WO2018008130A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2018008130A1
WO2018008130A1 PCT/JP2016/070174 JP2016070174W WO2018008130A1 WO 2018008130 A1 WO2018008130 A1 WO 2018008130A1 JP 2016070174 W JP2016070174 W JP 2016070174W WO 2018008130 A1 WO2018008130 A1 WO 2018008130A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
source side
refrigerant
heat exchanger
heat
Prior art date
Application number
PCT/JP2016/070174
Other languages
English (en)
French (fr)
Inventor
正 有山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/070174 priority Critical patent/WO2018008130A1/ja
Priority to JP2018525897A priority patent/JP6573723B2/ja
Priority to US16/300,995 priority patent/US11156393B2/en
Publication of WO2018008130A1 publication Critical patent/WO2018008130A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0251Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units being defrosted alternately
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • F25B2313/02532Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements during defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • F25B2313/02533Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0311Pressure sensors near the expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner having a plurality of heat source side units.
  • frost may adhere to the fin surface and the refrigerant pipe of the outdoor heat exchanger that functions as an evaporator. If frost adheres to the fin surface of the outdoor heat exchanger and the refrigerant piping, the air path pressure loss of the outdoor heat exchanger increases and the heat transfer performance deteriorates. Defrosting operation is required. During the defrosting operation, since the heating operation is stopped, there is a problem that a cold wind feeling is generated in the indoor person.
  • an air conditioning system in which heating operation is performed even during defrosting operation to maintain comfort during defrosting operation (see, for example, Patent Document 1).
  • Another example of an air conditioner including a plurality of outdoor units is disclosed in Patent Document 2.
  • the air conditioner disclosed in Patent Document 2 determines the size of the entire system load when performing a defrosting operation, and the temperature decreases indoors even if the defrosting operation is performed in parallel with the heating operation. The defrosting operation is executed when there is no discomfort.
  • the refrigerant pressure in the heat exchanger to be defrosted is The low pressure state (saturation pressure is low) equivalent to the compressor suction pressure. Therefore, at the time of defrosting, only heat exchange for the sensible heat of the refrigerant can be performed, and a high defrosting capacity cannot be obtained with respect to the refrigerant flow rate.
  • the present invention has been made to solve the above-described problems, and when performing a defrosting operation while continuing the heating operation in a plurality of heat source side units, a high heating capacity can be maintained and the defrosting capacity can be enhanced. An air conditioner is obtained.
  • An air conditioner includes a plurality of heat source side units including a compressor and a heat source side heat exchanger, a load side unit including a load side heat exchanger and a load side expansion device, and the load side heat exchanger.
  • a plurality of bypass expansion devices provided between the heat source side heat exchanger and the second header, and each of the plurality of heat source side units, and the heat source side heat exchanger is connected to the suction side of the compressor or
  • a circuit switching unit connected to the discharge side, a plurality of discharge pressure sensors provided corresponding to the discharge side of the plurality of compressors, and the plurality of bypass throttling devices and the second header.
  • a part of the heat source side units are caused to defrost the heat source side heat exchanger, and the heat source side heat exchangers of the other heat source side units are used as an evaporator.
  • a control unit that causes the heat source side heat exchanger to control a part of the refrigerant discharged from the compressor by controlling the circuit switching unit in the partial heat source side unit.
  • the difference between the pressure detected by the discharge pressure sensor and the pressure detected by the bypass pressure sensor is equal to or greater than a predetermined value.
  • Pressure control means for adjusting the opening degree of the bypass throttling device.
  • the present invention provides a refrigerant pressure on the downstream side of a heat source side heat exchanger to be defrosted when defrosting a part of the heat source side units while continuing heating operation in an air conditioner having a plurality of heat source side units.
  • FIG. 3 is a functional block diagram illustrating a configuration example of a control unit illustrated in FIG. 2. It is a flowchart which shows the operation
  • FIG. 1 is a refrigerant circuit diagram illustrating a configuration example of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the air conditioner 1 shown in FIG. 1 is installed in buildings such as buildings and condominiums, and is capable of cooling and heating an air-conditioning target space using a heat pump refrigeration cycle that circulates air-conditioning refrigerant. is there.
  • the relative sizes of the constituent members may be different from the actual ones.
  • the air conditioning apparatus 1 includes heat source side units 100 ⁇ / b> A and 100 ⁇ / b> B and a load side unit 200.
  • the heat source side units 100A and 100B are installed outdoors, and the load side unit 200 is installed indoors.
  • the heat source units 100A and 100B and the load unit 200 are connected by refrigerant piping.
  • the heat source side units 100A and 100B and the load side unit 200 constitute a main refrigerant circuit, circulate the refrigerant, and heat and cool the space to be air-conditioned.
  • the refrigerant pipe includes a refrigerant pipe 105 through which a gas refrigerant flows and a refrigerant pipe 106 through which a liquid refrigerant or a gas-liquid two-phase refrigerant flows during heating operation.
  • Refrigerant pipes 150A and 150B and refrigerant pipes 160A and 160B are provided as refrigerant pipes connecting the heat source side units 100A and 100B and the load side unit 200.
  • a connection pipe 113 is provided as a refrigerant pipe connecting the heat source side unit 100A and the heat source side unit 100B.
  • the refrigerant to be circulated in the refrigerant circuit is not particularly limited, and is, for example, R410A, R404A or HFO (hydro-fluoro-olefin) which is an HFC refrigerant.
  • the refrigerant may be CO 2 or ammonia which is a natural refrigerant.
  • the air conditioner 1 will be described with a configuration in which two heat source side units and one load side unit are connected. However, if the number of heat source side units is two or more, The number of these units is not limited to the case shown in FIG.
  • Heat source side unit The configuration of the heat source side unit 100A shown in FIG. 1 will be described. Since the heat source side unit 100B has the same configuration as the heat source side unit 100A, detailed description regarding the configuration of the heat source side unit 100B is omitted.
  • the heat source side unit 100A includes a compressor 101A, a four-way valve 102A, a heat source side heat exchanger 103A, an accumulator 104A, and a blower 109A.
  • the discharge side of the compressor 101A is connected to the four-way valve 102A via a refrigerant pipe 151A.
  • the four-way valve 102A is connected to the heat source side heat exchanger 103A via the refrigerant pipe 153A.
  • a bypass circuit 115A for connecting the discharge side of the compressor 101A and the heat source side heat exchanger 103A is provided.
  • the refrigerant pipe 153A is provided with a main circuit valve 107A, and the bypass circuit 115A is provided with a bypass circuit valve 108A.
  • the four-way valve 102A is connected to refrigerant pipes 152A and 154A in addition to the refrigerant pipes 151A and 153A.
  • the heat source side heat exchanger 103A has a connection port on the side opposite to the connection port with the refrigerant pipe 153A connected to the refrigerant pipe 155A.
  • a bypass throttle device 116A is provided in the refrigerant pipe 155A.
  • the refrigerant inlet of the accumulator 104A is connected to the refrigerant pipe 154A through the refrigerant pipe 156A.
  • the refrigerant outlet of the accumulator 104A is connected to the suction port of the compressor 101A.
  • the refrigerant pipe 151A on the discharge side of the compressor 101A is provided with a discharge temperature sensor 112A and a discharge pressure sensor 142A.
  • An inlet temperature sensor 111A and an inlet pressure sensor 141A are provided in the refrigerant pipe 156A on the refrigerant inlet side of the accumulator 104A.
  • a heat exchanger temperature sensor 110A is provided near the connection port with the heat source side heat exchanger 103A.
  • a bypass pressure sensor 114A is provided on the side opposite to the heat source side heat exchanger 103A with respect to the bypass expansion device 116A.
  • control unit 20 that controls the air conditioner 1 is housed in the heat source side housing 120A.
  • Each sensor is connected to the control unit 20 via a signal line. Details of the configuration of the control unit 20 will be described later.
  • the installation location of the control unit 20 is not limited to the heat source unit 100A, but may be the heat source unit 100B or the load unit 200.
  • the control unit 20 may be electrically connected to these units so that signals can be transmitted and received wirelessly or by wire, and the installation location of the control unit 20 is not limited to these units.
  • Compressor 101A compresses the refrigerant to be sucked and discharges the refrigerant in a high temperature and high pressure state.
  • the four-way valve 102A switches the flow of the refrigerant flowing through the refrigerant circuit depending on whether the air conditioner 1 is in the cooling operation or the heating operation. Specifically, in the cooling operation, the four-way valve 102A connects the refrigerant pipe 151A to the refrigerant pipe 153A and connects the refrigerant pipe 152A to the refrigerant pipe 154A. In the heating operation, the four-way valve 102A connects the refrigerant pipe 151A to the refrigerant pipe 152A and connects the refrigerant pipe 153A to the refrigerant pipe 154A.
  • the heat source side heat exchanger 103A functions as a condenser.
  • the operation of the heat source side unit 100A when the heat source side heat exchanger 103A functions as a condenser is referred to as a cooling operation.
  • the operation of the heat source side unit 100A when the heat source side heat exchanger 103A functions as an evaporator is referred to as a heating operation.
  • the operation of the heat source side unit 100A when performing the defrosting of the heat source side heat exchanger 103A is referred to as a defrosting operation.
  • the heat source side heat exchanger 103A performs heat exchange between ambient air and the refrigerant flowing in the heat source side heat exchanger 103A.
  • the heat source side heat exchanger 103A functions as an evaporator
  • the heat source side heat exchanger 103A evaporates the refrigerant.
  • the heat source side heat exchanger 103A functions as a radiator (condenser), it condenses and liquefies the refrigerant.
  • the heat source side heat exchanger 103A is described as having one heat exchanger, but a configuration having a plurality of heat exchangers may also be used.
  • Blower 109A blows air to heat source side heat exchanger 103A.
  • the accumulator 104A is disposed between the four-way valve 102A and the compressor 101A, and stores excess refrigerant.
  • the accumulator 104A is, for example, a container that stores excess refrigerant.
  • the main circuit valve 107A and the bypass circuit valve 108A are, for example, electromagnetic valves, and adjust the flow rate of the refrigerant flowing in the refrigerant circuit by adjusting the valve opening.
  • the main circuit valve 107A is disposed in the flow path between the four-way valve 102A and the heat source side heat exchanger 103A.
