WO2018010417A1 - 一种树脂基介孔纳米复合材料及其制备方法和应用 - Google Patents

一种树脂基介孔纳米复合材料及其制备方法和应用 Download PDF

Info

Publication number
WO2018010417A1
WO2018010417A1 PCT/CN2017/071884 CN2017071884W WO2018010417A1 WO 2018010417 A1 WO2018010417 A1 WO 2018010417A1 CN 2017071884 W CN2017071884 W CN 2017071884W WO 2018010417 A1 WO2018010417 A1 WO 2018010417A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
based mesoporous
polystyrene
nanoparticles
nano
Prior art date
Application number
PCT/CN2017/071884
Other languages
English (en)
French (fr)
Inventor
潘丙才
张孝林
潘思远
程成
陈泽芳
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to US15/708,091 priority Critical patent/US10583419B2/en
Publication of WO2018010417A1 publication Critical patent/WO2018010417A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character

Definitions

  • the invention relates to a resin-based mesoporous nano composite material, a preparation method thereof and application in sewage treatment.
  • Resin-based nanocomposites have achieved ideal results in the field of advanced treatment of sewage wastewater, and have unique advantages.
  • nanoparticle precursor ions or molecules
  • the nanoparticle precursor ions or molecules
  • the conditions are changed to deposit precursor ions (or molecules). It grows into nanoparticles.
  • Polymer-based nanocomposites can also be 'premixed' Phase separation 'technical preparation, that is, first, the nanoparticles are uniformly mixed with the polymer solution, and then the polymer is solidified by temperature conversion or solvent conversion to obtain a nano composite material.
  • the composite material obtained by the technology has less pore structure and smaller specific surface area, and the polymer carrier of the composite material generally does not contain a charged group, and has strong hydrophobicity, which is disadvantageous to diffusion of polar substances in the resin phase, and is difficult to apply. In the aqueous phase system.
  • the existing resin-based nanocomposites generally have the characteristics of wide pore distribution, disordered pore structure, and easy clogging of pores, which is not conducive to the diffusion of target pollutants in the resin phase.
  • the present invention provides a resin base for the problem that the pores are easily clogged, the pore structure is disordered, the nanoparticle content is difficult to control, and the resin carrier based on the phase separation technique is difficult to functionally be functionalized in the prior art preparation of the resin-based nanocomposite.
  • Mesoporous nanocomposites and preparation methods thereof which are premixed - Cold crystallization porogenesis - Cross-linked amination process facilitates the preparation of a resin-based mesoporous nanocomposite, which can conveniently regulate the pore structure, ion exchange capacity and nanoparticle content of the resin.
  • a resin-based mesoporous nanocomposite having a resin-based skeleton structure of aminated polystyrene and a resin-based skeleton containing nanoparticles.
  • the composite material has a specific surface area of 50 to 300 m 2 /g and a pore diameter of 5 to 40 nm.
  • the composite material has an anion exchange capacity of 0.5 to 3.0 mmol/g, and the mass fraction of the nanoparticles is 1 ⁇ 30%.
  • the above preparation method of the resin-based mesoporous nano composite material has the following steps:
  • step (1) adding an alcohol solution to the liquid nitrogen, and after it is completely solidified, the mixed solution in the step (1) is added dropwise to the liquid nitrogen; placing 5 ⁇ 48 After the liquid nitrogen is volatilized and the alcohol solution is completely melted, the resin pellets are taken out, washed with ethanol for 3 to 5 times, and then dried to obtain a composite material;
  • the composite material in the step (2) is added to the amine solution for reaction, and the reaction is carried out at 50 ° C for 24 hours, followed by washing with an ethanol solution.
  • the resin-based mesoporous nanocomposites described above are dried after 3 to 5 times.
  • the molecular weight of the linear polystyrene in the step (1) is 19 to 100. 10,000; chloromethyl polystyrene or polyvinyl chloride is 0.15-0.8 times the mass of linear polystyrene; the mixed solution is linear polystyrene and chloromethyl polystyrene or linear polystyrene The total mass concentration of polyvinyl chloride is 10 ⁇ 70%.
  • the organic solvent described in the step (1) is m-xylene or N,N-dimethylformamide.
  • the nanoparticles described in the above are nano-iron oxide, nano-manganese oxide, nano-zero-valent iron, and nano-precious metal particles (gold, silver, platinum, palladium, etc.), and the diameter of the nanoparticles is 1 to 40 nm.
  • the mass of the nanoparticles is 0.01 to 0.3 times the total mass of the linear polystyrene and the chloromethyl polystyrene or the linear polystyrene and the polyvinyl chloride.
  • the alcohol solution described in the step (2) is methanol, and the volume ratio of the alcohol solution to the mixed solution is (5-20): 1 .
  • the amine solution described in the step (3) is ethylenediamine, 1,4-butanediamine, 1,5-pentanediamine or 1,6-
  • the ethanol solution of hexamethylenediamine has a mass concentration of 2 to 15%.
  • the volume of the amine solution in step (3) is equal to the volume of the polymer solution.
  • the present invention takes microphase separation as the core and invents a 'premixing-cold crystallization hole- A method for preparing a crosslinked aminated resin-based mesoporous nanocomposite material, which is simple and easy to control, and is advantageous for industrial mass production of materials;
  • the resin-based mesoporous nanocomposite of the invention has rich pore structure (specific surface area of 50-300 m 2 /g) and is uniformly ordered, mainly mesoporous structure, and the pore diameter can be controlled in the range of 5-40 nm;
  • the pore structure of the sequence is beneficial to improve the working performance of the composite resin in the field of water treatment; it is also beneficial to improve the structural uniformity of the nano-composite resin, thereby helping to reveal the structure-activity relationship of the nano-composite resin and improving the overall working performance;
  • the resin-based mesoporous nanocomposite of the invention has a charging functional group and is highly hydrophilic, and is favorable for diffusion of a polar substance in a resin phase, and can be applied to an aqueous phase system;
  • the ion exchange capacity of the resin-based mesoporous nanocomposite of the present invention can be controlled in a wide range, and the ion exchange capacity is controlled. 0.5 ⁇ 3.0mmol/g, and it is convenient to adjust the ratio of chloromethylpolystyrene or polyvinyl chloride in the polymer solution; the content of nanoparticles in the composite material is easy to control, and can be 1 ⁇ 30wt% Range regulation, and only need to adjust the mass fraction of nanoparticles in the mixed solution.
  • FIG. 1 is a schematic view showing a preparation process of a resin-based mesoporous nanocomposite of the present invention
  • Example 2 is an infrared spectrum (FT-IR) diagram of a resin-based mesoporous nanocomposite (5 nmFe 2 O 3 @PS ) prepared in Example 1 of the present invention
  • Example 3 is a pore size distribution diagram of a resin-based mesoporous nanocomposite obtained in Example 1 of the present invention (5 nm Fe 2 O 3 @PS );
  • Example 4 is a TEM image (5 nmFe 2 O 3 @PS ) of a resin-based mesoporous nanocomposite obtained in Example 1 of the present invention
  • Example 5 is a pore size distribution diagram of a resin-based mesoporous nanocomposite obtained in Example 2 of the present invention (10 nm Fe 2 O 3 @PS );
  • Example 6 is a TEM image (10 nm Fe 2 O 3 @PS ) of a resin-based mesoporous nanocomposite obtained in Example 2 of the present invention
  • Example 7 is a pore size distribution diagram of a resin-based mesoporous nanocomposite obtained in Example 3 of the present invention (30 nm Fe 2 O 3 @PS );
