WO2018003991A1 - 探針の製造方法及び探針 - Google Patents

探針の製造方法及び探針 Download PDF

Info

Publication number
WO2018003991A1
WO2018003991A1 PCT/JP2017/024240 JP2017024240W WO2018003991A1 WO 2018003991 A1 WO2018003991 A1 WO 2018003991A1 JP 2017024240 W JP2017024240 W JP 2017024240W WO 2018003991 A1 WO2018003991 A1 WO 2018003991A1
Authority
WO
WIPO (PCT)
Prior art keywords
cantilever
probe
metal
needle
tip
Prior art date
Application number
PCT/JP2017/024240
Other languages
English (en)
French (fr)
Inventor
西 正之
平尾 一之
大介 寺西
浩樹 板坂
中 庸行
義人 奥野
伸介 柏木
靖 中田
Original Assignee
国立大学法人京都大学
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 株式会社堀場製作所 filed Critical 国立大学法人京都大学
Priority to CN201780038786.8A priority Critical patent/CN109416326B/zh
Priority to US16/313,761 priority patent/US10900905B2/en
Priority to JP2018525309A priority patent/JP6989851B2/ja
Priority to EP17820345.1A priority patent/EP3480583B1/en
Priority to KR1020187037543A priority patent/KR102581662B1/ko
Publication of WO2018003991A1 publication Critical patent/WO2018003991A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
    • G01Q60/22Probes, their manufacture, or their related instrumentation, e.g. holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders
    • G01Q60/40Conductive probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders
    • G01Q60/42Functionalisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/14Particular materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/16Probe manufacture
    • G01Q70/18Functionalisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • G01N2021/656Raman microprobe