  • the bypass circuit valve 108A is disposed in a flow path between the discharge side of the compressor 101A and the heat source side heat exchanger 103A.
  • the main circuit valve 107A and the bypass circuit valve 108A constitute a circuit switching unit 117A that connects the heat source side heat exchanger 103A to the suction side or the discharge side of the compressor 101A.
  • the heat exchanger temperature sensor 110A, the inflow temperature sensor 111A, and the discharge temperature sensor 112A are, for example, thermistors.
  • the heat exchanger temperature sensor 110A detects the temperature of the refrigerant flowing through the heat source side heat exchanger 103A.
  • Inflow temperature sensor 111A detects the temperature of the refrigerant flowing into accumulator 104A.
  • the discharge temperature sensor 112A detects the temperature of the refrigerant discharged from the compressor 101A.
  • the heat exchanger temperature sensor 110A is attached to the heat source side heat exchanger 103A, for example.
  • the heat exchanger temperature sensor 110 ⁇ / b> A detects the refrigerant temperature on the refrigerant outflow side in each operation state of the air-conditioning apparatus 1 in the cooling operation and the defrosting operation.
  • the heat exchanger temperature sensor 110A may be installed between the heat source side heat exchanger 103A and the bypass expansion device 116A. In this case, the heat exchanger temperature sensor 110A detects the temperature of the refrigerant flowing into the heat source side heat exchanger 103A during the heating operation of the heat source side unit 100A. Therefore, the control unit 20 can determine whether the heat source unit 100A is performing a defrosting operation or a heating operation based on the temperature detected by the heat exchanger temperature sensor 110A.
  • the inflow pressure sensor 141A, the discharge pressure sensor 142A, and the bypass pressure sensor 114A are sensors that detect the pressure of the refrigerant.
  • Inflow pressure sensor 141A detects the pressure of the refrigerant flowing into accumulator 104A.
  • the discharge pressure sensor 142A detects the pressure of the refrigerant discharged from the compressor 101A.
  • the bypass pressure sensor 114A detects the pressure of the refrigerant flowing out of the bypass expansion device 116A when the heat source side heat exchanger 103A is defrosted.
  • the control unit 20 can obtain the saturation temperature of the refrigerant flowing into the accumulator 104A from the pressure value detected by the inflow pressure sensor 141A.
  • the control unit 20 can determine whether or not the state of the refrigerant flowing into the accumulator 104A is superheated gas by comparing the saturation temperature and the temperature of the inflow temperature sensor 111A.
  • the control unit 20 can obtain the saturation temperature of the refrigerant discharged from the compressor 101A from the pressure value detected by the discharge pressure sensor 142A.
  • the control unit 20 can determine whether or not the state of the refrigerant discharged from the compressor 101A is a superheated gas by comparing the saturation temperature with the temperature of the discharge temperature sensor 112A.
  • the controller 20 compares the pressure detected by the bypass pressure sensor 114A with the pressure detected by the discharge pressure sensor 142A, so that defrosting is performed using the latent heat of the refrigerant in the heat source side heat exchanger 103A. It can be determined whether or not.
  • a refrigerant heat exchanger for supercooling the refrigerant supplied to the load-side unit 200 may be provided in the refrigerant pipe 155A.
  • the load side unit 200 includes a load side heat exchanger 201, a load side expansion device 202, and a blower 203. These configurations are accommodated in the load-side casing 204.
  • the load side heat exchanger 201 and the load side expansion device 202 are connected in series.
  • the load side heat exchanger 201 is connected to the refrigerant pipe 105, and the load side expansion device 202 is connected to the refrigerant pipe 106.
  • the load side heat exchanger 201 performs heat exchange between the air in the air-conditioning target space and the refrigerant flowing in the load side heat exchanger 201.
  • the load side heat exchanger 201 functions as an evaporator, it evaporates the refrigerant.
  • the load-side heat exchanger 201 functions as a radiator, it condenses and liquefies the refrigerant.
  • the blower 203 blows air to the load side heat exchanger 201.
  • the load side throttle device 202 functions as a pressure reducing valve and an expansion valve, and decompresses and expands the refrigerant.
  • the load-side throttle device 202 is, for example, an electronic expansion valve that can variably control the valve opening, and can perform precise flow control by adjusting the valve opening.
  • the load side throttle device 202 may be an inexpensive refrigerant flow rate adjusting means such as a capillary tube.
  • a header 132 that branches the refrigerant pipe 105 into the refrigerant pipes 150A and 150B is provided between the heat source side units 100A and 100B and the load side unit 200.
  • Each of the refrigerant pipes 150A and 150B is connected to each of the refrigerant pipes 152A and 152B.
  • a header 134 that branches the refrigerant pipe 106 into the refrigerant pipes 160A and 160B is provided.
  • Refrigerant pipes 160A and 160B are connected to refrigerant pipes 155A and 155B, respectively.
  • the connection pipe 113 is connected to the refrigerant pipe 154A of the heat source side unit 100A and the refrigerant pipe 154B of the heat source side unit 100B.
  • FIG. 2 is a functional block diagram for explaining control in the air-conditioning apparatus shown in FIG.
  • the control unit 20 includes a memory 21 that stores a program, and a CPU (Central Processing Unit) 22 that executes processing according to the program.
  • the memory 21 is, for example, a nonvolatile memory.
  • the control unit 20 is connected to the compressors 101A and 101B, the fans 109A and 109B, and the fan 203 through signal lines.
  • the control unit 20 is connected to the main circuit valves 107A and 107B, the bypass circuit valves 108A and 108B, the four-way valves 102A and 102B, the bypass throttle devices 116A and 116B, and the load side throttle device 202 via signal lines.
  • the control unit 20 is connected to the heat exchanger temperature sensors 110A and 110B, the inflow temperature sensors 111A and 111B, and the discharge temperature sensors 112A and 112B through signal lines.
  • a temperature detection signal that is a signal indicating a temperature value is input to the control unit 20 from these temperature sensors.
  • the control unit 20 is connected to the inflow pressure sensors 141A and 141B, the discharge pressure sensors 142A and 142B, and the bypass pressure sensor 114A via signal lines.
  • a pressure detection signal which is a signal indicating a pressure value, is input to the control unit 20 from these pressure sensors.
  • the control unit 20 is connected to a remote controller (not shown) installed in the room via a signal line.
  • the control unit 20 starts and stops the compressors 101A and 101B, the fans 109A and 109B, and the blower 203 based on instructions input from a remote controller (not shown) and detection signals input from the sensors. Control the operating frequency of the equipment.
  • the control unit 20 opens and closes the main circuit valves 107A and 107B and the bypass circuit valves 108A and 108B based on an instruction input from a remote controller (not shown) and detection signals input from the sensors.
  • the switching of the flow path in the four-way valves 102A and 102B is controlled.
  • the control unit 20 controls the opening degree of the bypass expansion devices 116A and 116B and the load side expansion device 202 based on an instruction input from a remote controller (not shown) and a detection signal input from each sensor.
  • FIG. 3 is a functional block diagram showing a configuration example of the control unit shown in FIG.
  • the control unit 20 includes a refrigeration cycle control means 31, a flow path control means 32, and a pressure control means 33.
  • the refrigeration cycle control means 31, the flow path control means 32, and the pressure control means 33 are configured in the air conditioner 1.
  • the refrigeration cycle control means 31 opens the main circuit valves 107A and 107B, closes the bypass circuit valves 108A and 108B, and bypass bypass devices 116A,
  • the compressors 101A, 101B and the blowers 109A, 109B, 203 are started with the opening of 116B fully opened.
  • the refrigeration cycle control means 31 controls the operating frequencies of the compressors 101A, 101B and the fans 109A, 109B, 203 and the opening degree of the load side expansion device 202 based on the values of various sensors.
  • the refrigeration cycle control means 31 monitors the temperatures detected by the heat exchanger temperature sensors 110A and 110B. When the temperature detected by any one of the heat exchanger temperature sensors 110A and 110B exceeds a predetermined threshold value, the refrigeration cycle control means 31 is generated in the heat source side heat exchanger corresponding to the temperature sensor. It is judged that the ability as an evaporator is reduced due to frost. Then, the refrigeration cycle control means 31 notifies the flow path control means 32 of the heat source side unit including the heat source side heat exchanger determined to be defrosted. The refrigeration cycle control means 31 notifies the flow path control means 32 of the heat source side unit to be defrosted when an input for instructing the heat source side unit that requires the defrosting operation is received from a remote controller (not shown). May be.
  • the flow path control means 32 controls the circuit switching unit to cause a part of the refrigerant discharged from the compressor to flow into the heat source side heat exchanger.
  • the flow path control means 32 notifies the pressure control means 33 of the heat source side unit to be defrosted.
  • the flow path control means 32 opens the bypass circuit valve 108A and closes the main circuit valve 107A.
  • the flow path control means 32 notifies the pressure control means 33 of the heat source side unit 100A to be defrosted.
  • the flow path control means 32 controls the circuit switching unit 117B to close the bypass circuit valve 108A and open the main circuit valve 107A. Keep it.
  • the pressure control means 33 determines a difference ⁇ p between the pressure Ph detected by the discharge pressure sensor 142A and the pressure Pb detected by the bypass pressure sensor 114A.
  • the opening degree of bypass throttling device 116A is adjusted so as to be above.
  • the high-temperature and high-pressure gas refrigerant pressurized by the compressors 101A and 101B of the heat source side units 100A and 100B flows into the header 132 through the four-way valves 102A and 102B.
  • the refrigerant pressurized by the compressor 101 ⁇ / b> A and the refrigerant pressurized by the compressor 101 ⁇ / b> B merge at the header 132 and flow into the load side unit 200.
  • the refrigerant flowing into the load-side unit 200 passes through the load-side heat exchanger 201, the refrigerant exchanges heat with indoor air to dissipate heat and condense.
  • the pressure of the refrigerant flowing into the load side heat exchanger 201 is adjusted by the load side expansion device 202.
  • the intermediate-pressure liquid or gas-liquid two-phase refrigerant that has passed through the load-side heat exchanger 201 is separated by the header 134 and flows into the heat source side unit 100A and the heat source side unit 100B.
  • the refrigerant that has flowed into the heat source side units 100A and 100B passes through the heat source side heat exchangers 103A and 103B, the refrigerant is evaporated to become a gas refrigerant by exchanging heat with the outside air.
  • This gas refrigerant is sucked into the compressors 101A and 101B via the four-way valves 102A and 102B and the accumulators 104A and 104B.
  • the refrigerant sucked into the compressors 101A and 101B is pressurized again and discharged from the compressors 101A and 101B.
  • FIG. 4 is a flowchart showing an operation procedure during the defrosting operation of the air-conditioning apparatus shown in FIG.
