WO2018010332A1 - 7-羟基-丁苯酞的医药用途 - Google Patents

7-羟基-丁苯酞的医药用途 Download PDF

Info

Publication number
WO2018010332A1
WO2018010332A1 PCT/CN2016/103066 CN2016103066W WO2018010332A1 WO 2018010332 A1 WO2018010332 A1 WO 2018010332A1 CN 2016103066 W CN2016103066 W CN 2016103066W WO 2018010332 A1 WO2018010332 A1 WO 2018010332A1
Authority
WO
WIPO (PCT)
Prior art keywords
butylphthalide
hydroxy
cerebral
disease
present
Prior art date
Application number
PCT/CN2016/103066
Other languages
English (en)
French (fr)
Inventor
郑智慧
路新华
马瑛
朱京童
李业英
任晓
林洁
沈文斌
张雪莲
石英
崔晓兰
栗若兰
赵峰
张雪霞
段宝玲
Original Assignee
华北制药集团新药研究开发有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华北制药集团新药研究开发有限责任公司 filed Critical 华北制药集团新药研究开发有限责任公司
Publication of WO2018010332A1 publication Critical patent/WO2018010332A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the invention belongs to the technical field of medicinal chemistry, and particularly relates to the application of 7-hydroxy-butyl benzoquinone in the preparation of a medicament for preventing and/or treating cardiovascular and cerebrovascular diseases.
  • Cardiovascular and cerebrovascular diseases are common and frequently-occurring diseases that endanger human life and health. They are one of the three major causes of death in humans, of which ischemic cerebrovascular disease accounts for a large proportion. Acute ischemic stroke has the characteristics of high morbidity, high morbidity and high mortality, which brings great pain and even life threat to patients.
  • Thrombosis and oxidative stress damage are the main causes of cardiovascular and cerebrovascular diseases such as acute ischemic stroke and coronary heart disease and myocardial infarction.
  • the underlying lesions of arterial thrombosis are mainly caused by the rupture of atherosclerotic plaque, which causes the platelets to adhere to the rupture and initiate the clotting process. Once the arterial thrombosis caused by atherosclerosis is formed, the ischemia of the arterial blood supply site can occur.
  • Necrosis such as myocardial infarction, ischemic stroke [Candelario-Jalil E, Curr Opin Investig Drugs, 2009, 10(7): 644-654].
  • oxidative stress damage plays a key role in neuronal damage following cerebral ischemia. Under normal circumstances, the production and elimination of oxygen free radicals in the body are balanced. When the oxidation and anti-oxidation effects in the body are unbalanced, the body or tissue is in an oxidized state, resulting in inflammatory infiltration of neutrophils, increased secretion of proteases, production of a large number of oxidative intermediates, and tissue damage or disease is oxidative stress. When the brain is ischemic, especially during reperfusion, the production of free radicals far exceeds the ability of its own endogenous antioxidant system. Excessive free radicals can cause lipid, protein, nucleic acid peroxidation and direct damage.
  • SOD superoxide dismutase
  • CAT catalase
  • GSH-Px glutathione peroxidase
  • SOD scavenging oxygen free radicals by disproportionation can effectively prevent oxidative damage, block oxidative stress signaling after cerebral ischemia, and play an important protective role against oxidative damage;
  • GSH-Px is located in mitochondria and can catalyze H 2 O 2 is reduced to H 2 O.
  • Malonaldehyde (MDA) is the final metabolite of lipid peroxidation in vivo.
  • the tissue MDA level indirectly reflects the metabolism of oxygen free radicals in the body, and also reflects the degree of tissue attack by free radicals.
  • 7-Hydroxy-butylphthalide is the chemical constituent of the volatile oil of Cnidium officinale Makino (US 2006/0246157) and the metabolite of Penicillium chrysogenum [Heterocycles, 1998, 48(9): 1931-1933; CN201510113631. 9].
  • This compound has been found to have conditions for preventing and treating diabetes (US20090192218), depression and anxiety, and the like associated with impaired neurotransmission (US20100184852) and diseases associated with angiogenesis (US20060246157).
  • the compounds of the present invention have not been reported to have anti-oxidation, anti-thrombosis and anti-cerebral ischemia effects.
  • the compounds of the present invention have a lower pharmacologically effective dose, a superior pharmacodynamic effect at the same dose, and a lower toxicity profile as compared to the structural analog butylphthalide. Accordingly, the present invention is to provide a novel medical use of 7-hydroxy-butylphthalide, which relates to the prevention of and/or prevention of cardio-cerebral ischemic diseases, cardiovascular and cerebrovascular disorders, thrombosis, and the like. Treatment is characterized by providing safer and more effective preventive and therapeutic drugs to the clinic.
  • the present inventors have found through extensive research that the use of 7-hydroxy-butylphthalide in the preparation of a medicament for treating and/or preventing cardiovascular and cerebrovascular diseases.
  • the central cerebrovascular disease is a cardio-cerebral ischemic disease, a thrombotic disease, and a cardiovascular disorder.
  • cardio-cerebral ischemic disease refers to coronary heart disease, cerebral edema, stroke, cerebral blood flow lesions, and cerebral infarction diseases caused by ischemia.
  • thrombotic disease is cerebral thrombosis, deep vein thrombosis, pulmonary embolism disease.
  • the pharmaceutical composition of 7-hydroxy-butylphthalide provided by the present invention has the same application in the preparation of a medicament for preventing and/or treating cardiovascular and cerebrovascular diseases.
  • the central cerebrovascular disease is a cardio-cerebral ischemic disease, a thrombotic disease, and a cardiovascular disorder.
  • cardio-cerebral ischemic disease refers to coronary heart disease, cerebral edema, stroke, cerebral blood flow lesions, and cerebral infarction diseases caused by ischemia.
  • thrombotic disease is cerebral thrombosis, deep vein thrombosis, pulmonary embolism disease.
  • the present invention provides 7-hydroxy-butylphthalide and a pharmaceutical composition thereof, which can significantly improve the protective effect against ischemic brain damage and reduce the risk of adverse reactions because it can achieve significant pharmacological effects at low doses.