Definitions

  • the present invention relates to a probe for measuring tip-enhanced Raman scattering and a method for manufacturing the probe.
  • Tip-enhanced Raman scattering is a method in which a metal tip of a probe is brought close to or in contact with a sample, light is irradiated to the tip of the probe, and enhanced Raman scattered light is generated from the sample. Irradiation of light to the tip of the probe made of metal induces localized plasmons, generates a locally enhanced electric field, and enhances Raman scattered light. By utilizing the tip-enhanced Raman scattering, Raman spectroscopic analysis of a minute region of the sample becomes possible.
  • a metal probe for STM (Scanning Tunneling Microscope ⁇ ⁇ ) or an AFM (Atomic Force Microscope) probe deposited with metal has been used as a probe.
  • Patent Document 1 discloses a probe coated with silver by vapor deposition.
  • the enhancement of Raman scattered light by tip-enhanced Raman scattering depends on the size and shape of the metal nanostructure formed on the tip of the probe.
  • the entire probe is coated with metal, and the size and shape of the metal nanostructure formed at the tip of the probe is changed to the wavelength of various excitation lights for Raman spectroscopy. It is difficult to make the size and shape suitable for the above.
  • the conventional method has a problem that large facilities such as a vacuum box and a vacuum pump are required to perform metal deposition.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a probe capable of simplifying the manufacture of the probe and appropriately controlling the size and shape of the metal nanostructure. It is in providing the manufacturing method of a needle, and a probe.
  • a method of manufacturing a probe according to the present invention is a method of manufacturing a probe protruding from a cantilever, which is made of a semiconductor and partially coated with a first metal having a higher Fermi level than the semiconductor. Then, the second metal structure is deposited on the tip of the needle-like body by immersing the cantilever in which the needle-like body protrudes from the other part in a solution containing ions of the second metal. It is characterized by manufacturing the probe.
  • a cantilever partially coated with a first metal having a Fermi level higher than that of the semiconductor material is immersed in a solution containing ions of the second metal.
  • a needle-like body protrudes from the cantilever.
  • the presence of the first metal effectively causes the semiconductor electrons to flow out into the solution, and a second metal structure is deposited at the tip of the needle-like body.
  • a probe for tip-enhanced Raman scattering in which a metal structure is fixed to the tip of the needle-like body is manufactured.
  • a probe manufacturing method is a method of manufacturing a probe protruding from a cantilever, wherein the cantilever made of a semiconductor and protruding from a part of the cantilever contains a second metal ion. Then, by immersing in a solution having a Fermi level lower than that of the semiconductor, electrons are supplied from the needle-like body to the ions of the second metal in the solution, and are applied to the tip of the needle-like body. A probe in which the second metal structure is deposited is manufactured.
  • a cantilever made of a semiconductor is immersed in a solution containing ions of the second metal.
  • a needle-like body protrudes from a part of the cantilever.
  • the electrons flow out from the tip of the needle-like body into the solution, the second metal ions are reduced, and the second metal structure is deposited.
  • a probe for tip-enhanced Raman scattering in which a metal structure is fixed to the tip of the needle-like body is manufactured.
  • the method for manufacturing a probe according to the present invention is characterized in that a part of the cantilever is coated with a metal coat made of a first metal.
  • a cantilever partially coated with a metal coat made of the first metal is immersed in a solution containing ions of the second metal. Electrons flow from the metal coat to the cantilever, electrons flow out from the tip of the needle-like body into the solution, and a second metal structure is deposited at the tip of the needle-like body.
  • the probe manufacturing method according to the present invention is characterized in that the first metal is a metal having a higher ionization tendency than the second metal.
  • the first metal is oxidized and the ions of the second metal are easily reduced.
  • the first metal is oxidized, electrons flow from the metal coat to the cantilever, electrons flow out from the tip of the needle-like body into the solution, and ions of the second metal are reduced.
  • a second metal structure is deposited at the tip of the needle-like body.
  • the method for manufacturing a probe according to the present invention is characterized in that the metal coat is in ohmic contact with the cantilever.
  • the metal coat is in ohmic contact with a cantilever made of an n-type semiconductor, electrons easily flow from the metal coat to the cantilever. Electrons flow from the metal coat to the cantilever, electrons flow out from the tip of the needle-like body into the solution, and a second metal structure is deposited at the tip of the needle-like body.
  • the method for manufacturing a probe according to the present invention is characterized in that the first metal is aluminum, chromium, iron, titanium, zirconium, magnesium, manganese, zinc, nickel, or tin.
  • the first metal is aluminum, chromium, iron, titanium, zirconium, magnesium, manganese, zinc, nickel or tin.
  • the method for manufacturing a probe according to the present invention is characterized in that after the cantilever is immersed in the solution, the immersion is interrupted to dry the needle-like body, and the cantilever is immersed again in the solution. To do.
  • the needle-like body is once dried, and the cantilever is immersed again in the solution.
  • the seed of the metal structure is formed by the first immersion, and the metal structure further grows by the second immersion.
  • the probe manufacturing method according to the present invention is characterized in that the solution is a solution containing ions of silver, gold, platinum, iridium, palladium, copper, or bismuth.
  • the solution contains ions of silver, gold, platinum, iridium, palladium, copper or bismuth. For this reason, a metal structure of silver, gold, platinum, iridium, palladium, copper or bismuth is deposited on the tip of the needle-like body. By using a probe including these metal structures, tip-enhanced Raman scattering can be measured.
  • the method for manufacturing a probe according to the present invention is characterized in that a part of the structure included in the deteriorated probe is removed or reduced, or the deposits on the structure are removed.
  • the probe is regenerated by removing or reducing a deteriorated part of the metal structure included in the deteriorated probe.
  • the probe according to the present invention is a probe protruding from a cantilever protruding from the cantilever and protruding from another part of the cantilever that is made of a semiconductor and partially coated with a first metal having a higher Fermi level than the semiconductor. And a structure of the second metal deposited on the tip of the acicular body by immersing the cantilever in a solution containing ions of the second metal. .
  • the probe according to the present invention is a probe protruding from a cantilever, wherein the needle-like body protruding from a part of a cantilever made of semiconductor and the cantilever are immersed in a solution containing a second metal ion.
  • the second metal structure deposited on the tip of the needle-like body.
  • the probe has a structure in which a metal structure is deposited on the tip of the needle-like body. According to the manufacturing method of the present invention, a metal structure having an appropriate size and shape for measuring tip-enhanced Raman scattering is provided.
  • the size and shape of the metal structure formed during the manufacture of the probe can be freely controlled by adjusting the concentration of the solution in which the cantilever is immersed or the immersion time.
  • a metal structure having a size and shape suitable for various types of excitation light for spectroscopy can be formed. Therefore, when measuring tip-enhanced Raman scattering using a probe, the present invention has excellent effects, such as enabling effective enhancement of Raman scattered light.
  • FIG. 3 is a schematic diagram illustrating a method for manufacturing a probe for tip-enhanced Raman scattering according to Embodiment 1.
  • FIG. 3 is a schematic diagram illustrating a method for manufacturing a probe for tip-enhanced Raman scattering according to Embodiment 1.
  • FIG. 3 is a schematic diagram illustrating a method for manufacturing a probe for tip-enhanced Raman scattering according to Embodiment 1.
  • FIG. 6 is a schematic diagram showing a method for manufacturing a probe according to a fourth embodiment.
  • FIG. 6 is a schematic diagram showing a method for manufacturing a probe according to a fourth embodiment.
  • FIG. 6 is a schematic diagram showing a method for manufacturing a probe according to a fourth embodiment.
  • FIG. 6 is a schematic diagram showing a method for manufacturing a probe according to a fourth embodiment.
  • FIG. 1 is a schematic diagram showing a tip for tip-enhanced Raman scattering.
  • the probe holder 1 is formed of Si (silicon) in a flat plate shape.
  • a cantilever 11 is provided at one end of the probe holder 1. In the figure, the cantilever 11 is shown enlarged.
  • a probe 12 is provided at the end of the cantilever 11. Furthermore, in the drawing, the tip portion of the probe 12 is shown enlarged.
  • the probe 12 includes a needle-like body 13 protruding from the cantilever 11 and an aggregate 14 of metal structures fixed to the tip of the needle-like body 13.
  • the cantilever 11 has two surfaces in a front-back relationship, and the needle-like body 13 protrudes from one surface of the cantilever 11.
  • the other surface of the cantilever 11, that is, the surface opposite to the surface on which the probe 12 is provided is referred to as the back surface.
  • the cantilever 11 includes a needle-like body 13.
  • the acicular body 13 has a pyramid shape, and is configured integrally with the cantilever 11 with Si.
  • the cantilever 11 including the needle-like body 13 is formed from one Si single crystal.
  • the metal structure assembly 14 is formed by a plurality of metal structures.
  • the metal structure is an Ag nanostructure made of nano-sized Ag (silver) is shown.
  • the size of each Ag nanostructure is several nm or more and less than 1 ⁇ m, and the aggregate 14 of Ag nanostructures is several ⁇ m or less.
  • FIG. 2 is a schematic perspective view showing an AFM probe.
  • a needle-like body 13 projects from the end of a cantilever 11 provided at one end of the probe holder 1.
  • a metal coat 15 is formed on the back surface of the cantilever 11.
  • the metal coat 15 is obtained by coating the back surface of the cantilever 11 with aluminum. That is, in the cantilever 11, the portion where the metal coat 15 is formed is on a surface different from the surface where the needle-like body 13 is provided.
  • Aluminum constituting the metal coat 15 corresponds to the first metal.
  • FIG. 3A, 3B, and 3C are schematic views showing a method for manufacturing the probe 12 for tip-enhanced Raman scattering according to the first embodiment.
  • the cantilever 11 with the needle-like body 13 protruding from the end is immersed in the aqueous silver nitrate solution 3.
  • the aqueous silver nitrate solution 3 is a solution containing Ag ions. Ag ions contained in the aqueous silver nitrate solution 3 correspond to ions of the second metal.
  • the silver nitrate aqueous solution 3 does not contain a reducing agent for reducing metal ions.
  • the cantilever 11 is immersed in the aqueous silver nitrate solution 3 so that at least a part of the metal coat 15 formed on the back surface of the cantilever 11 and the needle-like body 13 are immersed in the aqueous silver nitrate solution 3. Further, it is desirable to immerse the cantilever 11 in the aqueous silver nitrate solution 3 so that the tip of the needle-like body 13 faces upward. By immersing the cantilever 11 in the silver nitrate aqueous solution 3, Ag precipitates at the tip of the needle-like body 13, and an Ag nanostructure grows.
  • the Fermi level of aluminum constituting the metal coat 15 is higher than the Fermi level of Si. Electrons in the aluminum enter the Si constituting the cantilever 11. In accordance with the intrusion of electrons from aluminum, Si electrons flow out into the silver nitrate aqueous solution 3 over the Si natural oxide film. The outflowed electrons reduce Ag ions in the aqueous silver nitrate solution 3 and precipitate Ag nanostructures. Since electrons are most likely to jump out from the tip of the needle-like body 13, Si electrons mainly flow out from the tip of the needle-like body 13 into the aqueous silver nitrate solution 3. For this reason, the Ag nanostructure is deposited and grows at the tip of the needle-like body 13.
  • an Ag nanostructure aggregate 14 is formed at the tip of the needle-like body 13.
  • the Ag nanostructure may be deposited on the ridge line of the cantilever 11 including the acicular body 13.
  • FIG. 4 is a block diagram showing the configuration of the Raman scattered light measurement apparatus.
  • the Raman scattered light measurement apparatus is configured to apply a sample stage 5 on which a sample 2 is placed, a cantilever 11, a probe 12, an irradiation unit 61 that irradiates laser light, and laser light from the irradiation unit 61 to the sample 2. And a lens 4 that collects light on the tip of the probe 12 that is in close proximity or in contact with the probe.
  • the probe 12 is provided at the end of the cantilever 11.
  • the sample stage 5 has a sample placement surface 51.
  • the sample 2 can take arbitrary shapes, such as a flat plate.
  • the Raman scattered light measurement apparatus includes a drive unit 66 that moves the cantilever 11, a laser light source 67, an optical sensor 68, a signal processing unit 69, and a control unit 65.
  • the drive unit 66 moves the cantilever 11 to bring the probe 12 closer to the sample 2 on the sample placement surface 51.
  • the laser light source 67 irradiates the back surface of the cantilever 11 with laser light.
  • the laser beam is reflected by the metal coat 15 provided on the back surface of the cantilever 11.
  • the optical sensor 68 detects the reflected laser light and outputs a signal indicating the detection result to the signal processing unit 69. In FIG. 4, the laser beam is indicated by a broken-line arrow.
  • the cantilever 11 When the tip of the probe 12 approaches or comes into contact with the sample 2, the cantilever 11 is deflected by the atomic force, the position where the optical sensor 68 detects the laser beam is shifted, and the signal processing unit 69 detects the deflection of the cantilever 11. .
  • the change in the amount of deflection of the cantilever 11 corresponds to the change in the distance between the probe 12 and the surface of the sample 2.
  • the signal processing unit 69 controls the operation of the driving unit 66 so that the deflection of the cantilever 11 is constant.
  • the control unit 65 controls the movement of the probe 12 by controlling the operation of the signal processing unit 69.