  • the case where the heat source unit 100A performs the defrosting operation while the heat source unit 100B performs the heating operation will be described.
  • the main circuit valves 107A and 107B are open and the bypass circuit valves 108A and 108B are closed according to the control of the flow path control means 32.
  • the control unit 20 opens the bypass circuit valve 108A and closes the main circuit valve 107A (step S1). As a result, part of the high-temperature refrigerant discharged from the compressor 101A flows into the heat source side heat exchanger 103A via the bypass circuit valve 108A.
  • the refrigerant excluding the refrigerant flowing into the heat source side heat exchanger 103A is the load side heat exchanger 201 of the load side unit 200 via the refrigerant pipe 152A and the header 132. Flow into.
  • the high-temperature refrigerant flows into the heat source side heat exchanger 103A, it exchanges heat with frost adhering to the heat source side heat exchanger 103A. Specifically, the frost adhering to the heat source side heat exchanger 103A absorbs the heat of the high-temperature gas refrigerant. As a result, the frost attached to the heat source side heat exchanger 103A melts and flows down.
  • the main circuit valve 107A since the main circuit valve 107A is in the closed state as described above, the defrosted refrigerant does not flow to the accumulator 104A, and after being depressurized by the bypass throttle device 116A, the refrigerant pipe 155A passes through the refrigerant pipe 160A. The header 134 is reached.
  • the control unit 20 may stop the blower 109A of the heat source side unit 100A performing the defrosting operation. In this case, the deterioration of the defrosting performance due to the heat absorption of the outside air can be suppressed
  • the control unit 20 reads the value of the pressure Pb from the bypass pressure sensor 114A and reads the value of the pressure Ph from the discharge pressure sensor 142A. And the control part 20 determines whether the difference of the pressure Ph and the pressure Pb is more than predetermined value (DELTA) p (step S2). If the value of (pressure Ph ⁇ pressure Pb) is equal to or greater than ⁇ p, the control unit 20 continues to monitor the pressure Pb. As a result of the determination in step S2, when the value of (pressure Ph ⁇ pressure Pb) is smaller than ⁇ p, the control unit 20 opens the bypass throttling device 116A so that the value of (pressure Ph ⁇ pressure Pb) becomes equal to or larger than ⁇ p. The degree is adjusted (step S3).
  • the pressure in the heat source side heat exchanger 103A becomes a pressure as low as the suction pressure of the compressor 101A, only heat exchange for the sensible heat of the refrigerant can be performed at the time of defrosting, and the defrosting is high with respect to the refrigerant flow rate. It is because ability cannot be acquired.
  • the refrigerant pressure of the heat exchanger to be defrosted affects the defrosting capacity during the defrosting operation and the heating capacity of the heating operation. If the refrigerant pressure of the heat exchanger to be defrosted is low, the refrigerant saturation temperature at the time of defrosting is lower than the outside air temperature, and the latent heat of the refrigerant cannot be used, resulting in a reduced defrosting capability. On the other hand, the higher the refrigerant pressure of the heat exchanger to be defrosted, the higher the refrigerant saturation temperature in the heat exchanger to be defrosted, and the refrigerant defrosting capacity can be increased because the refrigerant latent heat can be used for defrosting.
  • the refrigerant pressure of the heat exchanger to be defrosted is set to a pressure at which the refrigerant in the system can be used without excess or deficiency (the surplus refrigerant is accumulated in the defrost heat exchange). It becomes an efficient driving state.
  • the defrosting target heat exchanger has such a pressure that a part of the gas refrigerant flowing from the compressor is liquefied.
  • the control unit 20 controls the opening degree of the bypass expansion device 116A, restricts the flow path of the gas refrigerant flowing out from the heat source side heat exchanger 103A, and condenses the heat source side heat exchanger 103A as a condenser. By functioning as described above, a part of the gas refrigerant is liquefied in the heat source side heat exchanger 103A.
  • the pressure control means 33 adjusts the opening degree of the bypass expansion device 116A so that the value of (pressure Ph ⁇ pressure Pb) becomes a value at which a part of the gas refrigerant is liquefied in the heat source side heat exchanger 103A.
  • the relationship between (pressure Ph ⁇ pressure Pb) and the opening degree of the bypass throttle device 116 ⁇ / b> A may be registered in the memory 21 in advance.
  • the heat source unit 100B performs the heating operation. That is, the high-temperature and high-pressure gas refrigerant pressurized by the compressor 101 ⁇ / b> B flows into the load-side heat exchanger 201 of the load-side unit 200 through the header 132 and the refrigerant pipe 105. The intermediate-pressure liquid or gas-liquid two-phase refrigerant that has passed through the load-side heat exchanger 201 reaches the header 134 through the refrigerant pipe 106.
  • the refrigerant that has passed through the heat source side heat exchanger 103 ⁇ / b> A that performs defrost heat exchange and the refrigerant that has returned from the load side unit 200 through the refrigerant pipe 106 join together.
  • the combined refrigerant passes through the heat source side heat exchanger 103B of the heat source side unit 100B and evaporates by exchanging heat with the outside air to become a gas refrigerant. Since the heat source side heat exchanger 103B of the heat source side unit 100B performing the heating operation functions as an evaporator, it is preferable to operate the blower 109B in order to promote the evaporation performance.
  • Part of the gas refrigerant that has passed through the heat source side heat exchanger 103B returns to the compressor 101B via the refrigerant pipes 153B, 154B, 156B and the accumulator 104B.
  • the remainder of the gas refrigerant that has passed through the heat source side heat exchanger 103B passes through the connection pipe 113 and returns to the heat source side unit 100A.
  • the refrigerant that has passed through the connection pipe 113 returns to the compressor 101A via the refrigerant pipes 154A and 156A and the accumulator 104A.
  • the refrigerant returned to the compressor 101A and the compressor 101B is sucked and pressurized, and then discharged.
  • step S4 the control unit 20 repeats the processes of step S2 and step S3 until the defrosting is completed (step S4). For example, when the time from the start of the defrosting operation has reached a predetermined time, when an instruction to end the defrosting operation is input from a remote controller (not shown), and the other heat source side This is the case when the unit needs to be defrosted.
  • the heat source side unit 100A performs the defrosting operation and the heat source side unit 100B performs the heating operation.
  • the heat source side unit 100B performs the defrosting operation
  • the heat source side unit 100B performs the defrosting operation.
  • the unit 100A may perform the heating operation. In this way, one unit of the heat source side unit 100A and the heat source side unit 100B performs the defrosting operation, and the other unit performs the heating operation, thereby performing the defrosting operation while performing the heating operation. it can.
  • heat source side units When there are three or more heat source side units, some heat source side units that perform the defrosting operation operate in the same manner as the heat source side unit 100A, and other heat source side units that perform the heating operation operate in the same manner as the heat source side unit 100B. It only has to work.
  • the air conditioner of the first embodiment branches a refrigerant pipe 105 connected to a plurality of heat source side units 100A and 100B, a load side unit 200, and a load side heat exchanger 201 to a plurality of compressors 101A and 101B.
  • the control unit 20 includes a plurality of bypass pressure sensors 114A and 114B provided between the control devices 116A and 116B and the header 134, and the control unit 20 is a part of the heat source side unit 100A that performs the defrosting operation.
  • the flow path control means 32 for allowing a part of the refrigerant discharged from the compressor 101A to flow into the heat source side heat exchanger 103A, and the difference between the pressure detected by the discharge pressure sensor 142A and the pressure detected by the bypass pressure sensor 114A Pressure control means 33 for adjusting the opening degree of the bypass throttling device 116A so that is equal to or greater than a predetermined value.
  • the downstream side of the heat source side heat exchanger to be defrosted when a part of the heat source side units is defrosted while continuing the heating operation in the air conditioner having a plurality of heat source side units, the downstream side of the heat source side heat exchanger to be defrosted.
  • Part of the refrigerant is liquefied by appropriately controlling the pressure of the heat source side heat exchanger to be defrosted so that the difference between the refrigerant pressure on the side and the discharge pressure of the compressor is equal to or greater than a predetermined value.
  • the defrosting capacity be increased by utilizing the latent heat of the refrigerant, but also a high heating capacity can be maintained.
  • the flow path control unit 32 controls the circuit switching unit 117B of the other heat source side unit 100B to connect the heat source side heat exchanger 103B to the suction sides of the plurality of compressors 101A and 101B. You may make it connect to the connection piping 113 which is. Since the refrigerant used in the defrosting operation flows into the other heat source side unit 100B through the header 134, the refrigerant used in the heating and defrosting is vaporized in the heat source side unit 100B, and then is connected via the connection pipe 113. Are distributed to the plurality of heat source side units 100A and 100B. Therefore, it is possible to prevent the refrigerant from being biased toward the heat source side unit 100B that performs the heating operation.
  • refrigerant is supplied to the heat source side unit that performs the heating operation from the difference in the operation cycle between the heat source side unit that performs the heating operation and the heat source side unit that performs the defrosting operation. Will be biased. If the defrosting operation is continued for a long time, the discharge temperature of the compressor of the heat source side unit that performs the defrosting operation becomes excessively high, causing a large amount of liquid inflow (liquid back), etc., and the compressor is stable. It becomes impossible to drive.
  • the connection pipe 113 is provided in the air conditioner as in the first embodiment, the heat source side unit 100A performing the defrosting operation and the other heat source side unit 100B performing the heating operation. It is possible to prevent the refrigerant from returning to the heat source side unit 100B performing the heating operation evenly and biasing the refrigerant.
  • the pressure control means 33 determines that the difference between the pressure detected by the discharge pressure sensor 142A and the pressure detected by the bypass pressure sensor 114A is the refrigerant in the heat source side heat exchanger 103A. You may adjust the opening degree of the bypass expansion apparatus 116A so that a part may become a liquefying value. In this case, since the heat source side heat exchanger 103A functions as a condenser, a part of the refrigerant is liquefied, and defrosting using the latent heat of the refrigerant can be reliably performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本発明の空気調和装置は、圧縮機および熱源側熱交換器を含む複数の熱源側ユニットと、負荷側熱交換器および負荷側絞り装置と、負荷側熱交換器の接続先を複数の圧縮機に分岐する第1ヘッダーと、負荷側絞り装置の接続先を複数の熱源側熱交換器に分岐する第2ヘッダーと、複数の熱源側熱交換器と第2ヘッダーとの間に設けられた複数のバイパス絞り装置と、熱源側熱交換器を圧縮機の吸入側または吐出側に接続させる複数の回路切替部と、複数の圧縮機の吐出側に設けられた複数の吐出圧力センサと、複数のバイパス絞り装置と第2ヘッダーとの間に設けられた複数のバイパス圧力センサと、除霜対象の熱源側ユニットにおいて、回路切替部を制御して圧縮機から吐出される冷媒の一部を熱源側熱交換器に流入させ、吐出圧力センサの値とバイパス圧力センサの値との差が予め決められた値以上になるようにバイパス絞り装置の開度を調節する制御部と、を有するものである。

