WO2018008436A1 - アクセルペダル装置 - Google Patents

アクセルペダル装置 Download PDF

Info

Publication number
WO2018008436A1
WO2018008436A1 PCT/JP2017/023324 JP2017023324W WO2018008436A1 WO 2018008436 A1 WO2018008436 A1 WO 2018008436A1 JP 2017023324 W JP2017023324 W JP 2017023324W WO 2018008436 A1 WO2018008436 A1 WO 2018008436A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction force
spring
accelerator pedal
force
slider
Prior art date
Application number
PCT/JP2017/023324
Other languages
English (en)
French (fr)
Inventor
哲朗 連
Original Assignee
株式会社ミクニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミクニ filed Critical 株式会社ミクニ
Publication of WO2018008436A1 publication Critical patent/WO2018008436A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/02Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/02Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by hand, foot, or like operator controlled initiation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/04Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by mechanical control linkages
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/30Controlling members actuated by foot
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G5/00Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
    • G05G5/03Means for enhancing the operator's awareness of arrival of the controlling member at a command or datum position; Providing feel, e.g. means for creating a counterforce
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G5/00Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
    • G05G5/06Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member for holding members in one or a limited number of definite positions only

Definitions

  • the present invention relates to an accelerator pedal device that is applied to a vehicle or the like that employs a drive-by-wire system, and more particularly, to an accelerator pedal device that includes a mechanism that generates a reaction force that opposes the depression force of the accelerator pedal or a force that pushes back the accelerator pedal.
  • Patent Document 1 As an accelerator pedal device applied to an electronically controlled throttle system (drive-by-wire system) in an engine mounted on an automobile or the like, an accelerator pedal device having a reaction force adding mechanism developed by the present inventors is known ( Patent Document 1).
  • This accelerator pedal device includes an accelerator pedal having a pedal arm that is swingably supported with respect to a housing, a first return spring that exerts a biasing force that returns the pedal arm to a rest position, and a reaction force that opposes the pedal force of the accelerator pedal. Is provided with a reaction force addition mechanism and the like.
  • reaction force addition mechanism a reaction force against the pedaling force can be generated by being interposed between the movable member movable with respect to the housing while receiving the reaction force of the first return spring, and the movable member and the pedal arm.
  • a structure including a reaction mechanism and a lock mechanism that can lock the movable member so as not to move at a desired timing is adopted.
  • the applied reaction force continues to act as a load on the driver as long as the driver continues to step on the accelerator pedal. Therefore, there is room for improvement so that the driver does not get tired. Also, as long as the driver continues to step on the accelerator pedal after the lock mechanism is activated, the reaction force generation position (lock position) cannot be changed with respect to the stroke of the accelerator pedal. Therefore, even if the driver continues to step on the accelerator pedal, there is room for improvement so that an appropriate reaction force can be applied by changing the lock position according to a change in the road surface condition or the like.
  • a reaction force is generated to push back the accelerator pedal in order to prompt the driver to switch from the accelerator pedal to the brake pedal.
  • Adoption of a function that is, a function capable of performing distance control is desired.
  • the present invention has been made in view of the above circumstances, and its object is to eliminate driver fatigue and improve operability, and to add an appropriate reaction force according to driving conditions. It is an object of the present invention to provide an accelerator pedal device that can perform distance control and the like.
  • the accelerator pedal device of the present invention includes a pedal arm having an accelerator pedal, a housing that supports the pedal arm so as to be rotatable about a predetermined axis between a rest position and a maximum depression position, and a pedal arm that returns the pedal arm to the rest position.
  • a first return spring that exerts a force
  • a movable member that is movably disposed with respect to the housing while receiving the reaction force of the first return spring, and a reaction force against the pedaling force that is interposed between the movable member and the pedal arm.
  • the structure includes a reaction force spring to be obtained, a lock mechanism that can lock the movable member so as not to move at a desired timing, and a reaction force adjustment mechanism that adjusts the urging force of the reaction force spring at a desired timing.
  • the lock mechanism may include a lock member that generates a wedge action in one direction by a predetermined driving force and locks the movable member.
  • the reaction force adjustment mechanism may include a restriction position adjustment unit that moves relative to the movable member with a predetermined driving force to change the restriction position of one end of the reaction force spring. Good.
  • the restricting position adjusting unit has a rotating member that is rotated by a predetermined driving force, and an engaging relationship with the movable member that is transmitted only by the rotating force of the rotating member and is relatively movable in the axial direction thereof.
  • a configuration including an engagement moving member that moves relative to the movable member to move the restriction position of one end of the reaction force spring may be adopted.
  • the rotating member is a spline shaft that is rotationally driven by a predetermined driving force
  • the engagement moving member is engaged with the spline shaft and screwed into the movable member and receives the reaction force of the reaction force spring.
  • a configuration that is a spline sleeve may be employed.
  • the restriction position adjustment unit may further include a spring receiving member disposed between one end of the spline sleeve and the reaction force spring.
  • the movable member is formed of a slider that is formed in a cylindrical shape having an inner wall surface and is slidable in a predetermined direction with respect to the housing, and the first return spring and the reaction force spring expand and contract in a predetermined direction.
  • a configuration may be adopted in which the reaction spring is disposed inside the slider, and the spline shaft and the spline sleeve are formed to extend in a predetermined direction.
  • the above configuration further includes a hysteresis generating mechanism that generates hysteresis in the pedaling force of the accelerator pedal, and the hysteresis generating mechanism is interposed between the pedal arm and the reaction force spring and is slidably disposed inside the slider to increase the pedaling force.
  • a configuration including an internal slider in which the sliding resistance increases along with this may be adopted.
  • the pedal arm further includes a second return spring that detachably engages with the internal slider and directly engages the pedal arm to exert a biasing force to return the pedal arm to the rest position. May be adopted.
  • the driver's fatigue can be eliminated and operability can be improved, an appropriate reaction force can be added according to the driving situation, and distance control can also be performed.
  • An accelerator pedal device with excellent responsiveness can be obtained.
  • FIG. 1 is a side view showing an embodiment of an accelerator pedal device according to the present invention. It is a side view which shows the inside of the accelerator pedal apparatus shown in FIG. It is the fragmentary sectional view which showed a part of accelerator pedal apparatus shown in FIG. It is a schematic diagram which shows the locking member which makes a part of locking mechanism contained in the accelerator pedal apparatus shown in FIG. It is a disassembled perspective view which shows the reaction force adjustment mechanism (a drive source, a control position adjustment unit) contained in the accelerator pedal apparatus shown in FIG.
  • FIG. 2 is a schematic diagram illustrating the operation of a movable member, a reaction force spring, a lock mechanism, a reaction force adjustment mechanism, and a hysteresis generation mechanism included in the accelerator pedal device illustrated in FIG. FIG.
  • FIG. 2 is a schematic diagram for explaining the operation of a movable member, a reaction force spring, a lock mechanism, a reaction force adjustment mechanism, and a hysteresis generation mechanism included in the accelerator pedal device shown in FIG. .
  • FIG. 4 is a view for explaining the operation of a movable member, a reaction force spring, a lock mechanism, a reaction force adjustment mechanism, and a hysteresis generation mechanism included in the accelerator pedal device shown in FIG. 1, and the lock mechanism is activated at a predetermined depression position. It is a schematic diagram which shows. FIG.
  • FIG. 4 illustrates operations of a movable member, a reaction force spring, a lock mechanism, a reaction force adjustment mechanism, and a hysteresis generation mechanism included in the accelerator pedal device shown in FIG. 1. It is a schematic diagram which shows the state adjusted so that the urging
  • FIG. 4 is a view for explaining the operation of a movable member, a reaction force spring, a lock mechanism, a reaction force adjustment mechanism, and a hysteresis generation mechanism included in the accelerator pedal device shown in FIG. 1, and the lock mechanism is activated at a predetermined depression position. It is a schematic diagram which shows. FIG.
  • FIG. 4 illustrates operations of a movable member, a reaction force spring, a lock mechanism, a reaction force adjustment mechanism, and a hysteresis generation mechanism included in the accelerator pedal device shown in FIG. 1. It is the schematic diagram adjusted so that the urging
  • 2 is a graph showing pedal force characteristics when a reaction force is not applied in the accelerator pedal device shown in FIG. 1. In the accelerator pedal device shown in FIG. 1, it is a graph showing a pedaling force characteristic when the reaction force is weakened by the reaction force adjusting mechanism after the reaction force is applied.
  • the accelerator pedal device includes a housing 10 fixed to a vehicle body such as an automobile, a pedal arm 20, a first return spring 30, a slider 40 as a movable member, a reaction force spring 50, internal sliders 61 and 62, a lock.
  • the rotational angle positions of the member 70, the drive source 80, the second return spring 90, the drive source 100, the spline shaft 110 as a rotating member, the spline sleeve 120 as an engagement moving member, the spring receiving member 130, and the pedal arm 20 are detected.
  • a position sensor 140 is provided.
  • the lock member 70 and the drive source 80 constitute a lock mechanism that can lock the slider 40 as a movable member so that it cannot move at a desired timing.
  • the slider 40, the reaction force spring 50, and the lock mechanism (the lock member 70 and the drive source 80) constitute a reaction force addition mechanism that adds a reaction force that opposes the depression force of the accelerator pedal 22.
  • a restriction position adjustment that moves relative to the slider 40 by the driving force of the driving source 100 and changes the restriction position of the one end portion 51 of the reaction force spring 50 by the spline shaft 110, the spline sleeve 120, and the spring receiving member 130.
  • the drive source 100 and the restriction position adjustment unit constitute a reaction force adjustment mechanism that adjusts the urging force of the reaction force spring 50 at a desired timing.
  • reaction force spring 50 and the internal sliders 61 and 62 disposed inside the slider 40 constitute a hysteresis generating mechanism that generates hysteresis in the depression force of the accelerator pedal 22.
  • the housing 10 is made of a resin material, and includes a first housing 10a and a second housing 10b that are coupled to each other by screws.
  • the first housing 10a includes a support shaft 11, a receiving portion 12, a concave portion 13, a concave portion 14, fixing portions 15a and 15b, a receiving portion 16, a pause stopper 17, and a fully open stopper 18.
  • the support shaft 11 is formed in a cylindrical shape that supports the pedal arm 20 so as to be swingable about the axis L1.
  • the receiving portion 12 is formed in an annular groove that receives one end portion 31 of the first return spring 30.
  • the recess 13 extends in the predetermined direction H and has a cross section perpendicular to the predetermined direction H to define a substantially rectangular internal space, and is formed so as to accommodate the slider 40 slidably in the predetermined direction H.
  • the recess 14 is formed so as to accommodate the lock member 70 in a rotatable manner.
  • the fixing portion 15a is formed so as to accommodate and fix the drive source 80.
  • the fixing portion 15b is formed so as to accommodate and fix the drive source 100.