  • the Raman scattered light measurement apparatus may be configured to measure the current flowing between the probe 12 and the sample 2 and control the movement of the probe 12 based on the measured current.
  • the Raman scattered light measurement apparatus further includes a beam splitter 62, a spectroscope 63, a detection unit 64 that detects light, and a drive unit 50 that moves the sample stage 5 up and down or left and right.
  • the laser beam irradiated by the irradiation unit 61 passes through the beam splitter 62, is collected by the lens 4, and is irradiated to the tip of the probe 12 that is in proximity to or in contact with the sample 2.
  • the tip of the probe 12 includes an Ag nanostructure aggregate 14 formed at the tip of the needle 13.
  • the proximity refers to the extent to which localized plasmons are induced on the surface of the sample 2 by the irradiated light, a locally enhanced electric field is generated, and tip-enhanced Raman scattering that enhances Raman scattered light occurs.
  • the Ag nanostructure aggregate 14 is close to the surface of the sample 2 up to a distance of.
  • Tip-enhanced Raman scattering occurs in the portion of the sample 2 where the tip of the probe 12 approaches or contacts and is irradiated with laser light.
  • the generated Raman scattered light is collected by the lens 4, reflected by the beam splitter 62, and enters the spectroscope 63.
  • laser light and Raman scattered light irradiated on the sample 2 are indicated by solid arrows.
  • the Raman scattered light measurement apparatus includes an optical system including a number of optical components such as a mirror, a lens, and a filter for guiding, condensing, and separating laser light and Raman scattered light.
  • optical systems other than the lens 4 and the beam splitter 62 are omitted.
  • the spectroscope 63 separates the incident Raman scattered light.
  • the detection unit 64 detects the light of each wavelength dispersed by the spectroscope 63 and outputs a signal corresponding to the detection intensity of the light of each wavelength to the control unit 65.
  • the control unit 65 controls the wavelength of light dispersed by the spectroscope 63 and receives a signal output from the detection unit 64, and based on the wavelength of the dispersed light and the detected intensity of light indicated by the input signal. Generate a spectrum. In this way, tip enhanced Raman scattering is measured.
  • the control unit 65 controls the operation of the driving unit 50 to move the sample stage 5 and enable measurement of tip-enhanced Raman scattering at each part on the sample 2.
  • the Ag nano-particles 13 are projected at the tip of the needle-like body 13 by immersing the cantilever 11 in which the needle-like body 13 protrudes and the metal coat 15 is formed on the back surface in the aqueous silver nitrate solution 3.
  • the probe 12 to which the assembly 14 of structures is fixed is manufactured.
  • the Ag nanostructure is deposited on the tip of the needle-like body 13, so that a large-scale facility for vacuum deposition is not required, and the tip-enhanced Raman scattering is performed with little effort.
  • the probe 12 can be manufactured.
  • the size and shape of the Ag nanostructure aggregate 14 can be controlled. Therefore, the size and shape of the Ag nanostructure aggregate 14 formed on the probe 12 can be freely controlled, and the aggregate 14 suitable for the wavelength of the laser beam for Raman spectroscopy is formed. can do. Therefore, when the tip-enhanced Raman scattering is measured using the probe 12, it is possible to effectively enhance the Raman scattered light. Further, by controlling the size and shape of the Ag nanostructure aggregate 14, it is possible to manufacture the probe 12 that can obtain a desired enhancement when measuring tip-enhanced Raman scattering. .
  • the silver nitrate aqueous solution 3 does not contain a reducing agent for reducing metal ions, the entire surface of the needle-like body 13 is not coated with Ag, and the needle-like body 13 is mainly used.
  • Ag nanostructure aggregates 14 are formed in a concentrated manner at the tip of each.
  • the metal coat 15 formed on the cantilever 11 is made of aluminum.
  • the first metal constituting the metal coat 15 may be a metal having a Fermi level higher than that of Si.
  • a metal other than aluminum may be used.
  • the first metal may be chromium, iron, titanium, zirconium, magnesium, manganese, zinc, nickel or tin.
  • the cantilever 11 including the needle-like body 13 may be made of Si having a water-resistant film such as a natural oxide film on the surface, or may partially contain Si having no water-resistant film. Good.
  • the cantilever 11 may be comprised with the semiconductor which has a water-resistant film, such as a natural oxide film, on the surface other than Si.
  • the first metal is a metal having a higher Fermi level than the semiconductor constituting the cantilever 11.
  • the metal coat 15 made of the first metal may be formed on a portion other than the back surface of the cantilever 11.
  • the cantilever 11 is immersed in the aqueous silver nitrate solution 3.
  • the solution containing Ag ions may be an aqueous solution other than the aqueous silver nitrate solution 3.
  • the ions of the second metal contained in the solution in which the cantilever 11 is immersed may be ions of a metal other than Ag.
  • Metal ions include complex ions.
  • the Fermi level of the solution containing the second metal ion or the electron chemical potential of the solution containing the second metal ion is preferably lower than the Fermi level of the semiconductor constituting the cantilever 11.
  • the Fermi level referred to in this specification refers to each Fermi level before the semiconductor and the metal or solution come into contact with each other.
  • the Fermi level is a term in semiconductor physics, and the chemical potential of an electron is a term in solid state physics or electrochemistry, but the Fermi level and the second of a solution containing ions of the second metal.
  • the amount of the chemical potential of the solution containing the metal ions is almost equivalent.
  • the Fermi level of the second metal is preferably lower than the Fermi level of the semiconductor constituting the cantilever 11.
  • the Fermi level (or electron chemical potential) of the solution containing the ions of the second metal is lower than the Fermi level of the semiconductor constituting the cantilever 11, and the Fermi level of the second metal is More preferably, it is lower than the Fermi level of the semiconductor constituting the cantilever 11.
  • the second metal is Au (gold), platinum, iridium, palladium, copper or bismuth.
  • a solution containing these metal ions is used, and a structure of these metals is formed at the tip of the needle-like body 13.
  • the probe 12 in which an aggregate of Au nanostructures is deposited on the tip of the needle-like body 13 is manufactured using an aqueous potassium chloroaurate solution. Even when the probe 12 in which a structure of Au, platinum, iridium, palladium, copper, or bismuth is deposited on the tip of the needle-like body 13 is used, tip-enhanced Raman scattering can be measured.
  • the structure of the probe 12 is the same as that of the first embodiment.
  • a cantilever 11 is provided at one end of the probe holder 1, and a probe 12 is provided at the end of the cantilever 11.
  • a metal coat 15 is formed on the back surface of the cantilever 11.
  • the probe 12 includes a needle-like body 13 protruding from the cantilever 11 and an aggregate 14 of metal structures fixed to the tip of the needle-like body 13.
  • the metal structure in the present embodiment is an Ag nanostructure.
  • the first metal constituting the metal coat 15 is, for example, aluminum.
  • the metal coat 15 is preferably in ohmic contact with the cantilever 11.
  • the probe 12 is manufactured by immersing the cantilever 11 in a solution containing ions of the second metal.
  • the first metal constituting the metal coat 15 is a metal having a higher ionization tendency than the second metal.
  • the Fermi level of the first metal in the present embodiment may be equal to or lower than the Fermi level of the semiconductor constituting the cantilever 11 including the needle-like body 13.
  • the cantilever 11 is made of n-type Si, and the metal coat 15 is preferably in ohmic contact with the cantilever 11.
  • the second metal is Ag
  • the first metal is aluminum
  • the solution containing ions of the second metal is the aqueous silver nitrate solution 3.
  • Aluminum has a higher ionization tendency than Ag.
  • Aluminum has a lower Fermi level than n-type Si.
  • the contact between the first metal and the semiconductor is a Schottky contact.
  • the semiconductor is a highly doped n-type Si having a low resistance
  • the contact between the first metal and the semiconductor is an ohmic contact due to quantum mechanical tunneling.
  • an AFM probe is commercially available in which a metal coat made of metal aluminum is in ohmic contact with an n-type Si cantilever having a resistance of 0.01 ⁇ cm.
  • the probe 12 is manufactured by immersing the cantilever 11 in the silver nitrate aqueous solution 3 as in the first embodiment.
  • the cantilever 11 with the needle-like body 13 protruding from the end is immersed in the aqueous silver nitrate solution 3.
  • the silver nitrate aqueous solution 3 does not contain a reducing agent.
  • the cantilever 11 is immersed in the silver nitrate aqueous solution 3 so that at least a part of the metal coat 15 and the needle-like body 13 are immersed in the silver nitrate aqueous solution 3.
  • the ionization tendency of aluminum constituting the metal coat 15 is larger than that of Ag. For this reason, aluminum in the metal coat 15 is easily oxidized, and Ag ions in the silver nitrate aqueous solution 3 are easily reduced. When aluminum is oxidized, electrons are emitted from the aluminum. When Ag ions are reduced, Ag ions absorb electrons. That is, when the cantilever 11 is immersed in the silver nitrate aqueous solution 3, electrons flow from aluminum in the metal coat 15 to Ag ions in the silver nitrate aqueous solution 3. When the metal coat 15 is in ohmic contact with the cantilever 11, electrons easily flow from the metal coat 15 to the cantilever 11.
  • the Fermi level of the first metal (aluminum) is lower than the semiconductor (n-type Si) Fermi level constituting the cantilever 11, electrons flow from the metal coat 15 to the cantilever 11 due to the ohmic contact. .
  • the aluminum in the metal coat 15 is oxidized, and electrons flow from the metal coat 15 to the cantilever 11. Further, electrons are most likely to jump out from the tip of the needle-like body 13. For this reason, when electrons flow from the metal coat 15 to the cantilever 11, electrons are supplied to the needle-like body 13, and electrons flow out from the tip of the needle-like body 13 into the silver nitrate aqueous solution 3.
  • the Ag ions in the aqueous silver nitrate solution 3 are reduced by the electrons that have flowed out. For this reason, the Ag nanostructure is deposited and grows at the tip of the needle-like body 13.
  • the cantilever 11 Since negative carriers are contained in n-type Si, when the cantilever 11 is composed of n-type Si, electrons easily move through the cantilever 11 including the needle-like body 13. Electrons easily flow out from the tip of the acicular body 13 into the aqueous silver nitrate solution 3, and Ag nanostructures are likely to precipitate. For this reason, it is desirable that the cantilever 11 is made of an n-type semiconductor. In addition, as the curvature of the tip of the needle-like body 13 increases, electrons are more likely to jump out from the tip of the needle-like body 13.
  • an Ag nanostructure aggregate 14 is formed at the tip of the needle-like body 13.
  • the probe 12 is manufactured in which the Ag nanostructure aggregate 14 is fixed to the tip of the needle-like body 13.
  • FIG. 5 is a characteristic diagram showing an analysis result of XPS (X-ray Photoelectron Spectroscopy, X-ray photoelectron spectroscopy) for the metal coat 15.
  • the horizontal axis represents binding energy
  • the vertical axis represents photoelectron intensity in arbitrary units.
  • the bond energy of aluminum oxide and the bond energy of metallic aluminum are indicated by dotted lines.
  • FIG. 5 a spectrum showing the result of XPS performed on the metal coat 15 before the cantilever 11 is immersed in the silver nitrate aqueous solution 3, and the metal coat 15 after the cantilever 11 is immersed in the silver nitrate aqueous solution 3 are shown.
  • the spectrum which shows the result of XPS which is done is shown.
  • the configuration of the Raman scattered light measurement apparatus provided with the probe 12 is the same as that of the first embodiment. Also in the present embodiment, the Raman scattered light measurement apparatus can measure the tip-enhanced Raman scattering by using the probe 12 in which the Ag nanostructure aggregate 14 is fixed to the tip of the needle-like body 13.
  • FIG. 6 is a diagram showing an actual example of the probe 12.
  • FIG. 6 shows a plurality of photographs taken of the tip of the needle-like body 13 of the probe 12 produced under a plurality of conditions.
  • An OMCL-AC160TS manufactured by Olympus was used as the probe holder 1 provided with the cantilever 11, and the probe 12 was fabricated by immersing the cantilever 11 in the silver nitrate aqueous solution 3.
  • As the silver nitrate aqueous solution 3 three types of solutions having silver nitrate concentrations of 0.05 mM, 0.1 mM and 1 mM were used.
  • M is mol / L.
  • the immersion time for immersing the cantilever 11 in the silver nitrate aqueous solution 3 was two types of 10 s and 60 s.
  • Fig. 6 shows six photos arranged in two rows and three columns.
  • the two photographs in each of the left, middle and right columns are photographs of the tip of the needle-like body 13 of the probe 12 prepared with silver nitrate concentrations of 0.05 mM, 0.1 mM and 1 mM, respectively. is there.
  • Three photographs in each of the upper row and the lower row are photographs of the tip of the needle-like body 13 of the probe 12 produced with immersion times of 10 s and 60 s, respectively.
  • Each photograph shows an aggregate 14 of Ag nanostructures.
  • the size of the Ag nanostructure aggregate 14 increases.
  • the size of the Ag nanostructure aggregate 14 is the tip-enhanced Raman in the probe 12 manufactured with a silver nitrate concentration of 0.1 mM and an immersion time of 10 s. It became the most suitable size for measuring scattering.
  • the tip 12 for tip-enhanced Raman scattering can be manufactured with little effort by immersing the cantilever 11 having the metal coat 15 formed on the back surface in the aqueous silver nitrate solution 3.
  • concentration of the silver nitrate aqueous solution 3 in which the cantilever 11 is immersed or the immersion time By adjusting the concentration of the silver nitrate aqueous solution 3 in which the cantilever 11 is immersed or the immersion time, the size and shape of the Ag nanostructure aggregate 14 formed on the probe 12 can be freely controlled.
  • An assembly 14 suitable for the wavelength of laser light for Raman spectroscopy can be formed. Therefore, it is possible to effectively enhance the Raman scattered light when measuring the tip enhanced Raman scattering. Further, it is possible to manufacture the probe 12 that can obtain a desired enhancement when measuring tip-enhanced Raman scattering.
  • the solution containing Ag ions may be an aqueous solution other than the aqueous silver nitrate solution 3.
  • the first metal constituting the metal coat 15 may be a metal other than aluminum, and the solution in which the cantilever 11 is immersed may be used.
