WO2018010271A1 - 一种高倍率热塑性聚氨酯微孔发泡板材及其生产方法 - Google Patents

一种高倍率热塑性聚氨酯微孔发泡板材及其生产方法 Download PDF

Info

Publication number
WO2018010271A1
WO2018010271A1 PCT/CN2016/097081 CN2016097081W WO2018010271A1 WO 2018010271 A1 WO2018010271 A1 WO 2018010271A1 CN 2016097081 W CN2016097081 W CN 2016097081W WO 2018010271 A1 WO2018010271 A1 WO 2018010271A1
Authority
WO
WIPO (PCT)
Prior art keywords
tpu
mold
thermoplastic polyurethane
foamed sheet
supercritical fluid
Prior art date
Application number
PCT/CN2016/097081
Other languages
English (en)
French (fr)
Inventor
姜修磊
Original Assignee
浙江新恒泰新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江新恒泰新材料有限公司 filed Critical 浙江新恒泰新材料有限公司
Priority to EP16908596.6A priority Critical patent/EP3483209A4/en
Priority to US16/317,032 priority patent/US20200385573A1/en
Priority to JP2019501990A priority patent/JP2019521231A/ja
Publication of WO2018010271A1 publication Critical patent/WO2018010271A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/032Impregnation of a formed object with a gas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/12Polyurethanes from compounds containing nitrogen and active hydrogen, the nitrogen atom not being part of an isocyanate group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen

Definitions

  • the invention relates to a high-rate thermoplastic polyurethane microcellular foamed sheet and a production method thereof.
  • the soft elastic polymer foam obtained by the foaming technology has excellent performances such as shock absorption buffer, heat insulation, noise reduction, sound absorption, dustproof and waterproof, etc. in shoe materials, furniture, electronic equipment, vehicles, sports equipment, protection Wide range of applications in packaging and other fields.
  • the porous structure and the chemically crosslinked network structure formed inside are the basic characteristics of the soft elastic polymer foam, such as crosslinked EVA foaming materials, various rubber foaming materials, PVC foaming materials and the like.
  • These soft elastic materials formed by chemical cross-linking foaming have complicated process and large pollution, and the products are toxic and odorous, and are difficult to recycle and reuse, which causes environmental pollution and poses a hazard to human health.
  • Thermoplastic polyurethane is a linear block polymer composed of thermodynamically incompatible soft and hard segments. Its unique microphase separation structure provides outstanding elastic properties, while its high strength and high resistance. Grinding, high oil resistance, high cold resistance and other characteristics.
  • the TPU foamed material has superior elasticity and compressive deformation properties to the crosslinked foamed material. At the same time, compared with the cross-linked soft elastic foaming material, the TPU foaming material is clean and environmentally friendly, can be recycled, does not contain phthalates, and does not contain halogen.
  • TPU foamed sheet material Only 2 to 3 times of TPU foamed sheet material can be obtained by chemical crosslinking foaming. Higher rate TPU foaming materials are currently obtained primarily by bead foaming technology.
  • the TPU foam beads can be heated by steam in a mold to weld the surface to form a TPU foamed product.
  • TPU expanded beads are disclosed in 200780002602.9.
  • One method is to place the solid particles of TPU in a thermal suspension in an autoclave, pass a blowing agent gas, dissolve and diffuse into the TPU particles, and form a foamable TPU bead containing a foaming agent, and then The expandable decompressible TPU beads are suddenly heated to expand, and the TPU foam beads are obtained, or the hot suspension in the autoclave is suddenly decompressed under high temperature and high pressure to cause bubble growth to obtain TPU foaming. Beads.
  • Another method is to dissolve the blowing agent gas into the TPU melt by screw shearing in the extruder, to form the TPU foaming beads by directly foaming at the die, or Under the die, the pellets were formed by underwater pelletizing to form foamable TPU beads, and then heated to foam to obtain TPU foam beads.
  • the TPU bead molding is easy to manufacture a shaped TPU foamed product having a complicated structure, but the bead welded product has a rough surface, a poor appearance, and no delicate surface touch. Moreover, the steam welding process consumes a large amount of energy and has a high cost. The press molding process causes further shrinkage of the TPU expanded beads, resulting in a generally low expansion ratio of the TPU bead shaped article.
  • Chinese Patent No. 201110054581.3 discloses a technique for preparing a thermoplastic polymer foamed sheet by using supercritical CO 2 , but since the foaming temperature is lower than the flow temperature of the polymer, the diffusion rate of CO 2 in the polymer is low, and the thickness cannot be achieved. Efficient production of larger TPU microcellular foamed sheets.
  • the technical problem to be solved by the present invention is to provide a high-rate thermoplastic polyurethane microcellular foamed sheet and a production method thereof, which solve the defects of low expansion ratio of the existing TPU bead molded product.
  • thermoplastic polyurethane microcellular foamed sheet comprising the following components: 70-100 parts by weight of TPU, 0-30 weight A portion of polydimethylsiloxane.
  • the following components are included: 90 to 100 parts by weight of TPU, and 0 to 10 parts by weight of polydimethylsiloxane.
  • the TPU has a molecular weight of 4 to 90,000 and a hardness of shore A 65 to 95.
  • the polydimethylsiloxane is a double-ended aminopolydimethylsiloxane, a, w-dihydroxypolydimethylsiloxane, a single-ended bishydroxyl polydimethylsiloxane, and a hydroxyl group.
  • the TPU is prepared by using polyisocyanate, polyol and chain extender as raw materials, the polyisocyanate is diphenylmethane diisocyanate or toluene diisocyanate; the polyol is polyester polyol or polyether polyol or polyacrylic acid. Polyol or polycarbonate polyol or polyolefin polyol; the chain extender is butylene glycol or ethylene glycol or propylene glycol.
  • the polydimethylsiloxane has an average molar mass of from 2,000 to 5,000 g/mol.
  • thermoplastic polyurethane microcellular foamed sheet comprising the following steps:
  • step b) The TPU solid plate obtained in step a) is placed in a high pressure resistant foaming mold, the mold is closed and the mold is heated to 140-160 ° C, and then a supercritical fluid is introduced into the mold to make the supercritical fluid at high temperature and high pressure. Rapid diffusion into the TPU solid plate, when the supercritical fluid reaches the diffusion equilibrium time, then reduce the temperature to 90-130 ° C and instantaneously release the supercritical fluid pressure in the mold, the TPU solid plate expands and grows in the mold until the entire mold is filled. Space, finally open the mold quickly, TPU foam sheet continues to grow Long until the growth stops, forming a TPU microcellular foamed sheet.
  • the mold comprises an upper mold and a lower mold, a cavity is formed between the upper mold and the lower mold, and an intake valve and an exhaust valve are arranged on the upper mold, and a volume ratio of the cavity to the TPU solid plate is 6:5-5 :1, the intake valve can realize the passage of supercritical fluid, and the exhaust valve can realize the rapid instantaneous release of the supercritical fluid in the mold, which facilitates the expansion and growth of the TPU plate in the mold.
  • the inner surface of the cavity is covered with a porous gas permeable metal layer to shorten the diffusion path of the supercritical fluid in the TPU plate and reduce the saturation time of the supercritical fluid.
  • the supercritical fluid is a supercritical fluid of one or two of supercritical CO 2 , supercritical butane, supercritical pentane or a mixture of two or more supercritical fluids, and the pressure of the supercritical fluid is 5 ⁇ 20MPa, the diffusion equilibrium time of supercritical fluid is 10 ⁇ 240min, and the supercritical fluid can be combined according to different requirements, and the practical performance is good.
  • the advantages of the present invention due to the greater solubility of the supercritical fluid in the polydimethylsiloxane and the lower interfacial tension of the polydimethylsiloxane, a small amount of poly 2 mixed in the TPU Methyl siloxane greatly accelerates the diffusion rate of supercritical fluid in TPU and shortens the diffusion equilibrium time of supercritical fluid in TPU.
  • the volume of the cavity is slightly larger than the volume of the TPU plate, and the mold surface is coated with a mold of gas permeable metal material, so that the supercritical fluid can simultaneously diffuse into the TPU plate through the upper and lower surfaces of the TPU plate, compared to the supercritical fluid only through the upper surface. Diffusion into the TPU sheet, the diffusion distance is shortened, the diffusion balance time is also shortened, and the production efficiency is improved.
  • the supercritical fluid enters the TPU matrix at a high diffusion rate at a high temperature, and then the foaming temperature is lowered to an appropriate temperature according to the target expansion ratio, and the foam is opened, and the supercritical fluid is also used in the TPU.
  • the diffusion rate in the middle is increased with the increase of temperature, and the shortening of the foaming time is realized, which is beneficial to the improvement of production efficiency.
  • the clean supercritical fluid is quickly pressure-relieved and foamed, the process is simple, and the product is non-toxic and non-polluting, and the obtained TPU plate has small cell size, large cell density, large expansion ratio and excellent mechanical performance.