  • the receiving portion 16 defines an annular seating surface that receives the one end portion 91 of the second return spring 90.
  • the pause stopper 17 is formed so that the upper end portion 23 comes into contact with the pedal arm 20 to stop the pedal arm 20 at the pause position.
  • the fully open stopper 18 is formed so that the contact portion 25 contacts the pedal arm 20 in order to stop the pedal arm 20 at the maximum depression position (fully open position).
  • the second housing 10 b includes a sensor housing portion 19 that houses the position sensor 140.
  • the second housing 10b includes the pedal arm 20, the first return spring 30, the slider 40, the reaction force spring 50, the internal sliders 61 and 62, the lock member 70, the second return spring 90, the drive source 100, the spline shaft 110, and the like.
  • the spline sleeve 120 and the spring receiving member 130 are formed so as to cover the whole except for the lower region of the pedal arm 20 in a state where the spline sleeve 120 and the spring receiving member 130 are mounted on the first housing 10a.
  • the pedal arm 20 is entirely formed of a resin material, and includes a cylindrical portion 21, an accelerator pedal 22, an upper end portion 23, a receiving portion 24, and a contact portion 25.
  • the cylindrical portion 21 is formed to be fitted to the support shaft 11 of the first housing 10a so that the pedal arm 20 is supported so as to be swingable about the axis L1.
  • the accelerator pedal 22 is integrally formed by extending downward from the cylindrical portion 21 so that the driver can step on the foot.
  • the upper end portion 23 extends upward from the cylindrical portion 21 and is integrally formed.
  • the receiving portion 24 is formed in a region between the cylindrical portion 21 and the upper end portion 23 so as to receive the other end portion 92 of the second return spring 90.
  • the abutting portion 25 is formed near the lower portion of the cylindrical portion 21 so as to detachably abut on the fully open stopper 18 of the housing 10.
  • the first return spring 30 is a compression-type coiled telescopic spring formed of spring steel or the like. One end 31 is engaged with the receiving portion 12 of the first housing 10 a and the other end 32 is the slider 40. While being engaged with the end face wall 41 and being compressed to a predetermined compression allowance, it is attached to be extendable in a predetermined direction H.
  • the first return spring 30 exerts a biasing force for returning the pedal arm 20 to the rest position via the slider 40, the reaction force spring 50, the internal sliders 61 and 62, and the like.
  • the slider 40 is formed in a cylindrical shape having an inner wall surface opened at one end so that the reaction force spring 50 can be compressed and the inner sliders 61 and 62 can be slidably received. It is slidably arranged in the predetermined direction H in the recess 13.
  • the slider 40 is formed so that a cross section perpendicular to the predetermined direction H defines a substantially rectangular internal space, and includes an end surface wall 41, inner wall surfaces 42 and 43, an outer wall surface 44, an outer wall surface 45, and a female screw 46. .
  • the end surface wall 41 is formed to receive the other end portion 32 of the first return spring 30.
  • the inner wall surfaces 42 and 43 are formed to slide the inner sliders 61 and 62.
  • the outer wall surface 44 is formed so that the lock member 70 contacts in a locked state.
  • the outer wall surface 45 is formed so as to be pressed against the sliding surface 13 a defined by the recess 13.
  • the female screw 46 is formed so that the male screw 122 of the spline sleeve 120 is screwed onto the inner peripheral surface of the through hole provided in the central region of the end face wall 41.
  • the reaction force spring 50 is a compression-type coiled expansion / contraction spring formed of spring steel or the like, with one end 51 engaged with the spring receiving member 130 and the other end 52 engaged with the internal slider 62. In a state compressed to a predetermined compression allowance, it is attached to be extendable in a predetermined direction H (the same direction as the expansion / contraction direction of the first return spring 30).
  • the reaction force spring 50 exerts an urging force for returning the pedal arm 20 to the rest position via the internal sliders 61 and 62.
  • the internal slider 61 is made of a resin material, for example, a highly slidable material such as oil-impregnated polyacetal, has a substantially rectangular outline accommodated in the internal space of the slider 40, and slides on the inner wall surface 42 on the lower side of the slider 40. It is formed so that it can move freely.
  • the internal slider 61 includes an inclined surface 61a that contacts the inclined surface 62a of the internal slider 62, and an engaging surface 61b that engages the upper end portion 23 of the pedal arm 20 in a detachable manner.
  • the internal slider 62 has a substantially rectangular outline accommodated in the internal space of the slider 40 and is slidable on the inner wall surface 43 on the upper side of the slider 40 by a highly slidable material such as a resin material such as oil-impregnated polyacetal. It is formed to contact.
  • the internal slider 62 includes an inclined surface 62 a that contacts the inclined surface 61 a of the internal slider 61 and a receiving surface 62 b that receives the other end 52 of the reaction force spring 50.
  • the internal sliders 61 and 62 are disposed inside the slider 40 and pressed by the upper end portion 23 of the pedal arm 20 against the urging force of the reaction force spring 50, thereby generating a wedge action while causing the slider 40. It can slide relative to.
  • the lock member 70 includes two parallel plane portions 71 and two curved surface portions 72 having a predetermined curvature.
  • the center C of the lock member 70 is fixed to the rotation shaft 80 a of the drive source 80.
  • the lock member 70 is in a locked state in a state where the curved surface portions 72 and 72 are in contact with the outer wall surface 44 of the slider 40 and the inner wall surface 14a of the first housing 10a.
  • the friction force is Ff
  • the resultant force is F
  • the friction angle is ⁇
  • the wedge angle is ⁇ , 0 ⁇ ⁇ ⁇ , that is, 0 ⁇ ⁇ tan-1 (Ff / Fn) is satisfied.
  • the lock member 70 is formed. Then, as shown by a two-dot chain line in FIG.
  • the lock member 70 rotates in one direction (clockwise) to press the slider 40 against the housing 10 (the sliding surface 13a thereof), thereby generating a wedge action.
  • the locked state is locked so that it cannot be moved.
  • the lock member 70 follows the movement of the slider 40 by the return force of the first return spring 30 and rotates in the other direction (counterclockwise) as shown by the solid line in FIG. It can be released.
  • the driving source 80 is an actuator that exerts a rotational driving force in one direction, and includes a rotating shaft 80a that rotatably couples the lock member 70.
  • the drive source 80 is accommodated and fixed in the fixing portion 15 of the first housing 10a, and the lock member 70 is unidirectional to change from the unlocked state indicated by the solid line in FIG. 3 to the locked state indicated by the two-dot chain line.
  • the rotational driving force is applied only to the.
  • the sensor detects that the driver is in a position to depress the accelerator pedal 22 at a desired timing. Based on the signal or the like, the drive source 80 is rotated in one direction. Then, the lock member 70 rotates in one direction, and the curved surface portion 72 presses the slider 40 against the inner wall surface 13a of the first housing 10a to lock it so that it cannot move. Since the reaction spring 50 alone is compressed out of the two springs (the first return spring 30 and the reaction force spring 50) arranged in series during the subsequent depression, the two springs (the first return spring 30 and the reaction spring 50) are compressed. The spring constant increases as compared with the case where the force spring 50) acts, and the reaction force, that is, the pedaling force increases as shown by the dotted line in FIG. 9B.
  • the spring constant of the reaction force spring 50 is k1 and the spring constant of the first return spring 30 is k2
  • the combined spring constant of the reaction force spring 50 and the first return spring 30 arranged in series is (k1 ⁇ k2). / (K1 + k2), and the relationship k1> (k1 ⁇ k2) / (k1 + k2) is established. Therefore, the spring constant can be increased and the pedaling force can be increased in the state in which only the reaction force spring 50 exerts the urging force compared to the state in which both the reaction force spring 50 and the first return spring 30 exert the urging force. .
  • the locking mechanism that locks the slider 40 so as not to move is constituted by the lock member 70 and the drive source 80, and a one-way lock that locks the slider 40 by generating a wedge action only when rotating in one direction (ie, the slider 40).
  • the drive source 80 can be applied with an actuator that only exerts a rotational driving force in one direction, so that the drive source can be reduced in power consumption and reduced in size, and the control circuit (ECU) Unnecessary and cost reduction can be achieved.
  • the second return spring 90 is a compression type coil spring formed of spring steel or the like, and one end 91 is engaged with the receiving portion 16 of the first housing 10 a and the other end 92 is the receiving portion 24 of the pedal arm 20. And is attached so as to be stretchable in a compressed state with a predetermined compression allowance. And the 2nd return spring 90 exerts the urging force which returns the pedal arm 20 to a rest position.
  • the second return spring 90 is directly engaged with the pedal arm 20 in a state where the upper end portion 23 of the pedal arm 20 is detachably engaged with the internal slider 61, thereby bringing the pedal arm 20 into the rest position. It is formed so as to exert a returning biasing force. Therefore, even if the slider 40 is not released from the locked state, or the slider 40 sticks to the first housing 10a and stops or the internal sliders 61 and 62 stick and stop in the slider 40, a malfunction occurs. The pedal arm 20 is reliably returned to the rest position by the biasing force of the second return spring 90, and safety is guaranteed.
  • the driving source 100 is a motor that is fixed to the fixing portion 15b of the housing 10 and exerts a rotational driving force, and for example, a DC motor is applied.
  • the spline shaft 110 is formed of a metal material, a high-strength resin material, or the like, and is arranged to extend in the predetermined direction H within the housing 10 and inside the first return spring 30, and the rotation shaft 100 a of the drive source 100. Are connected directly via a connecting member (not shown) or the like.
  • the spline shaft 110 includes a plurality of ridges 111 protruding on the outer peripheral surface thereof at a predetermined interval in the circumferential direction and extending in the axial direction (predetermined direction H).
  • the spline sleeve 120 is formed of a metal material, a high-strength resin material, or the like, and is disposed so as to extend in a predetermined direction H in a state where the spline shaft 110 is fitted therein. Further, the spline sleeve 120 has a plurality of concave strips 121 that are recessed at a predetermined interval in the circumferential direction on the inner peripheral surface thereof and that extend in the axial direction (predetermined direction H), and the female screw 46 of the slider 40 on the outer peripheral surface thereof. A male screw 122 to be screwed and an end 123 to which the spring receiving member 130 abuts are provided.
  • the plurality of ridges 111 are slidably fitted to the plurality of ridges 121 so as to be relatively unmovable around the axis and relatively move in the axial direction (predetermined direction H). That is, the spline shaft 110 and the spline sleeve 120 form a spline structure, and only the rotational force from the spline shaft 110 to the spline sleeve 120 is transmitted, and the spline sleeve 120 is axially connected to the spline shaft 110 ( It is relatively movable in a predetermined direction H).
  • the spline sleeve 120 is engaged with the slider 40 by screwing, when the reaction force spring 50 is adjusted, the spline sleeve 120 is rotated in the axial direction (predetermined direction) with respect to the slider 40 when rotating through the spline shaft 110. H).
  • the spline shaft 110 functions as a rotating member that is rotated by the drive source 100, and the spline sleeve 120 receives only the rotational force of the rotating member and is relatively movable in the axial direction H and is a movable member ( It functions as an engagement moving member that moves relative to the movable member by the engagement relationship with the slider 40) and moves the restricting position of the one end portion 51 of the reaction force spring 50.
  • the spring receiving member 130 is formed of a resin material, for example, a highly slidable material such as oil-impregnated polyacetal so as to form a substantially rectangular outline that fits the internal space of the slider 40.
  • the spring receiving member 130 is disposed inside the slider 40 so as to receive one end portion 51 of the reaction force spring 50 on one surface and to abut the end portion 123 of the spline sleeve 120 on the other surface. Has been placed.