  • the ions of the second metal contained may be ions of a metal other than Ag.
  • the first metal may be chromium, iron, titanium, zirconium, magnesium, manganese, zinc, nickel or tin.
  • the second metal may be Au (gold), platinum, iridium, palladium, copper, or bismuth.
  • the metal coat 15 may be formed on a portion other than the back surface of the cantilever 11 as long as it is a position other than the tip of the needle-like body 13.
  • the Fermi level of the solution containing the second metal ions is preferably lower than the Fermi level of the semiconductor constituting the cantilever 11 including the needle-like body 13.
  • the cantilever 11 may be made of a semiconductor other than n-type Si.
  • the metal coat 15 is in Schottky contact with the cantilever 11. Even when the cantilever 11 is made of a p-type semiconductor or an intrinsic semiconductor, electrons move in the semiconductor, and a second metal structure is deposited on the tip of the needle-like body 13, thereby the probe 12. Is manufactured.
  • the probe 12 is manufactured.
  • a portion of the cantilever 11 covered with the metal coat 15 includes the tip of the needle-like body 13.
  • the ionization tendency of the first metal such as aluminum constituting the metal coat 15 is larger than the ionization tendency of the second metal such as Ag.
  • the cantilever 11 is immersed in a solution containing ions of the second metal, electrons flow out from the metal coat 15 to the solution. In particular, electrons are more likely to jump out from the tip of the needle-like body 13, and electrons are more likely to jump out from the tip of the needle-like body 13 as the curvature of the tip of the needle-like body 13 is larger.
  • a second metal structure is deposited at the tip of the needle-like body 13, and the probe 12 is manufactured.
  • the probe 12 is manufactured.
  • the ionization tendency of the first metal is larger than the ionization tendency of the second metal such as Ag.
  • the cantilever 11 is immersed in a solution containing the second metal ions, electrons flow out of the cantilever 11 into the solution. In particular, electrons are more likely to jump out from the tip of the needle-like body 13, and electrons are more likely to jump out from the tip of the needle-like body 13 as the curvature of the tip of the needle-like body 13 is larger.
  • a second metal structure is deposited at the tip of the needle-like body 13, and the probe 12 is manufactured.
  • the metal coating 15 is not formed on the cantilever 11, and the probe 12 is provided at the end of the cantilever 11.
  • the probe 12 includes a needle-like body 13 protruding from the cantilever 11 and an aggregate 14 of metal structures fixed to the tip of the needle-like body 13.
  • the cantilever 11 including the needle-like body 13 is made of n-type Si.
  • the metal structure in the present embodiment is an Ag nanostructure.
  • the probe 12 is manufactured by immersing the cantilever 11 in the silver nitrate aqueous solution 3.
  • the Fermi level of the silver nitrate aqueous solution 3 is lower than the Fermi level of n-type Si constituting the cantilever 11.
  • the cantilever 11 with the needle-like body 13 protruding from the end is immersed in the aqueous silver nitrate solution 3.
  • the silver nitrate aqueous solution 3 does not contain a reducing agent.
  • the cantilever 11 is immersed in the aqueous silver nitrate solution 3 so that the needle-like body 13 is immersed in the aqueous silver nitrate solution 3. Since n-type Si contains negative carriers, electrons easily move in the cantilever 11.
  • Electrons flow through the cantilever 11, and electrons flow out from the tip of the needle-like body 13 into the aqueous silver nitrate solution 3.
  • the Ag ions in the aqueous silver nitrate solution 3 are reduced by the electrons that have flowed out. For this reason, the Ag nanostructure is deposited and grows at the tip of the needle-like body 13.
  • the cantilever 11 After immersing the cantilever 11 in the silver nitrate aqueous solution 3 for an appropriate time, the cantilever 11 is taken out from the silver nitrate aqueous solution 3 and washed. Cleaning is not essential.
  • An aggregate 14 of Ag nanostructures is formed at the tip of the needle-like body 13.
  • the probe 12 in which the Ag nanostructure aggregate 14 is fixed to the tip of the needle-like body 13 is manufactured.
  • a probe having an Ag nanostructure aggregate 14 is used. It was confirmed that the needle 12 was manufactured. Even when the probe 12 manufactured by the manufacturing method according to the present embodiment is used, the Raman scattered light measurement apparatus can measure tip-enhanced Raman scattering.
  • FIG. 7 is a diagram illustrating an example of the probe 12 when the metal coat 15 is formed on the cantilever 11 and when the metal coat 15 is not formed.
  • FIG. 7 shows a probe 12 manufactured using a cantilever 11 on which a metal coat 15 is formed as in the second embodiment, and a probe 12 manufactured using a cantilever 11 on which no metal coat 15 is formed. A plurality of photographs taken of the tip of are shown.
  • OMCL-AC160TS manufactured by Olympus is used as the probe holder 1 provided with the cantilever 11 on which the metal coat 15 is formed, and Olympus is used as the probe holder 1 provided with the cantilever 11 on which the metal coat 15 is not formed.
  • the OMCL-AC160TN manufactured by the company was used.
  • the probe 12 was produced by immersing the cantilever 11 in the aqueous silver nitrate solution 3.
  • the silver nitrate concentration of the aqueous silver nitrate solution 3 was 0.1 mM.
  • the immersion time for immersing the cantilever 11 in the silver nitrate aqueous solution 3 was set to two types of 30 seconds and 30 minutes.
  • Fig. 7 shows four photos arranged in two rows and two columns.
  • the two photographs in the left column are photographs taken of the tip of the needle-like body 13 of the probe 12 produced using the cantilever 11 on which the metal coat 15 is formed.
  • the two photographs in the right column are photographs taken of the tip of the needle-like body 13 of the probe 12 produced using the cantilever 11 on which the metal coat 15 is not formed.
  • the probe 12 shown in the photograph in the right column is the probe 12 manufactured by the manufacturing method according to the present embodiment.
  • the two photographs in each of the upper and lower rows are photographs of the tip of the needle-like body 13 of the probe 12 produced with immersion times of 30 seconds and 30 minutes, respectively. Each photograph shows an aggregate 14 of Ag nanostructures.
  • the probe 12 in which the metal coat 15 is not formed on the cantilever 11 has a size of the Ag nanostructure assembly 14 that is the same as that of the probe 12 in which the metal coat 15 is formed on the cantilever 11 even at the same immersion time. small.
  • the aggregate 14 of Ag nanostructures grows by increasing the immersion time. Also in the present embodiment, it is apparent that the probe 12 including the Ag nanostructure aggregate 14 having a sufficiently large size can be produced by making the immersion time sufficiently long.
  • the tip 12 for tip-enhanced Raman scattering can be manufactured with little effort by immersing the cantilever 11 in the silver nitrate aqueous solution 3.
  • concentration of the silver nitrate aqueous solution 3 in which the cantilever 11 is immersed or the immersion time By adjusting the concentration of the silver nitrate aqueous solution 3 in which the cantilever 11 is immersed or the immersion time, the size and shape of the Ag nanostructure aggregate 14 formed on the probe 12 can be freely controlled.
  • An assembly 14 suitable for the wavelength of laser light for Raman spectroscopy can be formed. Therefore, it is possible to effectively enhance the Raman scattered light when measuring the tip enhanced Raman scattering. Further, it is possible to manufacture the probe 12 that can obtain a desired enhancement when measuring tip-enhanced Raman scattering.
  • the solution containing Ag ions may be an aqueous solution other than the silver nitrate aqueous solution 3.
  • the ions of the second metal contained in the solution in which the cantilever 11 is immersed may be ions of a metal other than Ag.
  • the second metal may be Au (gold), platinum, iridium, palladium, copper, or bismuth.
  • the Fermi level of the solution containing the ions of the second metal or the chemical potential of the electrons of the solution containing the ions of the second metal depends on the Fermi level of the semiconductor constituting the cantilever 11 including the acicular body 13. Is preferably lower.
  • the cantilever 11 may be made of a semiconductor other than n-type Si.
  • the cantilever 11 is composed of a p-type semiconductor or an intrinsic semiconductor, thermally excited electrons move in the semiconductor, and a second metal structure is deposited on the tip of the needle-like body 13, thereby detecting the probe.
  • the needle 12 is manufactured.
  • FIG. 8A the same cantilever 11 as in Embodiments 1 to 3 is immersed in the aqueous silver nitrate solution 3. Ag precipitates at the tip of the needle-like body 13 to form seeds of the Ag nanostructure. After the cantilever 11 is immersed in the silver nitrate aqueous solution 3 for a certain period of time, as shown in FIG.
  • the cantilever 11 is pulled up from the silver nitrate aqueous solution 3, and the needle-like body 13 is washed and dried. After drying, as shown in FIG. 8C, the cantilever 11 is immersed again in the aqueous silver nitrate solution 3. The Ag nanostructure grows from the seed of the Ag nanostructure formed at the tip of the needle-like body 13. After immersing the cantilever 11 in the silver nitrate aqueous solution 3 for an appropriate time, the cantilever 11 is taken out from the silver nitrate aqueous solution 3. As shown in FIG. 8D, a probe 12 for tip-enhanced Raman scattering in which an Ag nanostructure aggregate 14 is fixed to the tip of a needle-like body 13 is manufactured. The configuration of the Raman scattered light measurement apparatus provided with the probe 12 is the same as that of the first embodiment.
  • the cantilever 11 is immersed in the aqueous silver nitrate solution 3, the needle-like body 13 is once dried, and the cantilever 11 is immersed again in the aqueous silver nitrate solution 3 to search for the tip-enhanced Raman scattering.
  • the needle 12 is manufactured.
  • an Ag nanostructure aggregate 14 having a sharper shape or a larger shape may be obtained.
  • the aggregate 14 of Ag nanostructures can be further grown, and it is possible to manufacture the probe 12 that can obtain a desired enhancement when measuring tip-enhanced Raman scattering.
  • the solution containing Ag ions may be an aqueous solution other than the silver nitrate aqueous solution 3.
  • the ions of the second metal contained in the solution in which the cantilever 11 is immersed may be ions of a metal other than Ag.
  • the second metal may be Au (gold), platinum, iridium, palladium, copper, or bismuth.
  • the solution in which the cantilever 11 is first immersed may be different from the solution in which the cantilever 11 is immersed again.
  • a kit for manufacturing the probe 12 can be used.
  • the production kit includes a cantilever 11 and a solution such as an aqueous silver nitrate solution 3 containing a second metal ion.
  • the cantilever 11 included in the manufacturing kit is provided on the probe holder 1, and the metal coat 15 may or may not be formed on the cantilever 11.
  • the solution contained in the production kit may be used as a stock solution or may be used after being diluted.
  • the user can manufacture the probe 12 by immersing the cantilever 11 included in the manufacturing kit in the solution included in the manufacturing kit for an appropriate time. Note that the cantilever 11 may not be included in the manufacturing kit.
  • the user can manufacture the probe 12 using a general cantilever 11 such as a commercially available product and the solution contained in the manufacturing kit.
  • a part of the aggregate 14 of the metal structure 14 is removed or reduced from the deteriorated probe 12 or an adhering matter attached to the aggregate 14 of the metal structure is removed. Regenerate the needle 12.
  • the removal of a part of the aggregate 14 of metal structures and the removal of deposits are performed by irradiating the tip of the needle-like body 13 with short wavelength light such as ultraviolet rays. By irradiation with short-wavelength light, a part of the metal structure aggregate 14 and the deposits attached to the metal structure aggregate 14 are removed from the needle-like body 13.
  • removal of a part of the aggregate 14 of metal structures and removal of deposits are performed using a stripping solution.
  • the probe 12 By immersing the probe 12 in a stripping solution such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, and thionitric acid, the probe 12 is attached to a part of the metal structure aggregate 14 and the metal structure aggregate 14. The kimono is removed. By removing a deteriorated part of the aggregate 14 of metal structures, the deteriorated probe is regenerated. Similarly, the deteriorated probe is regenerated by removing the deposits attached to the aggregate 14 of metal structures. In this way, the regenerated probe 12 is manufactured. It should be noted that the regenerated probe 12 is regenerated by the manufacturing method according to any one of the first to fourth embodiments using the cantilever 11 after removing part or all of the aggregate 14 of metal structures from the needle-like body 13. It may be manufactured.
  • a stripping solution such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, and thionitric acid
  • the metal structure aggregate 14 is reduced by heating or a method using a reducing agent.
  • a reducing agent such as NaBH 4 as a solute
  • a part of the aggregate 14 of metal structures is reduced.
  • the deteriorated probe 12 is regenerated by reducing the oxidized part of the aggregate 14 of metal structures. In this way, the regenerated probe 12 is manufactured.
  • the probe 12 can be regenerated so that a desired enhancement is obtained when measuring the tip-enhanced Raman scattering. Further, according to this embodiment, the cantilever 11 can be recycled.
  • a manufacturing kit of the probe 12 can be used.
  • the production kit includes a cantilever 11, a solution such as an aqueous silver nitrate solution 3 containing ions of the second metal, and a regenerating solution for regenerating the probe 12.
  • the metal coat 15 may be formed on the cantilever 11 or may not be formed.
  • the regenerating solution is a stripping solution such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, thionitric acid, or a solution containing a reducing agent such as NaBH4H as a solute.
  • the solution and the regeneration solution included in the production kit may be used as a stock solution or may be used after being diluted.
  • the user can manufacture the probe 12 by immersing the cantilever 11 included in the manufacturing kit in the solution included in the manufacturing kit for an appropriate time. Further, the user can manufacture the regenerated probe 12 by immersing the used probe 12 in the regenerating liquid for an appropriate time.
  • the manufacturing kit may not include the cantilever 11.
  • the solution containing the second metal ions is an aqueous solution.
  • the solution containing the second metal ions to which the cantilever 11 should be immersed is an organic solution.
  • a solution using a solvent other than water, such as a solvent, may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Chemically Coating (AREA)