Description

空気調和装置
 本発明は、複数の熱源側ユニットを有する空気調和装置に関する。
 空気調和装置において、外気温が低いときに暖房運転を行うと、蒸発器として機能する室外熱交換器のフィン表面および冷媒配管に霜が付着する場合がある。室外熱交換器のフィン表面および冷媒配管に霜が付着すると、室外熱交換器の風路圧力損失が増大して、伝熱性能が低下してしまうため、定期的に暖房運転を止め室外機を除霜運転させる必要がある。除霜運転を行っている間、暖房運転が停止しているため、室内の人に冷風感を生じさせるという問題点があった。
 上記の問題点に対して、除霜運転時にも暖房運転を実行し、除霜運転時の快適性を維持するようにした空気調和システムが開示されている(例えば、特許文献1参照)。複数台の室外機を備えた空気調和装置の別の一例が特許文献2に開示されている。特許文献2に開示された空気調和装置は、除霜運転する際にシステム全体の負荷の大きさを判断し、暖房運転と並行に除霜運転を実施しても、室内側で温度が低下して不快感を与えない場合に、除霜運転を実行している。
特開2008-175410号公報 特開2012-107790号公報
 特許文献1および特許文献2に開示されたような、複数台の室外機を有する空気調和装置において暖房運転を継続しながら除霜運転を行うと、除霜対象の熱交換器での冷媒圧力は圧縮機吸入圧力と同等の低圧状態(飽和圧力が低い状態)になってしまう。そのため、除霜時は冷媒の顕熱分の熱交換しか行えず、冷媒流量に対して高い除霜能力を得ることができない。
 本発明は、上記のような課題を解決するためになされたもので、複数の熱源側ユニットにおいて暖房運転を継続しながら除霜運転する際、高い暖房能力を維持し、除霜能力を高められる空気調和装置を得るものである。
 本発明に係る空気調和装置は、圧縮機および熱源側熱交換器を含む複数の熱源側ユニットと、負荷側熱交換器および負荷側絞り装置を含む負荷側ユニットと、前記負荷側熱交換器に接続される冷媒配管を複数の前記圧縮機に分岐する第1ヘッダーと、前記負荷側絞り装置に接続される冷媒配管を複数の前記熱源側熱交換器に分岐する第2ヘッダーと、前記複数の熱源側熱交換器と前記第2ヘッダーとの間に設けられた複数のバイパス絞り装置と、前記複数の熱源側ユニットのそれぞれに設けられ、前記熱源側熱交換器を前記圧縮機の吸入側または吐出側に接続させる回路切替部と、前記複数の圧縮機の吐出側に対応して設けられた複数の吐出圧力センサと、前記複数のバイパス絞り装置と前記第2ヘッダーとの間に設けられた複数のバイパス圧力センサと、前記複数の熱源側ユニットのうち、一部の熱源側ユニットに前記熱源側熱交換器の除霜を行わせるとともに、他の熱源側ユニットの前記熱源側熱交換器を蒸発器として機能させる制御部と、を有し、前記制御部は、前記一部の熱源側ユニットにおいて、前記回路切替部を制御して前記圧縮機から吐出される冷媒の一部を前記熱源側熱交換器に流入させる流路制御手段と、前記一部の熱源側ユニットにおいて、前記吐出圧力センサが検知する圧力と前記バイパス圧力センサが検知する圧力との差が予め決められた値以上になるように前記バイパス絞り装置の開度を調節する圧力制御手段と、を有するものである。
 本発明は、複数の熱源側ユニットを有する空気調和装置において暖房運転を継続しながら一部の熱源側ユニットを除霜運転する際、除霜対象の熱源側熱交換器の下流側の冷媒圧力と圧縮機の吐出圧力との差が予め決められた値以上になるように除霜対象の熱源側熱交換器の圧力を適正に制御することにより、冷媒の潜熱を利用して除霜能力を高められるだけでなく、高い暖房能力を維持できる。
本発明の実施の形態1における空気調和装置の一構成例を示す冷媒回路図である。 図1に示した空気調和装置における制御を説明するための機能ブロック図である。 図2に示した制御部の一構成例を示す機能ブロック図である。 図1に示した空気調和装置の除霜運転時の動作手順を示すフローチャートである。
実施の形態1
 図1は、本発明の実施の形態1における空気調和装置の一構成例を示す冷媒回路図である。図1を参照して、本実施の形態1における空気調和装置の冷媒回路構成について説明する。図1に示す空気調和装置1は、ビルおよびマンション等の建物に設置され、空調用の冷媒を循環させるヒートポンプ式冷凍サイクルを利用して、空調対象空間に対して冷房と暖房とができるものである。なお、本実施の形態1の説明に用いる図面では、各構成部材の相対的な大きさの関係は実際のものとは異なる場合がある。
[空気調和装置の概要]
 図1に示すように、空気調和装置1は、熱源側ユニット100A、100Bと、負荷側ユニット200とを有する。熱源側ユニット100A、100Bは室外に設置され、負荷側ユニット200は室内に設置されている。熱源側ユニット100A、100Bおよび負荷側ユニット200は冷媒配管で接続されている。熱源側ユニット100A、100Bおよび負荷側ユニット200は、主冷媒回路を構成して冷媒を循環させ、空調対象空間の暖房および冷房を行う。
 冷媒配管は、暖房運転時に、ガス冷媒が流れる冷媒配管105と、液冷媒または気液二相冷媒が流れる冷媒配管106とを含む。熱源側ユニット100A、100Bと負荷側ユニット200とを接続する冷媒配管として、冷媒配管150A、150Bおよび冷媒配管160A、160Bが設けられている。また、熱源側ユニット100Aおよび熱源側ユニット100Bを接続する冷媒配管として、接続配管113が設けられている。
 冷媒回路に循環させる冷媒は、特に限定されず、例えば、HFC系冷媒であるR410A、R404AまたはHFO(ハイドロ・フルオロ・オレフィン)等である。冷媒は、自然冷媒であるCOまたはアンモニア等であってもよい。
 本実施の形態1では、空気調和装置1は2台の熱源側ユニットと1台の負荷側ユニットとが接続された構成の場合で説明するが、熱源側ユニットの数が2台以上であれば、これらのユニットの台数は図1に示す場合に限定されない。
[熱源側ユニット]
 図1に示した熱源側ユニット100Aの構成を説明する。熱源側ユニット100Bは熱源側ユニット100Aと同様な構成なため、熱源側ユニット100Bの構成に関する詳細な説明を省略する。
 図1に示すように、熱源側ユニット100Aは、圧縮機101A、四方弁102A、熱源側熱交換器103A、アキュームレータ104Aおよび送風機109Aを有する。圧縮機101Aの吐出側は冷媒配管151Aを介しては四方弁102Aと接続されている。四方弁102Aは冷媒配管153Aを介して熱源側熱交換器103Aと接続されている。圧縮機101Aの吐出側と熱源側熱交換器103Aとを接続するためのバイパス回路115Aが設けられている。冷媒配管153Aには主回路用弁107Aが設けられ、バイパス回路115Aにはバイパス回路弁108Aが設けられている。四方弁102Aは、冷媒配管151A、153Aの他に、冷媒配管152A、154Aと接続されている。
 熱源側熱交換器103Aは、冷媒配管153Aとの接続口とは反対側の接続口が冷媒配管155Aと接続されている。冷媒配管155Aにはバイパス絞り装置116Aが設けられている。アキュームレータ104Aの冷媒入口は冷媒配管156Aを介して冷媒配管154Aの途中に接続されている。アキュームレータ104Aの冷媒出口は圧縮機101Aの吸入口と接続されている。
 圧縮機101Aの吐出側の冷媒配管151Aには、吐出温度センサ112Aおよび吐出圧力センサ142Aが設けられている。アキュームレータ104Aの冷媒入口側の冷媒配管156Aには、流入温度センサ111Aおよび流入圧力センサ141Aが設けられている。冷媒配管155Aにおいて、熱源側熱交換器103Aとの接続口近くに熱交換器温度センサ110Aが設けられている。また、冷媒配管155Aにおいて、バイパス絞り装置116Aを基準にして、熱源側熱交換器103Aとは反対側にバイパス圧力センサ114Aが設けられている。
 上述した構成の他に、空気調和装置1を制御する制御部20が熱源側筐体120A内に収容されている。各センサは信号線を介して制御部20と接続されている。制御部20の構成の詳細は後で説明する。制御部20の設置場所は、熱源側ユニット100Aに限らず、熱源側ユニット100Bまたは負荷側ユニット200であってもよい。制御部20はこれらのユニットと無線または有線で信号を送受信できるように電気的に接続されていればよく、制御部20の設置場所はこれらのユニット内に限らない。