  • the 7-hydroxy-butyl benzoquinone provided by the present invention and its pharmaceutical composition exhibit lower toxicity at high doses, providing a safer and more effective drug control application.
  • the compounds of the present invention have the following excellent properties:
  • 7-hydroxy-butylphthalide has superior anti-platelet aggregation pharmacodynamic effects.
  • the compound of the present invention exhibits a more excellent pharmacological effect against platelet aggregation in vitro, that is, a lower dose of the drug used in the compound of the present invention which is used to achieve the same platelet aggregation inhibiting effect; At the same dose, the compounds of the invention have a higher rate of platelet aggregation inhibition. It is indicated that the 7-hydroxy-butylphthalide of the present invention has a more significant antithrombotic effect.
  • 7-hydroxy-butylphthalide has a superior antioxidant effect.
  • the antioxidative ability of the compound of the present invention shows a more excellent pharmacological effect, that is, the same antioxidant activity is achieved, including antioxidant free radicals and increased superoxide dismutase (SOD).
  • SOD superoxide dismutase
  • the effects of catalase (CAT), glutathione peroxidase (GSH-Px) levels, and the effect of reducing the lipid peroxide malondialdehyde (MDA) content are lower in the dose of the compound of the present invention.
  • the compounds of the invention have greater antioxidant capacity. It is indicated that the 7-hydroxy-butylphthalide of the present invention has a more significant anti-oxidative stress effect.
  • the compound of the present invention protects the middle cerebral artery compared to butylphthalide
  • the medicinal effect of brain tissue damage caused by obstruction is particularly manifested in the use of lower doses to achieve a high dose of butylphthalide to reduce the infarct size of a rat model of middle cerebral artery thrombosis, ie, the compound of the present invention has more a small significant therapeutic dose; at lower doses, butyphthalide does not show a protective effect on brain damage caused by cerebral ischemia, but the compound of the present invention, 7-hydroxy-butylphthalide, can exhibit significant pharmacodynamic effects.
  • the compound of the present invention has superior preventive and therapeutic effects on cardiac and ischemic diseases.
  • the 7-hydroxy-butylphthalide of the present invention has a higher maximum resistance than butylphthalide than the butylphthalide (trade name "Enb").
  • the present invention provides a safer and more effective treatment and method for preventing or improving cardiovascular and cerebrovascular diseases, especially for preventing or improving cardiovascular and cranial circulation, preventing and treating cardiac and ischemic diseases.
  • the pharmaceutical composition of the present invention means a therapeutically effective amount of the compound of the present invention as an active ingredient, and one or more pharmaceutically acceptable carriers.
  • the pharmaceutically acceptable carrier described above refers to a pharmaceutical carrier (also referred to as an excipient) which is conventional in the pharmaceutical field, wherein commonly used excipients for solid preparations include fillers such as starch, sucrose, etc.; binders such as cellulose derivatives, algae Acid salts, gelatin and polyvinylpyrrolidone; wetting agents such as ethanol, water; disintegrating agents such as starch and its derivatives such as sodium carboxymethyl starch (CMS-Na), low-substituted hydroxypropyl cellulose (LS-HPC) ), cross-linked polyvinylpyrrolidone (PVPP), croscarmellose sodium (CMC-Na), and the like, and effervescent disintegrant; absorption enhancer such as quaternary ammonium compound; surfactant such as cetyl alcohol; adsorption A carrier such as kaolin or soap clay; a lubricant such as talc, calcium stearate or magnesium; in addition, other
  • the compound can be combined with a pharmaceutically acceptable carrier well known in the art.
  • a pharmaceutically acceptable carrier well known in the art.
  • Such carriers enable the compounds of the present invention to be formulated into tablets, pills, lozenges, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for oral administration to a patient to be treated.
  • Pharmaceutical preparations which can be administered orally include capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerin.
  • Capsules may contain the active ingredient in admixture with a filler such as lactose; a binder such as a starch; and/or a lubricant such as talc or magnesium stearate or micronized silica; and optional stabilizers.
  • the active compound may be dissolved or suspended in a suitable liquid such as a fatty oil, liquid paraffin or liquid polyethylene glycol.
  • a stabilizer may be added. All oral administration preparations should be in dosages suitable for such administration.
  • the pharmaceutical compositions may also contain suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include, but are not limited to, calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, polymers, and polymers such as polyethylene glycol.
  • Excipients for liquid preparations include water for injection, physiological saline, and pH adjusters such as sodium hydroxide, and other excipients.
  • pH adjusters such as sodium hydroxide
  • an isotonic regulator or the like those skilled in the art can appropriately select the types and amounts of commonly used excipients according to the conventional preparation method of the liquid preparation in the pharmaceutical field, so that the final product meets the requirements of the conventional intravenous injection or the lyophilized preparation for intravenous injection.
  • Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as carboxymethylcellulose sodium dextran; alternatively, the suspension may contain suitable stabilizers or agents which increase the solubility of the compound, such as hydroxypropyl-beta Cyclodextrin or the like in order to increase solubility and prepare a highly concentrated solution.
  • the active ingredient may be in powder form for reconstitution with a suitable carrier, such as sterile pyrogen-free water, before use.
  • the compound or pharmaceutical composition of the present invention can be used for the preparation of a medicament for preventing and/or treating cardio-cerebral ischemic diseases, anti-thrombosis, and improving cardiovascular and cerebrovascular disorders.