  • Example 1 is a scanning electron micrograph of internal cells of a TPU microcellular foamed sheet obtained in Example 1;
  • Example 2 is a scanning electron micrograph of the internal cells of the TPU microcellular foamed sheet obtained in Example 2;
  • Example 3 is a scanning electron micrograph of the internal cells of the TPU microcellular foamed sheet obtained in Example 3;
  • Example 4 is a scanning electron micrograph of the internal cells of the TPU microcellular foamed sheet obtained in Example 4.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a high-rate thermoplastic polyurethane microcellular foamed sheet comprises the following components: 100 parts by weight of TPU, a molecular weight of TPU of 60,000, a hardness of Shore A 75, and a TPU of polyester type TPU particles.
  • thermoplastic polyurethane microcellular foamed sheet comprising the following steps:
  • step b) The TPU solid plate obtained in step a) is placed in a high pressure resistant foaming mold, and the volume ratio of the cavity in the mold to the solid material of the TPU is 3:1, the mold is clamped by hydraulic pressure, and the mold is passed through the sealing ring. The force is sealed, the mold is heated to 140 °C by the heat transfer oil, 10 MPa supercritical CO 2 is introduced into the mold, the diffusion equilibrium time of the supercritical fluid is 180 min, and then the temperature is lowered to 110 ° C, and the mold is quickly discharged through the exhaust valve. The CO 2 gas, TPU solid sheet expands and grows in the mold until it fills the entire mold space, and finally the mold is quickly opened, and the TPU foamed sheet continues to grow until the growth stops, forming a TPU microcellular foamed sheet.
  • the size of the TPU microcellular foamed sheet was measured to be 225 mm in width, 600 mm in length, and 15 mm in thickness.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a high-rate thermoplastic polyurethane microcellular foamed sheet comprises the following components: 95 parts by weight of TPU, 5 parts by weight of polydimethylsiloxane, and the molecular weight of TPU is 65,000, and the hardness is Shore A 80, TPU is a polyether TPU particle, and polydimethylsiloxane is a double-ended amino polydimethylsiloxane.
  • thermoplastic polyurethane microcellular foamed sheet comprising the following steps:
  • TPU and polydimethylsiloxane are mixed and dehumidified and dried, then added to the extruder, and then formed into a 150 mm wide, 400 mm long, and 10 mm thick TPU by a hanger-type die forming, cooling, and fixed length cutting.
  • the solid material of the TPU obtained in the step a) is placed in a high pressure resistant foaming mold, and the volume ratio of the cavity in the mold to the solid material of the TPU is 2:1, the mold is clamped by hydraulic pressure, and the mold is sealed by the sealing ring.
  • the force is sealed, the mold is heated to 150 ° C by the heat transfer oil, 15 MPa supercritical CO 2 is introduced into the mold, the diffusion equilibrium time of the supercritical fluid is 100 min, and then the temperature is lowered to 130 ° C, and the mold is quickly discharged through the exhaust valve.
  • the CO 2 gas, TPU solid sheet expands and grows in the mold until it fills the entire mold space, and finally the mold is quickly opened, and the TPU foam sheet continues to grow until the growth stops, forming a TPU microcellular foam sheet.
  • the size of the TPU microcellular foamed sheet was measured to be 300 mm in width, 800 mm in length, and 30 mm in thickness.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • thermoplastic polyurethane microcellular foamed sheet comprising the following components: 100 parts by weight of TPU, a molecular weight of TPU of 80,000, a hardness of Shore A 85, and a TPU of polyether-type TPU particles.
  • thermoplastic polyurethane microcellular foamed sheet comprising the following steps:
  • step b) The TPU solid sheet obtained in step a) is placed in a high pressure resistant foaming mold, and the volume ratio of the cavity in the mold to the solid material of the TPU is 3:2, the mold is clamped by hydraulic pressure, and the mold is passed through the sealing ring. The force is sealed, the mold is heated to 155 ° C by the heat transfer oil, and a 17 MPa supercritical fluid is introduced into the mold.
  • the supercritical fluid is supercritical CO 2 and supercritical butane, and the weight ratio of supercritical CO 2 and supercritical butane is For 9:1, the diffusion equilibrium time of the supercritical fluid is 80 min, and then the temperature is lowered to 120 ° C.
  • the supercritical fluid in the mold is quickly discharged through the exhaust valve, and the solid material of the TPU is expanded and expanded in the mold until the entire mold space is filled. Finally, the mold is quickly opened, and the TPU foamed sheet continues to grow until the growth stops, forming a TPU microcellular foamed sheet.
  • the rule of the TPU microcellular foamed sheet is measured.
  • the inch is 1250mm wide, 3750mm long and 50mm thick.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a high-rate thermoplastic polyurethane microcellular foamed sheet comprises the following components: 100 parts by weight of TPU, a molecular weight of TPU of 75,000, a hardness of Shore A 90, and a TPU of polycarbonate type TPU particles. .
  • thermoplastic polyurethane microcellular foamed sheet comprising the following steps:
  • the solid material of the TPU obtained in the step a) is placed in a high pressure resistant foaming mold, and the volume ratio of the cavity in the mold to the solid material of the TPU is 5:1, the mold is clamped by hydraulic pressure, and the mold is passed through the sealing ring. The force is sealed, the mold is heated to 145 ° C by the heat transfer oil, and 20 MPa of supercritical fluid is introduced into the mold, the supercritical fluid is supercritical CO 2 and supercritical butane, and the weight ratio of supercritical CO 2 and supercritical butane is For 4:1, the diffusion equilibrium time of the supercritical fluid is 60 min, and then the temperature is lowered to 110 ° C.
  • the supercritical fluid in the mold is quickly discharged through the exhaust valve, and the solid material of the TPU is expanded and expanded in the mold until the entire mold space is filled. Finally, the mold is quickly opened, and the TPU foamed sheet continues to grow until the growth stops, forming a TPU microcellular foamed sheet.
  • the size of the TPU microcellular foamed sheet was measured to be 1350 mm in width, 4050 mm in length, and 54 mm in thickness.
  • the expansion ratio of the final microcellular foamed material can be calculated.
  • Foaming ratio (R ex ) ⁇ TPU / ⁇ TPU foam , where ⁇ TPU is the density of the unfoamed TPU sheet, and ⁇ TPU foam is the density of the TPU microcellular foaming material.
  • the TPU microcellular foamed sheet was quenched by liquid nitrogen, and the cross section was sprayed with gold.
  • the morphology of the cells inside the foamed material was observed by scanning electron microscopy (SEM). The SEM images of the cells were taken and the cell size was measured according to the SEM sheet. Calculate the cell density.
  • Cell density N (unit: piece / cm 3 ) (n / A) 3 / 2 ⁇ R ex , n is the number of cells on the SEM picture, and A is the actual imaging area (unit: cm 2 ) of the SEM picture.
  • TPU foamed sheet was cut into a sample of 50 mm (length) ⁇ 50 mm (width) ⁇ 25 mm (thickness), and compressed to 50% of the thickness at normal temperature, and the compression was released after 72 hours. Compression set is calculated as follows:
  • the ball rebound resilience of the TPU microcellular foamed sheet was measured in accordance with ASTM D3574.
  • the adjusted TPU microcellular foaming sheet is placed in the test position of the falling ball rebound tester, the steel ball is freely dropped from the height of 500 mm, and the falling ball rebound tester automatically calculates the maximum height of the steel ball rebound and the height ratio of the falling of the steel ball. The percentage, that is, the rebound rate.
  • the surface hardness of the foamed material was tested by a hand-held shore type C hardness tester.
  • Example 1 Example 2
  • Example 3 Example 4 Foaming ratio 3.3 8 15.6 19.6 Hardness, shore C 48 41 34 27 Average pore size, ⁇ m 45 62 89 113 Hole density, /cm 3 1.4 ⁇ 10 8 5.5 ⁇ 10 7 2.8 ⁇ 10 7 5.7 ⁇ 10 6 Falling ball rebound rate, % 43 51 59 63 Compression set rate, % 13 11 9 7