  • Example 8 is a TEM image (30 nm Fe 2 O 3 @PS ) of a resin-based mesoporous nanocomposite obtained in Example 3 of the present invention
  • Example 9 is a graph showing the effect of arsenic removal by mesoporous nanocomposites (5 nm Fe 2 O 3 @PS ) prepared in Example 13 and other materials in Example 13 of the present invention.
  • the resin-based mesoporous nanocomposite prepared in this example has a spherical shape, a reddish brown color, and a diameter of about 1.7 mm.
  • the infrared spectrum (FT-IR) of the obtained resin-based mesoporous composite material is shown in Fig. 2, and most of the absorption peaks are the same as polystyrene (PS); however, there are 1633, 1221 cm -1 and 825 cm -1
  • the new peak appeared, corresponding to -NH bending vibration, CN stretching vibration and Fe-O characteristic absorption peak, indicating that the resin-based skeleton of the composite material is aminated polystyrene, and the composite material contains nano-iron oxide.
  • the pore structure was determined by N 2 -adsorption desorption instrument, which showed that the specific surface area was 193 m 2 /g and the pore diameter was about 20 nm.
  • the pore distribution of the composite material was as shown in Fig. 3; the composite material was observed by electron transmission electron microscopy (TEM).
  • TEM electron transmission electron microscopy
  • a large number of nano-sized iron oxide particles having a diameter of about 5 nm are distributed, as shown in FIG.
  • the total ion exchange capacity was determined by titration to be 1.1 mmol/g, and the iron content was 10 wt% as determined by atomic absorption (AAS) after acidification and digestion of the composite.
  • AAS atomic absorption
  • the preparation steps of the resin-based mesoporous nanocomposite are similar to those of the embodiment 1, but the 5 nm in the embodiment 1
  • the iron oxide particles (homemade) were replaced with 10 nm iron oxide particles (home made).
  • the resin-based mesoporous nanocomposites prepared in this example are spherical, reddish brown, and have a diameter of about 1.7 mm. Most of the absorption peaks in the infrared spectrum are the same as polystyrene (PS); but at 1635 and 1223 cm -1 There are new peaks at 820cm -1 , which correspond to -NH bending vibration, CN stretching vibration and characteristic absorption peak of Fe-O, indicating that the resin-based skeleton of the composite is aminated polystyrene, and the composite contains nano-iron oxide. .
  • the pore structure was determined by N 2 -adsorption desorption instrument, which showed that the specific surface area was 200 m 2 /g and the pore diameter was about 21 nm.
  • the pore distribution of the composite material was as shown in Fig. 5; a large number of diameters in the composite material were observed by TEM. It is a nano-iron oxide particle of 10 nm, as shown in Figure 6.
  • the total ion exchange capacity was determined by titration to be 1.1 mmol/g, and the iron content was 10 wt% as determined by atomic absorption (AAS) after acidification and digestion of the composite.
  • AAS atomic absorption
  • the preparation steps of the resin-based mesoporous nanocomposite are similar to those of the embodiment 1, but the 5 nm in the embodiment 1
  • the iron oxide particles (home-made) were replaced with 30 nm nano-iron oxide particles (home-made).
  • the resin-based mesoporous nanocomposites prepared in this embodiment are spherical, reddish brown, and have a diameter of about 2.7 mm. Most of the absorption peaks in the infrared spectrum are the same as polystyrene (PS); but at 1643, 1230 cm -1 and There are new peaks at 828cm -1 , which correspond to -NH bending vibration, CN stretching vibration and characteristic absorption peak of Fe-O, indicating that the resin-based skeleton of the composite is aminated polystyrene, and the composite contains nano-iron oxide. .
  • the pore structure was determined by N 2 -adsorption desorption instrument, which showed that the specific surface area was 50 m 2 /g, the pore diameter was about 11 nm, and the pore distribution of the composite material was as shown in Fig. 7; a large number of diameters in the composite material were observed by TEM. It is a 30 nm nano-iron oxide particle, as shown in Figure 8.
  • the total ion exchange capacity was determined by titration to be 1.1 mmol/g, and the iron content was 10 wt% as determined by atomic absorption (AAS) after acidification and digestion of the composite.
  • the preparation steps of the resin-based mesoporous nanocomposite are similar to those of the embodiment 1, but the 5 nm in the embodiment 1
  • the iron oxide particles (homemade) were replaced with 40 nm manganese oxide particles (home made).
  • the resin-based mesoporous nanocomposites prepared in this embodiment are spherical, black, and have a diameter of about 1.5 mm. Most of the absorption peaks in the infrared spectrum are the same as those of polystyrene (PS); but at 1630, 1200 cm -1 and 560 cm. There are new peaks at -1 , corresponding to -NH bending vibration, CN stretching vibration and characteristic absorption peak of Mn-O, indicating that the resin-based skeleton of the composite is aminated polystyrene, and the composite contains nano-manganese oxide.
  • PS polystyrene
  • the pore structure was determined by N 2 -adsorption desorption instrument, which showed that the specific surface area was 300 m 2 /g and the pore diameter was about 25 nm.
  • the total ion exchange capacity was determined by titration to be 1.1 mmol/g, and the composite was acidified and digested and passed through the atom.
  • the manganese content was measured by the absorption method (AAS) to be 12% by weight.
  • the preparation procedure of the resin-based mesoporous nanocomposite is similar to that of Example 1, but the molecular weight of 30 g in Example 1 is 19 Million polystyrene (PS) was replaced with 40g of a molecular weight of 170,000 PS.
  • PS polystyrene
  • the resin-based mesoporous nanocomposites prepared in this example are spherical, reddish brown, and have a diameter of about 1.7 mm. Most of the absorption peaks in the infrared spectrum are the same as polystyrene (PS); but at 1633 and 1221 cm -1 There are new peaks at 825cm -1 , which correspond to -NH bending vibration, CN stretching vibration and characteristic absorption peak of Fe-O, indicating that the resin-based skeleton of the composite is aminated polystyrene, and the composite contains nano-iron oxide. .
  • the pore structure was determined by N 2 -adsorption desorption instrument, which indicated that the specific surface area was 150 m 2 /g and the pore diameter was about 10 nm.
  • the total ion exchange capacity was determined by titration method to be 0.75 mmol/g, and the composite material was acidified and digested and then absorbed by atomic absorption.
  • the method (AAS) measured the iron content as 8 wt%.
  • the resin-based mesoporous nanocomposites prepared in this embodiment are spherical, reddish brown, and have a diameter of about 0.5 mm. Most of the absorption peaks in the infrared spectrum are the same as polystyrene (PS); but at 1638 and 1223 cm -1 There are new peaks at 825cm -1 , which correspond to -NH bending vibration, CN stretching vibration and characteristic absorption peak of Fe-O, indicating that the resin-based skeleton of the composite is aminated polystyrene, and the composite contains nano-iron oxide. .
  • the pore structure was determined by N 2 -adsorption desorption instrument, which indicated that the specific surface area was 170 m 2 /g and the pore diameter was about 10 nm.
  • the total ion exchange capacity was determined by titration method to be 3.0 mmol/g, and the composite material was acidified and digested and then absorbed by atomic absorption.
  • the method (AAS) measured an iron content of 9 wt%.
  • the preparation steps of the resin-based mesoporous nanocomposite are similar to those of the embodiment 1, but the 5 nm in the embodiment 1
  • the iron oxide particles (homemade) were replaced with 1 nm silver particles (home made).