  • the spring receiving member 130 is disposed between the spline sleeve 120 and the one end 51 of the reaction force spring 50, even if the spline sleeve 120 rotates, the rotational force affects the reaction force spring 50. Can be prevented. Therefore, it is possible to prevent the reaction force spring 50 from rotating and to obtain the desired urging characteristic.
  • the spline shaft 110 serving as the rotating member, the spline sleeve 120 serving as the engagement moving member, and the spring receiving member 130 are moved relative to the slider 40 by the driving force of the driving source 100, and one end 51 of the reaction spring 50.
  • a restriction position adjusting unit is configured to change the restriction position.
  • the drive source 100 and the restriction position adjustment unit (spline shaft 110, spline sleeve 120, spring receiving member 130) constitute a reaction force adjustment mechanism that adjusts the urging force of the reaction force spring 50 at a desired timing.
  • the reaction force adjustment mechanism is operated based on a sensor signal or the like that detects that the slider 40 is locked so as not to move by the lock mechanism at a desired timing after the lock mechanism is operated, and the reaction force spring 50 is operated. It can be adjusted to weaken the urging force. According to this, when the driver continues to step on the accelerator pedal 22, the reaction force applied while maintaining the locked state is reduced, so the load applied to the driver can be reduced, and fatigue and the like can be reduced. Can do.
  • the spline shaft 110 and the spline sleeve 120 are rotated in the other direction by the drive source 100, the spline sleeve 120 is moved relative to the slider 40 in the other direction (rightward in FIG. 3), and the reaction force spring.
  • the restricting position of the one end portion 51 can be moved in the direction in which the urging force of 50 is increased. Therefore, even when the driver continues to step on the accelerator pedal 22 after the lock mechanism is activated, the pedal arm 20 is paused in the direction of increasing the urging force of the reaction force spring 50 based on a predetermined control signal.
  • the locked state can be easily released by operating the reaction force adjusting mechanism in the direction of pushing back toward the position.
  • the slider 40 when performing distance control that prompts the driver to switch from the accelerator pedal 22 to the brake pedal, the slider 40 is locked by the lock mechanism based on a predetermined control signal while the driver is stepping on the accelerator pedal 22.
  • the spline sleeve 120 is quickly moved in the other direction, and the urging force of the reaction force spring 50 is increased.
  • the pedal arm 20 is pushed back toward the rest position, or the driver removes the foot from the accelerator pedal 22 and the pedal arm 20 returns to the rest position. Desired distance control can be performed.
  • the position sensor 140 is disposed in the cylindrical portion 21 of the pedal arm 20 and the sensor accommodating portion 19 of the second housing 10b in a region around the axis L1 of the pedal arm 20.
  • the position sensor 140 is, for example, a non-contact magnetic sensor, and is a pair of arcuate armatures made of a magnetic material provided in the region of the cylindrical portion 21 of the pedal arm 20 and an arcuate shape coupled to the inner peripheral surface of the armature. Permanent magnets, two stators made of a magnetic material embedded in the second housing 10b, and two Hall elements disposed between the two stators. As other related components, terminals, circuit boards on which various electronic components are mounted, and the like are provided.
  • the position sensor 140 detects a change in magnetic flux density with a Hall element and outputs it as a voltage signal by rotating the pedal arm 20 to detect the angular position of the pedal arm 20.
  • reaction force is added to suppress over-depression of the accelerator pedal 22 for improving fuel efficiency while achieving simplification of structure, cost reduction, downsizing of the entire device, and the like.
  • the driver's load can be reduced and operability can be improved, an appropriate reaction force can be added according to the driving situation, distance control etc. can be performed, and excellent response An accelerator pedal device can be obtained.
  • the slider 40 slidably disposed in the predetermined direction H as the movable member, the expansion springs that expand and contract in the predetermined direction H as the first return spring 30 and the reaction force spring 50, and extend in the predetermined direction H as the restriction position adjustment unit. Since the spline shaft 110 and the spline sleeve 120 are employed, the slider 40, the first return spring 30, the reaction force spring 50, the spline shaft 110, and the spline sleeve 120 are all arranged in the predetermined direction H. Therefore, the parts can be concentrated and arranged, which contributes to downsizing of the apparatus.
  • the operation of the accelerator pedal device will be described with reference to FIGS. 1, 2, and 6A to 9B.
  • the upper end portion 23 of the pedal arm 20 acts on the rest stopper 17 by the biasing force of the first return spring 30, the reaction force spring 50, and the second return spring 90.
  • the pedal arm 20 is stopped at a rest position indicated by a solid line in FIGS.
  • the spline sleeve 120 and the spring receiving member 130 of the restriction position adjusting unit are also stopped at a predetermined restriction position with respect to the slider 40.
  • the spline sleeve 120 and the spring receiving member 130 move integrally with the slider 40.
  • the internal sliders 61 and 62 move by a predetermined amount against the reaction force spring 50, and the slider 40 moves by a predetermined amount with respect to the housing 10 and the spline sleeve 120.
  • the spring receiving member 130 moves by a predetermined amount integrally with the slider 40.
  • the pedal arm 20 applies a resistance load (pedal load) smaller than the resistance load (pedal load) at the time of depression to the driver, while the first return spring 30 and the reaction force spring 50 are applied.
  • the second return spring 90 is rotated toward the rest position by the urging force of the second return spring 90, and the upper end 23 comes into contact with the rest stopper 17 of the first housing 10a and stops.
  • a pedaling force characteristic having hysteresis as shown in FIG. 9A is obtained.
  • the driver depresses the accelerator pedal 22, for example, in order to suppress the depression to save extra starting energy due to excessive depression, the driver is in a posture to depress the accelerator pedal 22 at a desired timing.
  • the drive source 80 rotates in one direction based on the sensor signal to be detected, as shown in FIG. 7A, the lock member 70 rotates clockwise to press the slider 40 against the housing 10 so that it cannot move. Lock it.
  • reaction force spring 50 out of the first return spring 30 and the reaction force spring 50 is compressed, so two springs connected in series (the first return spring 30 and the reaction force spring) are compressed.
  • the spring constant increases, and the reaction force increases as shown by the dotted line in FIG. 9A.
  • the resistance force (reaction force) to the driver's stepping force increases, so that excessive depression is suppressed, rapid start is prevented, and fuel efficiency is improved.
  • the pedal arm 20 gives the driver a resistance load (pedal load) smaller than the resistance load (pedal load) at the time of depression by the biasing force of the first return spring 30, the reaction force spring 50, and the second return spring 90. Rotating toward the rest position, the upper end 23 comes into contact with the rest stopper 17 of the first housing 10a and stops.
  • the drive source 100 rotates in one direction based on a sensor signal or the like that detects that the slider 40 is locked so as not to move by the lock mechanism at a desired timing after the lock mechanism is activated
  • the spline shaft 110 is rotated.
  • the spline sleeve 120 rotates in one direction, the spline sleeve 120 moves relative to the slider 40 in one direction (leftward in FIG. 7B), and the reaction force spring 50 is attached as shown in FIG. 7B.
  • the restricting position of the one end 51 is moved in the direction of weakening the force.
  • the reaction force adjustment mechanism is actuated in a direction to increase the urging force of the reaction force spring 50 against the driver's pedaling force, that is, in a direction to push the pedal arm 20 back toward the rest position.
  • the state can be easily released.
  • the lock mechanism is operated based on a predetermined control signal while the driver is stepping on the accelerator pedal 22. Accordingly, the spline sleeve 120 is quickly moved in the other direction by increasing the urging force of the reaction force spring 50. Then, when the urging force exceeds the driver's pedaling force, the pedal arm 20 is pushed back toward the rest position, or the driver removes the foot from the accelerator pedal 22 and the pedal arm 20 returns to the rest position. Desired distance control can be performed.
  • reaction force addition mechanism movable member 40, reaction force spring 50, lock mechanism
  • the reaction force adjustment mechanism is employed in the configuration provided with the hysteresis generation mechanism is shown.
  • the present invention is not limited to this, and a reaction force adjusting mechanism may be adopted in a configuration in which the hysteresis generating mechanism is eliminated.
  • a flat movable spacer is interposed between the other end 52 of the reaction force spring 50 and the upper end 23 of the pedal arm 20, or the upper end 23 is placed on the reaction force spring 50. You may make it contact
  • the reaction force adjusting mechanism may be employed in a configuration in which the upper end 23 is connected to the internal slider 61 and the second return spring 90 is eliminated.
  • the driving source 80 that exerts the rotational driving force only in one direction and the locking member 70 that rotates in one direction and exerts the locking action are shown as the locking mechanism.
  • the present invention is not limited to this.
  • a loading cam mechanism that generates a wedge action by rotation in one direction may be employed, and a ball, a roller, or the like may be employed as the lock member.
  • an actuator or the like that exerts a linear driving force may be employed as a drive source, and a wedge member that generates a wedge action may be reciprocated as a lock member to generate a wedge action in one direction.
  • the configuration including the restriction position adjustment unit including the drive source 100 that exerts the rotational driving force, the spline shaft 110, and the spline sleeve 120 is shown as the reaction force adjustment mechanism, but the present invention is not limited to this. .
  • an actuator such as a solenoid that exerts a linear driving force as a driving source, and is connected to this actuator and integrated with the movable member at the time of non-adjustment
  • a reaction force adjustment mechanism including a rod or the like that moves relative to the movable member only during adjustment and changes the restriction position of the reaction force spring 50 may be employed.
  • the present invention is not limited to this.
  • a common drive source may be employed for the reaction force adjustment mechanism.
  • the spline shaft 110 and the spline sleeve 120 are shown as the rotating member and the engagement moving member constituting the restriction position adjusting unit, but the present invention is not limited to this.
  • other rotating members may be adopted, and only the rotational force of the rotating member is transmitted so as to be relatively movable in the axial direction of the rotating member.
  • Other engagement moving members may be employed as long as they move relative to the movable member by the engagement relationship and move the restricting position of one end of the reaction force spring.
  • the structure including the spring receiving member 130 in addition to the spline shaft 110 and the spline sleeve 120 is shown as the reaction force adjusting mechanism.
  • the present invention is not limited to this, and the spring receiving member 130 is eliminated. Then, a configuration in which the one end portion 51 of the reaction force spring 50 is directly received by the end portion 123 of the spline sleeve 120 may be employed.
  • the slider 40 that slides in the predetermined direction H as the movable member, the first return spring 30 and the reaction force spring 50 that expand and contract in the predetermined direction H as the first return spring and the reaction force spring, and the restriction position adjustment unit.
  • the spline shaft 110 and the spline sleeve 120 extending in the predetermined direction H are employed is shown, the present invention is not limited to this, and a torsion spring and a regulation position adjustment unit that change the linear motion to an arc motion are adopted. May be.
  • the accelerator pedal device has a reaction force that suppresses excessive depression of the accelerator pedal in order to improve fuel efficiency while achieving simplification of structure, cost reduction, downsizing of the entire device, and the like.
  • Accelerator with excellent responsiveness that can improve the driver's operability can add an appropriate reaction force according to the driving situation, can perform distance control, etc. Since the pedal device can be obtained, it is useful not only for automobiles but also for motorcycles and other vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Mechanical Control Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