Abstract

一种高倍率热塑性聚氨酯微孔发泡板材,包括以下组分:70~100重量份的TPU、0~30重量份的聚二甲基硅氧烷;其优点是:由于超临界流体在聚二甲基硅氧烷具有较大的溶解度和聚二甲基硅氧烷具有较低的界面张力,在TPU中混入的少量聚二甲基硅氧烷,极大地加速了超临界流体在TPU中的扩散速度,缩短了超临界流体在TPU中的扩散平衡时间。形腔体积稍大于TPU板材体积,并且模具表面铺有透气金属材料的模具,使超临界流体可以通过TPU板材的上下两个表面同时扩散进入TPU板材,相比于超临界流体只能通过上表面扩散进入TPU板材,扩散距离缩短,缩短了扩散平衡时间,提高了生产效率;另外,还提供一种高倍率热塑性聚氨酯微孔发泡板材的生产方法。

Description

一种高倍率热塑性聚氨酯微孔发泡板材及其生产方法 技术领域
本发明涉及一种高倍率热塑性聚氨酯微孔发泡板材及其生产方法。
背景技术
利用发泡技术制得的软质弹性高分子泡沫具有优良的减震缓冲、隔热保温、降噪吸音、防尘防水等性能,在鞋材,家具、电子设备、交通工具、运动器材、防护包装等领域应用广泛。多孔结构和内部形成的化学交联网络结构是软质弹性高分子泡沫的基本特征,如交联EVA发泡材料,各种橡胶发泡材料,PVC发泡材料等。这些通过化学交联发泡形成的软质弹性材料,制程复杂,污染较大,产品有毒有异味,并且较难回收再利用,造成了环境污染,对人类的健康构成了危害。
热塑性聚氨酯(TPU)是由热力学上不相容的软段和硬段交替组成的线性嵌段聚合物,其独特的微相分离结构提供了其突出的弹性性能,同时其具有高强度、高耐磨、高耐油、高耐寒等特征。TPU发泡材料具有优于交联发泡材料的弹性和压缩变形性能。同时相比交联的软质弹性发泡材料,TPU发泡材料清洁环保,可循环利用,不含邻苯二甲酸盐,不含卤素。
通过化学交联发泡仅能得到2~3倍的TPU发泡板材。更高倍率的TPU发泡材料目前主要是通过珠粒发泡技术获得的。TPU发泡珠粒可在模具内通过蒸汽加热,使之表面熔接,形成TPU发泡制品。
国际专利WO2007/082838,美国专利US 2012/0329892 A1,中国专利 200780002602.9公开了两种制备TPU发泡珠粒的方法。一种方法是将TPU实心粒子置于高压釜内的热悬浮液中,通入发泡剂气体,使之溶解扩散进入TPU粒子,形成含发泡剂的可发性的TPU珠粒,再将冷却解压得到的可发性TPU珠粒突然升温,使之发生膨胀,得到TPU发泡珠粒,或是将高压釜内的热悬浮液在高温高压下突然解压,引发气泡生长,得到TPU发泡珠粒。另一种方法是通过在挤出机里通入发泡剂气体,通过螺杆剪切使发泡剂气体溶解于TPU熔体,通过在模头处直接发泡形成TPU发泡珠粒,或在模头处水下切粒形成含发泡剂的可发性TPU珠粒,再升温发泡得到TPU发泡珠粒。
TPU珠粒模压成型易于制造具有复杂结构的异形TPU发泡制品,但珠粒熔接形成的制品表面粗糙,外观较差,没有细腻的表面触感。且蒸汽熔接过程能耗较大,成本较高。模压成型过程会引起TPU发泡珠粒的进一步收缩,导致TPU珠粒成型制品的发泡倍率普遍较低。
中国专利201110054581.3公开了一种利用超临界CO2制备热塑性聚合物发泡板材的技术,但由于发泡温度低于聚合物的流动温度,CO2在聚合物中的扩散速率较低,不能实现厚度较大的TPU微孔发泡板材的高效生产。
发明内容
本发明要解决的技术问题就是提供一种高倍率热塑性聚氨酯微孔发泡板材及其生产方法,解决现有TPU珠粒成型制品的发泡倍率低的缺陷。
为了解决上述技术问题,本发明是通过以下技术方案实现的:一种高倍率热塑性聚氨酯微孔发泡板材,包括以下组分:70~100重量份的TPU、0~30重 量份的聚二甲基硅氧烷。
优选的,包括以下组分:90~100重量份的TPU、0~10重量份的聚二甲基硅氧烷。
优选的,TPU的分子量为4~9万,硬度为shore A 65~95。
优选的,聚二甲基硅氧烷为双端氨基聚二甲基硅氧烷、a,w-二羟基聚二甲基硅氧烷、单端双羟烃基聚二甲基硅氧烷、羟基封端聚二甲基硅氧烷、氢封端聚二甲基硅氧烷中的一种或两种的组合物或两种以上的组合物。
优选的,TPU以多异氰酸酯、多元醇、扩链剂为生产原料制备而成,多异氰酸酯为二苯基甲烷二异氰酸酯或甲苯二异氰酸酯;多元醇为聚酯多元醇或聚醚多元醇或聚丙烯酸多元醇或聚碳酸酯多元醇或聚烯烃多元醇;扩链剂为丁二醇或乙二醇或丙二醇。
优选的,聚二甲基硅氧烷的平均摩尔质量为2000~5000g/mol。
一种高倍率热塑性聚氨酯微孔发泡板材的生产方法,包括以下步骤:
a)将组分除湿干燥后加入挤出机,然后通过衣架式模头成型、冷却、定长切割,得到TPU实心板材;