  • Various dosage forms thereof can be prepared by those skilled in the art according to conventional production methods in the pharmaceutical field.
  • the active ingredient may be mixed with one or more carriers, and then it may be prepared into the preparation preparation preparations, including tablets, capsules, granules, and the water-soluble salts of the compounds of the present invention can be used by those skilled in the art, according to the pharmaceutical field.
  • the conventional production method of intravenous injection is made into an intravenous injection, an intravenous lyophilizate, and the like.
  • Preferred formulations of the invention are in the form of tablets, capsules or intravenous injections.
  • the filtrate was diluted with water to a concentration of 40% ethanol, adsorbed on a column packed with 2 L of D312 resin, and then eluted with 40%, 55%, and 70% ethanol, respectively, and fractionated, and the fraction containing the target was combined and decompressed at 40 ° C. Distillation, stop when turbidity occurs, stand at room temperature, filter and drain to obtain the crude product of the target.
  • the main peak was 7- Hydroxy-butylphthalide; after the main peak pre- and post-mixes were combined and prepared by HPLC [column: nano-Unisil C18 30.0*300mm, mobile phase: 30% to 60% acetonitrile-water (containing 0.5%) Acetic acid) 50 min, flow rate 35.0 ml/min] gave 4-hydroxy-butylphthalide (Rt: 28.6 min, 520 mg), 7-hydroxy-butylphthalide (Rt: 30.9 min, 846 mg), 7-methoxy- Butyphthalide (Rt: 33.1 min, 615 mg).
  • PRP 200 ⁇ L
  • the solvent control group was added with an equal volume of DMSO, and after incubation for 2 min, 10 ⁇ M ADP was used as an inducer, and the platelet aggregation reaction was measured by Born turbidimetry.
  • the target compound was assayed for in vitro anti-platelet aggregation activity, and percentage of platelet aggregation (AR) and percentage of aggregation inhibition (AIR) were calculated.
  • percentage of platelet aggregation [(PRP absorbance - plus ADP aggregation suction) Photometric) / PRP absorbance] ⁇ 100%
  • percentage of platelet aggregation inhibition [(solvent control group aggregation rate - administration group aggregation rate) / solvent control group aggregation rate] ⁇ 100%.
  • LPO lipid peroxidation
  • Free radical inhibition rate (%) (blank absorbance - sample absorbance) / blank absorbance ⁇ 100.
  • the research of the present invention shows that both 7-hydroxy-butylphthalide and 4-hydroxy-butylphthalide have good antioxidant activity, which is significantly higher than that of butyphthalide; however, the antioxidant capacity of 7-hydroxy-butylphthalide is higher than that of 4-hydroxy-butyl benzoquinone. It is indicated that the compound 7-hydroxy-butylphthalide of the present invention has a more superior antioxidant effect.
  • Example 4 Effect of cerebral infarction volume and antioxidant capacity in rats with focal cerebral ischemia
  • Test animals Wistar rats weighing 250-280 g. Animals were stable for 1 week after purchase and maintained normal diet, normal drinking water and normal circadian rhythm.
  • a model of cerebral ischemia reperfusion in the middle cerebral artery occlusion (MCAO) was performed by internal carotid artery suture. After anesthesia with 7% hydrated trichloroacetaldehyde (6mL/kg), the prone position was fixed on the operating table, the skin was disinfected, the neck was cut open, and the right common carotid artery, external carotid artery and internal carotid artery were separated. The vagus nerve was gently removed, the external carotid artery was ligated and the carotid artery was advanced, and the artery was ligated.
  • MCAO middle cerebral artery occlusion
  • the proximal common carotid artery was clamped, and the distal end of the ligature line of the external carotid artery was made into a mouth.
  • the nylon wire with an outer diameter of 0.285 mm was inserted into the internal carotid artery through the common carotid artery, and then slowly inserted into the carotid artery. Slight resistance (about 20mm from the fork), blocking large All blood supply to the middle cerebral artery, 2.0 h after right cerebral ischemia, gently pull out the nylon thread, restore blood supply for reperfusion, suture the skin, and disinfect.
  • Animal grouping and administration Animals were randomly divided into sham operation group, model group, butylphthalide control group, and drug administration groups of different drugs. There were 5-6 sham-operated groups and 10-13 in each group.
  • Route and frequency of administration intravenous administration, once after reperfusion, once by tail vein injection, once every 2 hours, and once a total of 2 times.
  • the infarct volume is expressed as a percentage of the cerebral hemisphere.
  • the volume of cerebral infarction (%) (surgical contralateral hemisphere volume - volume of the uninfarcted part of the surgical hemisphere) / volume of the contralateral hemisphere of the surgery * 100%.
  • the collected plasma was centrifuged at 3000 rpm for 10 minutes, and serum was taken for determination of the oxidation index parameter in the serum.
  • the determination of serum MDA content and SOD, CAT and GSH-Px activities were determined according to the method of the kit.
  • 7-hydroxy-butylphthalide has a stronger effect on the improvement of brain tissue infarction in cerebral ischemia rats. It is indicated that the compounds of the invention have a less pronounced therapeutically effective dose, i.e., at lower doses, the compounds of the invention may exhibit significant effects.
  • the butylphthalide group showed no anti-oxidative stress at a dose lower than 10 mg/kg. It is indicated that the compounds of the invention have a less pronounced therapeutically effective dose, i.e., at lower doses, the compounds of the invention exhibit significant anti-oxidative stress effects.
  • Intravenous administration 7-hydroxy-butylphthalide and butylphthalide were dissolved in 30% cyclodextrin to 5 mg/mL, and the test samples were administered to SD rats by multiple intravenous administration within a single or 24 hours.
  • Acute toxicity rats in the vehicle group were given an equal volume of excipients.
  • Species SD rats, SPF grade, number of each group: 6 (male).