本発明は、運転者の疲労を解消して操作性を改善でき、運転状況に応じて適切な反力を付加することができ、ディスタンス制御等も行うことができるアクセルペダル装置を提供する。本発明のアクセルペダル装置は、ペダルアーム(20)と、ペダルアーム(20)を回動可能に支持するハウジング(10)と、ペダルアーム(20)を休止位置に戻す付勢力を及ぼす第1戻しバネ(30)と、第1戻しバネ(30)の反力を受けつつハウジング(10)に対して移動自在に配置された可動部材(40)と、可動部材(40)とペダルアーム(20)の間に介在して踏力に対する反力を生じる反力バネ(50)と、可動部材(40)を所望のタイミングで移動不能にロックし得るロック機構(70,80)と、反力バネ(50)の付勢力を所望のタイミングで調整する反力調整機構(100,110,120)を含むものである。

Description

アクセルペダル装置
 本発明は、ドライブバイワイヤシステムを採用した車両等に適用されるアクセルペダル装置に関し、特に、アクセルペダルの踏力に対抗する反力又はアクセルペダルを押し戻す力を発生する機構を備えたアクセルペダル装置に関する。
 自動車等に搭載のエンジンにおいて、電子制御スロットルシステム(ドライブバイワイヤシステム)に適用されるアクセルペダル装置としては、本発明者等が開発した反力付加機構を備えたアクセルペダル装置が知られている(特許文献1参照)。
 このアクセルペダル装置は、アクセルペダルを有しハウジングに対して揺動自在に支持されたペダルアーム、ペダルアームを休止位置に戻す付勢力を及ぼす第1戻しバネ、アクセルペダルの踏力に対抗する反力を付加する反力付加機構等を備えている。
 ここで、反力付加機構として、第1戻しバネの反力を受けつつハウジングに対して移動自在に配置された可動部材、可動部材とペダルアームの間に介在して踏力に対する反力を生じ得る反力バネ、可動部材を所望のタイミングで移動不能にロックし得るロック機構を含む構成を採用している。
 このアクセルペダル装置では、過踏込みを抑制するべくロック機構が作動した後において、運転者がアクセルペダルを踏み続ける限り、付加された反力が運転者に負荷として作用し続ける。したがって、運転者が疲労しないように改善する余地がある。
 また、ロック機構が作動した後において、運転者がアクセルペダルを踏み続ける限り、反力発生位置(ロック位置)をアクセルペダルのストロークに対して変更できない。したがって、運転者がアクセルペダルを踏み続ける状態であっても、路面状態の変化等に応じてロック位置を可変として適切な反力を付加できるように改善する余地がある。
 さらに、前車と接近しているにも拘わらず、運転者がアクセルペダルを踏み続けている場合に、アクセルペダルからブレーキペダルへの踏変えを促すために、反力を発生さてアクセルペダルを押し戻す機能、すなわち、ディスタンス制御を行える機能の採用が望まれている。
特許第5371147号公報
 本発明は、上記の事情に鑑みて成されたものであり、その目的とするところは、運転者の疲労を解消して操作性を改善でき、運転状況に応じて適切な反力を付加することができ、ディスタンス制御等も行うことができる、アクセルペダル装置を提供することにある。
 本発明のアクセルペダル装置は、アクセルペダルを有するペダルアームと、ペダルアームを休止位置と最大踏込み位置の間で所定の軸線回りに回動可能に支持するハウジングと、ペダルアームを休止位置に戻す付勢力を及ぼす第1戻しバネと、第1戻しバネの反力を受けつつハウジングに対して移動自在に配置された可動部材と、可動部材とペダルアームの間に介在して踏力に対する反力を生じ得る反力バネと、可動部材を所望のタイミングで移動不能にロックし得るロック機構と、反力バネの付勢力を所望のタイミングで調整する反力調整機構を含む、構成となっている。
 上記構成において、ロック機構は、所定の駆動力により一方向において楔作用を生じて可動部材をロックするロック部材を含む、構成を採用してもよい。
 上記構成において、反力調整機構は、所定の駆動力により可動部材に対し相対的に移動して反力バネの一端部の規制位置を変化させる規制位置調整ユニットを含む、構成を採用してもよい。
 上記構成において、規制位置調整ユニットは、所定の駆動力により回転させられる回転部材と、回転部材の回転力のみが伝達されてその軸線方向に相対的に移動自在でかつ可動部材との係合関係により可動部材に対して相対的に移動して反力バネの一端部の規制位置を移動させる係合移動部材を含む、構成を採用してもよい。
 上記構成において、回転部材は、所定の駆動力により回転駆動されるスプラインシャフトであり、係合移動部材は、スプラインシャフトと係合すると共に可動部材に螺合しかつ反力バネの反力を受けるスプラインスリーブである、構成を採用してもよい。
 上記構成において、規制位置調整ユニットは、スプラインスリーブと反力バネの一端部の間に配置されたバネ受け部材をさらに含む、構成を採用してもよい。
 上記構成において、可動部材は、内壁面をもつ筒状に形成されてハウジングに対して所定方向に摺動自在に配置されたスライダからなり、第1戻しバネ及び反力バネは、所定方向に伸縮する伸縮バネからなり、反力バネは、スライダの内部に配置され、スプラインシャフト及びスプラインスリーブは、所定方向に伸長して形成されている、構成を採用してもよい。
 上記構成において、アクセルペダルの踏力にヒステリシスを発生させるヒステリシス発生機構をさらに含み、ヒステリシス発生機構は、ペダルアームと反力バネの間に介在すると共にスライダの内部に摺動自在に配置され踏力の増加に伴って摺動抵抗力が増加する内部スライダを含む、構成を採用してもよい。
 上記構成において、ペダルアームは、内部スライダに対して離脱可能に係合し、ペダルアームを休止位置に戻すべく、ペダルアームに直接係合して付勢力を及ぼす第2戻しバネをさらに含む、構成を採用してもよい。
 上記構成をなすアクセルペダル装置によれば、運転者の疲労を解消して操作性を改善でき、運転状況に応じて適切な反力を付加することができ、ディスタンス制御等も行うことができる、応答性に優れたアクセルペダル装置を得ることができる。
本発明に係るアクセルペダル装置に一実施形態を示す側面図である。 図1に示すアクセルペダル装置の内部を示す側面図である。 図1に示すアクセルペダル装置の一部を示した部分断面図である。 図1に示すアクセルペダル装置に含まれるロック機構の一部をなすロック部材を示す模式図である。 図1に示すアクセルペダル装置に含まれる反力調整機構(駆動源、規制位置調整ユニット)を示す分解斜視図である。 図1に示すアクセルペダル装置に含まれる可動部材、反力バネ、ロック機構、反力調整機構、及びヒステリシス発生機構の動作を説明するものであり、休止位置にある状態を示す模式図である。 図1に示すアクセルペダル装置に含まれる可動部材、反力バネ、ロック機構、反力調整機構、及びヒステリシス発生機構の動作を説明するものであり、最大踏込み位置にある状態を示す模式図である。 図1に示すアクセルペダル装置に含まれる可動部材、反力バネ、ロック機構、反力調整機構、及びヒステリシス発生機構の動作を説明するものであり、所定の踏込み位置にてロック機構が作動した状態を示す模式図である。 図1に示すアクセルペダル装置に含まれる可動部材、反力バネ、ロック機構、反力調整機構、及びヒステリシス発生機構の動作を説明するものであり、ロック機構が作動した後に反力調整機構により反力バネの付勢力を弱めるように調整した状態を示す模式図である。 図1に示すアクセルペダル装置に含まれる可動部材、反力バネ、ロック機構、反力調整機構、及びヒステリシス発生機構の動作を説明するものであり、所定の踏込み位置にてロック機構が作動した状態を示す模式図である。 図1に示すアクセルペダル装置に含まれる可動部材、反力バネ、ロック機構、反力調整機構、及びヒステリシス発生機構の動作を説明するものであり、ロック機構が作動した後に反力調整機構により反力バネの付勢力を高めるように調整した示す模式図である。 図1に示すアクセルペダル装置において、反力が付加されない場合の踏力特性を示すグラフである。 図1に示すアクセルペダル装置において、反力が付加された後に反力調整機構により反力が弱められた場合の踏力特性を示すグラフである。
 以下、本発明の実施の形態について、添付された図面の図1ないし図5を参照しつつ説明する。
 この実施形態に係るアクセルペダル装置は、自動車等の車体に固定されるハウジング10、ペダルアーム20、第1戻しバネ30、可動部材としてのスライダ40、反力バネ50、内部スライダ61,62、ロック部材70、駆動源80、第2戻しバネ90、駆動源100、回転部材としてのスプラインシャフト110、係合移動部材としてのスプラインスリーブ120、バネ受け部材130、ペダルアーム20の回転角度位置を検出する位置センサ140を備えている。
 ここで、ロック部材70、駆動源80により、可動部材としてのスライダ40を所望のタイミングで移動不能にロックし得るロック機構が構成されている。
 また、スライダ40、反力バネ50、ロック機構(ロック部材70、駆動源80)により、アクセルペダル22の踏力に対抗する反力を付加する反力付加機構が構成されている。
 また、スプラインシャフト110、スプラインスリーブ120、バネ受け部材130により、駆動源100の駆動力によりスライダ40に対し相対的に移動して反力バネ50の一端部51の規制位置を変化させる規制位置調整ユニットが構成されている。
 そして、駆動源100、規制位置調整ユニット(スプラインシャフト110、スプラインスリーブ120、バネ受け部材130)により、反力バネ50の付勢力を所望のタイミングで調整する反力調整機構が構成されている。