b)将步骤a)得到的TPU实心板材放入耐高压发泡模具中,模具合模密封,模具升温至140~160℃,然后向模具内通入超临界流体,使超临界流体在高温高压下快速扩散进入TPU实心板材,当超临界流体达到扩散平衡时间后,再将温度降低至90~130℃并瞬间释放模具内的超临界流体压力,TPU实心板材在模具内膨胀生长直至充满整个模具空间,最后快速打开模具,TPU发泡板材继续生 长,直至生长停止,形成TPU微孔发泡板材。
优选的,模具包括上模和下模,上模和下模之间形成模腔,上模上设有进气阀门和排气阀门,模腔与TPU实心板材的体积比为6:5~5:1,进气阀门能实现超临界流体的通入,排气阀门能实现模具内的超临界流体快速瞬间释放,便于TPU板材在模具内膨胀生长。
优选的,模腔的内表面铺设有一层多孔透气金属层,使超临界流体在TPU板材内的扩散路径缩短,减少超临界流体的饱和时间。
优选的,超临界流体为超临界CO2、超临界丁烷、超临界戊烷中的一种或两种混合的超临界流体或两种以上混合的超临界流体,且超临界流体的压力为5~20MPa,超临界流体的扩散平衡时间为10~240min,能根据不同的需求对超临界流体进行组合,实用性能好。
综上所述,本发明的优点:由于超临界流体在聚二甲基硅氧烷具有较大的溶解度和聚二甲基硅氧烷具有较低的界面张力,在TPU中混入的少量聚二甲基硅氧烷,极大地加速了超临界流体在TPU中的扩散速度,缩短了超临界流体在TPU中的扩散平衡时间。形腔体积稍大于TPU板材体积,并且模具表面铺有透气金属材料的模具,使超临界流体可以通过TPU板材的上下两个表面同时扩散进入TPU板材,相比于超临界流体只能通过上表面扩散进入TPU板材,扩散距离缩短,同样缩短了扩散平衡时间,提高了生产效率。
先使超临界流体在高温下以较高的扩散速率进入TPU基体,再根据目标发泡倍率将发泡温度降至适当温度,开模发泡,同样也是利用超临界流体在TPU 中的扩散速率随着温度的增加而提高的特点,实现了发泡时间的缩短,有利于提高生产效率。通过清洁的超临界流体快速泄压发泡,制程简单,同时产品无毒无污染,制得的TPU板材泡孔尺寸较小,泡孔密度较大,发泡倍率较大,机械性能优异。
附图说明
下面结合附图对本实用新型作进一步说明:
图1为实施例一得到的TPU微孔发泡片材的内部泡孔的扫描电镜图;
图2为实施例二得到的TPU微孔发泡片材的内部泡孔的扫描电镜图;
图3为实施例三得到的TPU微孔发泡片材的内部泡孔的扫描电镜图;
图4为实施例四得到的TPU微孔发泡片材的内部泡孔的扫描电镜图。
具体实施方式
实施例一:
如图1所示,一种高倍率热塑性聚氨酯微孔发泡板材,包括以下组分:100重量份的TPU,TPU的分子量为6万,硬度为shore A 75,TPU为聚酯型TPU粒子。
一种高倍率热塑性聚氨酯微孔发泡板材的生产方法,包括以下步骤:
a)将TPU除湿干燥后加入挤出机,然后通过衣架式模头成型、冷却、定长切割,裁切成宽150mm,长400mm,厚度10mm的TPU实心板材;
b)将步骤a)得到的TPU实心板材放入耐高压发泡模具中,且模具中的模腔与TPU实心板材的体积比为3:1,模具通过液压压力合模,模具通过密封圈受 力密封,模具通过导热油升温至140℃,向模具内通入10MPa的超临界CO2,超临界流体的扩散平衡时间为180min,再将温度降低至110℃,通过排气阀门迅速排放模具内的CO2气体,TPU实心板材在模具内膨胀生长直至充满整个模具空间,最后快速打开模具,TPU发泡板材继续生长,直至生长停止,形成TPU微孔发泡板材。
将TPU微孔发泡板材在常温常压放置熟化后,测量TPU微孔发泡板材的尺寸为宽225mm,长600mm,厚度15mm。
实施例二:
如图2所述,一种高倍率热塑性聚氨酯微孔发泡板材,包括以下组分:95重量份的TPU、5重量份的聚二甲基硅氧烷,TPU的分子量为6.5万,硬度为shore A 80,TPU为聚醚型TPU粒子,聚二甲基硅氧烷为双端氨基聚二甲基硅氧烷。
一种高倍率热塑性聚氨酯微孔发泡板材的生产方法,包括以下步骤:
a)将TPU和聚二甲基硅氧烷混合并除湿干燥后加入挤出机,然后通过衣架式模头成型、冷却、定长切割,裁切成宽150mm,长400mm,厚度10mm的TPU实心板材;
b)将步骤a)得到的TPU实心板材放入耐高压发泡模具中,且模具中的模腔与TPU实心板材的体积比为2:1,模具通过液压压力合模,模具通过密封圈受力密封,模具通过导热油升温至150℃,向模具内通入15MPa的超临界CO2,超临界流体的扩散平衡时间为100min,再将温度降低至130℃,通过排气阀门迅速排放模具内的CO2气体,TPU实心板材在模具内膨胀生长直至充满整个模具空 间,最后快速打开模具,TPU发泡板材继续生长,直至生长停止,形成TPU微孔发泡板材。