Abstract

本发明属于药物化学技术领域,具体涉及7-羟基-丁苯酞在制备预防和/或治疗心脑血管性疾病药物中的应用。

Description

7-羟基-丁苯酞的医药用途 技术领域
本发明属于药物化学技术领域,具体涉及7-羟基-丁苯酞在制备预防和/或治疗心脑血管性疾病药物中的应用。
背景技术
心脑血管疾病是危害人类生命与健康的常见病和多发病,是人类三大死亡原因之一,其中缺血性脑血管病占很大的比例。急性缺血性卒中具有高发病率、高致残率、高死亡率的特点,给病人带来极大的痛苦甚至生命危险。
血栓、氧化应激损伤是急性缺血性脑卒中和冠心病以及心肌梗死等心脑血管疾病的主要病因。动脉血栓形成的基础病变主要是动脉粥样硬化斑块破溃引起血小板向破溃处黏附聚集进而启动凝血过程,而动脉粥样硬化造成的动脉血栓一旦形成即可出现动脉供血部位的缺血和坏死,如心肌梗死、缺血性脑卒中等[Candelario-Jalil E,Curr Opin Investig Drugs,2009,10(7):644-654]。大量研究表明,氧化应激损伤在脑缺血后神经元损伤中起关键作用。在正常情况下,体内氧自由基的产生和清除是平衡的。当体内氧化与抗氧化作用失衡,机体或组织处于氧化状态,导致中性粒细胞炎性浸润,蛋白酶分泌增加,产生大量氧化中间产物,并导致组织损伤或疾病即为氧化应激。当大脑缺血时,特别是再灌注时,自由基的产生远远超过自身内源性抗氧化系统的清除能力,过多的自由基可以引起脂质、蛋白质、核酸的过氧化,并且直接损伤细胞,导致细胞坏死或凋亡,所以自由基和氧化应激在缺血性神经细胞损伤中起重要的作用。人体清除自由基的酶主要有3类:超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)。SOD和GSH-Px是体内重要的氧自由基清除剂,反映了组织抗氧化损伤能力。SOD通过歧化反应清除氧自由基,可以有效防止氧化损伤、阻断氧化应激在脑缺血后的信号传导,对氧化损伤起重要的保护作用;GSH-Px位于线粒体内,可催化H2O2还原成H2O。丙二醛(malonaldehyde,MDA)为体内脂质过氧化反应的最终代谢产物,组织MDA水平间接反映体内氧自由基的代谢状况,也反映了组织受自由基攻击程度。
目前,临床中防止缺血性脑卒中、脑梗塞、脑水肿的药物为数不多,其中钙超载是神经元凋亡过程的关键因素,能致使神经元死亡,钙拮抗剂尼莫地平临床研究已证明了对脑缺血有一定的神经保护和记忆恢复作用,但是Ca2+内流发生在脑缺血的早期,故钙离子拮抗剂的应用有一定的限制。而针对脑缺血损伤以及再灌注期大量氧自由基产生导致的损害,依达拉奉具有自由基清除和抗氧化作用,是目前已经上市的为数不多的用于治疗急性中风药物。该 药的局限性是只能实现急性期的临床应用,而且有梗塞后出血以及轻、中度肾、肝功能损害等副反应。另外一个应用于临床的药物是3-丁基苯酞(简称丁苯酞,商品名“恩必普”),它具有抗氧自由基,抗血栓、抗血小板凝集的作用,中国专利ZL93117148.2公开了抗脑缺血的活性,但该药仅用于治疗轻、中度急性缺血性脑卒中,并有发生恶心、皮疹及精神症状等毒副作用。
因此,对于脑缺血性疾病如脑卒中、脑梗塞、脑水肿的治疗,目前已有的药物不能满足临床的需求,临床亟待疗效更好、毒性更低的新药出现。
本发明在进行抗氧化应急、抗血小板凝结和抗脑缺血疾病药物研究中,从一株狐粪青霉真菌菌株中分离得到三个化合物:7-羟基-丁苯酞、4-羟基-丁苯酞和7-甲氧基-丁苯酞。本发明进行的体内外药效和毒性研究结果证明:7-羟基-丁苯酞、4-羟基-丁苯酞和7-甲氧基-丁苯酞均具有抗氧化、抗血栓和抗脑缺血等药效作用;7-羟基-丁苯酞与丁苯酞相比,具有更低的用药剂量、更显著、优良的抗血小板凝集、抗氧化应激和抗脑缺血活性等药效作用,而且具有更低的毒性,即具有更高的药物安全性;4-羟基-丁苯酞与丁苯酞具有相近的抗血小板凝集、抗氧化应激和抗脑缺血活性等药效作用;7-甲氧基-丁苯酞具有一定的抗血小板凝集、抗氧化应激药效作用,但该化合物的药效作用略低于丁苯酞。
7-羟基-丁苯酞是洋川芎(Cnidium officinale Makino)挥发油的化学成分(US 2006/0246157)和真菌狐粪青霉的代谢产物[Heterocycles,1998,48(9):1931-1933;CN201510113631.9]。该化合物已被发现具有预防和治疗糖尿病(US20090192218)、抑郁和焦虑等与神经传递受损有关的病症(US20100184852)以及与血管生成相关的疾病(US20060246157)。但经文献检索,本发明的化合物未见有抗氧化、抗血栓和抗脑缺血作用的报道。更为重要的是与结构类似物丁苯酞进行比较,本发明的化合物具有更低的药物起效剂量,相同剂量下更加优越的药效作用,以及更低的毒性反应的特征。所以,本发明在于提供7-羟基-丁苯酞的一种新医药用途,该用途涉及该化合物及其组合物在心脑缺血性疾病、心脑循环障碍、血栓等方面的预防和/或治疗,其特征在于给临床提供更加安全、有效的预防和治疗药物。
发明内容
本发明的目的是为临床提供具有预防和/或治疗心脑血管性疾病的药物用途。
本发明人经大量研究发现7-羟基-丁苯酞在制备治疗和/或预防心脑血管性疾病药物中的应用。
所述的应用,其中心脑血管性疾病为心脑缺血性疾病、血栓疾病及心脑循环障碍。
所述的应用,其中所述的心脑缺血性疾病指缺血造成的冠心病、脑水肿、脑卒中、脑血流病变、脑梗塞疾病。
所述的应用,其中所述的血栓疾病为脑血栓、深静脉血栓、肺栓塞疾病。
本发明提供的7-羟基-丁苯酞的药物组合物在制备预防和/或治疗心脑血管性疾病药物中具有同样的应用。
所述的应用,其中心脑血管性疾病为心脑缺血性疾病、血栓疾病及心脑循环障碍。
所述的应用,其中所述的心脑缺血性疾病指缺血造成的冠心病、脑水肿、脑卒中、脑血流病变、脑梗塞疾病。
所述的应用,其中所述的血栓疾病为脑血栓、深静脉血栓、肺栓塞疾病。
本发明提供7-羟基-丁苯酞及其药物组合物,由于可以实现在低剂量下的显著药效作用,显著提高了对缺血性脑损伤的保护效果,降低了不良反应发生的风险。