 さらに、スライダ40の内部に配置された反力バネ50、内部スライダ61,62により、アクセルペダル22の踏力にヒステリシスを発生させるヒステリシス発生機構が構成されている。
 ハウジング10は、樹脂材料により形成され、ネジにより互いに結合される第1ハウジング10a及び第2ハウジング10bにより構成されている。
 第1ハウジング10aは、支軸11、受け部12、凹部13、凹部14、固定部15a,15b、受け部16、休止ストッパ17、全開ストッパ18を備えている。
 支軸11は、ペダルアーム20を軸線L1回りに揺動自在に支持する円柱状に形成されている。
 受け部12は、第1戻しバネ30の一端部31を受ける環状溝に形成されている。
 凹部13は、所定方向Hに伸長すると共に所定方向Hに垂直な断面が略矩形の内部空間を画定し、スライダ40を所定方向Hに摺動自在に収容するように形成されている。
 凹部14は、ロック部材70を回動自在に収容するように形成されている。
 固定部15aは、駆動源80を収容して固定するように形成されている。
 固定部15bは、駆動源100を収容して固定するように形成されている。
 受け部16は、第2戻しバネ90の一端部91を受ける環状座面を画定する。
 休止ストッパ17は、ペダルアーム20を休止位置に停止させるべく、上端部23が当接するように形成されている。
 全開ストッパ18は、ペダルアーム20を最大踏込み位置(全開位置)に停止させるべく、当接部25が当接するように形成されている。
 第2ハウジング10bは、位置センサ140を収容するセンサ収容部19を備えている。
 そして、第2ハウジング10bは、ペダルアーム20、第1戻しバネ30、スライダ40、反力バネ50、内部スライダ61,62、ロック部材70、第2戻しバネ90、駆動源100、スプラインシャフト110及びスプラインスリーブ120、バネ受け部材130が第1ハウジング10aに装着された状態で、ペダルアーム20の下方領域を除いて全体を覆うように形成されている。
 ペダルアーム20は、全体が樹脂材料により成形され、円筒部21、アクセルペダル22、上端部23、受け部24、当接部25を備えている。
 円筒部21は、ペダルアーム20が軸線L1回りに揺動自在に支持されるべく、第1ハウジング10aの支軸11に嵌合されるように形成されている。
 アクセルペダル22は、運転者が足で踏めるように円筒部21から下方に伸長して一体的に形成されている。
 上端部23は、円筒部21から上方に伸長して一体的に形成されている。
 受け部24は、第2戻しバネ90の他端部92を受けるべく、円筒部21と上端部23の間の領域に形成されている。
 当接部25は、ハウジング10の全開ストッパ18に離脱可能に当接するべく、円筒部21の下方近傍に形成されている。
 第1戻しバネ30は、バネ鋼等により形成された圧縮型のコイル状の伸縮バネであり、一端部31が第1ハウジング10aの受け部12に係合しかつ他端部32がスライダ40の端面壁41に係合しつつ所定の圧縮代に圧縮された状態で所定方向Hに伸縮自在に取り付けられている。
 そして、第1戻しバネ30は、スライダ40、反力バネ50、内部スライダ61,62等を介して、ペダルアーム20を休止位置に戻す付勢力を及ぼすようになっている。
 スライダ40は、その内部に反力バネ50を圧縮自在に収容すると共に内部スライダ61,62を摺動自在に収容するように一端側に開放した内壁面をもつ筒状に形成され、ハウジング10の凹部13内において所定方向Hに摺動自在に配置されている。
 スライダ40は、所定方向Hに垂直な断面が略矩形の内部空間を画定するように形成され、端面壁41、内壁面42,43、外壁面44、外壁面45、雌ネジ46を備えている。
 端面壁41は、第1戻しバネ30の他端部32を受けるように形成されている。
 内壁面42,43は、内部スライダ61,62を摺動させるように形成されている。
 外壁面44は、ロック部材70がロック状態で当接するように形成されている。
 外壁面45は、凹部13により画定される摺動面13aに押し付けられるように形成されている。
 雌ネジ46は、端面壁41の中央領域に設けられた貫通孔の内周面において、スプラインスリーブ120の雄ネジ122が螺合するように形成されている。
 反力バネ50は、バネ鋼等により形成された圧縮型のコイル状の伸縮バネであり、一端部51がバネ受け部材130に係合しかつ他端部52が内部スライダ62に係合して、所定の圧縮代に圧縮された状態で所定方向H(第1戻しバネ30の伸縮方向と同一方向)に伸縮自在に取り付けられている。
 そして、反力バネ50は、内部スライダ61,62を介して、ペダルアーム20を休止位置に戻す付勢力を及ぼすようになっている。
 内部スライダ61は、樹脂材料、例えば含油ポリアセタール等の高摺動性材料を用いて、スライダ40の内部空間に収容される略矩形の輪郭をなすと共に、スライダ40の下側の内壁面42に摺動自在に接触するように形成されている。
 内部スライダ61は、内部スライダ62の傾斜面62aと接触する傾斜面61a、ペダルアーム20の上端部23が離脱可能に係合する係合面61bを備えている。
 内部スライダ62は、樹脂材料、例えば含油ポリアセタール等の高摺動性材料により、スライダ40の内部空間に収容される略矩形の輪郭をなすと共に、スライダ40の上側の内壁面43に摺動自在に接触するように形成されている。
 内部スライダ62は、内部スライダ61の傾斜面61aと接触する傾斜面62a、反力バネ50の他端部52を受ける受け面62bを備えている。
 そして、内部スライダ61,62は、スライダ40の内部に配置されて、反力バネ50の付勢力に抗しつつペダルアーム20の上端部23により押圧されることで、くさび作用を生じつつスライダ40に対して相対的に摺動し得るようになっている。
 したがって、ペダルアーム20が、バネ(反力バネ50、第1戻しバネ30、第2戻しバネ90)の付勢力に抗して最大踏込み位置(全開位置)に向けて踏み込まれる場合は、上端部23が反力バネ50の付勢力に抗して内部スライダ61,62を図3中の左向きに押すことで、傾斜面61a,62aのくさび作用により生じる摩擦力(摺動抵抗)が大きくなり、反力バネ50の付勢力の増加に伴って摩擦力が直線的に増加する。
 一方、ペダルアーム20が、バネ(反力バネ50、第1戻しバネ30、第2戻しバネ90)の付勢力に応じて休止位置に向けて戻される場合は、傾斜面61a,62aのくさび作用により生じる摩擦力(摺動抵抗)は小さくなり、反力バネ50の付勢力により内部スライダ61,62が元の位置に向けて図3中の右向きに移動するに連れて、反力バネ50の付勢力が減少することで摩擦力が直線的に減少する。
 ここで、戻り動作の際の摩擦力は、踏み込み動作の際の摩擦力よりも小さくなるため、図9Aの実線で示すように、踏込み動作から戻し動作までの全体の踏力(ペダル荷重)にヒステリシスを発生させることができる。
 ロック部材70は、平行な2つの平面部71、所定の曲率をなす2つの湾曲面部72を備えている。そして、ロック部材70は、その中心Cが駆動源80の回転軸80aに固定されている。
 ここで、ロック部材70がロック状態を生じる条件は、図4に示すように、湾曲面部72,72がスライダ40の外壁面44及び第1ハウジング10aの内壁面14aと接触した状態で、法線力をFn、摩擦力をFf、合力をF、摩擦角をφ、ウェッジ角をθとするとき、0<θ≦φ、すなわち、0<θ≦tan-1(Ff/Fn)を満足するように、ロック部材70が形成されることである。
 そして、ロック部材70は、図3の二点鎖線で示すように、一方向(時計回り)に回転することで、スライダ40をハウジング10(の摺動面13a)に押し付けて楔作用を生じ、移動不能にロックしたロック状態とする。
 一方、ロック部材70は、第1戻しバネ30の戻し力によるスライダ40の移動に追従して、図3の実線で示すように、他方向(反時計回り)に回転することにより、ロック状態を解除し得るようになっている。
 駆動源80は、一方向への回転駆動力を及ぼすアクチュエータであり、ロック部材70を回動自在に結合する回転軸80aを備えている。
 そして、駆動源80は、第1ハウジング10aの固定部15に収容されて固定され、ロック部材70を図3中の実線で示すロック解除状態から二点鎖線で示すロック状態にするべく、一方向にのみ回転駆動力を及ぼすようになっている。
 上記構成においては、運転者がアクセルペダル22を踏み込む際に、例えば過踏み込みによる余分な発進エネルギを節約したい場合、所望のタイミングで、運転者がアクセルペダル22を踏み込む体勢にあることを検知するセンサ信号等に基づいて、駆動源80を一方向に回転させる。すると、ロック部材70が一方向に回転し、湾曲面部72が、スライダ40を第1ハウジング10aの内壁面13aに押し付けて移動不能にロックする。
 それ以後の踏み込み時には、直列に配置された二つのバネ(第1戻しバネ30及び反力バネ50)のうち反力バネ50のみが圧縮されるため、二つのバネ(第1戻しバネ30、反力バネ50)が作用する場合に比べてバネ定数が大きくなり、図9Bの点線で示すように反力すなわち踏力が増加する。
 例えば、反力バネ50のバネ定数をk1、第1戻しバネ30のバネ定数をk2とすると、直列に配置された反力バネ50及び第1戻しバネ30の合成バネ定数は(k1・k2)/(k1+k2)であり、k1>(k1・k2)/(k1+k2)の関係が成立する。
 したがって、反力バネ50及び第1戻しバネ30が共に付勢力を及ぼす状態に比べて、反力バネ50のみが付勢力を及ぼす状態の方がバネ定数を大きくでき、踏力が増加することになる。