Abstract

探針の製造を簡単にし、金属構造体の大きさ及び形状を適切に制御することができる探針の製造方法、及び探針を提供する。 Si製のカンチレバー(11)からは針状体(13)が突出している。また、カンチレバー(11)の背面にはSiよりもフェルミ準位が高いアルミニウム(第1の金属)がコーティングされている。第2の金属であるAgのイオンを含有する硝酸銀水溶液(3)にカンチレバー(11)を浸漬させる。アルミニウムの存在によってSiの電子が硝酸銀水溶液(3)へ流出し、針状体(13)の先端にAgナノ構造体が析出する。針状体(13)の先端にAgナノ構造体が固着した先端増強ラマン散乱用の探針(12)が製造される。硝酸銀水溶液(3)の濃度及びカンチレバー(11)を硝酸銀水溶液(3)に浸漬させる時間を調整することにより、Agナノ構造体の大きさ及び形状を適切に制御することができる。

Description

探針の製造方法及び探針
 本発明は、先端増強ラマン散乱を測定するための探針、及び探針の製造方法に関する。
 先端増強ラマン散乱は、探針の金属製の先端を試料に近接又は接触させ、探針の先端へ光を照射し、増強されたラマン散乱光を試料から発生させる方法である。探針の金属製の先端へ光を照射することによって局在プラズモンが誘起され、局所的に増強された電場が発生し、ラマン散乱光が増強される。先端増強ラマン散乱を利用することで、試料の微小領域のラマン分光分析が可能となる。従来、探針には、STM(Scanning Tunneling Microscope )用の金属探針、又はAFM(Atomic Force Microscope )用の探針に金属を蒸着したものが用いられてきた。特許文献1には、蒸着によって銀を被膜した探針が開示されている。
特開2009-156602号公報
 先端増強ラマン散乱によるラマン散乱光の増強度は、探針の先端に形成された金属ナノ構造体の大きさ及び形状に依存する。従来の金属蒸着法では、探針の全体が金属でコーティングされることになり、探針の先端に形成された金属ナノ構造体の大きさ及び形状をラマン分光のための各種の励起光の波長に適した大きさ及び形状にすることが困難である。また、従来の方法では、金属蒸着を行うために真空箱及び真空ポンプ等の大掛かりな設備が必要になるという問題がある。
 本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、探針の製造を簡単にし、金属ナノ構造体の大きさ及び形状を適切に制御することができる探針の製造方法、及び探針を提供することにある。
 本発明に係る探針の製造方法は、カンチレバーから突出した探針を製造する方法であって、半導体で構成され、該半導体よりもフェルミ準位が高い第1の金属で一部がコーティングされており、他の一部から針状体が突出しているカンチレバーを、第2の金属のイオンを含有する溶液に浸漬させることにより、前記針状体の先端に前記第2の金属の構造体が析出した探針を製造することを特徴とする。
 本発明においては、材料の半導体よりもフェルミ準位が高い第1の金属が一部にコーティングされたカンチレバーを、第2の金属のイオンを含有する溶液に浸漬させる。カンチレバーからは針状体が突出している。第1の金属の存在により半導体の電子が溶液へ効果的に流出し、針状体の先端に第2の金属の構造体が析出する。針状体の先端に金属構造体が固着した先端増強ラマン散乱用の探針が製造される。
 本発明に係る探針の製造方法は、カンチレバーから突出した探針を製造する方法であって、半導体で構成され一部から針状体が突出しているカンチレバーを、第2の金属のイオンを含有しており、前記半導体よりもフェルミ準位が低い溶液に浸漬させることにより、電子が前記針状体から前記溶液中の前記第2の金属のイオンへ供給されて、前記針状体の先端に前記第2の金属の構造体が析出した探針を製造することを特徴とする。
 本発明においては、半導体で構成されたカンチレバーを、第2の金属のイオンを含有する溶液に浸漬させる。カンチレバーの一部からは針状体が突出している。電子が針状体の先端から溶液へ流出し、第2の金属のイオンが還元され、第2の金属の構造体が析出する。この結果、針状体の先端に金属構造体が固着した先端増強ラマン散乱用の探針が製造される。
 本発明に係る探針の製造方法は、前記カンチレバーの一部が、第1の金属でなる金属コートでコーティングされていることを特徴とする。
 本発明においては、第1の金属でなる金属コートで一部がコーティングされたカンチレバーを、第2の金属のイオンを含有する溶液に浸漬させる。金属コートからカンチレバーへ電子が流れ、針状体の先端から電子が溶液へ流出し、針状体の先端に第2の金属の構造体が析出する。
 本発明に係る探針の製造方法は、前記第1の金属は、前記第2の金属よりもイオン化傾向が大きい金属であることを特徴とする。
 本発明においては、第1の金属のイオン化傾向が第2の金属のイオン化傾向よりも大きいので、第1の金属が酸化され、第2の金属のイオンが還元され易い。第1の金属が酸化される際に、金属コートからカンチレバーへ電子が流れ、針状体の先端から電子が溶液へ流出し、第2の金属のイオンが還元される。これにより、針状体の先端に第2の金属の構造体が析出する。
 本発明に係る探針の製造方法は、前記金属コートは、前記カンチレバーとオーミック接触していることを特徴とする。
 本発明においては、金属コートがn型の半導体で構成されたカンチレバーとオーミック接触していることにより、金属コートからカンチレバーへ電子が流れ易い。金属コートからカンチレバーへ電子が流れ、針状体の先端から電子が溶液へ流出し、針状体の先端に第2の金属の構造体が析出する。
 本発明に係る探針の製造方法は、前記第1の金属は、アルミニウム、クロム、鉄、チタン、ジルコニウム、マグネシウム、マンガン、亜鉛、ニッケル又はスズであることを特徴とする。
 本発明においては、第1の金属は、アルミニウム、クロム、鉄、チタン、ジルコニウム、マグネシウム、マンガン、亜鉛、ニッケル又はスズである。これらの金属でなる金属コートでカンチレバーの一部がコーティングされている場合、金属コートから針状体へ電子が供給される。
 本発明に係る探針の製造方法は、前記カンチレバーを前記溶液に浸漬させた後で、浸漬を中断して前記針状体を乾燥させ、再度、前記カンチレバーを前記溶液に浸漬させることを特徴とする。
 本発明においては、カンチレバーを溶液に浸漬させた後、針状体を一旦乾燥させ、再度カンチレバーを溶液に浸漬させる。一回目の浸漬で金属構造体の種が形成され、二回目の浸漬で金属構造体が更に成長する。
 本発明に係る探針の製造方法は、前記溶液は、銀、金、白金、イリジウム、パラジウム、銅又はビスマスのイオンを含有する溶液であることを特徴とする。
 本発明においては、溶液は銀、金、白金、イリジウム、パラジウム、銅又はビスマスのイオンを含有している。このため、針状体の先端には、銀、金、白金、イリジウム、パラジウム、銅又はビスマスの金属構造体が析出する。これらの金属の構造体を含む探針を用いることにより、先端増強ラマン散乱の測定が可能となる。
 本発明に係る探針の製造方法は、劣化後の探針に含まれる前記構造体の一部の除去若しくは還元又は前記構造体への付着物の除去を行うことを特徴とする。
 本発明においては、劣化した探針に含まれる金属構造体の劣化した一部を除去するか又は還元させることにより、探針を再生させる。
 本発明に係る探針は、カンチレバーから突出した探針において、半導体で構成され該半導体よりもフェルミ準位が高い第1の金属で一部がコーティングされたカンチレバーの他の一部から突出した針状体と、前記カンチレバーを、第2の金属のイオンを含有する溶液に浸漬させることにより、前記針状体の先端に析出させた前記第2の金属の構造体とを有することを特徴とする。
 本発明に係る探針は、カンチレバーから突出した探針において、半導体で構成されたカンチレバーの一部から突出した針状体と、前記カンチレバーを、第2の金属のイオンを含有する溶液に浸漬させることにより、前記針状体の先端に析出させた前記第2の金属の構造体とを有することを特徴とする。
 本発明においては、探針は、針状体の先端に金属の構造体が析出した構成となっている。本発明に係る製造方法によって、先端増強ラマン散乱を測定するために適切な大きさ及び形状の金属の構造体が設けられている。
 本発明にあっては、カンチレバーを浸漬させる溶液の濃度又は浸漬時間を調整することで、探針の製造時に形成される金属構造体の大きさ及び形状を自由に制御することができるので、ラマン分光のための各種の励起光に適した大きさ及び形状の金属構造体を形成することができる。従って、探針を用いて先端増強ラマン散乱を測定する際には、ラマン散乱光の効果的な増強が可能となる等、本発明は優れた効果を奏する。
先端増強ラマン散乱用の探針を示す模式図である。 AFM用の探針を示す模式的斜視図である。 実施形態1に係る先端増強ラマン散乱用の探針の製造方法を示す模式図である。 実施形態1に係る先端増強ラマン散乱用の探針の製造方法を示す模式図である。 実施形態1に係る先端増強ラマン散乱用の探針の製造方法を示す模式図である。 ラマン散乱光測定装置の構成を示すブロック図である。 金属コートに対するXPSの分析結果を示す特性図である。 探針の実例を示す図である。 カンチレバーに金属コートが形成されている場合及び形成されていない場合の探針の実例を示す図である。 実施形態4に係る探針の製造方法を示す模式図である。 実施形態4に係る探針の製造方法を示す模式図である。 実施形態4に係る探針の製造方法を示す模式図である。 実施形態4に係る探針の製造方法を示す模式図である。
 以下本発明をその実施の形態を示す図面に基づき具体的に説明する。
(実施形態1)
 図1は、先端増強ラマン散乱用の探針を示す模式図である。探針保持体1は、Si(シリコン)で平板状に形成されている。探針保持体1の一端にカンチレバー11が設けられている。図中には、カンチレバー11を拡大して示している。カンチレバー11の端部に、探針12が設けられている。更に、図中には、探針12の先端部分を拡大して示している。探針12は、カンチレバー11から突出した針状体13と、針状体13の先端に固着した金属構造体の集合体14とを含んでいる。カンチレバー11は表裏の関係にある二面を有しており、針状体13はカンチレバー11の一方の面から突出している。以下、カンチレバー11の他方の面、即ち探針12が設けられている面とは逆の面を背面と言う。また、カンチレバー11は針状体13を含んだものとする。針状体13は、角錐状であり、Siでカンチレバー11と一体に構成されている。例えば、針状体13を含んだカンチレバー11は、一つのSiの単結晶から形成されている。金属構造体の集合体14は、複数の金属構造体が集合してなる。本実施形態では、金属構造体がナノサイズのAg(銀)でなるAgナノ構造体である例を示す。夫々のAgナノ構造体の大きさは数nm以上1μm未満であり、Agナノ構造体の集合体14の大きさは数μm以下である。
 先端増強ラマン散乱用の探針12は、AFM用の探針から製造される。図2は、AFM用の探針を示す模式的斜視図である。探針保持体1の一端に設けられたカンチレバー11の端部から、針状体13が突出している。また、カンチレバー11の背面には、金属コート15が形成されている。金属コート15は、カンチレバー11の背面をアルミニウムでコーティングしたものである。即ち、カンチレバー11において、金属コート15が形成された部分は、針状体13が設けられた面とは別の面にある。金属コート15を構成するアルミニウムは、第1の金属に対応する。
 図3A、図3B及び図3Cは、実施形態1に係る先端増強ラマン散乱用の探針12の製造方法を示す模式図である。図3Aに示すように、針状体13が端部から突出しているカンチレバー11を、硝酸銀水溶液3に浸漬させる。硝酸銀水溶液3は、Agのイオンを含有する溶液である。硝酸銀水溶液3に含まれるAgのイオンは、第2の金属のイオンに対応する。硝酸銀水溶液3には、金属イオンを還元させるための還元剤は含まれていない。このとき、カンチレバー11の背面に形成された金属コート15の少なくとも一部と針状体13とが硝酸銀水溶液3に浸漬されるように、カンチレバー11を硝酸銀水溶液3に浸漬させる。また、針状体13の先端が上向きになるようにカンチレバー11を硝酸銀水溶液3に浸漬させるのが望ましい。カンチレバー11を硝酸銀水溶液3に浸漬させることによって、針状体13の先端には、Agが析出し、Agナノ構造体が成長する。
 金属コート15を構成するアルミニウムのフェルミ準位は、Siのフェルミ準位よりも高い。アルミニウム中の電子は、カンチレバー11を構成するSiへ侵入する。アルミニウムからの電子の浸入に応じて、Siの電子は、Siの自然酸化膜を越えて硝酸銀水溶液3中へ流出する。流出した電子によって、硝酸銀水溶液3中のAgイオンが還元され、Agナノ構造体が析出する。針状体13の先端からは最も電子が飛び出し易いので、Siの電子は、主に針状体13の先端から硝酸銀水溶液3中へ流出する。このため、針状体13の先端にAgナノ構造体が析出し、成長する。Siの自然酸化膜が薄いほど、針状体13の先端から電子が飛び出しやすく、Agナノ構造体が析出しやすい。理想的には、Siの自然酸化膜が無い状態で、より電子が飛び出しやすく、Agナノ構造体が析出しやすい。また、針状体13の先端の曲率が大きいほど、針状体13の先端から電子が飛び出しやすい。
 適宜の時間、カンチレバー11を硝酸銀水溶液3に浸漬させた後、カンチレバー11を硝酸銀水溶液3から取り出し、洗浄する。なお、洗浄は必須ではない。図3Bに示すように、針状体13の先端にAgナノ構造体の集合体14が形成されている。針状体13の先端以外では、針状体13を含んだカンチレバー11の稜線にもAgナノ構造体が析出することがある。硝酸銀水溶液3の濃度、又はカンチレバー11を硝酸銀水溶液3に浸漬させる時間等を調整することにより、Agナノ構造体の集合体14の大きさ及び形状を制御することができる。以上のようにして、図3B及び図3Cに示すように、カンチレバー11から突出した針状体13の先端にAgナノ構造体の集合体14が固着してなる先端増強ラマン散乱用の探針12が製造される。
 図4は、ラマン散乱光測定装置の構成を示すブロック図である。ラマン散乱光測定装置は、試料2が載置される試料台5と、カンチレバー11と、探針12と、レーザ光を照射する照射部61と、照射部61からのレーザ光を、試料2に近接又は接触した探針12の先端部へ集光するレンズ4とを備えている。探針12はカンチレバー11の端部に設けられている。試料台5は、試料載置面51を有している。また、図4には粒状の試料2を示したが、試料2は平板等の任意の形状を取り得る。
 更に、ラマン散乱光測定装置は、カンチレバー11を動かす駆動部66と、レーザ光源67と、光センサ68と、信号処理部69と、制御部65とを備えている。駆動部66は、カンチレバー11を動かすことによって、探針12を試料載置面51上の試料2へ近づける。レーザ光源67は、カンチレバー11の背面へレーザ光を照射する。レーザ光は、カンチレバー11の背面に設けられている金属コート15で反射する。光センサ68は、反射したレーザ光を検出し、検出結果を示す信号を信号処理部69へ出力する。図4中には、レーザ光を破線矢印で示している。探針12の先端部が試料2に近接又は接触した場合、原子間力によってカンチレバー11がたわみ、光センサ68でレーザ光を検出する位置がずれ、信号処理部69はカンチレバー11のたわみを検出する。カンチレバー11のたわみ量の変化は、探針12と試料2表面との距離の変化に対応する。信号処理部69は、カンチレバー11のたわみが一定になるように、駆動部66の動作を制御する。制御部65は、信号処理部69の動作を制御して、探針12の移動を制御する。なお、ラマン散乱光測定装置は、探針12と試料2との間に流れる電流を計測し、計測した電流に基づいて探針12の移動を制御する構成であってもよい。