将TPU微孔发泡板材在常温常压放置熟化后,测量TPU微孔发泡板材的尺寸为宽300mm,长800mm,厚度30mm。
实施例三:
如图3所示,一种高倍率热塑性聚氨酯微孔发泡板材,包括以下组分:100重量份的TPU,TPU的分子量为8万,硬度为shore A 85,TPU为聚醚型TPU粒子。
一种高倍率热塑性聚氨酯微孔发泡板材的生产方法,包括以下步骤:
a)将TPU除湿干燥后加入挤出机,然后通过衣架式模头成型、冷却、定长切割,裁切成宽500mm,长1500mm,厚度20mm的TPU实心板材;
b)将步骤a)得到的TPU实心板材放入耐高压发泡模具中,且模具中的模腔与TPU实心板材的体积比为3:2,模具通过液压压力合模,模具通过密封圈受力密封,模具通过导热油升温至155℃,向模具内通入17MPa的超临界流体,超临界流体为超临界CO2和超临界丁烷,且超临界CO2和超临界丁烷的重量比为9:1,超临界流体的扩散平衡时间为80min,再将温度降低至120℃,通过排气阀门迅速排放模具内的超临界流体,TPU实心板材在模具内膨胀生长直至充满整个模具空间,最后快速打开模具,TPU发泡板材继续生长,直至生长停止,形成TPU微孔发泡板材。
将TPU微孔发泡板材在常温常压放置熟化后,测量TPU微孔发泡板材的尺 寸为宽1250mm,长3750mm,厚度50mm。
实施例四:
如图4所示,一种高倍率热塑性聚氨酯微孔发泡板材,包括以下组分:100重量份的TPU,TPU的分子量为7.5万,硬度为shore A 90,TPU为聚碳酸酯型TPU粒子。
一种高倍率热塑性聚氨酯微孔发泡板材的生产方法,包括以下步骤:
a)将TPU除湿干燥后加入挤出机,然后通过衣架式模头成型、冷却、定长切割,裁切成宽500mm,长1500mm,厚度20mm的TPU实心板材;
b)将步骤a)得到的TPU实心板材放入耐高压发泡模具中,且模具中的模腔与TPU实心板材的体积比为5:1,模具通过液压压力合模,模具通过密封圈受力密封,模具通过导热油升温至145℃,向模具内通入20MPa的超临界流体,超临界流体为超临界CO2和超临界丁烷,且超临界CO2和超临界丁烷的重量比为4:1,超临界流体的扩散平衡时间为60min,再将温度降低至110℃,通过排气阀门迅速排放模具内的超临界流体,TPU实心板材在模具内膨胀生长直至充满整个模具空间,最后快速打开模具,TPU发泡板材继续生长,直至生长停止,形成TPU微孔发泡板材。
将TPU微孔发泡板材在常温常压放置熟化后,测量TPU微孔发泡板材的尺寸为宽1350mm,长4050mm,厚度54mm。
按照GB/T6343-2009标准测试得到TPU微孔发泡板材的表观密度,可以计算得到最终微孔发泡材料的发泡倍率。发泡倍率(Rex)=ρTPUTPU foam,其中ρTPU 为未发泡TPU板材的密度,ρTPU foam为TPU微孔发泡材料的密度。将TPU微孔发泡板材经液氮淬断,断面喷金,采用扫描电镜(SEM)考察发泡材料内部的泡孔形态,拍摄得到泡孔的SEM图片,并根据SEM片测量泡孔尺寸和计算泡孔密度。泡孔密度N(单位:个/cm3)=(n/A)3/2×Rex,n为SEM图片上的泡孔数,A为SEM图片的实际拍摄面积(单位:cm2)。
按照GB/T 6669-2008标准考察TPU微孔发泡板材的压缩永久变形性能。将调节后的TPU发泡板材切割成50mm(长)×50mm(宽)×25mm(厚)的样品,常温下压缩至厚度的50%,保持72小时后解除压缩。压缩永久变形按下式计算:
Figure PCTCN2016097081-appb-000001
其中,CS----压缩永久变形,以百分数(%)表示。
d0----试样初始厚度。
dr----试样最终厚度。
按照ASTM D3574测定TPU微孔发泡板材的落球回弹性能。将调节后的TPU微孔发泡板材置于落球回弹测试仪的测试位置,钢球从500mm高度自由落下,落球回弹测试仪自动计算钢球回弹的最大高度和钢球落下的高度比值的百分率,即回弹率。
发泡材料的表面硬度通过手持式shore C型硬度计测试。
检测结果如表一所示
项目 实施例1 实施例2 实施例3 实施例4
发泡倍率 3.3 8 15.6 19.6
硬度,shore C 48 41 34 27
平均孔径,μm 45 62 89 113
孔密度,个/cm3 1.4×108 5.5×107 2.8×107 5.7×106
落球回弹率,% 43 51 59 63
压缩永久变形率,% 13 11 9 7
表一
除上述优选实施例外,本发明还有其他的实施方式,本领域技术人员可以根据本发明作出各种改变和变形,只要不脱离本发明的精神,均应属于本发明所附权利要求所定义的范围。