  • the resin-based mesoporous nanocomposites prepared in this example are spherical, black, and have a diameter of about 2.1 mm. Most of the absorption peaks in the infrared spectrum are the same as those of polystyrene (PS); but at 1633, 1221 cm -1 and 625 cm. A new peak appeared at -1 , corresponding to -NH bending vibration, CN stretching vibration and characteristic absorption peak of Ag, indicating that the resin-based skeleton of the composite material is aminated polystyrene, and the composite material contains nano silver.
  • PS polystyrene
  • the pore structure was determined by N 2 -adsorption desorption instrument, which indicated that the specific surface area was 270 m 2 /g and the pore diameter was about 35 nm.
  • the total ion exchange capacity was determined by titration method to be 1.1 mmol/g, and the composite material was acidified and digested and then coupled by inductive coupling.
  • the amount of silver contained in the plasma emission spectroscopy (ICP-AES) was 16% by weight.
  • the preparation procedure of the resin-based mesoporous nanocomposite is similar to that of Example 1, but the polystyrene having a molecular weight of 190,000 in Example 1 is used ( PS) replaced with PS with a molecular weight of 500,000.
  • the resin-based mesoporous nanocomposites prepared in this example are spherical, reddish brown, and have a diameter of about 2.7 mm. Most of the absorption peaks in the infrared spectrum are the same as polystyrene (PS); but at 1633 and 1221 cm -1 There are new peaks at 825cm -1 , which correspond to -NH bending vibration, CN stretching vibration and characteristic absorption peak of Fe-O, indicating that the resin-based skeleton of the composite is aminated polystyrene, and the composite contains nano-iron oxide. .
  • the pore structure was determined by N 2 -adsorption desorption instrument, which indicated that the specific surface area was 290 m 2 /g and the pore diameter was about 40 nm.
  • the total ion exchange capacity was determined by titration to be 1.2 mmol/g, and the composite material was acidified and digested and then absorbed by atomic absorption.
  • the method (AAS) measured the iron content as 11% by weight.
  • the preparation procedure of the resin-based mesoporous nanocomposite is similar to that of Example 1, but the polystyrene having a molecular weight of 170,000 in Example 1 (PS) ) Replaced with PS with a molecular weight of 1 million.
  • the resin-based mesoporous nanocomposites prepared in this embodiment are spherical, reddish brown, and have a diameter of about 2.1 mm. Most of the absorption peaks in the infrared spectrum are the same as those of polystyrene (PS); but at 1633 and 1221 cm -1 There are new peaks at 825cm -1 , which correspond to -NH bending vibration, CN stretching vibration and characteristic absorption peak of Fe-O, indicating that the resin-based skeleton of the composite is aminated polystyrene, and the composite contains nano-iron oxide. .
  • the pore structure was determined by N 2 -adsorption desorption instrument, which indicated that the specific surface area was 240 m 2 /g and the pore diameter was about 23 nm.
  • the total ion exchange capacity was determined by titration method to be 1.1 mmol/g, and the composite material was acidified and digested and then absorbed by atomic absorption.
  • the method (AAS) measured the iron content as 10% by weight.
  • the procedure for preparing the resin-based mesoporous nanocomposite is similar to that of Example 1, but the 1,6-hexanediamine in Example 1 is Replace with ethylenediamine.
  • the resin-based mesoporous nanocomposites prepared in this embodiment are spherical, reddish brown, and have a diameter of about 1.5 mm. Most of the absorption peaks in the infrared spectrum are the same as polystyrene (PS); but at 1630, 1230 cm -1 and There are new peaks at 830cm -1 , which correspond to -NH bending vibration, CN stretching vibration and characteristic absorption peak of Fe-O, indicating that the resin-based skeleton of the composite is aminated polystyrene, and the composite contains nano-iron oxide. .
  • the pore structure was determined by N 2 -adsorption desorption instrument, which indicated that the specific surface area was 300 m 2 /g and the pore diameter was about 5 nm.
  • the total ion exchange capacity was determined by titration to be 1.1 mmol/g, and the composite material was acidified and digested by atomic absorption.
  • the method (AAS) measured the iron content as 11% by weight.
  • the procedure for preparing the resin-based mesoporous nanocomposite is similar to that of Example 1, except that the 1,6-hexanediamine in Example 1 is replaced by 1,4- Butane diamine.
  • the resin-based mesoporous nanocomposites prepared in this example are spherical, reddish brown, and have a diameter of about 2.3 mm. Most of the absorption peaks in the infrared spectrum are the same as polystyrene (PS); but at 1645 and 1225 cm -1 There are new peaks at 820cm -1 , which correspond to -NH bending vibration, CN stretching vibration and characteristic absorption peak of Fe-O, indicating that the resin-based skeleton of the composite is aminated polystyrene, and the composite contains nano-iron oxide. .
  • the pore structure was determined by N 2 -adsorption desorption instrument, which indicated that the specific surface area was 185 m 2 /g and the pore diameter was about 26 nm.
  • the total ion exchange capacity was determined by titration to be 1.2 mmol/g, and the composite material was acidified and digested and then absorbed by atomic absorption.
  • the method (AAS) measured the iron content as 10% by weight.
  • the resin-based mesoporous nanocomposites prepared in this embodiment are spherical, reddish brown, and have a diameter of about 2.3 mm. Most of the absorption peaks in the infrared spectrum are the same as those of polystyrene (PS); but at 1640, 1230 cm -1 and There are new peaks at 825cm -1 , which correspond to -NH bending vibration, CN stretching vibration and characteristic absorption peak of Fe-O, indicating that the resin-based skeleton of the composite is aminated polystyrene, and the composite contains nano-iron oxide. .
  • the pore structure was determined by N 2 -adsorption desorption instrument, which indicated that the specific surface area was 215 m 2 /g and the pore diameter was about 16 nm.
  • the total ion exchange capacity was determined by titration to be 1.2 mmol/g, and the composite material was acidified and digested and then absorbed by atomic absorption.
  • the method (AAS) measured the iron content as 10% by weight.
  • Example 1 In order to demonstrate the superiority of resin-based mesoporous nanocomposites, the performance of pentavalent arsenic (As(V)) in the adsorbed water can be investigated.
  • Selection of resin-based mesoporous nanostructured composite material in Example 1 was 5nm Fe 2 O 3 @PS embodiment of the present invention; and in a similar manner to Example mesoporous non-aminated nanocomposites were prepared 5nmFe 2 O 3 @PS-2 (preparation step is similar to Example 1, but step 3 is omitted) and non-porous, unaminated nanocomposite 5nmFe 2 O 3 @PS-3 (preparation steps are similar to Example 1, but will Step 3 is omitted and liquid nitrogen is not used in step 2 as a control.
  • the specific test steps are as follows:
  • the increase of the adsorption amount of 5nm Fe 2 O 3 @PS compared to 5nm Fe 2 O 3 @PS-2 is because the modified amino group can also adsorb a part of As(V) by ion exchange; the adsorption rate is obviously faster.
  • the equilibration time was shortened from more than 200 hours to about 20 hours, because the amination caused the hydrophilicity of the composite to be greatly improved, which facilitated the diffusion of As(V) in the pores of the composite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种树脂基介孔纳米复合材料及其制备方法和在水处理中的应用。纳米复合材料具有树脂基的骨架结构,比表面积为50-300m 2/g,孔径为5-40nm,其树脂基的骨架结构为氨基化聚苯乙烯,树脂基骨架中含有纳米颗粒。复合材料是将线型高分子聚合物与一定量的氯甲基聚苯乙烯或聚氯乙烯混合溶解后掺入纳米颗粒、通过"预混合‑冷结晶致孔‑交联胺化"等步骤制得。复合材料具有孔结构丰富、结构稳定、合成过程易控制等特点。