 ラマン散乱光測定装置は、更に、ビームスプリッタ62と、分光器63と、光を検出する検出部64と、試料台5を上下又は左右に移動させる駆動部50とを備えている。照射部61が照射したレーザ光は、ビームスプリッタ62を透過し、レンズ4で集光され、試料2に近接又は接触した探針12の先端部へ照射される。探針12の先端部には、針状体13の先端に形成されたAgナノ構造体の集合体14が含まれている。ここで、近接とは、照射された光によって試料2の表面に局在プラズモンが誘起され、局所的に増強された電場が発生し、ラマン散乱光が増強される先端増強ラマン散乱が生起する程度の距離まで、Agナノ構造体の集合体14が試料2の表面へ近づいた状態である。試料2上で探針12の先端部が近接又は接触しレーザ光が照射された部分では、先端増強ラマン散乱が生起する。発生したラマン散乱光は、レンズ4で集光され、ビームスプリッタ62で反射され、分光器63へ入射する。図4中では、試料2へ照射されるレーザ光及びラマン散乱光を実線矢印で示している。ラマン散乱光測定装置は、レーザ光及びラマン散乱光の導光、集光及び分離のためにミラー、レンズ及びフィルタ等の多数の光学部品からなる光学系を備えている。図4では、レンズ4及びビームスプリッタ62以外の光学系を省略している。分光器63は、入射されたラマン散乱光を分光する。検出部64は、分光器63が分光した夫々の波長の光を検出し、夫々の波長の光の検出強度に応じた信号を制御部65へ出力する。制御部65は、分光器63が分光する光の波長を制御し、検出部64が出力した信号を入力され、分光した光の波長と入力された信号が示す光の検出強度とに基づいてラマンスペクトルを生成する。このようにして、先端増強ラマン散乱が測定される。制御部65は、駆動部50の動作を制御して、試料台5を移動させ、試料2上の各部分での先端増強ラマン散乱の測定を可能にする。
 以上詳述した如く、本実施形態では、針状体13が突出しており背面に金属コート15が形成されているカンチレバー11を硝酸銀水溶液3に浸漬させることにより、針状体13の先端にAgナノ構造体の集合体14が固着した探針12を製造する。カンチレバー11を硝酸銀水溶液3に浸漬させるだけで、針状体13の先端にAgナノ構造体が析出するので、真空蒸着のための大掛かりな設備を必要とせずに、少ない労力で先端増強ラマン散乱用の探針12を製造することができる。カンチレバー11を浸漬させる硝酸銀水溶液3の濃度、又は浸漬時間を調整することにより、Agナノ構造体の集合体14の大きさ及び形状を制御することができる。このため、探針12に形成されるAgナノ構造体の集合体14の大きさ及び形状を自由に制御することが可能となり、ラマン分光のためのレーザ光の波長に適した集合体14を形成することができる。従って、探針12を用いて先端増強ラマン散乱を測定する際には、ラマン散乱光の効果的な増強が可能となる。また、Agナノ構造体の集合体14の大きさ及び形状を制御することにより、先端増強ラマン散乱を測定する際に所望の増強度が得られるような探針12を製造することが可能となる。
 また、本実施形態では、硝酸銀水溶液3には金属イオンを還元させるための還元剤は含まれていないので、針状体13の全面がAgでコーティングされることは無く、主に針状体13の先端にAgナノ構造体の集合体14が集中して形成される。
 なお、本実施形態においては、カンチレバー11に形成された金属コート15がアルミニウムでなる例を示したが、金属コート15を構成する第1の金属は、Siよりもフェルミ準位の高い金属であれば、アルミニウム以外の金属であってもよい。例えば、第1の金属は、クロム、鉄、チタン、ジルコニウム、マグネシウム、マンガン、亜鉛、ニッケル又はスズであってもよい。また、針状体13を含んだカンチレバー11は、自然酸化膜等の耐水性被膜を表面に有するSiから構成されていてもよく、耐水性被膜を有さないSiを部分的に含んでいてもよい。また、カンチレバー11は、Si以外の、自然酸化膜等の耐水性被膜を表面に有する半導体で構成されていてもよい。この場合は、第1の金属は、カンチレバー11を構成する半導体よりもフェルミ準位の高い金属である。また、第1の金属でなる金属コート15は、カンチレバー11の背面以外の部分に形成されていてもよい。
 また、本実施形態においては、カンチレバー11を硝酸銀水溶液3に浸漬させる形態を示したが、Agのイオンを含有する溶液は、硝酸銀水溶液3以外の水溶液であってもよい。また、カンチレバー11を浸漬させる溶液に含まれる第2の金属のイオンは、Ag以外の金属のイオンであってもよい。金属のイオンには、錯イオンを含む。第2の金属のイオンを含有する溶液のフェルミ準位、又は第2の金属のイオンを含有する溶液の電子の化学ポテンシャルは、カンチレバー11を構成する半導体のフェルミ準位よりも低いことが好ましい。本明細書で言うフェルミ準位は、半導体と金属又は溶液とが接触する前の夫々のフェルミ準位を指している。また、フェルミ準位は半導体物理学での用語であり、電子の化学ポテンシャルは固体物理学や電気化学での用語であるが、第2の金属のイオンを含有する溶液のフェルミ準位と第2の金属のイオンを含有する溶液の電子の化学ポテンシャルとはほぼ同等の量である。あるいは、第2の金属のフェルミ準位は、カンチレバー11を構成する半導体のフェルミ準位よりも低いことが好ましい。更には、第2の金属のイオンを含有する溶液のフェルミ準位(又は電子の化学ポテンシャル)がカンチレバー11を構成する半導体のフェルミ準位よりも低く、かつ、第2の金属のフェルミ準位がカンチレバー11を構成する半導体のフェルミ準位よりも低いことがより好ましい。
 例えば、第2の金属はAu(金)、白金、イリジウム、パラジウム、銅又はビスマスである。この形態では、これらの金属のイオンを含有した溶液を用いられ、これらの金属の構造体が針状体13の先端に形成される。例えば、塩化金酸カリウム水溶液を用いて、Auナノ構造体の集合体が針状体13の先端に析出した探針12が製造される。Au、白金、イリジウム、パラジウム、銅又はビスマスの構造体が針状体13の先端に析出した探針12を用いた場合でも、先端増強ラマン散乱を測定することができる。
(実施形態2)
 実施形態2においては、探針12の構造は実施形態1と同様である。実施形態1と同様に、探針保持体1の一端にカンチレバー11が設けられ、カンチレバー11の端部に探針12が設けられている。カンチレバー11の背面には、金属コート15が形成されている。探針12は、カンチレバー11から突出した針状体13と、針状体13の先端に固着した金属構造体の集合体14とを含んでいる。本実施形態での金属構造体は、Agナノ構造体である。金属コート15を構成する第1の金属は、例えばアルミニウムである。金属コート15は、カンチレバー11にオーミック接触していることが望ましい。
 探針12は、第2の金属のイオンを含有する溶液にカンチレバー11を浸漬させることによって製造される。実施形態2においては、金属コート15を構成する第1の金属は、第2の金属よりもイオン化傾向の大きい金属である。本実施形態での第1の金属のフェルミ準位は、針状体13を含んだカンチレバー11を構成する半導体のフェルミ準位以下であってもよい。カンチレバー11はn型のSiで構成され、金属コート15はカンチレバー11とオーミック接触していることが望ましい。例えば、第2の金属はAgであり、第1の金属はアルミニウムであり、第2の金属のイオンを含む溶液は硝酸銀水溶液3である。アルミニウムはAgよりもイオン化傾向が大きい。また、アルミニウムはn型のSiよりもフェルミ準位が低い。通常、第1の金属のフェルミ準位が半導体のフェルミ準位よりも低い場合は、第1の金属と半導体との接触はショットキー接触となる。しかし、半導体が抵抗の低い高ドープ型のn型のSiである場合は、量子力学的なトンネル現象により、第1の金属と半導体との接触はオーミック接触となる。例えば、抵抗0.01Ωcmのn型のSiでなるカンチレバーに金属アルミニウムでなる金属コートがオーミック接触しているAFM用の探針が市販されている。
 本実施形態においても、探針12は、実施形態1と同様に、カンチレバー11を硝酸銀水溶液3に浸漬させることによって製造される。図3Aに示すように、針状体13が端部から突出しているカンチレバー11を、硝酸銀水溶液3に浸漬させる。硝酸銀水溶液3には、還元剤は含まれていない。金属コート15の少なくとも一部と針状体13とが硝酸銀水溶液3に浸漬されるように、カンチレバー11を硝酸銀水溶液3に浸漬させる。
 金属コート15を構成するアルミニウムのイオン化傾向は、Agよりもイオン化傾向が大きい。このため、金属コート15中のアルミニウムは酸化され易く、硝酸銀水溶液3中のAgイオンは還元され易い。アルミニウムが酸化されるときにはアルミニウムから電子が放出される。Agイオンが還元されるときにはAgイオンが電子を吸収する。即ち、カンチレバー11を硝酸銀水溶液3に浸漬させた場合、金属コート15中のアルミニウムから硝酸銀水溶液3中のAgイオンへ電子が流れる。金属コート15がカンチレバー11にオーミック接触している状態では、金属コート15からカンチレバー11へ電子が流れ易い。第1の金属(アルミニウム)のフェルミ準位がカンチレバー11を構成する半導体(n型のSi)フェルミ準位以下であっても、オーミック接触があることによって、金属コート15からカンチレバー11へ電子が流れる。このため、金属コート15中のアルミニウムが酸化され、金属コート15からカンチレバー11へ電子が流れる。また、針状体13の先端からは最も電子が飛び出し易い。このため、金属コート15からカンチレバー11へ電子が流れることにより、針状体13へ電子が供給され、針状体13の先端から電子が硝酸銀水溶液3中へ流出する。流出した電子によって、硝酸銀水溶液3中のAgイオンが還元される。このため、針状体13の先端にAgナノ構造体が析出し、成長する。
 n型のSi中には負のキャリアが含まれるので、n型のSiでカンチレバー11が構成されている場合は、針状体13を含んだカンチレバー11の中を電子が移動しやすい。針状体13の先端から電子が硝酸銀水溶液3中へ流出しやすくなり、Agナノ構造体が析出しやすい。このため、カンチレバー11はn型の半導体で構成されていることが望ましい。また、針状体13の先端の曲率が大きいほど、針状体13の先端から電子が飛び出しやすい。
 適宜の時間、カンチレバー11を硝酸銀水溶液3に浸漬させた後、カンチレバー11を硝酸銀水溶液3から取り出し、洗浄する。なお、洗浄は必須ではない。図3Bに示すように、針状体13の先端にAgナノ構造体の集合体14が形成されている。図3B及び図3Cに示すように、針状体13の先端にAgナノ構造体の集合体14が固着してなる探針12が製造される。
 図5は、金属コート15に対するXPS(X-ray Photoelectron Spectroscopy,X線光電子分光)の分析結果を示す特性図である。横軸は結合エネルギー(Binding energy)を示し、縦軸は光電子の強度を任意単位で示す。また、アルミニウム酸化物の結合エネルギーと、金属アルミニウムの結合エネルギーとを点線で示している。図5中には、カンチレバー11を硝酸銀水溶液3に浸漬させる前に金属コート15に対して行ったXPSの結果を示すスペクトルと、カンチレバー11を硝酸銀水溶液3に浸漬させた後に金属コート15に対して行ったXPSの結果を示すスペクトルとを示している。浸漬前後のスペクトルを比較すれば、浸漬後は、金属アルミニウムのピークの強度が減少し、アルミニウム酸化物のピークの強度が増加している。カンチレバー11を硝酸銀水溶液3に浸漬させることによって、金属コート15中のアルミニウムの酸化が進行したことが明らかである。従って、アルミニウム(第1の金属)と銀(第2の金属)とのイオン化傾向の差に起因して、アルミニウムが酸化され、カンチレバー11を構成するn型のSiを経由してアルミニウムから硝酸銀水溶液3へ電子が流れ、銀のイオンが還元され、Agナノ構造体が析出したと推測される。この反応は、以下の化学反応式で表されるものと推測される。
  Al+3AgNO3+3H2O→Al(OH)3+3Ag+3HNO3 
 探針12を備えたラマン散乱光測定装置の構成は、実施形態1と同様である。本実施形態においても、ラマン散乱光測定装置は、針状体13の先端にAgナノ構造体の集合体14が固着した探針12を用いることにより、先端増強ラマン散乱を測定することができる。
 図6は、探針12の実例を示す図である。図6には、複数の条件で作製した探針12の針状体13の先端を撮影した複数の写真を示している。カンチレバー11が設けられた探針保持体1として、オリンパス製のOMCL-AC160TSを用い、カンチレバー11を硝酸銀水溶液3に浸漬させることによって、探針12を作製した。硝酸銀水溶液3として、硝酸銀濃度が0.05mM、0.1mM及び1mMである3種類の溶液を用いた。ここで、Mはモル/Lである。またカンチレバー11を硝酸銀水溶液3に浸漬させる浸漬時間は、10s及び60sの2種類とした。
 図6には、二行三列に並べた六個の写真を示している。左列、中列及び右列の夫々にある二個の写真は、硝酸銀濃度を夫々に0.05mM、0.1mM及び1mMとして作製した探針12の針状体13の先端を撮影した写真である。また上側の行及び下側の行の夫々にある三個の写真は、浸漬時間を夫々に10s及び60sとして作製した探針12の針状体13の先端を撮影した写真である。夫々の写真には、Agナノ構造体の集合体14が映っている。硝酸銀濃度が増加するほど、また浸漬時間が長くなるほど、Agナノ構造体の集合体14の大きさが大きくなる。図6に示した六個の探針12の中では、硝酸銀濃度を0.1mMとし、浸漬時間を10sとして作製した探針12で、Agナノ構造体の集合体14の大きさが先端増強ラマン散乱を測定するために最も適した大きさとなった。
 本実施形態においても、背面に金属コート15が形成されているカンチレバー11を硝酸銀水溶液3に浸漬させることにより、少ない労力で先端増強ラマン散乱用の探針12を製造することができる。カンチレバー11を浸漬させる硝酸銀水溶液3の濃度、又は浸漬時間を調整することにより、探針12に形成されるAgナノ構造体の集合体14の大きさ及び形状を自由に制御することが可能となり、ラマン分光のためのレーザ光の波長に適した集合体14を形成することができる。従って、先端増強ラマン散乱を測定する際にラマン散乱光の効果的な増強が可能となる。また、先端増強ラマン散乱を測定する際に所望の増強度が得られるような探針12を製造することが可能となる。
 なお、Agのイオンを含有する溶液は、硝酸銀水溶液3以外の水溶液であってもよい。第1の金属のイオン化傾向が第2の金属のイオン化傾向よりも大きいのであれば、金属コート15を構成する第1の金属はアルミニウム以外の金属であってもよく、カンチレバー11を浸漬させる溶液に含まれる第2の金属のイオンは、Ag以外の金属のイオンであってもよい。例えば、第1の金属は、クロム、鉄、チタン、ジルコニウム、マグネシウム、マンガン、亜鉛、ニッケル又はスズであってもよい。また、例えば、第2の金属はAu(金)、白金、イリジウム、パラジウム、銅又はビスマスであってもよい。また、金属コート15は、針状体13の先端以外の位置であれば、カンチレバー11の背面以外の部分に形成されていてもよい。