 このように、所望のタイミングでスライダ40をロックすることにより、アクセルペダル22の踏力に対抗する反力を付加することができ、それ故に、運転者の過踏み込みを抑制することができ、急激な発進を防止して燃費を改善することができる。
 上記のように、スライダ40を移動不能にロックするロック機構が、ロック部材70及び駆動源80により構成され、一方向へ回転する場合にのみ楔作用を生じてスライダ40をロックするワンウエイロック(すなわち、スプラグ)として機能し、駆動源80としても一方向への回転駆動力を及ぼすだけのアクチュエータを適用することができるため、駆動源の省電力化及び小型化、又、制御回路(ECU)の不要化、低コスト化等を達成することができる。
 第2戻しバネ90は、バネ鋼等により形成された圧縮型のコイルバネであり、一端部91が第1ハウジング10aの受け部16に係合しかつ他端部92がペダルアーム20の受け部24に係合して、所定の圧縮代に圧縮された状態で伸縮自在に取り付けられている。
 そして、第2戻しバネ90は、ペダルアーム20を休止位置に戻す付勢力を及ぼすようになっている。
 このように、第2戻しバネ90は、ペダルアーム20の上端部23が内部スライダ61に対して離脱可能に係合した状態で、ペダルアーム20に直接係合してペダルアーム20を休止位置に戻す付勢力を及ぼすように形成されている。
 したがって、スライダ40がロック状態から解除されない又はスライダ40が第1ハウジング10aにスティックして停止し又は内部スライダ61,62がスライダ40内においてスティックして停止したような作動不良の状態が生じても、ペダルアーム20は、第2戻しバネ90の付勢力により休止位置へ確実に戻され、安全性が保証される。
 駆動源100は、ハウジング10の固定部15bに固定され、回転駆動力を及ぼすモータであり、例えばDCモータが適用される。
 スプラインシャフト110は、金属材料又は高強度の樹脂材料等により形成され、ハウジング10内でかつ第1戻しバネ30の内側において、所定方向Hに伸長するように配置され、駆動源100の回転軸100aに、連結部材(不図示)等を介して直結されている。
 また、スプラインシャフト110は、その外周面において、周方向に所定間隔をおいて突出すると共に軸線方向(所定方向H)に伸長する複数の凸条部111を備えている。
 スプラインスリーブ120は、金属材料又は高強度の樹脂材料等により形成され、スプラインシャフト110が内部に嵌め込まれた状態で、所定方向Hに伸長するように配置されている。
 また、スプラインスリーブ120は、その内周面において周方向に所定間隔をおいて凹むと共に軸線方向(所定方向H)に伸長する複数の凹条部121、その外周面においてスライダ40の雌ネジ46と螺合する雄ネジ122、バネ受け部材130が当接する端部123を備えている。
 複数の凸条部111は、複数の凹条部121に対して、軸線回りに相対移動不能にかつ軸線方向(所定方向H)に相対的に移動するように摺動自在に嵌合する。
 すなわち、スプラインシャフト110とスプラインスリーブ120とは、スプライン構造をなすものであり、スプラインシャフト110からスプラインスリーブ120への回転力のみが伝達され、スプラインスリーブ120はスプラインシャフト110に対してその軸線方向(所定方向H)に相対的に移動自在となっている。
 また、スプラインスリーブ120は、スライダ40と螺合により係合しているため、反力バネ50の調整時において、スプラインシャフト110を介して回転するときに、スライダ40に対して軸線方向(所定方向H)に相対的に移動するようになっている。
 要するに、スプラインシャフト110が、駆動源100により回転させられる回転部材として機能し、スプラインスリーブ120が、回転部材の回転力のみが伝達されてその軸線方向Hに相対的に移動自在でかつ可動部材(スライダ40)との係合関係により可動部材に対して相対的に移動して反力バネ50の一端部51の規制位置を移動させる係合移動部材として機能する。
 バネ受け部材130は、樹脂材料、例えば含油ポリアセタール等の高摺動性材料により、スライダ40の内部空間に適合する略矩形の輪郭をなすように形成されている。
 そして、バネ受け部材130は、スライダ40の内部に配置されて、一方側の面で反力バネ50の一端部51を受け、他方側の面でスプラインスリーブ120の端部123と当接するように配置されている。
 このように、スプラインスリーブ120と反力バネ50の一端部51の間にバネ受け部材130が配置されているため、スプラインスリーブ120が回転しても、その回転力が反力バネ50に影響を及ぼすのを防止できる。それ故に、反力バネ50の連れ回り等を防止して、所期の付勢特性を得ることができる。
 上記回転部材としてのスプラインシャフト110、係合移動部材としてのスプラインスリーブ120、バネ受け部材130により、駆動源100の駆動力によりスライダ40に対し相対的に移動して反力バネ50の一端部51の規制位置を変化させる規制位置調整ユニットが構成されている。
 また、駆動源100、規制位置調整ユニット(スプラインシャフト110、スプラインスリーブ120、バネ受け部材130)により、反力バネ50の付勢力を所望のタイミングで調整する反力調整機構が構成されている。
 すなわち、駆動源100により、スプラインシャフト110及びスプラインスリーブ120が一方向に回転すると、スプラインスリーブ120がスライダ40に対して一方向(図3中の左向き)に相対的に移動して、反力バネ50の付勢力を弱める方向に一端部51の規制位置を移動させることができる。
 例えば、ロック機構が作動した後の所望のタイミングで、ロック機構によりスライダ40が移動不能にロックされたことを検知するセンサ信号等に基づいて、反力調整機構を作動させて、反力バネ50の付勢力を弱めるように調整することができる。
 これによれば、運転者がアクセルペダル22を踏み続けている場合、ロック状態を維持しつつ付加された反力が低減されるため、運転者へ加わる負荷を低減でき、疲労等を緩和することができる。
 一方、駆動源100により、スプラインシャフト110及びスプラインスリーブ120が他方向に回転すると、スプラインスリーブ120がスライダ40に対して他方向(図3中の右向き)に相対的に移動して、反力バネ50の付勢力を強める方向に一端部51の規制位置を移動させることができる。
 したがって、ロック機構が作動した後において、運転者がアクセルペダル22を踏み続けている場合でも、所定の制御信号に基づき、反力バネ50の付勢力を高める方向に、すなわち、ペダルアーム20を休止位置に向けて押し戻す方向に、反力調整機構を作動させることにより、ロック状態を容易に解除することができる。
 例えば、アクセルペダル22からブレーキペダルへの踏変えを促すディスタンス制御を行う場合は、運転者がアクセルペダル22を踏んでいる状態で、所定の制御信号に基づき、ロック機構によりスライダ40をロック状態にして、速やかにスプラインスリーブ120を他方向に移動させ、反力バネ50の付勢力を大きくする。
 そして、その付勢力が運転者の踏力を上回ることで、ペダルアーム20が休止位置に向けて押し戻されるか、あるいは運転者がアクセルペダル22から足を離してペダルアーム20が休止位置に戻ることで、所望のディスタンス制御を行うことができる。
 位置センサ140は、ペダルアーム20の軸線L1の周りの領域において、ペダルアーム20の円筒部21及び第2ハウジング10bのセンサ収容部19に配置されている。
 位置センサ140は、例えば非接触式の磁気式センサであり、ペダルアーム20の円筒部21の領域に設けられた磁性材料からなる環状のアマチャ、アマチャの内周面に結合された円弧状の一対の永久磁石、第2ハウジング10bに埋設された磁性材料からなる二つのステータ、二つのステータ間に配置された2つのホール素子により形成されている。
 また、その他に関連する部品として、端子、種々の電子部品が実装された回路基板等が設けられている。
 そして、位置センサ140は、ペダルアーム20が回動することにより、磁束密度の変化をホール素子で検出して電圧信号として出力し、ペダルアーム20の角度位置を検出するようになっている。
 この実施形態に係るアクセルペダル装置によれば、構造の簡素化、低コスト化、装置全体の小型化等を達成しつつ、燃費改善等のためにアクセルペダル22の過踏み込みを抑制する反力付加機構等を備える構成において、運転者の負荷を低減して操作性を改善でき、運転状況に応じて適切な反力を付加することができ、ディスタンス制御等も行うことができる、応答性に優れたアクセルペダル装置を得ることができる。
 また、可動部材として所定方向Hに摺動自在に配置されたスライダ40、第1戻しバネ30及び反力バネ50として所定方向Hに伸縮する伸縮バネ、規制位置調整ユニットとして所定方向Hに伸長するスプラインシャフト110及びスプラインスリーブ120を採用しているため、スライダ40、第1戻しバネ30、反力バネ50、スプラインシャフト110及びスプラインスリーブ120が全て所定方向Hに配列されることになる。それ故に、部品を集約して配置することができ、装置の小型化に寄与する。
 次に、このアクセルペダル装置の動作について、図1、図2、図6Aないし図9Bを参照しつつ説明する。
 先ず、運転者がアクセルペダル22を踏み込まない休止位置にあるとき、第1戻しバネ30、反力バネ50、第2戻しバネ90の付勢力により、ペダルアーム20の上端部23が休止ストッパ17に当接して、ペダルアーム20は図1及び図2の実線で示す休止位置に停止している。