本发明提供的7-羟基-丁苯酞及其药物组合物显示出高剂量下更低的毒性反应,提供更安全的、高效的防治药物应用。
本发明的化合物具有如下优异的性能:
在抗血小板凝集试验中,7-羟基-丁苯酞具有更优越的抗血小板凝集药效作用。与已公开的丁苯酞相比,本发明的化合物对体外抗血小板凝集显示出更加优异的药效作用,即表现在达到相同的抑制血小板凝集效果使用的本发明化合物使用的药物剂量更低;在相同剂量下,本发明的化合物对血小板凝集抑制率更高。说明本发明7-羟基-丁苯酞具有更显著的抗血栓药效作用。
在抗氧化能力试验中,7-羟基-丁苯酞具有更优越的抗氧化作用。与已公开的丁苯酞相比,本发明的化合物抗氧化能力显示出更加优异的药效作用,即表现在达到相同的抗氧化活性包括抗氧自由基、提高超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)水平,降低脂质过氧化物丙二醛(MDA)含量的效果所使用的本发明化合物剂量更低,而在相同剂量下,本发明的化合物具有更强的抗氧化能力。说明本发明7-羟基-丁苯酞具有更显著的抗氧化应激作用。
在对大脑中局灶缺血型脑损模型的脑梗塞范围的影响试验中,7-羟基-丁苯酞显示出对动脉阻塞引起的脑组织损伤显著的保护作用。与丁苯酞相比,本发明化合物保护大脑中动脉 阻塞引起的脑组织损伤更加优异的药效作用,具体表现在使用较低剂量时可达到高剂量下丁苯酞减少相近的大脑中动脉血栓模型大鼠的梗塞面积,即本发明的化合物具有更小的显著性疗效剂量;在更低的剂量下,丁苯酞未表现出对脑缺血造成脑损伤的保护作用,但本发明化合物7-羟基-丁苯酞可表现出显著性的药效结果,说明本发明化合物对心脑缺血性疾病具有更优越的预防和治疗作用。
在急性毒性试验中,本发明的化合物7-羟基-丁苯酞与丁苯酞(商品名“恩必普”)相比,7-羟基-丁苯酞比丁苯酞具有更高的最大耐受剂量和显毒剂量,所以本发明为防治或改善心脑血管行疾病,特别是防治或改善心脑循环、预防和治疗心脑缺血性疾病提供一种更加安全有效的治疗手段和方法。
本发明的药物组合物是指含有治疗有效量的本发明化合物为活性成份,以及含有一种或多种药学上可以接受的载体。
上文所述药学上可接受的载体是指药学领域常规的药物载体(也称为辅料),其中固体制剂常用的辅料包括填充剂如淀粉、蔗糖等;粘合剂如纤维素衍生物、藻酸盐、明胶和聚乙烯醇吡咯烷酮;润湿剂如乙醇、水;崩解剂如淀粉及其衍生物如羧甲基淀粉钠(CMS-Na)、低取代羟丙基纤维素(LS-HPC)、交联聚乙烯吡咯烷酮(PVPP)、交联羧甲基纤维素纳(CMC-Na)等以及泡腾崩解剂;吸收促进剂如季铵化合物;表面活性剂如十六烷醇;吸附载体如高岭土或皂粘土;润滑剂如滑石粉、硬脂酸钙或镁;另外还可在组合物中加入其它辅助剂如香味剂、甜味剂等。
本发明的关于口服给药,化合物可以是与本领域熟知的药学上可接受的载体结合。这类载体使本发明化合物能够配制成片剂、丸剂、锭剂、胶囊剂、液体、凝胶、糖浆剂、浆液、悬液等,用于被所要治疗的患者口服。可以口服的药物制剂包括的胶囊剂,由明胶制成,以及软的密封胶囊剂,由明胶和一种增塑剂制成,例如甘油。胶囊剂可以含有活性成分与下列成分的混合物:填充剂,例如乳糖;粘合剂,例如淀粉;和/或润滑剂,例如滑石粉或硬脂酸镁或微粉硅胶;和可选的稳定剂。在软胶囊剂中,活性化合物可以是溶解或悬浮在适合的液体中的,例如脂肪油、液体石蜡或液体聚乙二醇。另外,可以加入稳定剂。所有口服给药制剂都应当是适合于这类给药的剂量。药物组合物还可以包含适合的固体或凝胶相载体或赋形剂。这类载体或赋形剂的实例包括但不限于碳酸钙、磷酸钙、各种糖、淀粉、纤维素衍生物,明胶、聚合物,聚合物例如为聚乙二醇。
液体制剂的辅料包括注射用水、生理盐水,以及pH调节剂如氢氧化钠,还有其他辅料 如等渗调节剂等,本领域技术人员,可按照药学领域的液体制剂常规制备方法合理选择常用的辅料种类和用量,使最终产品符合常规静脉注射剂或静脉注射用冻干剂的要求。水性注射悬液可以含有增加悬液粘性的物质,例如羧甲基纤维素钠葡聚糖;可选地,悬液还可以含有适合的稳定剂或增加化合物溶解度的试剂,例如羟丙基-β环糊精等,以便增加溶解性,制备高浓缩的溶液。或者,活性成分可以是粉末形式,在使用前用适合的载体再生,例如无菌无热原的水。
本发明的化合物或药物组合物可用于制备预防和/或治疗心脑缺血性疾病,抗血栓、改善心脑循环障碍等的药物。其各种剂型可以由本领域技术人员,按照药学领域的常规生产方法制备。例如使活性成分与一种或多种载体混合,然后将其制成所需的剂型,包括片剂、胶囊、颗粒剂,本发明化合物中水溶性的盐可以由本领域技术人员,按照药学领域的静脉注射剂常规生产方法制成静脉注射剂、静脉注射冻干剂等。
本发明优选制剂形式为片剂、胶囊剂或静脉注射剂。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。下述实施例中所用的实验材料如无特殊说明均为试剂级,7-羟基-丁苯酞、4-羟基-丁苯酞和7-甲氧基-丁苯酞为自制样品,丁苯酞为石药集团恩必普药业有限公司产品。
实施例1. 7-羟基-丁苯酞、4-羟基-丁苯酞和7-甲氧基-丁苯酞的制备
7-羟基-丁苯酞、4-羟基-丁苯酞和7-甲氧基-丁苯酞的制备参考专利CN201510113631.9,将狐粪青霉菌株NCC3421(已保藏于中国普通微生物菌种保藏管理中心,保藏编号为CGMCC No.9094)接种于装有30L发酵培养基的发酵罐中,罐温26℃、220rpm搅拌,培养120h。所得培养物4000rpm离心20min,收集菌丝,加工业乙醇浸提,过滤,得到滤液。上述滤液加水稀释至乙醇浓度40%,用装有2L D312树脂的柱子吸附,然后分别以40%、55%、70%乙醇洗脱,分部接收,合并含有目的物的部分,40℃减压蒸馏,待出现浑浊时停止,室温静置,过滤抽干得目的物粗品。
