まれる各種形態は、当業者が自明の範囲内で任意に組み合わせることができる。
<本願電縫鋼管>
[成分組成]
 まず、本願電縫鋼管の成分組成の限定理由について詳述する。なお、以下に示す成分組成の単位[%]は全て質量%を意味する。
(必須元素)
 本願電縫鋼管は、C、Si、Mn、S、P、Al、N、及びO、並びにFe及び不可避的不純物を、以下に示す各範囲で含有する。
 C:0.05~0.35%
 Cは、鋼管の強度を確保するために必要な元素である。0.05%未満では、鋼管の強度が不足するので、Cは0.05%以上とする。好ましくは0.06%以上である。一方、0.35%を超えると、鋼管の硬さが上昇して加工性が劣化するので、Cは0.35%以下とする。好ましくは0.32%以下である。
 Si:0.10~0.35%
 Siは、固溶強化により鋼管の強度の向上に寄与する元素である。0.10%未満では、添加効果が十分に発現されないので、Siは0.10%以上とする。好ましくは0.15%以上である。一方、0.35%を超えると、鋼管の強度が上昇し過ぎて加工性が低下するので、Siは0.35%以下とする。好ましくは0.30%以下である。
 Mn:0.25~1.50%
 Mnは、焼入れ性を確保し、鋼管の強度の向上に寄与する元素である。0.25%未満では、添加効果が十分に発現されないので、Mnは0.25%以上とする。好ましくは0.27%以上である。一方、1.50%を超えると、鋼管の硬さが上昇し過ぎて加工性が劣化するので、Mnは1.50%以下とする。好ましくは1.45%以下である。
 S:0.035%以下
 Sは、割れの発生起点となるMnSを形成する元素である。このため、Sはできるだけ少ないほうが好ましいので0.035%以下とする。好ましくは0.030%以下である。下限は0%を含むが、Sを0.0001%未満に低減しようとすると、製造コストが大幅に上昇するので、実用上は、0.0001%が実質的な下限である。
 P:0.035%以下
 Pは、延性劣化の原因となる粒界偏析や中心偏析を起こす元素である。このため、Pはできるだけ少ないほうが好ましいので0.035%以下とする。好ましくは0.030%以下である。下限は0%を含むが、Pを0.0010%未満に低減すると、製造コストが大幅に上昇するので、実用上は、0.0010%が実質的な下限である。
 Al:0.005~0.050%
 Alは、脱酸元素である。0.005%未満では、脱酸が十分でなくなるので、Alは0.005%以上とする。好ましくは0.010%以上である。一方、0.050%を超えると、アルミナ系酸化物の粗大化によって加工性が劣化するので、Alは0.050%以下とする。好ましくは0.040%以下である。
 N:0.010%以下
 Nは、不可避的に存在する元素である。0.010%を超えると、介在物が粗大化して加工性が劣化するので、Nは0.010%以下とする。好ましくは0.008%以下である。下限は0%を含むが、Nを0.0010%未満に低減すると、製造コストが大幅に上昇するので、実用上は、0.0010%が実質的な下限である。
 O:0.010%以下
 Oは、脱酸後、不可避的に存在する元素である。0.010%を超えると、介在物が粗大化して加工性が劣化するので、Oは0.010%以下とする。好ましくは0.005%以下である。下限は0%を含むが、Oを0.0005%未満に低減すると、製造コストが大幅に上昇するので、実用上は、0.0005%が実質的な下限である。
 残部:Fe及び不可避的不純物
 残部はFeと不可避的不純物である。ここで、不可避的不純部とは、意図的に混入された不純物ではなく、かつ、原材料において含まれる不純物或いは各製造工程において混入され得る不純物をいう。本願電縫鋼管における不可避的不純物としては、例えば、As、Na、Zr、Sbが挙げられる。なお、本願においては、これらの不可避的不純物は、以下のとおり特に含有量(上限値)が限定される。
 即ち、Asは0.01%以下、Naは0.01%以下、Zrは0.01%以下、Sbは0.01%以下に各含有量が限定される。これらの元素の各含有量を、上記各の範囲に限定することで、本願特有の効果である、溶接部のフェライト粒界強度を高めて、溶接部での割れを抑制する効果を阻害することを効率的に防止することができる。
(任意選択的元素)
 本願電縫鋼管は、上記に示した元素の他、本願電縫鋼管の特性を損なわない範囲で、Cr、Mo、Ni、Cu、B、Nb、V、Ti、Mgの少なくともいずれかを、以下に示す各範囲で含有してもよい。
 Cr:0.05~1.00%
 Crは、焼入れ性を確保し、鋼管の強度の向上に寄与する元素である。0.05%未満では、添加効果が十分に発現されないので、Crは0.05%以上とすることが好ましい。さらに好ましくは0.10%以上である。一方、1.00%を超えると、鋼管の硬さが上昇し過ぎて加工性が劣化するので、Crは1.00%以下とすることが好ましい。さらに好ましくは0.80%以下である。