 第2の金属のイオンを含有する溶液のフェルミ準位は、針状体13を含んだカンチレバー11を構成する半導体のフェルミ準位よりも低いことが好ましい。溶液のフェルミ準位が半導体のフェルミ準位よりも低いことによって、針状体13の先端から溶液へ電子が流出しやすく、第2の金属の構造体が析出し易い。また、カンチレバー11は、n型のSi以外の半導体で構成されていてもよい。カンチレバー11がp型の半導体で構成されている場合は、金属コート15はカンチレバー11にショットキー接触している。カンチレバー11がp型の半導体又は真性半導体で構成されている場合であっても、半導体内を電子が移動し、針状体13の先端に第2の金属の構造体が析出し、探針12が製造される。
 また、カンチレバー11の溶液に浸漬される部分の全体が金属コート15に覆われている場合であっても、探針12が製造される。カンチレバー11の金属コート15に覆われている部分には、針状体13の先端が含まれる。金属コート15を構成するアルミニウム等の第1の金属のイオン化傾向は、Ag等の第2の金属のイオン化傾向よりも大きい。カンチレバー11が第2の金属のイオンを含んだ溶液に浸漬されたときは、金属コート15から溶液へ電子が流出する。特に針状体13の先端から電子が飛び出し易く、針状体13の先端の曲率が大きいほど、針状体13の先端から電子が飛び出しやすい。針状体13の先端に第2の金属の構造体が析出し、探針12が製造される。
 また、針状体13を含んだカンチレバー11がアルミニウム等の第1の金属で構成されている場合であっても、探針12が製造される。第1の金属のイオン化傾向は、Ag等の第2の金属のイオン化傾向よりも大きい。カンチレバー11が第2の金属のイオンを含んだ溶液に浸漬されたときは、カンチレバー11から溶液へ電子が流出する。特に針状体13の先端から電子が飛び出し易く、針状体13の先端の曲率が大きいほど、針状体13の先端から電子が飛び出しやすい。針状体13の先端に第2の金属の構造体が析出し、探針12が製造される。
(実施形態3)
 実施形態3においては、カンチレバー11には金属コート15が形成されておらず、カンチレバー11の端部に探針12が設けられている。探針12は、カンチレバー11から突出した針状体13と、針状体13の先端に固着した金属構造体の集合体14とを含んでいる。針状体13を含んだカンチレバー11は、n型のSiで構成されている。本実施形態での金属構造体は、Agナノ構造体である。
 本実施形態においても、探針12は、カンチレバー11を硝酸銀水溶液3に浸漬させることによって製造される。硝酸銀水溶液3のフェルミ準位は、カンチレバー11を構成するn型のSiのフェルミ準位よりも低い。針状体13が端部から突出しているカンチレバー11を、硝酸銀水溶液3に浸漬させる。硝酸銀水溶液3には、還元剤は含まれていない。針状体13が硝酸銀水溶液3に浸漬されるように、カンチレバー11を硝酸銀水溶液3に浸漬させる。n型のSi中には負のキャリアが含まれるので、カンチレバー11の中を電子が移動しやすい。また、針状体13の先端からは電子が飛び出し易い。針状体13の先端の曲率が大きいほど、針状体13の先端から電子が飛び出しやすい。カンチレバー11を電子が流れ、針状体13の先端から硝酸銀水溶液3中へ電子が流出する。流出した電子によって、硝酸銀水溶液3中のAgイオンが還元される。このため、針状体13の先端にAgナノ構造体が析出し、成長する。
 適宜の時間、カンチレバー11を硝酸銀水溶液3に浸漬させた後、カンチレバー11を硝酸銀水溶液3から取り出し、洗浄する。なお、洗浄は必須ではない。針状体13の先端には、Agナノ構造体の集合体14が形成されている。実施形態1及び2よりも長い浸漬時間が必要ではあるものの、針状体13の先端にAgナノ構造体の集合体14が固着してなる探針12が製造される。例えば、金属コート15が無く、抵抗0.01~0.02Ωcmのn型のSiでなる市販のAFM用の探針をカンチレバー11として用いた場合に、Agナノ構造体の集合体14を有する探針12が製造されることが確認された。本実施形態に係る製造方法で製造した探針12を用いた場合でも、ラマン散乱光測定装置は、先端増強ラマン散乱を測定することができる。
 図7は、カンチレバー11に金属コート15が形成されている場合及び形成されていない場合の探針12の実例を示す図である。図7には、実施形態2と同様に金属コート15が形成されているカンチレバー11を用いて作製した探針12と、金属コート15が形成されていないカンチレバー11を用いて作製した探針12との先端を撮影した複数の写真を示している。金属コート15が形成されているカンチレバー11が設けられた探針保持体1としてオリンパス製のOMCL-AC160TSを用い、金属コート15が形成されていないカンチレバー11が設けられた探針保持体1としてオリンパス製のOMCL-AC160TNを用いた。カンチレバー11を硝酸銀水溶液3に浸漬させることによって、探針12を作製した。硝酸銀水溶液3の硝酸銀濃度は0.1mMとした。またカンチレバー11を硝酸銀水溶液3に浸漬させる浸漬時間は、30秒及び30分の2種類とした。
 図7には、二行二列に並べた四個の写真を示している。左列にある二個の写真は、金属コート15が形成されているカンチレバー11を用いて作製した探針12の針状体13の先端を撮影した写真である。右列にある二個の写真は、金属コート15が形成されていないカンチレバー11を用いて作製した探針12の針状体13の先端を撮影した写真である。右列にある写真で示した探針12は、本実施形態に係る製造方法で製造した探針12である。また上側の行及び下側の行の夫々にある二個の写真は、浸漬時間を夫々に30秒及び30分として作製した探針12の針状体13の先端を撮影した写真である。夫々の写真には、Agナノ構造体の集合体14が映っている。カンチレバー11に金属コート15が形成されていない探針12では、カンチレバー11に金属コート15が形成されている探針12に比べて、同じ浸漬時間でもAgナノ構造体の集合体14の大きさが小さい。図7に示すように、浸漬時間を長くすることによって、Agナノ構造体の集合体14は成長する。本実施形態においても、浸漬時間を十分な長さにすることによって、十分な大きさのAgナノ構造体の集合体14を含んだ探針12を作製できることが明らかである。
 本実施形態においても、カンチレバー11を硝酸銀水溶液3に浸漬させることにより、少ない労力で先端増強ラマン散乱用の探針12を製造することができる。カンチレバー11を浸漬させる硝酸銀水溶液3の濃度、又は浸漬時間を調整することにより、探針12に形成されるAgナノ構造体の集合体14の大きさ及び形状を自由に制御することが可能となり、ラマン分光のためのレーザ光の波長に適した集合体14を形成することができる。従って、先端増強ラマン散乱を測定する際にラマン散乱光の効果的な増強が可能となる。また、先端増強ラマン散乱を測定する際に所望の増強度が得られるような探針12を製造することが可能となる。
 実施形態1又は2と同様に、Agのイオンを含有する溶液は、硝酸銀水溶液3以外の水溶液であってもよい。カンチレバー11を浸漬させる溶液に含まれる第2の金属のイオンは、Ag以外の金属のイオンであってもよい。例えば、第2の金属はAu(金)、白金、イリジウム、パラジウム、銅又はビスマスであってもよい。第2の金属のイオンを含有する溶液のフェルミ準位、又は第2の金属のイオンを含有する溶液の電子の化学ポテンシャルは、針状体13を含んだカンチレバー11を構成する半導体のフェルミ準位よりも低いことが好ましい。また、カンチレバー11は、n型のSi以外の半導体で構成されていてもよい。カンチレバー11がp型の半導体又は真性半導体で構成されている場合であっても、半導体内を熱励起電子が移動し、針状体13の先端に第2の金属の構造体が析出し、探針12が製造される。
(実施形態4)
 図8A、図8B、図8C及び図8Dは、実施形態4に係る探針12の製造方法を示す模式図である。実施形態4に係る製造方法で製造される探針12の構成は、実施形態1、2又は3と同様である。図8Aに示すように、実施形態1~3と同様のカンチレバー11を硝酸銀水溶液3に浸漬させる。針状体13の先端にAgが析出し、Agナノ構造体の種が形成される。ある程度の時間、カンチレバー11を硝酸銀水溶液3に浸漬させた後、図8Bに示すように、カンチレバー11を硝酸銀水溶液3から引き上げ、針状体13を洗浄し、乾燥させる。乾燥の後、図8Cに示すように、再度、カンチレバー11を硝酸銀水溶液3に浸漬させる。針状体13の先端に形成されていたAgナノ構造体の種からAgナノ構造体が成長する。適宜の時間、カンチレバー11を硝酸銀水溶液3に浸漬させた後、カンチレバー11を硝酸銀水溶液3から取り出す。図8Dに示すように、針状体13の先端にAgナノ構造体の集合体14が固着してなる先端増強ラマン散乱用の探針12が製造される。探針12を備えたラマン散乱光測定装置の構成は、実施形態1と同様である。
 以上のように、本実施形態においては、カンチレバー11を硝酸銀水溶液3に浸漬させ、一旦針状体13を乾燥させ、再度カンチレバー11を硝酸銀水溶液3に浸漬させることにより、先端増強ラマン散乱用の探針12を製造する。実施形態1~3のようにカンチレバー11を一度だけ硝酸銀水溶液3に浸漬させる場合と比べて、より鋭い形状又はより大きな形状になったAgナノ構造体の集合体14が得られる場合がある。これにより、Agナノ構造体の集合体14を更に成長させることができ、先端増強ラマン散乱を測定する際に所望の増強度が得られるような探針12を製造することが可能となる。
 実施形態1~3と同様に、Agのイオンを含有する溶液は、硝酸銀水溶液3以外の水溶液であってもよい。カンチレバー11を浸漬させる溶液に含まれる第2の金属のイオンは、Ag以外の金属のイオンであってもよい。例えば、第2の金属はAu(金)、白金、イリジウム、パラジウム、銅又はビスマスであってもよい。なお、最初にカンチレバー11を浸漬させる溶液と、再度カンチレバー11を浸漬させる溶液とは、異なる溶液であってもよい。
 実施形態1~4に係る探針12の製造方法を実行するためには、探針12の製造キットを利用することができる。製造キットには、カンチレバー11と第2の金属のイオンを含有する硝酸銀水溶液3等の溶液とが含まれている。製造キットに含まれるカンチレバー11は、探針保持体1に設けられており、カンチレバー11に金属コート15は形成されていてもよく、形成されていなくてもよい。製造キットに含まれる溶液は、原液で使用されてもよく、希釈されて使用されてもよい。使用者は、製造キットに含まれるカンチレバー11を、製造キットに含まれる溶液に適宜の時間浸漬させることにより、探針12を製造することができる。なお、製造キットにはカンチレバー11が含まれていなくてもよい。使用者は、市販品等の一般のカンチレバー11と製造キットに含まれる溶液とを用いて、探針12を製造することができる。
(実施形態5)
 実施形態1~4に係る製造方法で製造した探針12を先端増強ラマン散乱の測定のために使用し続けた場合、針状体13の先端に固着した金属構造体の集合体14の変形、酸化又は硫化等によって探針12は劣化する。また、金属構造体の集合体14に他の物質が付着することによっても、探針12は劣化する。例えば、探針12が大気に触れることによって、大気中の物質が金属構造体の集合体14に吸着される。また、探針12を使用せずとも、保存期間中に同様に探針12は劣化する。探針12が劣化した場合は、先端増強ラマン散乱を測定する際に、ラマン散乱光の増強が不十分となる。実施形態5においては、劣化した探針12から、再生した探針12を製造する。
 本実施形態においては、劣化した後の探針12から金属構造体の集合体14の一部の除去若しくは還元、又は金属構造体の集合体14に付着した付着物の除去を行うことにより、探針12を再生する。金属構造体の集合体14の一部の除去及び付着物の除去は、針状体13の先端へ紫外線等の短波長光を照射することによって行う。短波長光の照射により、針状体13から金属構造体の集合体14の一部及び金属構造体の集合体14に付着した付着物が除去される。又は、金属構造体の集合体14の一部の除去及び付着物の除去は、剥離液を用いて行う。探針12を塩酸、硫酸、硝酸、酢酸、チオ硝酸等の剥離液へ浸漬させることによって、探針12から金属構造体の集合体14の一部及び金属構造体の集合体14に付着した付着物が除去される。金属構造体の集合体14の劣化した一部分を除去することにより、劣化した探針が再生する。同様に、金属構造体の集合体14に付着した付着物を除去することにより、劣化した探針が再生する。このように、再生した探針12が製造される。なお、針状体13から金属構造体の集合体14の一部又は全部を除去した後のカンチレバー11を用いて、実施形態1~4の何れかに係る製造方法により、再生した探針12を製造してもよい。
 金属構造体の集合体14の還元は、加熱又は還元剤を用いた方法により行う。NaBH4 等の還元剤を溶質とする溶液へ探針12を浸漬させることによって、金属構造体の集合体14の一部が還元される。金属構造体の集合体14の酸化した一部分を還元させることにより、劣化した探針12が再生する。このように、再生した探針12が製造される。
 本実施形態においても、製造された探針12を用いて先端増強ラマン散乱の測定が可能である。本実施形態により、探針12が劣化した場合でも、先端増強ラマン散乱を測定する際に所望の増強度が得られるように、探針12を再生することが可能となる。また、本実施形態により、カンチレバー11のリサイクルが可能となる。
 実施形態に係る探針12の製造方法を実行するためには、探針12の製造キットを利用することができる。製造キットには、カンチレバー11と、第2の金属のイオンを含有する硝酸銀水溶液3等の溶液と、探針12を再生させるための再生液とが含まれている。カンチレバー11に金属コート15は形成されていてもよく、形成されていなくてもよい。再生液は、塩酸、硫酸、硝酸、酢酸、チオ硝酸等の剥離液、又はNaBH4 等の還元剤を溶質とする溶液である。製造キットに含まれる溶液及び再生液は、原液で使用されてもよく、希釈されて使用されてもよい。使用者は、製造キットに含まれるカンチレバー11を、製造キットに含まれる溶液に適宜の時間浸漬させることにより、探針12を製造することができる。また、使用者は、使用後の探針12を再生液に適宜の時間浸漬させることにより、再生した探針12を製造することができる。製造キットにはカンチレバー11が含まれていなくてもよい。
 なお、以上の実施形態1~5においては、第2の金属のイオンを含有する溶液は水溶液であるとしたが、カンチレバー11を浸漬させるべき、第2の金属のイオンを含有する溶液は、有機溶媒等、水以外の溶媒を用いた溶液であってもよい。
 1 探針保持体
 11 カンチレバー
 12 探針
 13 針状体
 14 Agナノ構造体(金属構造体)の集合体
 15 金属コート
 2 試料
 3 硝酸銀水溶液
 4 レンズ
 5 試料台
 61 照射部
 64 検出部
 71 電極
 72 電源
 