Claims (10)

  1. 一种高倍率热塑性聚氨酯微孔发泡板材,其特征在于:包括以下组分:70~100重量份的TPU、0~30重量份的聚二甲基硅氧烷。
  2. 根据权利要求1所述的一种高倍率热塑性聚氨酯微孔发泡板材,其特征在于:包括以下组分:90~100重量份的TPU、0~10重量份的聚二甲基硅氧烷。
  3. 根据权利要求1所述的一种高倍率热塑性聚氨酯微孔发泡板材,其特征在于:TPU的分子量为4~9万,硬度为shore A 65~95。
  4. 根据权利要求1所述的一种高倍率热塑性聚氨酯微孔发泡板材,其特征在于:聚二甲基硅氧烷为双端氨基聚二甲基硅氧烷、a,w-二羟基聚二甲基硅氧烷、单端双羟烃基聚二甲基硅氧烷、羟基封端聚二甲基硅氧烷、氢封端聚二甲基硅氧烷中的一种或两种的组合物或两种以上的组合物。
  5. 根据权利要求1所述的一种高倍率热塑性聚氨酯微孔发泡板材,其特征在于:TPU以多异氰酸酯、多元醇、扩链剂为生产原料制备而成,多异氰酸酯为二苯基甲烷二异氰酸酯或甲苯二异氰酸酯;多元醇为聚酯多元醇或聚醚多元醇或聚丙烯酸多元醇或聚碳酸酯多元醇或聚烯烃多元醇;扩链剂为丁二醇或乙二醇或丙二醇。
  6. 根据权利要求1所述的一种高倍率热塑性聚氨酯微孔发泡板材,其特征在于:聚二甲基硅氧烷的平均摩尔质量为2000~5000g/mol。
  7. 如权利要求1所述的一种高倍率热塑性聚氨酯微孔发泡板材所采用的生产方法,其特征在于:包括以下步骤:
    a)将组分除湿干燥后加入挤出机,然后通过衣架式模头成型、冷却、定长切割,得到TPU实心板材;
    b)将步骤a)得到的TPU实心板材放入耐高压发泡模具中,模具合模密封,模具升温至140~160℃,然后向模具内通入超临界流体,使超临界流体在高温高压下快速扩散进入TPU实心板材,当超临界流体达到扩散平衡时间后,再将温度降低至90~130℃并瞬间释放模具内的超临界流体压力,TPU实心板材在模具内膨胀生长直至充满整个模具空间,最后快速打开模具,TPU发泡板材继续生长,直至生长停止,形成TPU微孔发泡板材。
  8. 如权利要求7所述的一种高倍率热塑性聚氨酯微孔发泡板材的生产方法,其特征在于:模具包括上模和下模,上模和下模之间形成模腔,上模上设有进气阀门和排气阀门,模腔与TPU实心板材的体积比为6:5~5:1。
  9. 如权利要求7所述的一种高倍率热塑性聚氨酯微孔发泡板材的生产方法,其特征在于:模腔的内表面铺设有一层多孔透气金属层。
  10. 如权利要求7所述的一种高倍率热塑性聚氨酯微孔发泡板材的生产方法,其特征在于:超临界流体为超临界CO2、超临界丁烷、超临界戊烷中的一种或两种混合的超临界流体或两种以上混合的超临界流体,且超临界流体的压力为5~20MPa,超临界流体的扩散平衡时间为10~240min。
PCT/CN2016/097081 2016-07-11 2016-08-29 一种高倍率热塑性聚氨酯微孔发泡板材及其生产方法 WO2018010271A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16908596.6A EP3483209A4 (en) 2016-07-11 2016-08-29 THERMOPLASTIC MICROPOROUS POLYURETHANE FOAM PLATE WITH HIGH EXPANSION AND MANUFACTURING METHOD THEREFOR
US16/317,032 US20200385573A1 (en) 2016-07-11 2016-08-29 Microcellular thermoplastic polyurethane foamed sheet with a high foaming ratio and method of manufacturing the same
JP2019501990A JP2019521231A (ja) 2016-07-11 2016-08-29 高倍率の熱可塑性ポリウレタン微細孔発泡シート及びその生産方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610552489.2 2016-07-11
CN201610552489.2A CN106146875A (zh) 2016-07-11 2016-07-11 一种高倍率热塑性聚氨酯微孔发泡板材及其生产方法

Publications (1)

Publication Number Publication Date
WO2018010271A1 true WO2018010271A1 (zh) 2018-01-18

Family

ID=58062747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097081 WO2018010271A1 (zh) 2016-07-11 2016-08-29 一种高倍率热塑性聚氨酯微孔发泡板材及其生产方法

Country Status (6)

Country Link
US (1) US20200385573A1 (zh)
EP (1) EP3483209A4 (zh)
JP (1) JP2019521231A (zh)
CN (1) CN106146875A (zh)
MA (1) MA45575A (zh)
WO (1) WO2018010271A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018098807A1 (zh) * 2016-12-02 2018-06-07 东莞海锐思高分子材料科技有限公司 发泡结构体
CN108384244B (zh) * 2018-03-21 2020-08-14 四川大学 具有梯度泡孔结构的硅橡胶复合材料及其制备方法
US10843429B2 (en) 2018-05-21 2020-11-24 O2 Partners, Llc Biodegradable, industrially compostable, and recyclable injection molded microcellular flexible foams
JP7430176B2 (ja) 2018-05-21 2024-02-09 オーツー・パートナーズ・エルエルシー 生分解性で産業的に堆肥化可能な射出成形の微細軟質発泡体およびその製造方法
CN111154174B (zh) * 2019-08-01 2022-08-23 华东理工大学 一种添加剂改性的聚丙烯发泡材料及其制备方法
TWI698471B (zh) * 2019-09-20 2020-07-11 寶成工業股份有限公司 發泡鞋材及其製造方法
CN110951035A (zh) * 2019-12-27 2020-04-03 福建安达福新材料科技有限公司 一种基于超临界二氧化碳的聚氨酯发泡材料及其制备方法
CN111234492A (zh) * 2020-04-02 2020-06-05 福建安达福新材料科技有限公司 一种pla/tpu超临界发泡复合材料及其制备方法
CN111234385B (zh) * 2020-04-07 2022-12-23 福建安达福新材料科技有限公司 一种基于超临界二氧化碳的聚丙烯发泡材料及其制备方法
WO2022104250A1 (en) 2020-11-16 2022-05-19 O2 Partners, Llc Recyclable, biodegradable, and industrially compostable extruded foams, and methods of manufacturing the same
USD1022420S1 (en) 2020-12-03 2024-04-16 Puma SE Shoe
KR102548342B1 (ko) * 2021-03-16 2023-06-27 연세대학교 산학협력단 탄성 경화 미세 발포체 및 이의 제조방법
CN114106396A (zh) * 2021-12-07 2022-03-01 苏州奥斯汀新材料科技有限公司 一种热塑性聚氨酯发泡材料的制备方法
CN115160766A (zh) * 2022-08-30 2022-10-11 江苏中科聚合新材料产业技术研究院有限公司 一种高回弹低收缩聚氨酯发泡珠粒及其制备方法
CN115160765A (zh) * 2022-08-30 2022-10-11 江苏中科聚合新材料产业技术研究院有限公司 一种聚氨酯发泡珠粒及其制备方法
CN116063728B (zh) * 2023-01-12 2023-08-22 浙江赛阳密封件有限公司 一种微孔发泡橡胶材料的制备方法和密封条