 圧縮機101Aは、吸入する冷媒を圧縮し、冷媒を高温および高圧の状態にして吐出する。四方弁102Aは、空気調和装置1が冷房運転と暖房運転のいずれかの運転状態であるかに応じて、冷媒回路に流れる冷媒の流れを切り替える。具体的には、冷房運転の場合、四方弁102Aは、冷媒配管151Aを冷媒配管153Aと接続し、冷媒配管152Aを冷媒配管154Aと接続する。暖房運転の場合、四方弁102Aは、冷媒配管151Aを冷媒配管152Aと接続し、冷媒配管153Aを冷媒配管154Aと接続する。
 なお、空気調和装置1が冷房運転をする場合、熱源側熱交換器103Aは凝縮器として機能する。以下では、熱源側熱交換器103Aが凝縮器として機能する場合の熱源側ユニット100Aの運転を冷房用運転と称する。また、熱源側熱交換器103Aが蒸発器として機能する場合の熱源側ユニット100Aの運転を暖房用運転と称する。熱源側熱交換器103Aの除霜を行うときの熱源側ユニット100Aの運転を除霜運転と称する。
 熱源側熱交換器103Aは、周囲の空気と熱源側熱交換器103A内を流れる冷媒との熱交換を行う。熱源側熱交換器103Aは、蒸発器として機能する場合、冷媒を蒸発ガス化させる。熱源側熱交換器103Aは、放熱器(凝縮器)として機能する場合、冷媒を凝縮液化させる。本実施の形態1では、熱源側熱交換器103Aは1台の熱交換器を有する場合で説明するが、複数の熱交換器を有する構成であってもよい。
 送風機109Aは、熱源側熱交換器103Aに送風する。アキュームレータ104Aは、四方弁102Aと圧縮機101Aとの間に配置され、過剰な冷媒を貯留する。アキュームレータ104Aは、例えば、過剰な冷媒を貯留する容器である。
 主回路用弁107Aおよびバイパス回路弁108Aは、例えば、電磁弁であり、弁開度を調整することで、冷媒回路に流れる冷媒の流量を調整する。主回路用弁107Aは、四方弁102Aと熱源側熱交換器103Aとの間の流路に配置されている。バイパス回路弁108Aは、圧縮機101Aの吐出側と熱源側熱交換器103Aとの間の流路に配置されている。主回路用弁107Aおよびバイパス回路弁108Aは、熱源側熱交換器103Aを圧縮機101Aの吸入側または吐出側に接続させる回路切替部117Aを構成する。
 熱交換器温度センサ110A、流入温度センサ111Aおよび吐出温度センサ112Aは、例えば、サーミスタである。熱交換器温度センサ110Aは、熱源側熱交換器103Aに流れる冷媒の温度を検知する。流入温度センサ111Aは、アキュームレータ104Aに流入する冷媒の温度を検知する。吐出温度センサ112Aは、圧縮機101Aから吐出される冷媒の温度を検知する。
 熱交換器温度センサ110Aは、例えば、熱源側熱交換器103Aに取り付けられる。熱交換器温度センサ110Aは、空気調和装置1の冷房運転および除霜運転の各運転状態において冷媒流出側の冷媒温度を検出する。また、熱交換器温度センサ110Aは、図1に示すように、熱源側熱交換器103Aとバイパス絞り装置116Aとの間に設置されてもよい。この場合、熱交換器温度センサ110Aは、熱源側ユニット100Aが暖房用運転時に熱源側熱交換器103Aに流入する冷媒の温度を検知する。そのため、制御部20は、熱交換器温度センサ110Aが検知する温度に基づいて、熱源側ユニット100Aが、除霜運転を行っているか、暖房用運転を行っているかを判断することができる。
 流入圧力センサ141A、吐出圧力センサ142Aおよびバイパス圧力センサ114Aは冷媒の圧力を検知するセンサである。流入圧力センサ141Aはアキュームレータ104Aに流入する冷媒の圧力を検知する。吐出圧力センサ142Aは圧縮機101Aから吐出される冷媒の圧力を検知する。バイパス圧力センサ114Aは、熱源側熱交換器103Aの除霜時にバイパス絞り装置116Aから流出する冷媒の圧力を検知する。
 制御部20は、流入圧力センサ141Aが検知する圧力の値からアキュームレータ104Aに流れ込む冷媒の飽和温度を得ることができる。制御部20は、飽和温度と流入温度センサ111Aの温度とを比較することによりアキュームレータ104Aに流入する冷媒の状態が過熱ガスであるかどうかを判断することができる。
 制御部20は、吐出圧力センサ142Aが検知する圧力の値から圧縮機101Aから吐出される冷媒の飽和温度を得ることができる。制御部20は、飽和温度と吐出温度センサ112Aの温度とを比較することにより圧縮機101Aから吐出される冷媒の状態が過熱ガスであるかどうかを判断することができる。
 制御部20は、バイパス圧力センサ114Aが検知する圧力と吐出圧力センサ142Aが検知する圧力とを比較することで、熱源側熱交換器103Aにおいて、冷媒の潜熱を利用して除霜が行われているか否かを判断することができる。なお、負荷側ユニット200に供給する冷媒を過冷却するための冷媒熱交換器が冷媒配管155Aに設けられていてもよい。
[負荷側ユニット]
 図1に示した負荷側ユニット200の構成を説明する。負荷側ユニット200は、負荷側熱交換器201、負荷側絞り装置202、および送風機203を有する。これらの構成は負荷側筐体204内に収容されている。負荷側熱交換器201と負荷側絞り装置202とは直列に接続されている。負荷側熱交換器201は冷媒配管105に接続され、負荷側絞り装置202は冷媒配管106に接続されている。
 負荷側熱交換器201は、空調対象空間の空気と負荷側熱交換器201内を流れる冷媒との熱交換を行う。負荷側熱交換器201は、蒸発器として機能する場合、冷媒を蒸発ガス化させる。負荷側熱交換器201は、放熱器として機能する場合、冷媒を凝縮液化させる。送風機203は、負荷側熱交換器201に送風する。
 負荷側絞り装置202は、減圧弁および膨張弁として機能し、冷媒を減圧および膨張させる。負荷側絞り装置202は、例えば、弁開度を可変に制御できる電子式膨張弁であり、弁開度を調整することで、緻密な流量制御を行うことができる。負荷側絞り装置202は、毛細管等の安価な冷媒流量調節手段であってもよい。
[ユニット間を接続する構成]
 熱源側ユニット100A、100Bと負荷側ユニット200との間に、冷媒配管105を冷媒配管150A、150Bに分岐するヘッダー132が設けられている。冷媒配管150A、150Bのそれぞれは冷媒配管152A、152Bのそれぞれと接続されている。また、冷媒配管106を冷媒配管160A、160Bに分岐するヘッダー134が設けられている。冷媒配管160A、160Bのそれぞれは冷媒配管155A、155Bのそれぞれと接続されている。接続配管113は熱源側ユニット100Aの冷媒配管154Aおよび熱源側ユニット100Bの冷媒配管154Bと接続されている。
[制御部の構成]
 図2は、図1に示した空気調和装置における制御を説明するための機能ブロック図である。図2に示すように、制御部20は、プログラムを記憶するメモリ21と、プログラムにしたがって処理を実行するCPU(Central Processing Unit)22とを有する。メモリ21は、例えば、不揮発性メモリである。制御部20は、圧縮機101A、101B、送風機109A、109Bおよび送風機203と信号線を介して接続されている。制御部20は、主回路用弁107A、107B、バイパス回路弁108A、108B、四方弁102A、102B、バイパス絞り装置116A、116Bおよび負荷側絞り装置202と信号線を介して接続されている。
 また、制御部20は、熱交換器温度センサ110A、110B、流入温度センサ111A、111Bおよび吐出温度センサ112A、112Bと信号線を介して接続されている。制御部20には、これらの温度センサから温度の値を示す信号である温度検知信号が入力される。制御部20は、流入圧力センサ141A、141B、吐出圧力センサ142A、142Bおよびバイパス圧力センサ114Aと信号線を介して接続されている。制御部20には、これらの圧力センサから圧力の値を示す信号である圧力検知信号が入力される。制御部20は、室内に設置されたリモートコントローラ(不図示)と信号線を介して接続されている。