上述粗品用甲醇溶解,滴加蒸馏水至微显浑浊。温热使溶液澄清,静置,晶体缓慢析出,放4℃过夜,过滤,真空干燥,得7-羟基丁苯酞36.0g,含量99.5%。母液回收,上ODS中压柱(4.9*50cm,C18,30μm)分离,10%~50%乙腈-水(含0.5%醋酸)线性梯度洗脱,收集主峰和主峰前后的部分,主峰为7-羟基-丁苯酞;主峰前杂和后杂合并后,进行HPLC制备[色谱柱:纳微Unisil C18 30.0*300mm,流动相:30%~60%乙腈-水(含0.5% 醋酸)50min,流速35.0ml/min],得到4-羟基-丁苯酞(Rt:28.6min,520mg)、7-羟基-丁苯酞(Rt:30.9min,846mg)、7-甲氧基-丁苯酞(Rt:33.1min,615mg)。
上述三个化合物的ESI-MS和NMR数据归属如下:
4-羟基-丁苯酞:ESI-MS m/z 207.2[M+H]+,1H-NMR(500MHz,CDCl3)7.33(1H,dd,J=7.5,1.5,H-5),7.31(1H,t,J=7.5,H-6),7.10(1H,dd,J=7.5,1.5,H-7),δ5.52(1H,dd,J=8.0,3.0,H-3),2.31(1H,m,H-1′a),1.73(1H,m,H-1′b),1.37(4H,m,H-2′,H-3′),0.89(3H,t,J=7.0,H-4′),9.59(1H,s,4-OH)。13C-NMR(125MHz,CDCl3)δ171.2(C-1),80.9(C-3),136.1(C-3a),152.4(C-4),120.2(C-5),130.3(C-6),115.9(C-7),127.8(C-7a),32.3(C-1′),26.9(C-2′),22.4(C-3′),13.9(C-4′)。与EP1932527报道数据一致。
7-羟基-丁苯酞:ESI-MS m/z 207.2[M+H]+,1H-NMR(500MHz,CDCl3)δ5.49(1H,dd,J=8.0,3.0,H-3),7.53(1H,t,J=8.0,H-5),6.89(1H,dd,J=8.0,1.5,H-6),6.91(1H,dd,J=8.0,1.5,H-4),2.02(1H,m,H-1’a),1.78(1H,m,H-1’b),1.45(2H,m,H-2’),1.38(2H,m,H-3′),0.89(3H,t,J=7.0,H-4′),7.81(1H,s,7-OH)。13C-NMR(125MHz,CDCl3)δ172.3(C-1),83.1(C-3),150.6.1(C-3a),115.4(C-4),137.0(C-5),113.2(C-6),156.6(C-7),111.4(C-7a),34.4(C-1′),27.0(C-2′),22.5(C-3′),14.0(C-4′)。与Heterocycles,1998,48(9):1931-1934报道的数据基本一致。
7-甲氧基-丁苯酞:ESI-MS m/z 221.1[M+H]+,1H-NMR(500MHz,CDCl3)δ7.61(1H,t,J=8.0,H-5),6.96(1H,d,J=7.5,H-4),6.93(1H,d,J=8.0,H-6),5.39(1H,dd,J=8.0,4.0,H-3),4.00(3H,s,7-OCH3),2.02(1H,m,H-1′a),1.72(1H,m,H-1′b),1.45(2H,m,H-2′),1.38(2H,m,H-3′),0.90(3H,t,J=7.5,H-4′);。13C-NMR(125MHz,CDCl3)δ168.7(C-1),158.5(C-7),153.0(C-3a),136.1(C-5),113.6(C-7a),113.3(C-4),110.5(C-6),80.2(C-3),55.9(7-OCH3),34.4(C-1′),26.7(C-2′),22.4(C-3′),13.8(C-4′)。与Planta Medica,2008,74(1):69-72报道的数据一致。
实施例2. 体外抗血小板聚集活性
(1)实验方法:抗血小板聚集活性评价,以ADP为诱导剂,采用Born比浊法。Wistar大鼠(河北医科大学动物中心,实验动物合格证号:1304152)眼眶取血,以3.8%的枸橼酸钠抗凝(全血与抗凝剂体积比9∶1),室温下离心(500~800rpm,10min),制备富集血小板血浆(PRP),分离出PRP后,再离心(3000rpm,15min),制备贫血小板血浆(PPP),用PPP调0。取PRP(200μL)加入等摩尔浓度的目标化合物的DMSO溶液5μL,溶剂对照组加等体积DMSO,温育2min后,以10μΜADP为诱导剂,按Born比浊法测定血小板聚集反应。对目标化合物进行体外抗血小板聚集活性测定,计算血小板聚集百分率(AR)和聚集抑制百分率(AIR)。按下列公式计算及聚集抑制百分率:血小板聚集百分率=[(PRP吸光度-加ADP聚集吸 光度)/PRP吸光度]×100%,血小板聚集抑制百分率=[(溶剂对照组聚集率-给药组聚集率)/溶剂对照组聚集率]×100%。
(2)实验结果:
表1. 测试化合物对ADP诱导的血小板聚集的抑制作用
Figure PCTCN2016103066-appb-000001
与ADP诱导凝聚组相比,*P<0.05,**<0.01
本发明的研究结果显示,与ADP诱导的血小板凝集组相比,7-羟基-丁苯酞药物30μΜ,10μΜ,3μΜ和1μΜ均明显抑制血小板凝集(P<0.05或P<0.01),并有良好的量效关系。与丁苯酞组相比,在30μΜ,10μΜ相同剂量下,7-羟基-丁苯酞对血小板的抗凝聚率均大于丁苯酞;在3μΜ和1μΜ下,7-羟基-丁苯酞依然具有好的抑制活性,而在此浓度下丁苯酞无抑制活性;4-羟基-丁苯酞的各个浓度下的抗凝作用显著低于7-羟基-丁苯酞,与丁苯酞基本相近。7-甲氧基-丁苯酞在30μΜ浓度以下各浓度均未显示出明显的抗凝作用。说明本发明的化合物7-羟基-丁苯酞较其他化合物具有更优越的抗血小板凝聚作用。
实施例3.体外抗氧化能力
(1)实验材料和方法
总还原能力的测定:1mL不同浓度的样品中加入0.2mol/L pH 6.6的磷酸缓冲溶液2.5mL和质量分数1%的铁氰化钾2.5mL,50℃水浴20min。冰浴急速冷却后,加入10%三氯乙酸溶液2.5mL,3000r/min离心10min,取上清液1.0mL,加入蒸馏水1.0mL和质量分数0.1%FeCl3 0.2mL,混匀,室温静置10min,于波长700nm处测定吸光度值,根据吸光度值测定还原力,并计算还原能力%。