 また、規制位置調整ユニットのスプラインスリーブ120及びバネ受け部材130もスライダ40に対して所定の規制位置に停止している。そして、スプラインスリーブ120及びバネ受け部材130は、スライダ40と一体的に移動するようになっている。
 この状態から、運転者がアクセルペダル22を踏み込むと、ペダルアーム20は、第1戻しバネ30、反力バネ50、第2戻しバネ90の付勢力に抗して、図2中の反時計回りに回転して最大踏込み位置(全開位置)まで至り、当接部25が第1ハウジング10aの全開ストッパ18に当接して停止する。
 このとき、図6Aから図6Bに示すように、内部スライダ61,62は、反力バネ50に抗して所定量移動し、スライダ40は、ハウジング10に対して所定量移動し、スプラインスリーブ120及びバネ受け部材130は、スライダ40と一体的に所定量移動する。
 一方、運転者が踏力を緩めると、ペダルアーム20は、踏み込み時の抵抗荷重(ペダル荷重)よりも小さい抵抗荷重(ペダル荷重)を運転者に及ぼしながら、第1戻しバネ30、反力バネ50、第2戻しバネ90の付勢力により休止位置に向けて回転し、上端部23が第1ハウジング10aの休止ストッパ17に当接して停止する。
 尚、ロック機構が作動しない状態においては、図9Aに示すようなヒステリシスをなす踏力特性が得られる。
 ところで、運転者がアクセルペダル22を踏み込む際に、例えば過踏み込みによる余分な発進エネルギを節約するべくその踏み込みを抑制させる場合、所望のタイミングで、運転者がアクセルペダル22を踏み込む体勢にあることを検知するセンサ信号等に基づいて、駆動源80が一方向に回転すると、図7Aに示すように、ロック部材70が時計回りに回転して、スライダ40をハウジング10に対して押圧し移動不能にロックする。
 すると、その後の踏み込み動作においては、第1戻しバネ30及び反力バネ50のうち反力バネ50のみが圧縮されるため、直列に接続された二つのバネ(第1戻しバネ30、反力バネ50)が作用する場合に比べてバネ定数が大きくなり、図9Aの点線で示すように反力が増加する。
 これにより、運転者の踏力に対する抵抗力(反力)が増加するため、過踏み込みが抑制され、急激な発進が防止されて、燃費が改善される。
 一方、運転者が踏力を緩めると、第1戻しバネ30の付勢力により、スライダ40が戻り方向へ移動し、スライダ40の移動に追従してロック部材70が反時計回りに回転し、ロック状態が解除される。
 そして、ペダルアーム20は、第1戻しバネ30、反力バネ50、第2戻しバネ90の付勢力により、踏み込み時の抵抗荷重(ペダル荷重)よりも小さい抵抗荷重(ペダル荷重)を運転者に及ぼしながら、休止位置に向けて回転し、上端部23が第1ハウジング10aの休止ストッパ17に当接して停止する。
 また、ロック機構が作動した後の所望のタイミングで、ロック機構によりスライダ40が移動不能にロックされたことを検知するセンサ信号等に基づいて、駆動源100が一方向へ回転すると、スプラインシャフト110及びスプラインスリーブ120が一方向に回転し、スプラインスリーブ120がスライダ40に対して一方向(図7B中の左向き)に相対的に移動して、図7Bに示すように、反力バネ50の付勢力を弱める方向に一端部51の規制位置を移動させる。
 これによれば、運転者がアクセルペダル22を踏み続けている場合でも、図9Bの実線で示すように、ロック状態を維持しつつ付加された反力が低減されるため、運転者へ加わる負荷を低減でき、疲労等を緩和することができる。
 さらに、図8Aに示すように、ロック機構が作動した後において、運転者がアクセルペダル22を踏み続けている場合には、ロックが解除されない。
 そこで、所定の制御信号に基づき、駆動源100が他方向に回転すると、スプラインシャフト110及びスプラインスリーブ120が他方向に回転し、スプラインスリーブ120がスライダ40に対して他方向(図8A中の右向き)に相対的に移動して、反力バネ50の付勢力を強める方向に一端部51の規制位置を移動させる。
 このように、運転者の踏力に逆らって、反力バネ50の付勢力を高める方向に、すなわち、ペダルアーム20を休止位置に向けて押し戻す方向に、反力調整機構を作動させることにより、ロック状態を容易に解除することができる。
 例えば、アクセルペダル22からブレーキペダルへの踏変えを促すディスタンス制御を行う場合は、図8Bに示すように、運転者がアクセルペダル22を踏んでいる状態で、所定の制御信号に基づき、ロック機構によりロック状態にして、速やかにスプラインスリーブ120を他方向に移動させ、反力バネ50の付勢力を大きくする。
 そして、その付勢力が運転者の踏力を上回ることで、ペダルアーム20が休止位置に向けて押し戻されるか、あるいは運転者がアクセルペダル22から足を離してペダルアーム20が休止位置に戻ることで、所望のディスタンス制御を行うことができる。
 上記実施形態においては、反力付加機構(可動部材40、反力バネ50、ロック機構)を備えることを前提とし、ヒステリシス発生機構を備えた構成において、反力調整機構を採用した場合を示したが、これに限定されるものではなく、ヒステリシス発生機構を廃止した構成において、反力調整機構を採用してもよい。
 この場合、内部スライダ61,62に替えて、反力バネ50の他端部52とペダルアーム20の上端部23の間に平板状の可動スペーサを介在させるか又は上端部23を反力バネ50の他端部52に直接当接させてもよい。
 上記実施形態においては、ペダルアーム20の上端部23を内部スライダ61に対して離脱可能に係合させ、第2戻しバネ90を採用した場合を示したが、これに限定されるものではなく、スライダ40及び内部スライダ61,62の機能が保証される限り、上端部23を内部スライダ61に連結し、第2戻しバネ90を廃止した構成において、反力調整機構を採用してもよい。
 上記実施形態においては、ロック機構として、一方向のみに回転駆動力を及ぼす駆動源80、一方向に回転してロック作用を及ぼすロック部材70を示したが、これに限定されるものではない。
 例えば、一方向への回転により楔作用を生じるローディングカム機構を採用し、ロック部材としてボールやローラ等を採用してもよい。
 また、駆動源として、直線駆動力を及ぼすアクチュエータ等を採用し、ロック部材として楔作用を生じる楔部材を往復動させ、一方向において楔作用を生じる構成としてもよい。
 上記実施形態においては、反力調整機構として、回転駆動力を及ぼす駆動源100、スプラインシャフト110及びスプラインスリーブ120を含む規制位置調整ユニットを含む構成を示したが、これに限定されるものではない。
 例えば、反力バネ50の付勢力を所望のタイミングで調整できるものであれば、駆動源として直線的な駆動力を及ぼすソレノイド等のアクチュエータ、このアクチュエータに連結されて非調整時に可動部材と一体的に移動しかつ調整時にのみ可動部材と相対的に移動して反力バネ50の規制位置を変化させるロッド等を備えた反力調整機構を採用してもよい。
 上記実施形態においては、ロック機構の駆動源として駆動源80を採用し、反力調整機構の駆動源として駆動源100を採用した場合を示したが、これに限定されるものではなく、ロック機構と反力調整機構に共通の一つの駆動源を採用してもよい。
 上記実施形態においては、規制位置調整ユニットを構成する回転部材及び係合移動部材として、スプラインシャフト110及びスプラインスリーブ120を示したが、これに限定されるものではない。
 例えば、駆動源により回転させられるものであれば、その他の回転部材を採用してもよく、又、回転部材の回転力のみが伝達されてその軸線方向に相対的に移動自在でかつ可動部材との係合関係により可動部材に対して相対的に移動して反力バネの一端部の規制位置を移動させるものであれば、その他の係合移動部材を採用してもよい。
 上記実施形態においては、反力調整機構として、スプラインシャフト110及びスプラインスリーブ120の他に、バネ受け部材130を含む構成を示したが、これに限定されるものではなく、バネ受け部材130を廃止して、反力バネ50の一端部51をスプラインスリーブ120の端部123で直接受ける構成を採用してもよい。
 上記実施形態においては、可動部材として所定方向Hに摺動するスライダ40、第1戻しバネ及び反力バネとして所定方向Hに伸縮する第1戻しバネ30及び反力バネ50、規制位置調整ユニットとして所定方向Hに伸長するスプラインシャフト110及びスプラインスリーブ120を採用した場合を示したが、これに限定されるものではなく、直線運動を円弧運動に変更した捩りバネ及び規制位置調整ユニット等を採用してもよい。
 以上述べたように、本発明のアクセルペダル装置は、構造の簡素化、低コスト化、装置全体の小型化等を達成しつつ、燃費改善等のためにアクセルペダルの過踏み込みを抑制する反力を付加する機構等を備える構成において、運転者の操作性を改善でき、運転状況に応じて適切な反力を付加することができ、ディスタンス制御等も行うことができる、応答性に優れたアクセルペダル装置を得ることができるため、自動車等に適用できるのは勿論のこと、二輪車、その他の車両等においても有用である。
L1 軸線
H 所定方向
10 ハウジング
20 ペダルアーム
22 アクセルペダル
30 第1戻しバネ
40 スライダ(可動部材)
42,43 内壁面
50 反力バネ
61,62 内部スライダ(ヒステリシス発生機構)
70 ロック部材(ロック機構)
80 駆動源(ロック機構)
90 第2戻しバネ
100 駆動源(反力調整機構)
110 スプラインシャフト(回転部材、規制位置調整ユニット、反力調整機構)
120 スプラインスリーブ(係合移動部材、規制位置調整ユニット、反力調整機構)
130 バネ受け部材(規制位置調整ユニット、反力調整機構)
 