 制御部20は、リモートコントローラ(不図示)から入力される指示と各センサから入力される検知信号とに基づいて、圧縮機101A、101B、送風機109A、109Bおよび送風機203の起動および停止と、これらの機器の運転周波数を制御する。また、制御部20は、リモートコントローラ(不図示)から入力される指示と各センサから入力される検知信号とに基づいて、主回路用弁107A、107Bおよびバイパス回路弁108A、108Bの開閉と、四方弁102A、102Bにおける流路の切り替えを制御する。制御部20は、リモートコントローラ(不図示)から入力される指示と各センサから入力される検知信号とに基づいて、バイパス絞り装置116A、116Bおよび負荷側絞り装置202の開度を制御する。
 図3は、図2に示した制御部の一構成例を示す機能ブロック図である。図3に示すように、制御部20は、冷凍サイクル制御手段31と、流路制御手段32と、圧力制御手段33とを有する。図2に示したCPU22がプログラムを実行することで、冷凍サイクル制御手段31、流路制御手段32および圧力制御手段33が空気調和装置1に構成される。
 冷凍サイクル制御手段31は、リモートコントローラ(不図示)から暖房運転の指示が入力されると、主回路用弁107A、107Bを開状態、バイパス回路弁108A、108Bを閉状態、バイパス絞り装置116A、116Bの開度を全開にした状態で圧縮機101A、101Bと送風機109A、109B、203を起動する。冷凍サイクル制御手段31は、各種センサの値に基づいて、圧縮機101A、101Bおよび送風機109A、109B、203の運転周波数と、負荷側絞り装置202の開度を制御する。
 冷凍サイクル制御手段31は、熱交換器温度センサ110A、110Bが検知する温度を監視する。冷凍サイクル制御手段31は、熱交換器温度センサ110A、110Bのうち、いずれかの温度センサが検知する温度が予め決められた閾値以上になると、その温度センサに対応する熱源側熱交換器に生じた霜により蒸発器としての能力が低下していると判断する。そして、冷凍サイクル制御手段31は、除霜が必要と判断した熱源側熱交換器を含む熱源側ユニットを流路制御手段32に通知する。なお、冷凍サイクル制御手段31は、除霜運転が必要な熱源側ユニットを指示する入力がリモートコントローラ(不図示)からあったとき、除霜運転させる熱源側ユニットを流路制御手段32に通知してもよい。
 流路制御手段32は、冷凍サイクル制御手段31から通知された熱源側ユニットにおいて、回路切替部を制御して圧縮機から吐出される冷媒の一部を熱源側熱交換器に流入させる。そして、流路制御手段32は、除霜運転させる熱源側ユニットを圧力制御手段33に通知する。例えば、熱源側ユニット100Aが除霜運転を行う場合、流路制御手段32は、バイパス回路弁108Aを開け、主回路用弁107Aを閉じる。流路制御手段32は、除霜運転させる熱源側ユニット100Aを圧力制御手段33に通知する。なお、暖房用運転を行っている熱源側ユニット100Bに対しては、流路制御手段32は、回路切替部117Bを制御して、バイパス回路弁108Aを閉状態、主回路用弁107Aを開状態にしておく。
 圧力制御手段33は、流路制御手段32から通知された熱源側ユニット100Aにおいて、吐出圧力センサ142Aが検知する圧力Phとバイパス圧力センサ114Aが検知する圧力Pbとの差が予め決められた値Δp以上になるようにバイパス絞り装置116Aの開度を調節する。
[空気調和装置における暖房運転時の動作]
 次に、空気調和装置1の暖房運転時の動作について説明する。熱源側ユニット100A、100Bにおいて、主回路用弁107A、107Bは開状態であり、バイパス回路弁108A、108Bは閉状態である。以下の説明では、高圧および低圧は、冷媒回路内における圧力の相対的な関係を表すものとする。温度についても、圧力と同様であり、高温および低温は、冷媒回路内における温度の相対的な関係を表す。
 熱源側ユニット100A、100Bの圧縮機101A、101Bで加圧された高温高圧のガス冷媒は、四方弁102A、102Bを通って、ヘッダー132に流入する。圧縮機101Aで加圧された冷媒と圧縮機101Bで加圧された冷媒とが、ヘッダー132で合流して、負荷側ユニット200に流入する。
 負荷側ユニット200に流入した冷媒は、負荷側熱交換器201を通過する際、室内の空気と熱交換を行って放熱し、凝縮する。負荷側熱交換器201に流入する冷媒の圧力は、負荷側絞り装置202によって調整される。負荷側熱交換器201内を通過した中間圧力の液体または気液二相状態の冷媒は、ヘッダー134で分流し、熱源側ユニット100Aおよび熱源側ユニット100Bに流入する。
 熱源側ユニット100A、100Bに流入した冷媒は、熱源側熱交換器103A、103Bを通過する際、外気と熱交換を行うことで蒸発してガス冷媒となる。このガス冷媒は、四方弁102A、102Bおよびアキュームレータ104A、104Bを介して圧縮機101A、101Bに吸入される。圧縮機101A、101Bに吸入された冷媒は、再び加圧されて圧縮機101A、101Bから吐出される。
[空気調和装置における除霜運転時の動作]
 次に、本実施の形態1における空気調和装置1の除霜運転時の動作について、図1および図4を参照して説明する。図4は、図1に示した空気調和装置の除霜運転時の動作手順を示すフローチャートである。ここでは、熱源側ユニット100Bが暖房用運転を行いながら、熱源側ユニット100Aが除霜運転を行う場合で説明する。初期状態では、流路制御手段32の制御にしたがって、主回路用弁107A、107Bは開状態であり、バイパス回路弁108A、108Bは閉状態になっている。
 熱源側ユニット100Aにて、除霜運転を行う場合、制御部20は、バイパス回路弁108Aを開け、主回路用弁107Aを閉じる(ステップS1)。これによって、圧縮機101Aから吐出される高温冷媒の一部は、バイパス回路弁108Aを経由して熱源側熱交換器103Aに流入する。なお、圧縮機101Aから吐出される高温冷媒のうち、熱源側熱交換器103Aに流入する冷媒を除く冷媒は、冷媒配管152Aおよびヘッダー132を介して、負荷側ユニット200の負荷側熱交換器201に流入する。
 高温の冷媒は、熱源側熱交換器103Aに流入すると、熱源側熱交換器103Aに付着した霜と熱交換を行う。具体的には、熱源側熱交換器103Aに付着した霜は、高温のガス冷媒の熱を吸熱する。その結果、熱源側熱交換器103Aに付着した霜は、融解して流れ落ちる。このとき、上記のように、主回路用弁107Aは閉状態なので、除霜後の冷媒はアキュームレータ104Aへは流れず、バイパス絞り装置116Aによって減圧された後、冷媒配管155Aから冷媒配管160Aを経由してヘッダー134に到達する。なお、制御部20は、除霜運転を行っている熱源側ユニット100Aの送風機109Aを停止してもよい。この場合、外気の吸熱による除霜性能の悪化を抑えることができる。
 制御部20は、バイパス圧力センサ114Aから圧力Pbの値を読み、吐出圧力センサ142Aから圧力Phの値を読む。そして、制御部20は、圧力Phと圧力Pbとの差が予め決められた値Δp以上か否かを判定する(ステップS2)。制御部20は、(圧力Ph-圧力Pb)の値がΔp以上であれば、圧力Pbの監視を継続する。ステップS2の判定の結果、(圧力Ph-圧力Pb)の値がΔpより小さい場合、制御部20は、(圧力Ph-圧力Pb)の値がΔp以上になるように、バイパス絞り装置116Aの開度を調節する(ステップS3)。熱源側熱交換器103Aにおける圧力が圧縮機101Aの吸入圧力と同程度まで低い圧力になってしまうと、除霜時に冷媒の顕熱分の熱交換しか行えず、冷媒流量に対して高い除霜能力が得られないからである。
 除霜対象の熱交換器の冷媒圧力は除霜運転中の除霜能力と暖房運転の暖房能力に影響する。除霜対象の熱交換器の冷媒圧力が低いと、除霜時の冷媒飽和温度は外気温度と比較して低くなり、冷媒の潜熱を利用できず除霜能力が小さくなってしまう。一方、除霜対象の熱交換器の冷媒圧力が高くなるほど、除霜対象の熱交換器での冷媒飽和温度が高くなり、除霜に冷媒潜熱を利用でき除霜能力は上がるが、除霜熱交換器でより多くの冷媒が凝縮し、暖房運転側が冷媒不足となり暖房能力が発揮できなくなってしまう。そこで、除霜対象の熱交換器の冷媒圧力を系内の冷媒を過不足無く使用できる(余剰冷媒分が除霜熱交にたまる)圧力にするのが、最も除霜能力および暖房能力の観点で効率の良い運転状態となる。