Description

一种树脂基介孔纳米复合材料及其制备方法和应用
技术领域
本发明涉及一种树脂基介孔纳米复合材料及其制备方法和在污废水处理中的应用。
背景技术
树脂基纳米复合材料在污废水深度处理领域取得了较为理想的效果,具有独特优势。
目前,树脂基纳米复合材料一般通过'前驱体导入 - 纳米孔成核'技术制备,即首先将纳米颗粒前驱体离子(或分子)通过浸渍、离子交换、吸附或浓缩等方法进入多孔载体孔道内,再改变条件使前驱体离子(或分子)沉积、生长为纳米颗粒。但是制备过程中难以调节纳米颗粒的含量与形貌;且随着纳米颗粒负载量的上升,树脂孔堵塞严重,极大地限制了污染物在树脂孔内的扩散。
聚合物基纳米复合材料还可通过'预混合 - 相分离'技术制备,即首先将纳米颗粒与聚合物溶液混合均匀,再通过温度转变或溶剂转变等方式使聚合物固化成型,从而获得纳米复合材料。然而,该技术所得复合材料孔结构较少,比表面积较小,复合材料的聚合物载体一般不含荷电基团,疏水性较强,不利于极性物质在树脂相中的扩散,难以应用于水相体系。
此外,现有的树脂基纳米复合材料普遍存在孔分布较宽、孔结构无序、孔道易堵塞的特点,不利于目标污染物在树脂相中的扩散。
发明内容
针对现有技术中的树脂基纳米复合材料制备过程中孔道易堵塞、孔结构无序、纳米颗粒含量不易调控,以及基于相分离技术的树脂载体难以功能基化等问题,本发明提供了树脂基介孔纳米复合材料及其制备方法,它通过'预混合 - 冷结晶致孔 - 交联胺化'过程方便制备一种树脂基介孔纳米复合材料,可方便调控树脂孔结构、离子交换容量与纳米颗粒含量等。
为了解决上述问题,本发明所采用的技术方案如下:
一种树脂基介孔纳米复合材料,其树脂基的骨架结构为氨基化聚苯乙烯,树脂基骨架中含有纳米颗粒。
进一步地,所述的复合材料的比表面积为 50~300m2/g ,孔直径为 5~40 nm 。
进一步地,所述的复合材料的阴离子交换容量为 0.5~3.0 mmol/g ,纳米颗粒的质量分数为 1~30% 。
进一步地,所述的树脂基介孔纳米复合材料 的红外光谱图中,在 1650~1630cm-1 、 1230~1200 cm-1 与 <1000cm-1 处有特征吸收峰,分别对应 N-H 弯曲振动、 C-N 伸缩振动以及纳米颗粒的特征吸收峰。
上述的树脂基介孔纳米复合材料的制备方法,其步骤为:
( 1 )将线型聚苯乙烯与氯甲基聚苯乙烯或聚氯乙烯混合后溶解于有机溶剂中,然后加入纳米颗粒配制成混合溶液;
( 2 )向液氮中加入醇溶液,待其完全凝固后向液氮中滴加步骤( 1 )中的混合溶液;放置 5~48 小时使液氮挥发完毕且醇溶液完全熔化,取出其中的树脂小球,用乙醇清洗 3~5 次后烘干即得复合材料;
( 3 )将步骤( 2 )中的复合材料加入胺溶液中反应, 50 ℃下反应 24 小时后用乙醇溶液清洗 3~5 次后烘干即得所述的树脂基介孔纳米复合材料。
进一步地,步骤( 1 )中的线型聚苯乙烯分子量为 19~100 万;氯甲基聚苯乙烯或聚氯乙烯质量为线型聚苯乙烯的 0.15~0.8 倍;所述的混合溶液中线型聚苯乙烯与氯甲基聚苯乙烯或线型聚苯乙烯与聚氯乙烯的总质量浓度为 10~70% 。
进一步地,步骤( 1 )中所述的有机溶剂为间二甲苯或 N,N- 二甲基甲酰胺。
进一步地,步骤( 1 )中所述的纳米颗粒为纳米氧化铁、纳米氧化锰、纳米零价铁以及纳米贵金属颗粒(金、银、铂、钯等),纳米颗粒的直径为 1~40 nm ,纳米颗粒的质量为线型聚苯乙烯与氯甲基聚苯乙烯或线型聚苯乙烯与聚氯乙烯总质量的 0.01~0.3 倍。
进一步地,步骤( 2 )中所述的醇溶液为甲醇,醇溶液与混合溶液的体积比为( 5~20 ) :1 。
进一步地,步骤( 3 )中所述的胺溶液为乙二胺、 1,4- 丁二胺、 1,5- 戊二胺或 1,6- 己二胺的乙醇溶液,质量浓度为 2~15% 。
进一步地,步骤( 3 )中胺溶液的体积与聚合物溶液体积相等。
上述的一种树脂基介孔纳米复合材料在水处理领域中的应用。
相比于现有技术,本发明的有益效果为:
( 1 )本发明以微相分离为核心,发明了一种'预混合 - 冷结晶致孔 - 交联胺化'的树脂基介孔纳米复合材料制备方法,该方法简便易行、易于调控,有利于材料的工业化量产;
( 2 )本发明的树脂基介孔纳米复合材料孔结构丰富(比表面积 50~300m2/g )且均匀有序,主要为介孔结构,孔直径可在 5~40nm 范围内调控;均匀有序的孔结构有利于提高复合树脂在水处理领域的工作性能;也有利于提高纳米复合树脂的结构均匀性,进而有助于揭示纳米复合树脂的构效关系、提升整体工作性能;
( 3 )本发明的树脂基介孔纳米复合材料具有荷电功能基,亲水性强,有利于极性物质在树脂相的扩散,可应用于水相体系;
( 4 )本发明的树脂基介孔纳米复合材料的离子交换容量可在较大范围内调控,离子交换容量调控范围为 0.5~3.0mmol/g ,且只需调整聚合物溶液中氯甲基聚苯乙烯或聚氯乙烯的比例即可方便实现;复合材料中纳米颗粒的含量易于调控,可在 1~30wt% 范围调控,且只需调节混合溶液中纳米颗粒的质量分数即可。
附图说明
图 1 为 本发明的树脂基介孔纳米复合材料的制备流程示意图;
图 2 为本发明实施例 1 中制得的树脂基介孔纳米复合材料( 5nmFe2O3@PS )的红外光谱( FT-IR )图;
图 3 为本发明实施例 1 中制得的树脂基介孔纳米复合材料孔径分布图( 5nm Fe2O3@PS );
图 4 为本发明实施例 1 中制得的树脂基介孔纳米复合材料 TEM 图( 5nmFe2O3@PS );
图 5 为本发明实施例 2 中制得的树脂基介孔纳米复合材料孔径分布图( 10nm Fe2O3@PS );
图 6 为本发明实施例 2 中制得的树脂基介孔纳米复合材料 TEM 图( 10nm Fe2O3@PS );
图 7 为本发明实施例 3 中制得的树脂基介孔纳米复合材料孔径分布图( 30nm Fe2O3@PS );
图 8 为本发明实施例 3 中制得的树脂基介孔纳米复合材料 TEM 图( 30nm Fe2O3@PS );
图 9 为本发明实施例 13 中利用实施例 1 制得的介孔纳米复合材料( 5nm Fe2O3@PS )与其他材料除砷效果图。
具体实施方式
下面结合具体实施例对本发明进一步进行描述。
实施例 1
树脂基介孔纳米复合材料制备步骤如下(如图 1 所示):