 Mo:0.05~1.00%
 Moは、焼入れ性を確保し、鋼管の強度の向上に寄与する元素である。0.05%未満では、添加効果が十分に発現されないので、Moは0.05%以上とすることが好ましい。さらに好ましくは0.10%以上である。一方、1.00%を超えると、鋼管の硬さが上昇し過ぎて加工性が劣化するので、Moは1.00%以下とすることが好ましい。さらに好ましくは0.80%以下である。
 Ni:0.10~2.00%
 Niは、焼入れ性を確保し、鋼管の強度の向上に寄与する元素である。0.10%未満では、添加効果が十分に発現されないので、Niは0.10%以上とすることが好ましい。さらに好ましくは0.15%以上である。一方、2.00%を超える、鋼管の硬さが上昇し過ぎて加工性が劣化するので、Niは2.00%以下とすることが好ましい。さらに好ましくは1.50%以下である。
 Cu:0.10~2.00%
 Cuは、焼入れ性を確保し、鋼管の強度の向上に寄与する元素である。0.10%未満では、添加効果が十分に発現されないので、Cuは0.10%以上とすることが好ましい。さらに好ましくは0.15%以上である。一方、2.00%を超えると、鋼管の硬さが上昇し過ぎて加工性が劣化するので、Cuは2.00%以下とすることが好ましい。さらに好ましくは1.50%以下である。
 B:0.0003~0.0030%
 Bは、焼入れ性を確保し、鋼管の強度の向上に寄与する元素である。0.0003%未満では、添加効果が十分に発現されないので、Bは0.0003%以上とすることが好ましい。さらに好ましくは0.0005%以上である。一方、0.0030%を超えると、粒界脆化を招く場合があるので、Bは0.0030%以下とすることが好ましい。さらに好ましくは0.0020%以下である。
 Nb:0.005~0.20%
 Nbは、CとNとの親和力が強く、NbCNを析出して、鋼管の強度の向上に寄与する元素である。0.005%未満では、添加効果が十分に発現されないので、Nbは0.005%以上とすることが好ましい。さらに好ましくは0.010%以上である。一方、0.20%を超えると、NbCによる析出硬化が顕著となり、加工性が劣化するので、Nbは0.20%以下とすることが好ましい。さらに好ましくは0.10%以下である。
 V:0.005~0.20%
 Vは、CとNとの親和力が強く、VNやVCを析出して、鋼管の強度の向上に寄与する元素である。0.005%未満では、添加効果が十分に発現されないので、Vは0.005%以上とすることが好ましい。さらに好ましくは0.010%以上である。一方、0.20%を超えると、VNやVCによる析出硬化が顕著となり、加工性が劣化するので、Vは0.20%以下とすることが好ましい。さらに好ましくは0.10%以下である。
 Ti:0.005~0.20%
 Tiは、Nとの親和力が強く、TiNを析出して、組織の微細化に寄与する元素である。0.005%未満では、添加効果が十分に発現しないので、Tiは0.005%以上とすることが好ましい。さらに好ましくは0.008%以上である。一方、0.20%を超えると、TiCによる析出硬化が顕著となり、加工性が劣化するので、Tiは0.20%以下とすることが好ましい。さらに好ましくは0.10%以下である。
 Ca:0.0001~0.0050%
 Caは、母材及び電縫溶接部の介在物の形態を調整し、加工性の向上に寄与する元素である。0.0001%未満では、添加効果が十分に発現しないので、Caは0.0001%以上とすることが好ましい。さらに好ましくは0.0005%以上である。一方、0.0050%を超えると、鋼中の介在物が増し、加工性が劣化するので、Caは0.0050%以下とすることが好ましい。さらに好ましくは0.0040%以下である。
 Mg:0.0050%以下
 Mgは、脱酸元素であり、生成する酸化物は、MnSの析出核として機能するので、MnSの微細化と均一分散に寄与する元素である。0.0050%を超えると、歩留りが低下して、添加効果が飽和するので、Mgは0.0050%以下とすることが好ましい。さらに好ましくは0.0040%以下である。
[硬度に関する限定理由]
 以下に、本願電縫鋼管においては、(1)硬度に関する限定が必須である。この硬度に関する限定は、
(1-1)母材部の表層での硬度と母材部の1/2厚み深さ位置での硬度との差が20Hv以下であること、及び
(1-2)外表面から1mmまでの溶接衝合部の硬度と、外表面から1mmまでの母材部の硬度と、の差が20Hv以下であること、
の2つの事項を含む。
 ここで、溶接衝合部とは、溶接面の近傍部分であって、電縫溶接によってミクロ組織が熱影響を受ける部分のうち、溶接面からの距離が0μmから約100μmの距離である部分を意味する。また、母材部とは、溶接衝合部よりも溶接面から離間した部分であって、電縫溶接によってミクロ組織が熱影響を受けない部分を意味する。