 冷媒の潜熱を利用して除霜を行うためには、除霜対象の熱交換器において、圧縮機から流入するガス冷媒の一部が液化するような圧力になっていればよい。本実施の形態1では、制御部20が、バイパス絞り装置116Aの開度を制御して、熱源側熱交換器103Aから流出するガス冷媒の流路を絞って熱源側熱交換器103Aを凝縮器のように機能させることで、熱源側熱交換器103Aにおいてガス冷媒の一部を液化させる。具体的には、圧力制御手段33は、(圧力Ph-圧力Pb)の値が熱源側熱交換器103Aにおいてガス冷媒の一部が液化する値になるようにバイパス絞り装置116Aの開度を調節する。(圧力Ph-圧力Pb)とバイパス絞り装置116Aの開度との関係が予めメモリ21に登録されていてもよい。
 ただし、熱源側熱交換器103Aにおいて、ガス冷媒の全てを液化させる必要はない。例えば、上記のように送風機109Aを停止すれば、必要以上にガス冷媒を液化してしまうことを防げる。
 図1および図4の説明に戻ると、熱源側ユニット100Aが除霜運転を行っている間、熱源側ユニット100Bは暖房用運転を行う。すなわち、圧縮機101Bで加圧された高温高圧のガス冷媒は、ヘッダー132および冷媒配管105を通って、負荷側ユニット200の負荷側熱交換器201内に流入する。負荷側熱交換器201内を通過した中間圧力の液体または気液二相状態の冷媒は、冷媒配管106を通ってヘッダー134に到達する。
 ヘッダー134において、除霜熱交を行う熱源側熱交換器103Aを通過した冷媒と、負荷側ユニット200から冷媒配管106を通って戻ってきた冷媒とが合流する。合流後の冷媒は、熱源側ユニット100Bの熱源側熱交換器103Bを通過する際、外気と熱交換を行うことで蒸発してガス冷媒となる。暖房用運転を行っている熱源側ユニット100Bの熱源側熱交換器103Bは蒸発器として機能しているので、蒸発性能を促進させるために送風機109Bを運転させた方がよい。
 熱源側熱交換器103Bを通過したガス冷媒の一部は、冷媒配管153B、154B、156Bおよびアキュームレータ104Bを経由して圧縮機101Bに戻る。熱源側熱交換器103Bを通過したガス冷媒の残りは、接続配管113を通って、熱源側ユニット100Aに戻る。具体的には、接続配管113を通過した冷媒は、冷媒配管154A、156Aおよびアキュームレータ104Aを経由して圧縮機101Aに戻る。圧縮機101Aおよび圧縮機101Bに戻った冷媒は、吸入され加圧された後、吐出される。
 図4に示す手順において、制御部20は、除霜終了になるまで、ステップS2およびステップS3の処理を繰り返す(ステップS4)。除霜終了は、例えば、除霜運転開始からの時間が予め決められた時間に到達した場合、リモートコントローラ(不図示)から除霜運転の終了の指示が入力された場合、および他の熱源側ユニットで除霜運転が必要になった場合などである。
 図1および図4を参照して、熱源側ユニット100Aが除霜運転を行い、熱源側ユニット100Bが暖房用運転を行う場合で説明したが、熱源側ユニット100Bが除霜運転を行い、熱源側ユニット100Aが暖房用運転を行ってもよい。このように、熱源側ユニット100Aおよび熱源側ユニット100Bのうち、一方のユニットが除霜運転を行い、他方のユニットが暖房用運転を行うことで、暖房運転を行いながら除霜運転を行うことができる。
 熱源側ユニットが3つ以上の場合、除霜運転を行う一部の熱源側ユニットが熱源側ユニット100Aと同様に動作し、暖房用運転を行う他の熱源側ユニットは熱源側ユニット100Bと同様に動作すればよい。熱源側ユニットの総数がXtであり、Xtのうち、暖房用運転を行う熱源側ユニットの数をXwとし、除霜運転を行う熱源側ユニットの数をXdとすると、XwとXdの関係は、Xw≧Xd、Xt=Xw+Xdであることが望ましい。
 本実施の形態1の空気調和装置は、複数の熱源側ユニット100A、100Bと、負荷側ユニット200と、負荷側熱交換器201に接続される冷媒配管105を複数の圧縮機101A、101Bに分岐するヘッダー132と、負荷側絞り装置202に接続される冷媒配管を複数の熱源側熱交換器103A、103Bに分岐するヘッダー134と、複数の熱源側熱交換器103A、103Bとヘッダー134との間に設けられた複数のバイパス絞り装置116A、116Bと、熱源側熱交換器103A、103Bを圧縮機101A、101Bの吸入側または吐出側に接続させる回路切替部117A、117Bと、複数の圧縮機101A、101Bの吐出側に対応して設けられた複数の吐出圧力センサ142A、142Bと、複数のバイパス絞り装置116A、116Bとヘッダー134との間に設けられた複数のバイパス圧力センサ114A、114Bと、制御部20とを有し、制御部20は、除霜運転を行う一部の熱源側ユニット100Aにおいて、圧縮機101Aから吐出される冷媒の一部を熱源側熱交換器103Aに流入させる流路制御手段32と、吐出圧力センサ142Aが検知する圧力とバイパス圧力センサ114Aが検知する圧力との差が予め決められた値以上になるようにバイパス絞り装置116Aの開度を調節する圧力制御手段33とを有するものである。
 本実施の形態1によれば、複数の熱源側ユニットを有する空気調和装置において暖房運転を継続しながら一部の熱源側ユニットを除霜運転する際、除霜対象の熱源側熱交換器の下流側の冷媒圧力と圧縮機の吐出圧力との差が予め決められた値以上になるように除霜対象の熱源側熱交換器の圧力を適正に制御することにより、冷媒の一部を液化し、冷媒の潜熱を利用して除霜能力を高められるだけでなく、高い暖房能力を維持できる。
 本実施の形態1において、流路制御手段32が、他の熱源側ユニット100Bの回路切替部117Bを制御して熱源側熱交換器103Bを、複数の圧縮機101A、101Bの吸入側と接続される接続配管113に接続させるようにしてもよい。除霜運転で使用された冷媒がヘッダー134を介して他の熱源側ユニット100Bに流入するので、暖房および除霜で使用された冷媒が熱源側ユニット100Bで気化された後、接続配管113を介して複数の熱源側ユニット100A、100Bに分配される。そのため、暖房用運転を行う熱源側ユニット100Bに冷媒が偏ってしまうことを防ぐことができる。
 特許文献1および特許文献2に開示された装置およびシステムでは、暖房用運転を行う熱源側ユニットと除霜運転を行う熱源側ユニットとの運転サイクルの違いから暖房用運転を行う熱源側ユニットに冷媒が偏ってしまう。長時間除霜運転を続けると、除霜運転を行う熱源側ユニットの圧縮機の吐出温度が過昇になり、圧縮機への多量の液流入(液バック)等を引き起こし、圧縮機は安定した運転ができなくなってしまう。これに対して、本実施の形態1のように接続配管113が空気調和装置に設けられていると、除霜運転を行う熱源側ユニット100Aと暖房用運転を行う他の熱源側ユニット100Bとに均等に冷媒が戻り、暖房用運転を行う熱源側ユニット100Bに冷媒が偏ってしまうことを防ぐことができる。
 また、除霜運転を行う熱源側ユニット100Aにおいて、圧力制御手段33は、吐出圧力センサ142Aが検知する圧力とバイパス圧力センサ114Aが検知する圧力との差が、熱源側熱交換器103Aにおける冷媒の一部が液化する値になるようにバイパス絞り装置116Aの開度を調節してもよい。この場合、熱源側熱交換器103Aを凝縮器のように機能させることになるので、冷媒の一部が液化し、冷媒の潜熱を利用した除霜を確実に行うことができる。
 1 空気調和装置、20 制御部、21 メモリ、22 CPU、31 冷凍サイクル制御手段、32 流路制御手段、33 圧力制御手段、100A、100B 熱源側ユニット、101A、101B 圧縮機、102A、102B 四方弁、103A、103B 熱源側熱交換器、104A、104B アキュームレータ、105、106 冷媒配管、107A、107B 主回路用弁、108A、108B バイパス回路弁、109A、109B 送風機、110A、110B 熱交換器温度センサ、111A、111B 流入温度センサ、112A、112B 吐出温度センサ、113 接続配管、114A、114B バイパス圧力センサ、115A、115B バイパス回路、116A、116B バイパス絞り装置、117A、117B 回路切替部、120A 熱源側筐体、132、134 ヘッダー、141A、141B 流入圧力センサ、142A、142B 吐出圧力センサ、150A~156A、150B~156B、160A、160B 冷媒配管、200 負荷側ユニット、201 負荷側熱交換器、202 負荷側絞り装置、203 送風機、204 負荷側筐体。