( 1 )取 30g 分子量为 19 万的聚苯乙烯( PS ),与 10g 氯甲基聚苯乙烯( CMPS )混合后溶解于 200mL N,N- 二甲基甲酰胺( DMF )中,加入 6g 平均直径为 5nm 的纳米氧化铁颗粒(自制),搅拌使其充分溶解制得混合溶液;
( 2 )向液氮中分批次加入 1000mL 甲醇,使其完全凝固后向液氮中逐滴滴加混合溶液;放置 16h 使液氮挥发完毕且甲醇完全熔化,取出容器中已呈固体形态的树脂小球,用乙醇清洗数次后 50 ℃烘干即得固态小球;
( 3 )将固态小球加入质量浓度为 10% 的 1,6- 己二胺乙醇溶液中, 50 ℃下处理 24 小时后用乙醇清洗数次后 50 ℃烘干即得树脂基介孔纳米复合材料。
本实施例制得的树脂基介孔纳米复合材料呈球形,红棕色,直径为 1.7mm 左右。所得树脂基介孔复合材料的红外谱图( FT-IR )如图 2 所示,其中绝大部分吸收峰与聚苯乙烯( PS )相同;但在 1633 、 1221cm-1 与 825cm-1 处有新峰出现,分别对应 -N-H 弯曲振动、 C-N 伸缩振动以及 Fe-O 的特征吸收峰,表明该复合材料的树脂基骨架为氨基化聚苯乙烯,复合材料中含有纳米氧化铁。通过 N2- 吸附脱附仪测定孔结构,表明其比表面积为 193m2/g ,孔径约为 20nm ,复合材料孔分布如图 3 所示;通过电子透射电镜( TEM )可观察到复合材料中分布有大量直径约为 5nm 的纳米氧化铁颗粒,如图 4 所示。通过滴定法测定总离子交换容量为 1.1mmol/g ,对复合材料酸化消解后通过原子吸收法( AAS )测得含铁量为 10wt% 。
实施例 2
树脂基介孔纳米复合材料制备步骤与实施例 1 类似,但将实施例 1 中的 5nm 的氧化铁颗粒(自制)替换为 10nm 的氧化铁颗粒(自制)。
本实施例制得的树脂基介孔纳米复合材料呈球形,红棕色,直径为 1.7mm 左右,红外图谱中绝大部分吸收峰与聚苯乙烯( PS )相同;但在 1635 、 1223cm-1 与 820cm-1 处有新峰出现,分别对应 -N-H 弯曲振动、 C-N 伸缩振动以及 Fe-O 的特征吸收峰,表明该复合材料的树脂基骨架为氨基化聚苯乙烯,复合材料中含有纳米氧化铁。通过 N2- 吸附脱附仪测定孔结构,表明其比表面积为 200m2/g ,孔径约为 21nm ,复合材料孔分布如图 5 所示;通过 TEM 可观察到复合材料中分布有大量直径约为 10nm 的纳米氧化铁颗粒,如图 6 所示。通过滴定法测定总离子交换容量为 1.1mmol/g ,对复合材料酸化消解后通过原子吸收法( AAS )测得含铁量为 10wt% 。
实施例 3
树脂基介孔纳米复合材料制备步骤与实施例 1 类似,但将实施例 1 中的 5nm 的氧化铁颗粒(自制)替换为 30nm 的纳米氧化铁颗粒(自制)。
本实施例制得的树脂基介孔纳米复合材料呈球形,红棕色,直径为 2.7mm 左右,红外图谱中绝大部分吸收峰与聚苯乙烯( PS )相同;但在 1643 、 1230cm-1 与 828cm-1 处有新峰出现,分别对应 -N-H 弯曲振动、 C-N 伸缩振动以及 Fe-O 的特征吸收峰,表明该复合材料的树脂基骨架为氨基化聚苯乙烯,复合材料中含有纳米氧化铁。通过 N2- 吸附脱附仪测定孔结构,表明其比表面积为 50m2/g ,孔径约为 11nm ,复合材料孔分布如图 7 所示;通过 TEM 可观察到复合材料中分布有大量直径约为 30nm 的纳米氧化铁颗粒,如图 8 所示。通过滴定法测定总离子交换容量为 1.1mmol/g ,对复合材料酸化消解后通过原子吸收法( AAS )测得含铁量为 10wt% 。
实施例 4
树脂基介孔纳米复合材料制备步骤与实施例 1 类似,但将实施例 1 中的 5nm 的氧化铁颗粒(自制)替换为 40nm 的氧化锰颗粒(自制)。
本实施例制得的树脂基介孔纳米复合材料呈球形,黑色,直径为 1.5mm 左右,红外图谱中绝大部分吸收峰与聚苯乙烯( PS )相同;但在 1630 、 1200cm-1 与 560cm-1 处有新峰出现,分别对应 -N-H 弯曲振动、 C-N 伸缩振动以及 Mn-O 的特征吸收峰,表明该复合材料的树脂基骨架为氨基化聚苯乙烯,复合材料中含有纳米氧化锰。通过 N2- 吸附脱附仪测定孔结构,表明其比表面积为 300m2/g ,孔径约为 25 nm ;通过滴定法测定总离子交换容量为 1.1mmol/g ,对复合材料酸化消解后通过原子吸收法( AAS )测得含锰量为 12wt% 。
实施例 5
树脂基介孔纳米复合材料制备步骤与实施例 1 类似,但将实施例 1 中的 30g 分子量为 19 万的聚苯乙烯( PS )替换为 40g 分子量为 19 万的 PS 。
本实施例制得的树脂基介孔纳米复合材料呈球形,红棕色,直径为 1.7mm 左右,红外图谱中绝大部分吸收峰与聚苯乙烯( PS )相同;但在 1633 、 1221cm-1 与 825cm-1 处有新峰出现,分别对应 -N-H 弯曲振动、 C-N 伸缩振动以及 Fe-O 的特征吸收峰,表明该复合材料的树脂基骨架为氨基化聚苯乙烯,复合材料中含有纳米氧化铁。通过 N2- 吸附脱附仪测定孔结构,表明其比表面积为 150m2/g ,孔径约为 10nm ;通过滴定法测定总离子交换容量为 0.75mmol/g ,对复合材料酸化消解后通过原子吸收法( AAS )测得含铁量为 8wt% 。
实施例 6
树脂基介孔纳米复合材料制备步骤与实施例 1 类似,但将实施例 1 中的 10g 氯甲基聚苯乙烯( CMPS )替换为 20gCMPS 。
本实施例制得的树脂基介孔纳米复合材料呈球形,红棕色,直径为 0.5mm 左右,红外图谱中绝大部分吸收峰与聚苯乙烯( PS )相同;但在 1638 、 1223cm-1 与 825cm-1 处有新峰出现,分别对应 -N-H 弯曲振动、 C-N 伸缩振动以及 Fe-O 的特征吸收峰,表明该复合材料的树脂基骨架为氨基化聚苯乙烯,复合材料中含有纳米氧化铁。通过 N2- 吸附脱附仪测定孔结构,表明其比表面积为 170m2/g ,孔径约为 10nm ;通过滴定法测定总离子交换容量为 3.0mmol/g ,对复合材料酸化消解后通过原子吸收法( AAS )测得含铁量为 9wt% 。
实施例 7
树脂基介孔纳米复合材料制备步骤与实施例 1 类似,但将实施例 1 中的 5nm 的氧化铁颗粒(自制)替换为 1nm 的银颗粒(自制)。