 本発明者らは、溶接衝合部でのSCCの発生と上記項目(1-1)及び上記項目(1-2)との因果関係を調査すべく、硝酸塩環境中で応力腐食割れ(SCC)が発生しなかった鋼管と、硝酸塩環境中でSCCが発生した鋼管とについて、溶接衝合部をそれぞれ撮影し、SCCが発生した鋼管について割れの発生部分を調査した。
 図1は、割れの発生部分の調査において対象とした鋼管の部位を示す模式図であり、上下方向の縮尺に対して左右方向の縮尺を大きくして描いた図である。図1(a)は電縫鋼管10の外表面12から深さ方向に広がる断面領域の一部を示しており、図1(b)は、図1(a)の丸囲み部分Xの拡大図である。
 本実施形態では、図1(b)に示すように、鋼管10中の表面12から深さ方向に(割れが発生する可能性のある)1mmの位置までの領域であって、かつ、溶接面14の両側100μmの領域16を溶接衝合部とする。溶接衝合部は、メタルフローエッチングを施して溶接面を特定した後、溶接面の両側に各100μmの位置を、圧痕を打つことなどで特定することで、画定することができる。
 図2は、電縫鋼管の溶接衝合部の断面写真であり、(a)は割れが発生しなかった例であり、(b)は割れが発生した例である。なお、割れは、鋼管の溶接衝合部において外表面から深部まで伝搬しており、具体的には外表面から1mm深さまでの領域で発生していることが確認された。
 次に、本調査では、割れが発生しなかった電縫鋼管と、割れが発生した電縫鋼管とについて、それぞれ、
(1-1)母材部の表層での硬度と母材部の1/2厚み深さ位置での硬度との差(母材部の深さ方向硬度差)、及び
(1-2)外表面から1mmまでの溶接衝合部の硬度と、外表面から1mmまでの母材部の硬度と、の差(特定深さ位置での溶接衝合部と母材部との硬度差)
について調査した。
 なお、特に、特定深さ位置での溶接衝合部の硬度は、鋼管の外表面から0.5mm深さ位置におけるビッカース硬度(Hv)を、溶接面を跨いだ両側0.6mmの範囲において測定した。この硬度は、溶接面を中心に円弧状に0.1mmピッチの各位置を試験荷重100gで測定したものである。これに対し、特定深さ位置での部材部の硬度は、鋼管の外表面から0.5mm深さ位置におけるビッカース硬度(Hv)を、溶接面から鋼管中心の周りに90°回転した位置の両側0.6mmの範囲において測定した。
 図3は、特に上記項目(1-2)の結果を示すグラフである。即ち、図3は、ボイラー用電縫鋼管の硬度(鋼管の外表面から0.5mm深さ位置におけるビッカース硬度)と溶接面からの距離との関係を示すグラフであり、(a)は割れが発生していない鋼管を示し、(b)は割れが発生している鋼管を示す。なお、図(a)、(b)において、横軸の正(負)の数字は、溶接面から一方側(他方側)に所定距離だけ離れていることを意味する。また、図(a)、(b)において、図示された各図形は、同一の鋼管ではあるが測定位置が異なる2つの例についての結果をそれぞれ示す。
 図3(a)及び(b)において、溶接面からの距離が「0(mm)」での硬度が溶接衝合部の硬度であり、溶接面からの距離が「±0.1、±0.2、±0.3、±0.4、±0.5、±0.6(mm)」での硬度が母材部の硬度である。
 図3(a)に示すように、応力腐食割れ(SCC)が発生していない2種のボイラー用電縫鋼管の硬度分布については、いずれも、溶接衝合部の硬度と母材部の硬度との差が20Hv以内に収まっている。これに対し、図3(b)に示すように、SCCが発生した2種のボイラー用電縫鋼管の硬度分布については、いずれも、溶接衝合部の硬度と母材部の硬度との差が20Hvを超える場合がある。
 これらの調査及び測定の結果から、
(1-1)母材部の深さ方向硬度差が20Hv以下であり、かつ
(1-2)特定深さ位置での溶接衝合部と母材部との硬度差が20Hv
であれば、応力腐食割れ(SCC)が発生しないことが確認された。
 これは、上記項目(1-1)及び上記項目(1-2)を同時に満たせば、溶接衝合部においても母材部と比較してさほど炭素濃度が低くなっていないと考えられ、ひいては溶接衝合部においても硝酸塩環境度での使用に耐え得る程度にフェライト粒界強度が十分に得られている、と考えられるためである。
 以上により、本実施形態に係る本願電縫鋼管においては、上述したとおり、特定の成分組成を設定した上で、母材部の深さ方向硬度差と特定深さ位置での溶接衝合部と母材部との硬度差とを所定の範囲に設定することにより、溶接部(より具体的には溶接衝合部)の炭素濃度を高めてフェライト粒界強度を高め、溶接部での割れを抑制して優れた耐応力腐食割れ性を実現することができる。
 なお、特に、上記項目(1-2)の硬度差は小さいほど応力腐食割れ(SCC)の発生が抑制され、ひいては優れた耐応力腐食割れ性を有するボイラー用電縫鋼管であるといえる。このため、この硬度差が15Hv以下の場合は、さらに優れたボイラー用電縫鋼管であるといえる点で好ましい。
[パーライト面積率に関する限定理由]