清除超氧阴离子自由基的能力:分别取不同体积的样品加入50mM pH值8.2的Tris-HCl缓冲液,配制成不同浓度的溶液。将上述溶液置于25℃恒温水浴中保温20min,加入25℃预热的0.05mL 50mM邻苯三酚溶液,迅速摇匀,于波长325nm处每隔0.5min测定吸光度值1次,线性时间为4min,测定的吸光度值为A1。邻苯三酚自氧化组,以相同体积蒸馏水 代替多酚提取液,吸光度值记为A2。抑制率(%)=(ΔA2/ΔT-ΔA1/ΔT)/(ΔA2/ΔT)×100。
抑制脂质过氧化(LPO)作用的测定:取10mL离心管,加入0.2mL 1:25稀释的卵黄悬浊液(卵黄用等体积的pH 7.4的磷酸缓冲液配制而成,用前需用磁力搅拌10min),再分别加入不同浓度的多酚提取液2.0mL和25mM FeSO4·7H2O溶液0.2mL,置于37℃恒温水浴中振荡30min。取出后加入0.5mL 20%三氯乙酸溶液和1.0mL 0.85%硫代巴比妥酸,混匀,置于100℃水浴保温20min,冷却,于3000rpm下离心15min,取3.0mL上清液,测定波长532nm处的吸光度值。自由基抑制率(%)=(空白吸光度-样液吸光度)/空白吸光度×100。
(2)实验结果
测试化合物在50μg/mL浓度下的抗氧化能力比较
Figure PCTCN2016103066-appb-000002
本发明的研究显示:7-羟基-丁苯酞和4-羟基-丁苯酞均具有好的抗氧化活性,明显高于丁苯酞;但7-羟基-丁苯酞的抗氧化能力高于4-羟基-丁苯酞。说明本发明的化合物7-羟基-丁苯酞具有更加优越的抗氧化作用。
实施例4.对局部脑缺血大鼠脑梗塞体积的影响和抗氧化能力
(1)实验材料和方法
试验动物:Wistar大鼠,体重250-280g。动物购入后稳定1周,并保持饮食、饮水正常及昼夜节律正常。
大鼠局灶性脑缺血模型的制备:采用颈内动脉线栓法制备大脑中动脉阻塞(Middle cerebral artery occlusion,MCAO)脑缺血再灌注模型。动物用7%水合三氯乙醛(6mL/kg)麻醉后,俯卧位固定于手术台上,消毒皮肤,颈部正中切开,分离右侧颈总动脉、颈外动脉、颈内动脉,轻轻剥离迷走神经,结扎并剪断颈外动脉,循颈内动脉向前,结扎翼膊动脉。夹闭颈总动脉近心端,从颈外动脉的结扎线的远端作一切口,括入外径为0.285mm的尼龙线,经过颈总动脉分叉进入颈内动脉,然后徐徐插入至有轻微阻力为止(自分叉处约20mm),阻断大 脑中动脉的所有血供,右侧脑缺血2.0h后,轻轻拔出尼龙线,恢复血供进行再灌注,缝合皮肤,消毒。
动物分组与给药:动物随机分组,即假手术组、模型组、丁苯酞对照组、不同药物的给药组。假手术组5-6只,其他各组每组10-13只。
给药途径和频次:静脉给药,于再灌注后立即经尾静脉注射给药1次,间隔2小时后再给药1次,共给药2次。
检测:脑缺血24小时后,取血并处死动物,取脑,染色,计算脑梗死面积。经TTC染色后,正常组织深染呈红色,梗死组织呈白色。求算每片的梗死面积,并最终叠加换算成梗塞体积。梗塞体积以所占大脑半球的百分率来表示,脑梗塞体积(%)=(手术对侧半球体积-手术侧半球未梗塞部分的体积)/手术对侧半球的体积*100%。所取血浆3000rpm离心10分钟,取血清,用于血清中氧化指标参数测定。测定按照试剂盒的方法测定血清中MDA含量及SOD、CAT和GSH-Px活性。
(2)试验结果:
样品对局部脑缺血大鼠脑梗塞体积的保护作用以及体内抗氧化应激效应见下表2和表3。
表2. 样品对局部脑缺血大鼠脑梗塞体积的保护作用
Figure PCTCN2016103066-appb-000003
Figure PCTCN2016103066-appb-000004
与假手术组比##<0.01;与模型组比,*P<0.05,**<0.01
结果显示,术后24h除假手术组无梗塞灶外,模型组和给药组大鼠均有不同程度的梗塞灶。与模型组相比,7-羟基-丁苯酞10-1.0mg/kg处理组大鼠脑梗塞体积均明显减少,梗塞程度明显改善(P<0.05或P<0.01),并有明显的量效关系。更重要的是,与丁苯酞相比,7-羟基-丁苯酞对MCAO大鼠脑组织梗塞的改善作用起效剂量为1mg/kg,而丁苯酞的起效剂量在10mg/kg,即说明7-羟基-丁苯酞对脑缺血大鼠脑组织梗塞的改善作用更强。说明本发明的化合物具有更小的显著性疗效剂量,即在更低剂量下,本发明的化合物即可表现出显著性效果。
表3. 样品对大鼠血清中SOD,CAT,GSH-Px活性及MDA含量的影响
Figure PCTCN2016103066-appb-000005
与假手术组比##P<0.01;与模型组比*P<0.05,**<0.01
结果显示,术后24h梗塞模型组的氧化程度均高于假手术组。与模型组相比,7-羟基-丁苯酞10-1.0mg/kg处理组大鼠血清中的抗氧化酶SOD,CAT,GSH-Px的含量均高于模型组(P<0.05或P<0.01),而脂质过氧化物MDA含量明显得到降低,并具有良好的剂量依赖关系;与丁苯酞组相比,在相同剂量下,7-羟基-丁苯酞的抗氧化酶含量均高于丁苯酞组,而MDA含量低于丁苯酞处理组,丁苯酞组在低于10mg/kg剂量下未显示出抗氧化应激作用。说明本发明的化合物具有更小的显著性疗效剂量,即在较低剂量下,本发明的化合物即可表现出显著性抗氧化应激效应。
实施例5.药物急性毒性试验
(1)实验材料和方法
静脉给药:以30%环糊精溶解7-羟基-丁苯酞及丁苯酞至5mg/mL,采用单次或24小时内多次静脉给药的方式考察供试品对SD大鼠的急性毒性,赋形剂组大鼠给予等量体积的赋形剂。种类:SD大鼠,SPF级,各组数量:6只(雄)。
(2)实验结果:
药物毒性反应情况统计表
Figure PCTCN2016103066-appb-000006
以上试验结果显示本发明化合物7-羟基-丁苯酞的毒性明显低于丁苯酞,说明其具有比丁苯酞显著的药物安全性优势。