Claims (3)

  1.  圧縮機および熱源側熱交換器を含む複数の熱源側ユニットと、
     負荷側熱交換器および負荷側絞り装置を含む負荷側ユニットと、
     前記負荷側熱交換器に接続される冷媒配管を複数の前記圧縮機に分岐する第1ヘッダーと、
     前記負荷側絞り装置に接続される冷媒配管を複数の前記熱源側熱交換器に分岐する第2ヘッダーと、
     前記複数の熱源側熱交換器と前記第2ヘッダーとの間に設けられた複数のバイパス絞り装置と、
     前記複数の熱源側ユニットのそれぞれに設けられ、前記熱源側熱交換器を前記圧縮機の吸入側または吐出側に接続させる回路切替部と、
     前記複数の圧縮機の吐出側に対応して設けられた複数の吐出圧力センサと、
     前記複数のバイパス絞り装置と前記第2ヘッダーとの間に設けられた複数のバイパス圧力センサと、
     前記複数の熱源側ユニットのうち、一部の熱源側ユニットに前記熱源側熱交換器の除霜を行わせるとともに、他の熱源側ユニットの前記熱源側熱交換器を蒸発器として機能させる制御部と、を有し、
     前記制御部は、
     前記一部の熱源側ユニットにおいて、前記回路切替部を制御して前記圧縮機から吐出される冷媒の一部を前記熱源側熱交換器に流入させる流路制御手段と、
     前記一部の熱源側ユニットにおいて、前記吐出圧力センサが検知する圧力と前記バイパス圧力センサが検知する圧力との差が予め決められた値以上になるように前記バイパス絞り装置の開度を調節する圧力制御手段と、
    を有する空気調和装置。
  2.  前記流路制御手段は、前記他の熱源側ユニットにおいて、前記回路切替部を制御することで前記熱源側熱交換器を、前記複数の圧縮機の吸入側と接続される接続配管に接続させる、請求項1に記載の空気調和装置。
  3.  前記圧力制御手段は、前記一部の熱源側ユニットにおいて、前記吐出圧力センサが検知する圧力と前記バイパス圧力センサが検知する圧力との差が、前記熱源側熱交換器における前記冷媒の一部が液化する値になるように前記バイパス絞り装置の開度を調節する、請求項1または2に記載の空気調和装置。
PCT/JP2016/070174 2016-07-07 2016-07-07 空気調和装置 WO2018008130A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/070174 WO2018008130A1 (ja) 2016-07-07 2016-07-07 空気調和装置
JP2018525897A JP6573723B2 (ja) 2016-07-07 2016-07-07 空気調和装置
US16/300,995 US11156393B2 (en) 2016-07-07 2016-07-07 Air-conditioning apparatus with pressure control for defrosting and heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070174 WO2018008130A1 (ja) 2016-07-07 2016-07-07 空気調和装置

Publications (1)

Publication Number Publication Date
WO2018008130A1 true WO2018008130A1 (ja) 2018-01-11

Family

ID=60912510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070174 WO2018008130A1 (ja) 2016-07-07 2016-07-07 空気調和装置

Country Status (3)

Country Link
US (1) US11156393B2 (ja)
JP (1) JP6573723B2 (ja)
WO (1) WO2018008130A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110701814A (zh) * 2019-10-12 2020-01-17 珠海格力电器股份有限公司 除霜期间稳定运行的制冷双系统
US20220186993A1 (en) * 2019-05-21 2022-06-16 Mitsubishi Electric Corporation Air-conditioning apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101570A (ja) * 2008-10-24 2010-05-06 Panasonic Corp 空気調和機
JP2011257108A (ja) * 2010-06-11 2011-12-22 Mitsubishi Electric Corp 冷凍空調装置
JP2014126310A (ja) * 2012-12-27 2014-07-07 Hitachi Appliances Inc 空気調和装置
WO2016046876A1 (ja) * 2014-09-22 2016-03-31 三菱電機株式会社 冷凍サイクル装置
WO2016098195A1 (ja) * 2014-12-17 2016-06-23 三菱電機株式会社 空気調和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3609437B2 (ja) * 1993-04-28 2005-01-12 三洋電機株式会社 空気調和装置の除霜方法
JP4459776B2 (ja) * 2004-10-18 2010-04-28 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ装置の室外機
JP5258197B2 (ja) 2007-01-16 2013-08-07 三菱電機株式会社 空気調和システム
JP5517891B2 (ja) 2010-11-16 2014-06-11 三菱電機株式会社 空気調和装置
JP2014145546A (ja) * 2013-01-30 2014-08-14 Hitachi Appliances Inc 空気調和機
JP6017058B2 (ja) * 2013-10-24 2016-10-26 三菱電機株式会社 空気調和装置
EP3106768B1 (en) * 2014-02-14 2020-08-26 Mitsubishi Electric Corporation Heat source-side unit and air conditioning device
CN107076476B (zh) * 2014-04-23 2020-01-14 特灵空调系统(中国)有限公司 带独立除霜的可变制冷剂hvac系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101570A (ja) * 2008-10-24 2010-05-06 Panasonic Corp 空気調和機
JP2011257108A (ja) * 2010-06-11 2011-12-22 Mitsubishi Electric Corp 冷凍空調装置
JP2014126310A (ja) * 2012-12-27 2014-07-07 Hitachi Appliances Inc 空気調和装置
WO2016046876A1 (ja) * 2014-09-22 2016-03-31 三菱電機株式会社 冷凍サイクル装置
WO2016098195A1 (ja) * 2014-12-17 2016-06-23 三菱電機株式会社 空気調和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220186993A1 (en) * 2019-05-21 2022-06-16 Mitsubishi Electric Corporation Air-conditioning apparatus
CN110701814A (zh) * 2019-10-12 2020-01-17 珠海格力电器股份有限公司 除霜期间稳定运行的制冷双系统

Also Published As

Publication number Publication date
US20190383534A1 (en) 2019-12-19
JP6573723B2 (ja) 2019-09-11
US11156393B2 (en) 2021-10-26
JPWO2018008130A1 (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
US8302413B2 (en) Air conditioner
JP4069947B2 (ja) 冷凍装置
US9719708B2 (en) Air-conditioning apparatus with simultaneous heating and cooling operation
WO2013088482A1 (ja) 空気調和装置
JP6878612B2 (ja) 冷凍サイクル装置
US10907866B2 (en) Refrigerant cycle apparatus and air conditioning apparatus including the same
JP6880204B2 (ja) 空気調和装置
JP4704728B2 (ja) 空調機の冷媒温度制御装置及び制御方法
JP2017142038A (ja) 冷凍サイクル装置
JP6067178B2 (ja) 熱源側ユニット及び空気調和装置
JP2007057220A (ja) 冷凍装置
JP2008157557A (ja) 空気調和装置
WO2021014640A1 (ja) 冷凍サイクル装置
WO2016208042A1 (ja) 空気調和装置
US20220107123A1 (en) Air-conditioning apparatus
JP6246394B2 (ja) 空気調和装置
WO2014038059A1 (ja) 空気調和装置
JP6573723B2 (ja) 空気調和装置
WO2016189739A1 (ja) 空気調和装置
JP2008267653A (ja) 冷凍装置
JP6081283B2 (ja) 空気調和装置
KR102390900B1 (ko) 멀티형 공기조화기 및 그의 제어방법
JP7258129B2 (ja) 空気調和装置
JP6932551B2 (ja) 熱交換システム及びその制御方法
KR102250983B1 (ko) 멀티형 공기조화기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018525897

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908174

Country of ref document: EP

Kind code of ref document: A1