 本願電縫鋼管においては、上記の硬度に関する限定理由に代替して、(2)パーライト面積率に関する限定が必須である。より詳細には、
 外表面から1mmまでの溶接衝合部のパーライト面積率が5%以上であること、
が必須である。
 本発明者らは、溶接衝合部でのSCCの発生と上記項目(2)との因果関係を調査すべく、
(2)外表面から1mmまでの溶接衝合部のパーライト面積率
について調査した。
 溶接衝合部のパーライト面積率は、メタルフローエッチングを施して溶接面を特定した上で、溶接衝合部を画定し、さらにナイタールエッチングを施し、溶接衝合部の組織を、光学顕微鏡(倍率200倍)を用いて連続撮影し、撮影画像を画像解析して導出した。
 SCCが発生した鋼管では、外表面から1mmまでの深さ領域における溶接衝合部のミクロ組織の大部分がフェライトであり、パーライトはほとんど存在していないことが確認された。これに対し、SCCが発生していない鋼管では、外表面から1mmまでの深さ領域における溶接衝合部のミクロ組織はフェライト以外にパーライトが面積率で5%以上存在することが確認された。
 即ち、本調査では、
(2)外表面から1mmまでの溶接衝合部のパーライト面積率が5%以上、
であれば、応力腐食割れ(SCC)が発生しないことが確認された。
 なお、特に、上記項目(2)は、後述する熱処理により炭素が拡散して溶接衝合部の炭素濃度が上昇する効果である。
 これは、上記項目(2)を満たせば、溶接衝合部においても母材部と比較してさほど炭素濃度が低くなっていないと考えられ、ひいては溶接衝合部においても硝酸塩環境度での使用に耐え得る程度にフェライト粒界強度が十分に得られている、といえるからである。
 以上により、本実施形態に係る本願電縫鋼管においては、上述したとおり、特定の成分組成を設定した上で、外表面から1mmまでの溶接衝合部のパーライト面積率を所定の範囲に設定することにより、溶接部(より具体的には溶接衝合部)のフェライト粒界強度を高めて、溶接部での割れを抑制して優れた耐応力腐食割れ性を実現することができる。
 なお、特に、上記項目(2)のパーライト面積率は大きいほど応力腐食割れ(SCC)の発生が抑制され、ひいては優れた耐応力腐食割れ性を有するボイラー用電縫鋼管であるといえる。このため、このパーライト面積率が8%以上の場合は、さらに優れたボイラー用電縫鋼管であるといえる点で好ましい。これに対し、パーライト面積率の上限は、炭素量で定まるので、特に限定しない。
[溶接衝合部の表層部の残留応力]
 さらに、本願電縫鋼管においては、上述した硬度に関する限定又はパーライト面積率に関する限定に加えて、残留応力に関する限定を任意選択的に採用することができる。この残留応力に関する限定は、
(3)溶接衝合部の表層部の残留応力が200MPa以下であること、である。
 本発明者らは、溶接衝合部でのSCCの発生と上記項目(3)との因果関係を調査すべく、
(3)溶接衝合部の表層部の残留応力
について調査した。
 溶接衝合部の表層部の残留応力は、X線回折(照射径0.5mm)を利用して鋼管の外表面の応力を測定し、この値を採用した。なお、鋼管外表面の残留応力は、溶接部も含め周方向均一である。
 外表面から1mmまでの溶接衝合部と外表面から1mmまでの母材部との硬度差が20Hvを超えた鋼管であっても、SCCが発生していない鋼管では、溶接衝合部の表層部の残留応力が200MPa以下である一方、SCCが発生した鋼管では、溶接衝合部の表層部の残留応力が200MPa超であった。
 即ち、本調査では、
(3)外表面から1mmまでの溶接衝合部と外表面から1mmまでの母材部との硬度差が20Hvを若干超えても溶接衝合部の表層部の残留応力が200MPa以下
であれば、応力腐食割れ(SCC)が発生しないことが確認された。
 このような低い残留応力は、後述するように、熱処理された管を曲り矯正した際に生じた残留応力が、その後の最終熱処理により十分に低減されるために実現される。これにより、たとえ溶接衝合部と母材部との硬度差が20Hv超であっても、溶接衝合部の表層部の残留応力を適正範囲とすれば、SCCの発生を防止することができる。
 なお、上記の溶接衝合部の表層部の残留応力は小さいほど応力腐食割れ(SCC)の発生が抑制され、ひいては優れた耐応力腐食割れ性を有するボイラー用電縫鋼管であるといえる。このため、この残留応力が70MPa以下の場合は、さらに優れたボイラー用電縫鋼管であるといえる点で好ましく、30MPa以下の場合は同様の理由で極めて好ましい。
[溶接衝合部のデンドライト面積率]
 加えて、本願電縫鋼管においては、「外表面から1mmまでの溶接衝合部のデンドライト面積率が1%以下である」ことが好ましい。以下にその理由を説明する。