本实施例制得的树脂基介孔纳米复合材料呈球形,黑色,直径为 2.1mm 左右,红外图谱中绝大部分吸收峰与聚苯乙烯( PS )相同;但在 1633 、 1221cm-1 与 625cm-1 处有新峰出现,分别对应 -N-H 弯曲振动、 C-N 伸缩振动以及 Ag 的特征吸收峰,表明该复合材料的树脂基骨架为氨基化聚苯乙烯,复合材料中含有纳米银。通过 N2- 吸附脱附仪测定孔结构,表明其比表面积为 270m2/g ,孔径约为 35nm ;通过滴定法测定总离子交换容量为 1.1mmol/g ,对复合材料酸化消解后通过电感耦合等离子体发射光谱法( ICP-AES )测得含银量为 16wt% 。
实施例 8
树脂基介孔纳米复合材料制备步骤与实施例 1 类似,但将实施例 1 中的分子量为 19 万的聚苯乙烯( PS )替换为分子量为 50 万的 PS 。
本实施例制得的树脂基介孔纳米复合材料呈球形,红棕色,直径为 2.7mm 左右,红外图谱中绝大部分吸收峰与聚苯乙烯( PS )相同;但在 1633 、 1221cm-1 与 825cm-1 处有新峰出现,分别对应 -N-H 弯曲振动、 C-N 伸缩振动以及 Fe-O 的特征吸收峰,表明该复合材料的树脂基骨架为氨基化聚苯乙烯,复合材料中含有纳米氧化铁。通过 N2- 吸附脱附仪测定孔结构,表明其比表面积为 290m2/g ,孔径约为 40nm ;通过滴定法测定总离子交换容量为 1.2mmol/g ,对复合材料酸化消解后通过原子吸收法( AAS )测得含铁量为 11wt% 。
实施例 9
树脂基介孔纳米复合材料制备步骤与实施例 1 类似,但将实施例 1 中的分子量为 19 万的聚苯乙烯( PS )替换为分子量为 100 万的 PS 。
本实施例制得的树脂基介孔纳米复合材料呈球形,红棕色,直径为 2.1mm 左右,红外图谱中绝大部分吸收峰与聚苯乙烯( PS )相同;但在 1633 、 1221cm-1 与 825cm-1 处有新峰出现,分别对应 -N-H 弯曲振动、 C-N 伸缩振动以及 Fe-O 的特征吸收峰,表明该复合材料的树脂基骨架为氨基化聚苯乙烯,复合材料中含有纳米氧化铁。通过 N2- 吸附脱附仪测定孔结构,表明其比表面积为 240m2/g ,孔径约为 23nm ;通过滴定法测定总离子交换容量为 1.1mmol/g ,对复合材料酸化消解后通过原子吸收法( AAS )测得含铁量为 10wt% 。
实施例 10
树脂基介孔纳米复合材料制备步骤与实施例 1 类似,但将实施例 1 中的 1,6- 己二胺 1 替换为乙二胺。
本实施例制得的树脂基介孔纳米复合材料呈球形,红棕色,直径为 1.5mm 左右,红外图谱中绝大部分吸收峰与聚苯乙烯( PS )相同;但在 1630 、 1230cm-1 与 830cm-1 处有新峰出现,分别对应 -N-H 弯曲振动、 C-N 伸缩振动以及 Fe-O 的特征吸收峰,表明该复合材料的树脂基骨架为氨基化聚苯乙烯,复合材料中含有纳米氧化铁。通过 N2- 吸附脱附仪测定孔结构,表明其比表面积为 300m2/g ,孔径约为 5nm ;通过滴定法测定总离子交换容量为 1.1mmol/g ,对复合材料酸化消解后通过原子吸收法( AAS )测得含铁量为 11wt% 。
实施例 11
树脂基介孔纳米复合材料制备步骤与实施例 1 类似,但将实施例 1 中的 1,6- 己二胺替换为 1,4- 丁二胺。
本实施例制得的树脂基介孔纳米复合材料呈球形,红棕色,直径为 2.3mm 左右,红外图谱中绝大部分吸收峰与聚苯乙烯( PS )相同;但在 1645 、 1225cm-1 与 820cm-1 处有新峰出现,分别对应 -N-H 弯曲振动、 C-N 伸缩振动以及 Fe-O 的特征吸收峰,表明该复合材料的树脂基骨架为氨基化聚苯乙烯,复合材料中含有纳米氧化铁。通过 N2- 吸附脱附仪测定孔结构,表明其比表面积为 185m2/g ,孔径约为 26nm ;通过滴定法测定总离子交换容量为 1.2mmol/g ,对复合材料酸化消解后通过原子吸收法( AAS )测得含铁量为 10wt% 。
实施例 12
树脂基介孔纳米复合材料制备步骤与实施例 1 类似,但将实施例 1 中的 1,6- 己二胺替换为 1,5- 戊二胺。
本实施例制得的树脂基介孔纳米复合材料呈球形,红棕色,直径为 2.3mm 左右,红外图谱中绝大部分吸收峰与聚苯乙烯( PS )相同;但在 1640 、 1230cm-1 与 825cm-1 处有新峰出现,分别对应 -N-H 弯曲振动、 C-N 伸缩振动以及 Fe-O 的特征吸收峰,表明该复合材料的树脂基骨架为氨基化聚苯乙烯,复合材料中含有纳米氧化铁。通过 N2- 吸附脱附仪测定孔结构,表明其比表面积为 215m2/g ,孔径约为 16nm ;通过滴定法测定总离子交换容量为 1.2mmol/g ,对复合材料酸化消解后通过原子吸收法( AAS )测得含铁量为 10wt% 。
实施例 13
为论证树脂基介孔纳米复合材料的优越性,可考察其吸附水体中的五价砷( As(V) )的表现。选用的树脂基介孔纳米复合材料为本发明实施例 1 制得的 5nm Fe2O3@PS ;并按照与实施例类似的方法,分别制备介孔未胺化的纳米复合材料 5nmFe2O3@PS-2 (制备步骤与实施例 1 类似,但将步骤 3 省去)与无孔、未胺化的纳米复合材料 5nmFe2O3@PS-3 (制备步骤与实施例 1 类似,但将步骤 3 省去、且步骤 2 中不使用液氮),作为对照。具体试验步骤如下:
利用砷酸钠配置 1000mLAs(V) 含量为 1mg/L 的溶液,用 0.1M 的 NaOH 和 HCl 溶液调节 pH 在 6.0 附近。分别向溶液中加入三种复合材料,固液比为 0.5g/L 。 25 ℃ 下恒温震荡,每隔一段时间取出 0.5mL 溶液测定溶液中残余的 As(V) 含量,以评价材料对 As(V) 的去除性能。
试验结果如图 9 所示。由图可见,证树脂基介孔纳米复合材料( 5nm Fe2O3@PS )无论是在吸附量、还是吸附速率上均较其他材料有显著提升。其中, 5nm Fe2O3@PS-2 相比于 5nm Fe2O3@PS-3 在吸附量上有显著提高,这是因为丰富的介孔结构使得复合材料中的纳米氧化铁的有效利用位点大大增加。 5nm Fe2O3@PS 相比于 5nm Fe2O3@PS-2 在吸附量上的提高是因为修饰上的氨基也可通过离子交换作用吸附一部分 As(V) ;吸附速率明显变快,平衡时间由 200 多小时缩短到 20 小时左右,这是因为氨基化使得复合材料的亲水性大大提高,有利于 As(V) 在复合材料孔道内的扩散。