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1400986A (zh) * 2000-10-18 2003-03-05 三井化学株式会社 热塑性聚氨酯弹性体组合物的泡沫体及其制备方法
CN101781406A (zh) * 2009-09-25 2010-07-21 北京中拓机械有限责任公司 热塑性弹性体表皮制品及其生产方法
US20150038605A1 (en) * 2013-08-02 2015-02-05 Nike, Inc. Low density foam, midsole, footwear, and methods for making low density foam
US20150038606A1 (en) * 2013-08-02 2015-02-05 Nike, Inc. Low density foamed articles and methods for making
CN105694430A (zh) * 2016-03-04 2016-06-22 安徽天安新材料有限公司 Tpu发泡材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201301A (ja) * 2000-10-18 2002-07-19 Mitsui Chemicals Inc ウレタン系熱可塑性エラストマー組成物発泡体及びその製造方法
US7658989B2 (en) * 2001-03-28 2010-02-09 North Carolina State University Nano-and micro-cellular foamed thin-walled material, and processes and apparatuses for making the same
US7267607B2 (en) * 2002-10-28 2007-09-11 Cabot Microelectronics Corporation Transparent microporous materials for CMP
JP5038688B2 (ja) * 2006-11-21 2012-10-03 帝人化成株式会社 発泡体
CN102167840B (zh) * 2011-04-12 2012-09-05 姜修磊 超临界模压发泡制备聚合物微孔发泡材料的方法
TWI519401B (zh) * 2014-10-13 2016-02-01 寶成工業股份有限公司 發泡鞋材製作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1400986A (zh) * 2000-10-18 2003-03-05 三井化学株式会社 热塑性聚氨酯弹性体组合物的泡沫体及其制备方法
CN101781406A (zh) * 2009-09-25 2010-07-21 北京中拓机械有限责任公司 热塑性弹性体表皮制品及其生产方法
US20150038605A1 (en) * 2013-08-02 2015-02-05 Nike, Inc. Low density foam, midsole, footwear, and methods for making low density foam
US20150038606A1 (en) * 2013-08-02 2015-02-05 Nike, Inc. Low density foamed articles and methods for making
CN105694430A (zh) * 2016-03-04 2016-06-22 安徽天安新材料有限公司 Tpu发泡材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3483209A4 *

Also Published As

Publication number Publication date
MA45575A (fr) 2021-03-24
JP2019521231A (ja) 2019-07-25
CN106146875A (zh) 2016-11-23
US20200385573A1 (en) 2020-12-10
EP3483209A1 (en) 2019-05-15
EP3483209A4 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
WO2018010271A1 (zh) 一种高倍率热塑性聚氨酯微孔发泡板材及其生产方法
EP3508521A1 (en) Method for preparing thermoplastic polymer foamed beads
US20040119185A1 (en) Method for manufacturing opened-cell plastic foams
TWI707900B (zh) 熱可塑性聚氨酯發泡粒子及熱可塑性聚氨酯發泡粒子成形體
CN104194030B (zh) 一种热塑性聚氨酯弹性体发泡珠粒及其制备方法
CN104974370A (zh) 一种热塑性聚氨酯珠粒的制备方法及该珠粒成型工艺
CN110003644B (zh) 一种热塑性聚酰胺弹性体物理化学联合发泡材料及其制备方法
CN102229709A (zh) 无毒、无异味、可回收的环保型聚氨酯发泡型材及其制备方法
MY126320A (en) Water-containing polyolefin resin compositon, pre- expanded particles made thereof, process for preparing the same and cellular molded article
JP5008965B2 (ja) 連続気泡発泡体とその製造方法
CN110540627B (zh) 一种聚氨酯泡沫以及制备方法和在汽车头枕中的应用
CN104130439A (zh) 一种热塑性聚氨酯弹性体发泡珠粒及其制备方法
CN105037912A (zh) 一种低收缩、高回弹epe珠粒及其制备方法
CN101935405B (zh) 一种热塑性聚酯弹性体闭孔微发泡制品的成型方法
CN107674233A (zh) 聚碳酸酯微孔发泡材料的制备方法
CN109836604B (zh) 一种低密度发泡tpu的快速制备方法
CN112476929A (zh) 一种超临界流体低温二次发泡工艺
TWI740010B (zh) 發泡粒子成形體
JPH0414058B2 (zh)
JP2001162640A (ja) 熱可塑性樹脂発泡成形体の製造方法
KR100590224B1 (ko) 열 차단성이 우수한 폴리스틸렌 발포체의 제조방법 및 그제조방법에 의하여 제조된 폴리스틸렌 발포체
JP2709395B2 (ja) 発泡用無架橋直鎖状低密度ポリエチレン樹脂粒子及び無架橋直鎖状低密度ポリエチレン発泡粒子の製造方法
JP2000007809A (ja) 制振性樹脂連続気泡体及びその製造方法
CN116218022B (zh) 一种非对称孔径结构发泡硅胶材料及其制备方法和应用
TWI708671B (zh) 多段發泡之方法

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501990

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016908596

Country of ref document: EP

Effective date: 20190211