 本願電縫鋼管は、その名のとおり、電縫溶接を経て成形された鋼管である。このため、そもそも溶接衝合部にデンドライドが面積率で1%を超えて存在することはない。従って、電縫溶接により得られる本実施形態の鋼管には、ビーム溶接等を経て成形された鋼管に比べて、生産性が極めて高いという利点がある。なお、デンドライト面積率は、上述したパーライト面積率の導出方法と同様に、鋼管の外表面から1mmまでの深さ領域における溶接衝合部の組織を、光学顕微鏡(倍率200倍)用いて連続撮影し、撮影画像を画像解析して導出することができる。
<本願製法>
 次に、本願製法の限定理由について詳述する。本願製法は、少なくとも、鋼材を管とする工程(工程(i))及び管の熱処理工程(工程(ii))を含む。そして、本願製法は、これらの工程に加えて、管の曲りを矯正しその後に管に対して最終熱処理を施す工程(工程(iii))を任意選択的に含む。
(鋼材を管とする工程(工程(i)))
 本工程は、必須の工程であって、所定の成分組成の鋼材(熱延コイル)を管に成形する工程である。ここで、所定の成分組成とは上述した成分組成である。また、管への成形装置は、通常用いられる装置、例えば、
 ・成形機器(鋼材をその上下方向或いは左右方向から押圧して順次オープン管とする複数のロール対を備える機器)、
 ・溶接機(オープン管の端部同士を溶接する機器)、
 ・切削機器(溶接ビードを除去する機器)、
 ・冷却機器(管を冷却する機器)、
 ・定形化機器(溶接した管を定形化する機器)、
 ・非破壊検査機器(定形化を行った管を非破壊検査する機器)、及び
 ・走行切断機器(非破壊検査終了後の管を所定長さに切断する機器)
 を備える成形装置を用いることができる。
 本工程は上記の各機器を順次用いて、成形、溶接、ビード除去、冷却、定形化、非破壊検査、及び走行切断を順次行う。
(管の熱処理工程(工程(ii)))
 本工程は、必須の工程であって、上述した走行切断後の管に熱処理を施す工程である。ボイラー用電縫鋼管は、硝酸塩環境等での使用時に低炭素濃度の溶接部で割れが発生するおそれがあることから、本工程は、母材部の炭素を短時間で溶接衝合部へ効率的に拡散させ、ひいては溶接衝合部のフェライト粒界強度を高めてSCCの発生を抑制し、耐応力腐食割れ性を高めるための工程である。具体的には、管に、雰囲気炉で、Ac3点以上1250℃以下の温度で30秒以上保持する熱処理(以下、単に「本熱処理」と称する場合がある)を施す。 なお、本熱処理後、放冷を経て、最終製品としてのボイラー用電縫鋼管が得られる。
 図4は、管の溶接衝合部における炭素濃度を示す模式図であり、(a)は熱処理前の状態を示し、(b)は熱処理後の状態を示す。同図に示すように、本熱処理を施すことで、溶接衝合部に炭素が拡散し、その結果溶接衝合部のフェライト粒界強度が高まりSCCの発生が抑制され、ひいては耐応力腐食割れ性を高めることができる。
 本工程における熱処理温度がAc3点未満では、組織の均質化が行われず、溶接衝合部への炭素の拡散が不十分となるので、熱処理温度はAc3点以上とする。溶接衝合部へ炭素をさらに多量に拡散させるためには、熱処理温度は(Ac3点+10)℃以上とすることが好ましい。
 一方、本工程における熱処理温度が1250℃を超えると、溶接時にスケールが生成すること及び溶接衝合部に脱炭が過度に起きることに起因して、溶接衝合部に悪影響を及ぼすので、熱処理温度は1250℃以下とする。溶接衝合部における悪影響をさらに抑制するには、熱処理温度を1150℃以下とすることが好ましい。
 また、この熱処理における保持時間は30秒以上とする。ここで保持時間とは、炉内温度が(目標温度-20℃)に達してからそれ以降に経過した時間をいう。保持時間を30秒以上とすることで、母材部から溶接衝合部へ炭素が十分に拡散される。この熱処理温度を60秒以上とした場合には、溶接衝合部へ炭素の拡散がさらに促進されるため好ましい。
 これら所定の熱処理温度及び保持時間の採用により、電縫鋼管の欄で説明した項目(1)(硬度に関する限定事項)或いは項目(2)(パーライト面積率に関する限定事項)が実現された最終製品としての電縫鋼管が得られる。これにより、溶接衝合部の炭素濃度、ひいてはフェライト粒界強度が高められ、SCCの発生が抑制され、耐応力腐食割れ性が改善される。
 なお、熱処理時にはスケールが生成され、また管表層で脱炭が発生する。このため、本熱処理は、これらスケール生成や脱炭を抑制すべく、酸素を含まない雰囲気炉で行うことが好ましい。例えば、当該雰囲気炉の雰囲気としては、アルゴン、窒素、二酸化炭素、水素の少なくとも1種からなる雰囲気とすることができる。しかしながら、実際には不可避的に酸素が混入することは避けられない。本発明者らは、不可避的に混入する程度(酸素濃度1%程度)の酸素量であれば、項目(1)(硬度に関する限定事項)或いは項目(2)(パーライト面積率に関する限定事項)が上述の所定範囲となること、ひいては熱処理効果を阻害しないこと、を試験的に確認した。このため、本工程における雰囲気炉中の酸素濃度は、1%以下とすることが好ましい。
(管の曲りを矯正しその後に管に対して最終熱処理を施す工程(工程(iii))