Claims (9)

  1.  アクセルペダルを有するペダルアームと、
     前記ペダルアームを休止位置と最大踏込み位置の間で所定の軸線回りに回動可能に支持するハウジングと、
     前記ペダルアームを前記休止位置に戻す付勢力を及ぼす第1戻しバネと、
     前記第1戻しバネの反力を受けつつ前記ハウジングに対して移動自在に配置された可動部材と、
     前記可動部材と前記ペダルアームの間に介在して踏力に対する反力を生じ得る反力バネと、
     前記可動部材を所望のタイミングで移動不能にロックし得るロック機構と、
     前記反力バネの付勢力を所望のタイミングで調整する反力調整機構と、
    を含む、アクセルペダル装置。
  2.  前記ロック機構は、所定の駆動力により一方向において楔作用を生じて前記可動部材をロックするロック部材を含む、
    ことを特徴とする請求項1に記載のアクセルペダル装置。
  3.  前記反力調整機構は、所定の駆動力により前記可動部材に対し相対的に移動して前記反力バネの一端部の規制位置を変化させる規制位置調整ユニットを含む、
    ことを特徴とする請求項1又は2に記載のアクセルペダル装置。
  4.  前記規制位置調整ユニットは、所定の駆動力により回転させられる回転部材と、前記回転部材の回転力のみが伝達されてその軸線方向に相対的に移動自在でかつ前記可動部材との係合関係により前記可動部材に対して相対的に移動して前記反力バネの一端部の規制位置を移動させる係合移動部材を含む、
    ことを特徴とする請求項3に記載のアクセルペダル装置。
  5.  前記回転部材は、所定の駆動力により回転駆動されるスプラインシャフトであり、
     前記係合移動部材は、前記スプラインシャフトと係合すると共に前記可動部材に螺合しかつ前記反力バネの反力を受けるスプラインスリーブである、
    ことを特徴とする請求項4に記載のアクセルペダル装置。
  6.  前記規制位置調整ユニットは、前記スプラインスリーブと前記反力バネの一端部の間に配置されたバネ受け部材をさらに含む、
    ことを特徴とする請求項5に記載のアクセルペダル装置。
  7.  前記可動部材は、内壁面をもつ筒状に形成されて前記ハウジングに対して所定方向に摺動自在に配置されたスライダからなり、
     前記第1戻しバネ及び反力バネは、前記所定方向に伸縮する伸縮バネからなり、
     前記反力バネは、前記スライダの内部に配置され、
     前記スプラインシャフト及びスプラインスリーブは、前記所定方向に伸長して形成されている、
    ことを特徴とする請求項5又は6に記載のアクセルペダル装置。
  8.  前記アクセルペダルの踏力にヒステリシスを発生させるヒステリシス発生機構をさらに含み、
     前記ヒステリシス発生機構は、前記ペダルアームと前記反力バネの間に介在すると共に前記スライダの内部に摺動自在に配置され踏力の増加に伴って摺動抵抗力が増加する内部スライダを含む、
    ことを特徴とする請求項7に記載のアクセルペダル装置。
  9.  前記ペダルアームは、前記内部スライダに対して離脱可能に係合し、
     前記ペダルアームを前記休止位置に戻すべく、前記ペダルアームに直接係合して付勢力を及ぼす第2戻しバネをさらに含む、
    ことを特徴とする請求項8に記載のアクセルペダル装置。
PCT/JP2017/023324 2016-07-05 2017-06-26 アクセルペダル装置 WO2018008436A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016133228A JP6753710B2 (ja) 2016-07-05 2016-07-05 アクセルペダル装置
JP2016-133228 2016-07-05

Publications (1)

Publication Number Publication Date
WO2018008436A1 true WO2018008436A1 (ja) 2018-01-11

Family

ID=60912480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023324 WO2018008436A1 (ja) 2016-07-05 2017-06-26 アクセルペダル装置

Country Status (2)

Country Link
JP (1) JP6753710B2 (ja)
WO (1) WO2018008436A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7197389B2 (ja) * 2019-02-01 2022-12-27 株式会社ミクニ アクセルペダル装置
KR102247909B1 (ko) * 2019-10-29 2021-05-04 경북대학교 산학협력단 구강암 진단을 위한 타액에서의 바이오 마커

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020056337A1 (en) * 2000-01-12 2002-05-16 Srini Sundaresan Electronic throttle control accelerator pedal mechanism with mechanical hysteresis provider
US20030200863A1 (en) * 2002-04-26 2003-10-30 Delphi Technologies Inc. Collapsible pushrod for a power brake of a vehicle
JP2004155375A (ja) * 2002-11-08 2004-06-03 Mikuni Corp アクセルペダル装置
JP2005075320A (ja) * 2003-09-04 2005-03-24 Toyoda Iron Works Co Ltd ペダル反力装置
JP2006176001A (ja) * 2004-12-22 2006-07-06 Toyota Motor Corp ペダル反力制御装置
JP2007137152A (ja) * 2005-11-16 2007-06-07 Aisin Seiki Co Ltd アクセルペダル装置
JP2010269638A (ja) * 2009-05-20 2010-12-02 Mikuni Corp アクセルペダル装置
JP2013112257A (ja) * 2011-11-30 2013-06-10 Denso Corp アクセル装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010026569A (ja) * 2008-07-15 2010-02-04 Advics Co Ltd ペダル装置
KR101141724B1 (ko) * 2010-02-08 2012-05-04 에스엘 주식회사 답력 조절식 페달 장치
JP5466086B2 (ja) * 2010-06-04 2014-04-09 株式会社ミクニ アクセルペダル装置
KR101272927B1 (ko) * 2011-11-23 2013-06-11 현대자동차주식회사 가속페달의 답력 조절장치
KR20130057360A (ko) * 2011-11-23 2013-05-31 현대자동차주식회사 가속페달의 답력 조절장치
KR101272926B1 (ko) * 2011-11-23 2013-06-11 현대자동차주식회사 가속페달의 답력 조절장치
KR101383719B1 (ko) * 2012-11-08 2014-04-08 에스엘(주) 차량용 가속페달 장치
DE102014217327A1 (de) * 2014-08-29 2016-03-03 Robert Bosch Gmbh Aktives Fahrpedal mit Freiweg

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020056337A1 (en) * 2000-01-12 2002-05-16 Srini Sundaresan Electronic throttle control accelerator pedal mechanism with mechanical hysteresis provider
US20030200863A1 (en) * 2002-04-26 2003-10-30 Delphi Technologies Inc. Collapsible pushrod for a power brake of a vehicle
JP2004155375A (ja) * 2002-11-08 2004-06-03 Mikuni Corp アクセルペダル装置
JP2005075320A (ja) * 2003-09-04 2005-03-24 Toyoda Iron Works Co Ltd ペダル反力装置
JP2006176001A (ja) * 2004-12-22 2006-07-06 Toyota Motor Corp ペダル反力制御装置
JP2007137152A (ja) * 2005-11-16 2007-06-07 Aisin Seiki Co Ltd アクセルペダル装置
JP2010269638A (ja) * 2009-05-20 2010-12-02 Mikuni Corp アクセルペダル装置
JP2013112257A (ja) * 2011-11-30 2013-06-10 Denso Corp アクセル装置

Also Published As

Publication number Publication date
JP6753710B2 (ja) 2020-09-09
JP2018002018A (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
JP5371147B2 (ja) アクセルペダル装置
US20130091977A1 (en) Accelerator pedal apparatus
JP5806480B2 (ja) アクセルペダル装置
CN107461425B (zh) 用于对车辆的操作元件进行力模拟的装置以及电操作离合器系统
WO2018179741A1 (ja) 操作抑制ユニット、アクセルペダル装置及び制御システム
JP5524552B2 (ja) アクセルペダル装置
JP4707387B2 (ja) アクセル操作装置
WO2018008436A1 (ja) アクセルペダル装置
JP2004314677A (ja) アクセル装置
US8281682B2 (en) Accelerator operating device
JP4747008B2 (ja) ロック装置
US11493108B2 (en) Damper and operation unit
KR100927695B1 (ko) 능동형 페달 장치
WO2003068549A1 (fr) Module de pedale d'accelerateur
JP7356660B2 (ja) スロットルグリップ装置
JP4877139B2 (ja) アクセル装置
JP4742397B2 (ja) 自動車のペダル装置及びこれに用いられるダンパ
JP7197389B2 (ja) アクセルペダル装置
JP2006021553A (ja) チルト式ステアリングコラム装置
JP4568951B2 (ja) 自動車のペダル装置
JP4078826B2 (ja) ダンパ及びこのダンパを用いたアクセルペダル装置
JP2007283895A (ja) アクセル装置
JP2001310647A (ja) 自動車のアクセルペダル装置
JP7460488B2 (ja) アクセルペダル装置
JP7302815B2 (ja) スロットルグリップ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824043

Country of ref document: EP

Kind code of ref document: A1