Claims (4)

  1. 7-羟基-丁苯酞在制备预防和/或治疗心脑血管性疾病药物中的应用。
  2. 根据权利要求1所述的应用,其中心脑血管性疾病为心脑缺血性疾病、血栓疾病及心脑循环障碍。
  3. 根据权利要求2所述的应用,其中所述的心脑缺血性疾病指缺血造成的冠心病、脑水肿、脑卒中、脑血流病变、脑梗塞疾病。
  4. 根据权利要求2所述的应用,其中所述的血栓疾病为脑血栓、深静脉血栓、肺栓塞疾病。
PCT/CN2016/103066 2016-07-11 2016-10-24 7-羟基-丁苯酞的医药用途 WO2018010332A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610538809.9 2016-07-11
CN201610538809.9A CN106214674B (zh) 2016-07-11 2016-07-11 7-羟基-丁苯酞的医药用途

Publications (1)

Publication Number Publication Date
WO2018010332A1 true WO2018010332A1 (zh) 2018-01-18

Family

ID=57520536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103066 WO2018010332A1 (zh) 2016-07-11 2016-10-24 7-羟基-丁苯酞的医药用途

Country Status (2)

Country Link
CN (1) CN106214674B (zh)
WO (1) WO2018010332A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112625016A (zh) * 2019-09-24 2021-04-09 华北制药集团新药研究开发有限责任公司 7-羟基丁苯酞晶型b及其制备方法
CN113024422A (zh) * 2021-03-12 2021-06-25 中国医学科学院放射医学研究所 丁苯酞开环化合物、药物化合物以及它们的制备方法、组合物和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220156597A (ko) 2020-03-20 2022-11-25 씨에스피씨 엔비피 파머슈티컬 캄파니 리미티드 부틸프탈라이드 및 이의 유도체의 용도
CN113666895B (zh) * 2020-05-15 2023-12-08 华北制药集团新药研究开发有限责任公司 卤代2-苯并[c]呋喃酮类化合物及其应用
CN114762700B (zh) * 2021-01-13 2023-03-21 浙江泛亚生物医药股份有限公司 一种狐粪青霉培养物的应用
CN115141861A (zh) * 2022-08-03 2022-10-04 华北制药集团新药研究开发有限责任公司 一种利用狐粪青霉菌发酵生产7-羟基丁苯酞的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482027B2 (en) * 2005-04-30 2009-01-27 Angiolab, Inc. Composition for the prevention or treatment of diseases associated with angiogenesis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482027B2 (en) * 2005-04-30 2009-01-27 Angiolab, Inc. Composition for the prevention or treatment of diseases associated with angiogenesis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112625016A (zh) * 2019-09-24 2021-04-09 华北制药集团新药研究开发有限责任公司 7-羟基丁苯酞晶型b及其制备方法
CN113024422A (zh) * 2021-03-12 2021-06-25 中国医学科学院放射医学研究所 丁苯酞开环化合物、药物化合物以及它们的制备方法、组合物和应用
CN113024422B (zh) * 2021-03-12 2022-12-20 上海科州药物研发有限公司 丁苯酞开环化合物、药物化合物以及它们的制备方法、组合物和应用

Also Published As

Publication number Publication date
CN106214674B (zh) 2018-10-26
CN106214674A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2018010332A1 (zh) 7-羟基-丁苯酞的医药用途
KR102011641B1 (ko) 치환된 퀴나졸리논을 위한 경구 즉시 방출 제형
JPS61263969A (ja) アスコルビン酸誘導体含有製剤
MX2007010327A (es) Inhibidores de lipoxigenasa novedosos.
KR102563378B1 (ko) 2-(1-아실옥시-n-펜틸)벤조산 및 염기성 아미노산 또는 아미노구아니딘이 형성하는 염, 이의 제조 방법 및 용도
US20160145230A1 (en) Agent containing flavonoid derivatives for treating cancer and inflammation
JP2019503401A (ja) ピロロキノリンキノン、その誘導体及び/又は塩の乾燥症候群における使用ならびに医薬組成物
EP1950209A1 (en) Agent for treatment of circulatory failure
KR20080107794A (ko) 우방자 추출물을 함유하는 항암 조성물
KR20150038739A (ko) 지방간을 치료하기 위한 실로스타졸을 포함하는 카르보스티릴 유도체
JP2005526768A (ja) 炎症関連遺伝子を調節するデキサナビノール及びデキサナビノール類似体
JPH07258103A (ja) 抗血栓剤及びその製造方法
JPH053453B2 (zh)
JP2022504184A (ja) ブドウ膜黒色腫の治療のための併用療法
JPH0114206B2 (zh)
CN112409439B (zh) 一种甘草酸衍生物、制备方法及应用
US20180155363A1 (en) Compounds for the treatment of ischemia-reperfusion-related diseases
KR101788658B1 (ko) 신규 히드록시 홍화황색소 a의 의약용 정제염
JPH10139665A (ja) トログリタゾンを含有するグルタチオン還元酵素活性増強剤
JP4643936B2 (ja) 血栓症改善剤
WO1998010760A1 (fr) Potentialisateur d&#39;activite de glutathione-reductase contenant de la troglitazone
EA002290B1 (ru) Противоопухолевое средство
CN113072562B (zh) 一种GSK-3β抑制剂及其制备方法与应用
KR100504966B1 (ko) 진세노사이드 Rg3 및 Rh2를 함유함을 특징으로 하는 항고혈압 조성물
KR101973907B1 (ko) 톱니모자반 추출물, 분획물 또는 사가크로메놀을 함유하는 특정 암 예방 또는 치료용 약학적 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908656

Country of ref document: EP

Kind code of ref document: A1