 本工程は、任意選択的な工程であって、鋼材を管とし、上述した本熱処理を施した後、管の曲りを矯正し、仕上げ熱処理を施す工程である。鋼材を管状とした状態のままでは、管がその長手方向において所望の使用に適合する程度に直線状をなさず、幾分湾曲しているおそれがある。この曲りがあると、製造終了後の電縫鋼管について、溶接衝合部の表層部の残留応力が高くなり、曲がり取りの矯正で残留応力が大きくなり、応力腐食割れ(SCC)が発生し易くなる。また、曲がりを有する鋼管は、そもそも市場に流通させることができない。このため、本工程を採用することで、当該曲りが抑制され、ひいてはSCCの発生を効率的に抑制すること等ができる。なお、当該曲りの矯正は、通常の矯正装置を用いて行うことができる。
 そして、曲り矯正後には、さらに最終熱処理を施す。これにより、鋼管の残留応力を低減させて、SCCの発生をさらに抑制し、耐応力腐食割れ性をさらに高めることができる。具体的には、400℃以上Ac1点以下の温度で最終熱処理を実施する。
 本工程における熱処理温度が400℃未満では、残留応力が有効に低減されないので、熱処理温度は400℃以上とする。なお、残留応力をさらに低減させるためには、熱処理温度は450℃以上とすることがさらに好ましい。
 一方、本工程における熱処理温度がAc1点を超えると、変態して組織均一性が損なわれるので、熱処理温度はAc1点以下とする。溶接衝合部における悪影響をさらに抑制するには、熱処理温度を(Ac1点-10)℃以下とすることが好ましい。
 次に、本発明の効果を、本発明例(発明鋼管)の特性と比較例(比較鋼管)の特性とを対比して実証する。発明鋼管を製造する際に用いた諸条件は、本発明の実施可能性及び効果を確認するために採用した条件例であるため、本発明は、これらの条件例に限定されるものではない。また、本発明は、その要旨を逸脱せず、かつ、その目的を達成する限りにおいて、様々な条件を採用し得る。
[電縫鋼管の製造]
 20種類の成分組成を有する、表1に示す各鋼帯を成形した。なお、表1の下部に各鋼帯に関するAc3点の算出方法を併記する。なお、表1中、空欄部はその元素が含まれないことを意味する。
Figure JPOXMLDOC01-appb-T000001
 次に、上記のようにして得た20種類の鋼帯をそれぞれ連続的に管状に成形し、この管状鋼帯のエッジ部を高周波溶接によって溶接して、20種類の管(外径38mm、肉厚2.5mm)を得た。その後、表2に示す条件下で各管に熱処理を施し、発明鋼管1~13と比較鋼管14~20とを得た。なお、表2中、空欄部は最終熱処理を行わなかったことを意味する。
Figure JPOXMLDOC01-appb-T000002
 続いて、全ての鋼管(発明鋼管1~13及び比較鋼管14~20)について、次の指標Aから指標Dについて調査した。
 ・指標A:母材部の表層での硬度と母材部の1/2厚み深さ位置での硬度との差(Hv)
 ・指標B:外表面から0.5mmの溶接衝合部の硬度と、外表面から1mmまでの母材部の硬度と、の差(Hv)
 ・指標C:外表面から0.5mmの溶接衝合部のパーライト面積率(%)
 ・指標D:溶接衝合部の表層部の残留応力(MPa)
 ここで、指標A~Dについては、それぞれ、上述した方法で或いは上述した方法に準じて測定した。
 また、これらとは別個に、応力腐食割れの発生の有無を調査した。応力腐食割れについては、各電縫鋼管に鋼製のフィンを接合してボイラー用配管を製造し、実機に取り付けて試験し、2年経過後に応力腐食割れ発生の有無を調査した。表3にこれらの結果を示す。
Figure JPOXMLDOC01-appb-T000003
 表1~3から明らかなように、本発明の成分組成及び熱処理条件を採用した発明鋼管については、いずれも、少なくとも所定の硬度及びパーライト面積率が本願所定の範囲に収まっており、故に応力腐食割れが発生していないことが確認された。これに対し、本発明の成分組成及び熱処理条件の少なくともいずれかを採用していない比較鋼管については、いずれも、所定の硬度及びパーライト面積率の少なくともいずれかが本願所定の範囲外となっており、故に応力腐食割れが発生していることが確認された。
 なお、表3の鋼管番号13と鋼管番号14のサンプルは、表2に示すとおりいずれも熱処理雰囲気が大気であったために、母材部についてもまた溶接衝合部についても、表層部が脱炭して表層硬さが低下していることから、表3の指標A及び指標Bの値がいずれも所望の20Hv以下となっていない。このため、鋼管番号13と鋼管番号14のサンプルはいずれも発明鋼管ではなく、比較鋼管である。
 しかしながら、鋼管番号13についてはSCCが発生しなかった。これは、焼き戻しにより残留応力が30MPa(表3の指標D)と低くなっているためであると推測される。従って、鋼管番号13のように残留応力が低くなると、表3の指標A、Bが所望の範囲でなくても、SCCが発生しないことは有り得る。