Claims (16)

1. 一种树脂基介孔纳米复合材料,其特征在于:其树脂基的骨架结构为氨基化聚苯乙烯,树脂基骨架中含有纳米颗粒 ; 所述的复合材料比表面积为 50~300m2/g ,孔直径为 5~40 nm 。
2. 根据权利要求 1 所述的一种树脂基介孔纳米复合材料,其特征在于:所述复合材料的阴离子交换容量为 0.5~3.0 mmol/g ,其纳米颗粒的质量分数为 1~30% 。
3. 根据权利要求 1 所述的一种树脂基介孔纳米复合材料,其特征在于: 所述的树脂基介孔纳米复合材料 的红外光谱图中,在 1650~1630cm-1 、 1230~1200 cm-1 与 <1000cm-1 处有特征吸收峰,分别对应 N-H 弯曲振动、 C-N 伸缩振动以及纳米颗粒的特征吸收峰。
4. 根据权利要求 2 所述的一种树脂基介孔纳米复合材料,其特征在于:所述的树脂基介孔纳米复合材料 的红外光谱图中,在 1650~1630cm-1 、 1230~1200 cm-1 与 <1000cm-1 处有特征吸收峰,分别对应 N-H 弯曲振动、 C-N 伸缩振动以及纳米颗粒的特征吸收峰。
5. 根据权利要求 1 所述的一种树脂基介孔纳米复合材料,其特征在于: 所述的纳米颗粒为纳米氧化铁、纳米氧化锰、纳米零价铁以及纳米贵金属颗粒。
6. 根据权利要求 5 所述的一种树脂基介孔纳米复合材料,其特征在于:所述 的纳米颗粒的直径为 1~40 nm 。
7. 根据权利要求 5 所述的一种树脂基介孔纳米复合材料,其特征在于:所述贵金属为金、银、铂、钯。
8. 权利要求 1 中所述的树脂基介孔纳米复合材料的制备方法,其步骤为:
( 1 )将线型聚苯乙烯与氯甲基聚苯乙烯或聚氯乙烯混合后溶解于有机溶剂中,然后加入纳米颗粒配制成混合溶液;
( 2 )向液氮中加入醇溶液,待其完全凝固后向液氮中滴加步骤( 1 )中的混合溶液;放置 5~48 小时使液氮挥发完毕且醇溶液完全熔化,取出其中的树脂小球,用醇清洗 3~5 次后烘干即得复合材料;
( 3 )将步骤( 2 )中的复合材料加入胺溶液中反应,反应结束后用醇溶液清洗 3~5 次后烘干即得所述的树脂基介孔纳米复合材料。
9. 根据权利要求 8 所述的一种树脂基介孔纳米复合材料的制备方法,其特征在于:步骤( 1 )中的线型聚苯乙烯分子量为 19~100 万;氯甲基聚苯乙烯或聚氯乙烯质量为线型聚苯乙烯的 0.15~0.8 倍;所述的混合溶液中线型聚苯乙烯与氯甲基聚苯乙烯或聚氯乙烯的总质量浓度为 10~70% 。
10. 根据权利要求 8 所述的一种树脂基介孔纳米复合材料的制备方法,其特征在于:步骤( 1 )中所述的有机溶剂为间二甲苯或 N,N- 二甲基甲酰胺。
11. 根据权利要求 9 所述的一种树脂基介孔纳米复合材料的制备方法,其特征在于:步骤( 1 )中所述的有机溶剂为间二甲苯或 N,N- 二甲基甲酰胺。
12. 根据权利要求 8 所述的一种树脂基介孔纳米复合材料的制备方法,其特征在于: 步骤( 1 )中所述的纳米颗粒为纳米氧化铁、纳米氧化锰、纳米零价铁以及纳米贵金属颗粒,纳米颗粒的直径为 1~40 nm ,纳米颗粒的质量为线型聚苯乙烯与氯甲基聚苯乙烯或聚氯乙烯总质量的 0.01~0.3 倍。
13. 根据权利要求 12 所述的一种树脂基介孔纳米复合材料的制备方法,其特征在于:所述贵金属为金、银、铂、钯。
14. 根据权利要求 8 所述的一种树脂基介孔纳米复合材料的制备方法,其特征在于:步骤( 2 )中所述的醇溶液为甲醇,醇溶液与步骤( 1 )中所述混合溶液的体积比为( 5~20 ) :1 。
15. 根据权利要求 8 所述的一种树脂基介孔纳米复合材料的制备方法,其特征在于:步骤( 3 )中所述的胺溶液为乙二胺、 1,4- 丁二胺、 1,5- 戊二胺或 1,6- 己二胺的乙醇溶液,质量浓度为 2~15% ;胺溶液的体积与步骤( 1 )中所述混合溶液的体积相等。
16. 权利要求 1 中所述的一种树脂基介孔纳米复合材料在污废水处理中的应用。
PCT/CN2017/071884 2016-07-15 2017-01-20 一种树脂基介孔纳米复合材料及其制备方法和应用 WO2018010417A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/708,091 US10583419B2 (en) 2016-07-15 2017-09-18 Resin nanocomposite, method for preparing the same, and method for treating sewage with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610555717.1 2016-07-15
CN201610555717.1A CN106179264B (zh) 2016-07-15 2016-07-15 一种树脂基介孔纳米复合材料及其制备方法和应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/708,091 Continuation-In-Part US10583419B2 (en) 2016-07-15 2017-09-18 Resin nanocomposite, method for preparing the same, and method for treating sewage with the same