Claims (8)

  1.  成分組成が、質量%で、
     C :0.05~0.35%、
     Si:0.10~0.35%、
     Mn:0.25~1.50%、
     S :0.035%以下、
     P :0.035%以下、
     Al:0.005~0.050%、
     N :0.010%以下、及び
     O :0.010%以下
    を含み、
     さらに任意選択的に、Cr:1.00%以下、Mo:1.00%以下、Ni:2.00%以下、Cu:2.00%以下、B:0.0030%以下、Nb:0.20%以下、V:0.20%以下、Ti:0.20%以下、Ca:0.0050%以下、Mg:0.0050%以下の少なくとも1種を含み、
     残部:Fe及び不可避的不純物であり、
     母材部の表層での硬度と母材部の1/2厚み深さ位置での硬度との差が20Hv以下であり、
     外表面から1mmまでの溶接衝合部の硬度と、外表面から1mmまでの母材部の硬度と、の差が20Hv以下である
    ことを特徴とする、耐応力腐食割れ性に優れたボイラー用電縫鋼管。
  2.  成分組成が、質量%で、
     C :0.05~0.35%、
     Si:0.10~0.35%、
     Mn:0.25~1.50%、
     S :0.035%以下、
     P :0.035%以下、
     Al:0.005~0.050%、
     N :0.010%以下、及び
     O :0.010%以下
    を含み、
     さらに任意選択的に、Cr:1.00%以下、Mo:1.00%以下、Ni:2.00%以下、Cu:2.00%以下、B:0.0030%以下、Nb:0.20%以下、V:0.20%以下、Ti:0.20%以下、Ca:0.0050%以下、Mg:0.0050%以下の少なくとも1種を含み、
     残部:Fe及び不可避的不純物であり、
     外表面から1mmまでの溶接衝合部のパーライト面積率が5%以上である、耐応力腐食割れ性に優れたボイラー用電縫鋼管。
  3.  前記溶接衝合部の表層部の残留応力が200MPa以下である、請求項1又は2に記載の耐応力腐食割れ性に優れたボイラー用電縫鋼管。
  4.  前記外表面から1mmまでの溶接衝合部のデンドライト面積率が1%以下である、請求項1から3のいずれか1項に記載の耐応力腐食割れ性に優れたボイラー用電縫鋼管。
  5.  請求項1~4のいずれか1項に記載の耐応力腐食割れ性に優れたボイラー用電縫鋼管の製造方法であって、
     請求項1又は2に記載の成分組成の鋼材を成形して管とする工程(i)と、
     前記管に、雰囲気炉で、Ac3点以上1250℃以下の温度で30秒以上保持する熱処理を施す工程(ii)と、を含む
    ことを特徴とする、耐応力腐食割れ性に優れたボイラー用電縫鋼管の製造方法。
  6.  前記工程(ii)の後に、前記管の曲がりを矯正し、その後に400℃以上Ac1点以下の温度で熱処理を施す工程(iii)を含む、請求項5に記載の耐応力腐食割れ性に優れたボイラー用電縫鋼管の製造方法。
  7.  前記雰囲気炉の雰囲気が酸素を含まない、請求項5又は6に記載の耐応力腐食割れ性に優れたボイラー用電縫鋼管の製造方法。
  8.  前記雰囲気炉の雰囲気が、アルゴン、窒素、二酸化炭素、及び水素の少なくとも1種である、請求項7に記載の耐応力腐食割れ性に優れたボイラー用電縫鋼管の製造方法。
PCT/JP2016/070453 2016-07-11 2016-07-11 耐応力腐食割れ性に優れたボイラー用電縫鋼管及びその製造方法 WO2018011862A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197000299A KR20190014081A (ko) 2016-07-11 2016-07-11 내응력 부식 균열성이 우수한 보일러용 전봉 강관 및 그의 제조 방법
CN201680087535.4A CN109477173A (zh) 2016-07-11 2016-07-11 耐应力腐蚀裂纹性优异的锅炉用电阻焊钢管及其制造方法
PCT/JP2016/070453 WO2018011862A1 (ja) 2016-07-11 2016-07-11 耐応力腐食割れ性に優れたボイラー用電縫鋼管及びその製造方法
JP2018527267A JP6597901B2 (ja) 2016-07-11 2016-07-11 耐応力腐食割れ性に優れたボイラー用電縫鋼管及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070453 WO2018011862A1 (ja) 2016-07-11 2016-07-11 耐応力腐食割れ性に優れたボイラー用電縫鋼管及びその製造方法

Publications (1)

Publication Number Publication Date
WO2018011862A1 true WO2018011862A1 (ja) 2018-01-18

Family

ID=60951760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070453 WO2018011862A1 (ja) 2016-07-11 2016-07-11 耐応力腐食割れ性に優れたボイラー用電縫鋼管及びその製造方法

Country Status (4)

Country Link
JP (1) JP6597901B2 (ja)
KR (1) KR20190014081A (ja)
CN (1) CN109477173A (ja)
WO (1) WO2018011862A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033647A1 (ja) * 2019-08-20 2021-02-25 日本製鉄株式会社 接合継手、自動車用部材、及び接合継手の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112575242B (zh) * 2019-09-27 2022-06-24 宝山钢铁股份有限公司 一种合金结构用钢及其制造方法
CN110629102B (zh) * 2019-10-16 2021-04-27 宝武集团鄂城钢铁有限公司 一种580MPa级低应力腐蚀敏感性海洋工程用钢及其生产方法
CN111187984A (zh) * 2020-02-17 2020-05-22 本钢板材股份有限公司 蜗轮蜗杆传动装置用钢材及其制备方法
CN113684417A (zh) * 2021-07-19 2021-11-23 中国科学院金属研究所 一种经济型690MPa级低合金耐蚀耐火钢
CN113817964B (zh) * 2021-08-27 2022-06-14 马鞍山钢铁股份有限公司 一种含Cu高耐冲击腐蚀压裂泵阀体用钢及其热处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132415A (ja) * 1974-09-14 1976-03-19 Sumitomo Metal Ind Denhokokan
JPS60116722A (ja) * 1983-11-28 1985-06-24 Nippon Steel Corp 加工性の優れたボイラ用鋼管製造法
JPH04191323A (ja) * 1990-11-22 1992-07-09 Sumitomo Metal Ind Ltd 切削性に優れたシリンダー用鋼管の製造法
JP2002294402A (ja) * 2001-03-28 2002-10-09 Nippon Steel Corp 耐摩耗特性に優れた低合金耐熱ボイラー用鋼管
KR20080087548A (ko) * 2007-03-27 2008-10-01 현대하이스코 주식회사 보일러용 내열합금강관
JP2016079431A (ja) * 2014-10-14 2016-05-16 新日鐵住金株式会社 油井用電縫鋼管及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3101174C2 (de) * 1981-01-16 1983-02-10 Brohltal-Deumag AG für feuerfeste Erzeugnisse, 5401 Urmitz Wärmetauscher, insbesondere Winderhitzer
JP4276341B2 (ja) * 1999-09-02 2009-06-10 新日本製鐵株式会社 引張強さ570〜720N/mm2の溶接熱影響部と母材の硬さ差が小さい厚鋼板およびその製造方法
EP2412839B1 (en) * 2009-03-25 2018-11-14 Nippon Steel & Sumitomo Metal Corporation Electric resistance welded steel pipe having excellent deformability and fatigue properties after quenching
JP6193206B2 (ja) * 2013-12-11 2017-09-06 株式会社神戸製鋼所 耐サワー性、haz靭性及びhaz硬さに優れた鋼板およびラインパイプ用鋼管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132415A (ja) * 1974-09-14 1976-03-19 Sumitomo Metal Ind Denhokokan
JPS60116722A (ja) * 1983-11-28 1985-06-24 Nippon Steel Corp 加工性の優れたボイラ用鋼管製造法
JPH04191323A (ja) * 1990-11-22 1992-07-09 Sumitomo Metal Ind Ltd 切削性に優れたシリンダー用鋼管の製造法
JP2002294402A (ja) * 2001-03-28 2002-10-09 Nippon Steel Corp 耐摩耗特性に優れた低合金耐熱ボイラー用鋼管
KR20080087548A (ko) * 2007-03-27 2008-10-01 현대하이스코 주식회사 보일러용 내열합금강관
JP2016079431A (ja) * 2014-10-14 2016-05-16 新日鐵住金株式会社 油井用電縫鋼管及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033647A1 (ja) * 2019-08-20 2021-02-25 日本製鉄株式会社 接合継手、自動車用部材、及び接合継手の製造方法
JPWO2021033647A1 (ja) * 2019-08-20 2021-02-25
JP7156541B2 (ja) 2019-08-20 2022-10-19 日本製鉄株式会社 接合継手、自動車用部材、及び接合継手の製造方法

Also Published As

Publication number Publication date
KR20190014081A (ko) 2019-02-11
JP6597901B2 (ja) 2019-10-30
JPWO2018011862A1 (ja) 2018-11-01
CN109477173A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
JP6597901B2 (ja) 耐応力腐食割れ性に優れたボイラー用電縫鋼管及びその製造方法
EP1854562B1 (en) Method of production of a high-strength welded steel pipe excellent in hydrogen embrittlement cracking resistance of weld metal
JP5303842B2 (ja) 偏平性に優れた熱処理用電縫溶接鋼管の製造方法
JP2006225718A (ja) 低温靭性および耐SR割れ性に優れた高強度Cr−Mo鋼用溶着金属
JP2008189974A (ja) 排ガス経路部材用フェライト系ステンレス鋼
JP5849438B2 (ja) 電縫溶接部の成形性、低温靭性および耐疲労特性に優れた電縫鋼管の製造方法
JP6528860B2 (ja) 非調質機械部品用鋼線及び非調質機械部品
JP5765509B1 (ja) 油井用電縫鋼管
WO2018181401A1 (ja) 隙間部の耐塩害性に優れたフェライト系ステンレス鋼管、管端増肉構造体、溶接継ぎ手、及び溶接構造体
JP2011190468A (ja) 耐熱性に優れたフェライト系ステンレス鋼板およびその製造方法
JP2014077642A (ja) 鋼材のhic感受性の評価方法およびそれを用いた耐hic性に優れたラインパイプ用高強度厚鋼板の製造方法
WO2019188601A1 (ja) 耐塩害腐食性に優れたフェライト系ステンレス鋼
WO2015151468A1 (ja) 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管
JP2005002385A (ja) 成形性と靱性に優れた鋼管とその製造方法
JP4466320B2 (ja) ラインパイプ用低降伏比電縫鋼管の製造方法
JP7013302B2 (ja) 二次加工性及び耐高温酸化性に優れるAl含有フェライト系ステンレス鋼材および加工品
JP2008202128A (ja) 拡管性能及び耐食性に優れた拡管油井用電縫鋼管及びその製造方法
JP6814678B2 (ja) 管端増肉加工用フェライト系ステンレス鋼管および自動車排気系部品用フェライト系ステンレス鋼管
JP5516780B2 (ja) 偏平性に優れた熱処理用電縫溶接鋼管
JP6825751B1 (ja) 冷間ロール成形角形鋼管用熱延鋼帯およびその製造方法、ならびに冷間ロール成形角形鋼管の製造方法
CN110763818B (zh) 换热器用空间螺旋弯管的检验方法
JP6354281B2 (ja) フェライト系耐熱鋼管
JP5919650B2 (ja) 電縫溶接部の耐hic性と低温靭性に優れた電縫鋼管およびその製造方法
JP2020110840A (ja) 電縫鋼管およびその製造方法
JP5870561B2 (ja) 耐硫化物応力腐食割れ性に優れた引張強度600MPa以上の高強度溶接鋼管

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018527267

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197000299

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908766

Country of ref document: EP

Kind code of ref document: A1