Publications (1)

Publication Number Publication Date
WO2018010417A1 true WO2018010417A1 (zh) 2018-01-18

Family

ID=57475216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071884 WO2018010417A1 (zh) 2016-07-15 2017-01-20 一种树脂基介孔纳米复合材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN106179264B (zh)
WO (1) WO2018010417A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113617355A (zh) * 2021-07-30 2021-11-09 复旦大学 一种镶嵌纳米颗粒的功能介孔材料及其原位嵌入组装方法和应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179264B (zh) * 2016-07-15 2018-07-20 南京大学 一种树脂基介孔纳米复合材料及其制备方法和应用
US10583419B2 (en) * 2016-07-15 2020-03-10 Nanjing University Resin nanocomposite, method for preparing the same, and method for treating sewage with the same
CN106944005B (zh) * 2017-04-27 2020-05-22 南京大学 一种深度去除水中微量氟的树脂基纳米复合吸附剂及其制备方法和应用
CN109621920A (zh) * 2019-01-28 2019-04-16 南京师范大学 一种聚苯乙烯纳米零价铁复合材料及其制备方法和应用
CN110773111A (zh) * 2019-11-15 2020-02-11 南京大学 一种亚10纳米无定形金属化合物复合材料的简易制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102198A (zh) * 2011-02-12 2011-06-22 南京大学 一种调控金属纳米颗粒在树脂载体内分布的方法
WO2012025943A1 (en) * 2010-08-27 2012-03-01 Tata Consultancy Services Limited Method for purifying water by contacting water with a porous rice husk ash and clay mixture and apparatus therefor
CN106179264A (zh) * 2016-07-15 2016-12-07 南京大学 一种树脂基介孔纳米复合材料及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100344365C (zh) * 2005-11-02 2007-10-24 南京大学 一种树脂基除砷吸附剂的制备方法
CN100393410C (zh) * 2006-08-18 2008-06-11 南京大学 一种对重金属具有高选择性的树脂基吸附剂及其制备方法
CN102489267A (zh) * 2011-12-07 2012-06-13 湖南科技大学 聚苯乙烯树脂负载纳米零价铁的制备方法及在含油废水上的应用
CN103257131A (zh) * 2012-02-17 2013-08-21 华东理工大学 一种在多孔高分子聚合物表面固定纳米金属颗粒制备表面增强拉曼光谱基底的方法
CN104119554B (zh) * 2014-07-15 2018-01-09 天津工业大学 一种采用冷冻法制备有机多孔膜的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012025943A1 (en) * 2010-08-27 2012-03-01 Tata Consultancy Services Limited Method for purifying water by contacting water with a porous rice husk ash and clay mixture and apparatus therefor
CN102102198A (zh) * 2011-02-12 2011-06-22 南京大学 一种调控金属纳米颗粒在树脂载体内分布的方法
CN106179264A (zh) * 2016-07-15 2016-12-07 南京大学 一种树脂基介孔纳米复合材料及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113617355A (zh) * 2021-07-30 2021-11-09 复旦大学 一种镶嵌纳米颗粒的功能介孔材料及其原位嵌入组装方法和应用

Also Published As

Publication number Publication date
CN106179264B (zh) 2018-07-20
CN106179264A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2018010417A1 (zh) 一种树脂基介孔纳米复合材料及其制备方法和应用
Wang et al. Synthesis of aminated calcium lignosulfonate and its adsorption properties for azo dyes
WO2019218608A1 (zh) 基于二维层状材料麦羟硅钠石的磁性纳米复合材料及其制备方法和应用
Liao et al. In-situ construction of novel silver nanoparticle decorated polymeric spheres as highly active and stable catalysts for reduction of methylene blue dye
Mercante et al. Solution blow spun PMMA nanofibers wrapped with reduced graphene oxide as an efficient dye adsorbent
CN103910345B (zh) 氮化硼复合材料的制备方法
CN101818280A (zh) 碳纳米管金属基复合材料的制备方法
CN108218386A (zh) 氯硅烷改性氧化石墨烯/二氧化硅保温复合材料制备方法
CN108483613A (zh) 亲水材料掺杂共混膜载纳米零价铁复合材料及其制备方法和应用
Sheng et al. Removal of dyes by a novel fly ash–chitosan–graphene oxide composite adsorbent
JP2014080360A (ja) 針状炭酸ストロンチウム微粉末
CN111410481A (zh) 一种核壳纳米粒子改性水泥基防护材料及其制备方法
CN103224831B (zh) 一种电流变液及其制备方法
CN108654406B (zh) 一种过滤水中m3+的纳米纤维膜材料及其制备方法
Li et al. Effect of nitriding atmosphere on the morphology of AlN nanofibers from solution blow spinning
CN103231068B (zh) 一种树状大分子介导的超细金纳米线的制备方法
Chen et al. Imprinted ZnO/Magnetic Fly-Ash Photocatalyst Selectively Photodegraded Danofloxacin Mesylate Solution
Jiang et al. Preparation and physical properties of chitosan-coated calcium sulphate whiskers
Jin et al. Facile synthesis of polyaniline derivatives hollow microspheres with porous shells deposited on glass substrate
CN107670511B (zh) 一种柔性抗污染陶瓷膜及其制备方法
Zou et al. Preparation and dye adsorption of low-cost polyaniline-tea saponin nanocomposites
KR100417682B1 (ko) 실리카질 슬리브 성형용 조성물 및 이로부터 실리카질슬리브를 제조하는 방법
CN114574006B (zh) 一种超细特种炭黑的制备方法
KR20110050189A (ko) 초음파 분쇄기를 이용한 탄소 나노튜브의 수분산 방법 및 이를 이용한 탄소 나노튜브 박막 필름의 제조
JP4035373B2 (ja) 酸化鉄と酸化チタンの複合酸化物の製造方法及びその酸化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17826756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17826756

Country of ref document: EP

Kind code of ref document: A1