Claims (11)

  1.  カンチレバーから突出した探針を製造する方法であって、
     半導体で構成され、該半導体よりもフェルミ準位が高い第1の金属で一部がコーティングされており、他の一部から針状体が突出しているカンチレバーを、第2の金属のイオンを含有する溶液に浸漬させることにより、前記針状体の先端に前記第2の金属の構造体が析出した探針を製造すること
     を特徴とする探針の製造方法。
  2.  カンチレバーから突出した探針を製造する方法であって、
     半導体で構成され一部から針状体が突出しているカンチレバーを、第2の金属のイオンを含有しており、前記半導体よりもフェルミ準位が低い溶液に浸漬させることにより、電子が前記針状体から前記溶液中の前記第2の金属のイオンへ供給されて、前記針状体の先端に前記第2の金属の構造体が析出した探針を製造すること
     を特徴とする探針の製造方法。
  3.  前記カンチレバーの一部が第1の金属でなる金属コートでコーティングされていること
     を特徴とする請求項2に記載の探針の製造方法。
  4.  前記第1の金属は、前記第2の金属よりもイオン化傾向が大きい金属であること
     を特徴とする請求項3に記載の探針の製造方法。
  5.  前記金属コートは、前記カンチレバーとオーミック接触していること
     を特徴とする請求項3又は4に記載の探針の製造方法。
  6.  前記第1の金属は、アルミニウム、クロム、鉄、チタン、ジルコニウム、マグネシウム、マンガン、亜鉛、ニッケル又はスズであること
     を特徴とする請求項1、3乃至5のいずれか一つに記載の探針の製造方法。
  7.  前記カンチレバーを前記溶液に浸漬させた後で、浸漬を中断して前記針状体を乾燥させ、再度、前記カンチレバーを前記溶液に浸漬させること
     を特徴とする請求項1乃至6のいずれか一つに記載の探針の製造方法。
  8.  前記溶液は、銀、金、白金、イリジウム、パラジウム、銅又はビスマスのイオンを含有する溶液であること
     を特徴とする請求項1乃至7のいずれか一つに記載の探針の製造方法。
  9.  劣化後の探針に含まれる前記構造体の一部の除去若しくは還元又は前記構造体への付着物の除去を行うこと
     を特徴とする請求項1乃至8のいずれか一つに記載の探針の製造方法。
  10.  カンチレバーから突出した探針において、
     半導体で構成され該半導体よりもフェルミ準位が高い第1の金属で一部がコーティングされたカンチレバーの他の一部から突出した針状体と、
     前記カンチレバーを、第2の金属のイオンを含有する溶液に浸漬させることにより、前記針状体の先端に析出させた前記第2の金属の構造体と
     を有することを特徴とする探針。
  11.  カンチレバーから突出した探針において、
     半導体で構成されたカンチレバーの一部から突出した針状体と、
     前記カンチレバーを、第2の金属のイオンを含有する溶液に浸漬させることにより、前記針状体の先端に析出させた前記第2の金属の構造体と
     を有することを特徴とする探針。
PCT/JP2017/024240 2016-06-30 2017-06-30 探針の製造方法及び探針 WO2018003991A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780038786.8A CN109416326B (zh) 2016-06-30 2017-06-30 探针的制造方法和探针
US16/313,761 US10900905B2 (en) 2016-06-30 2017-06-30 Probe manufacturing method and probe
JP2018525309A JP6989851B2 (ja) 2016-06-30 2017-06-30 探針の製造方法及び探針
EP17820345.1A EP3480583B1 (en) 2016-06-30 2017-06-30 Probe manufacturing method
KR1020187037543A KR102581662B1 (ko) 2016-06-30 2017-06-30 탐침의 제조 방법 및 탐침

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-130615 2016-06-30
JP2016130615 2016-06-30

Publications (1)

Publication Number Publication Date
WO2018003991A1 true WO2018003991A1 (ja) 2018-01-04

Family

ID=60786077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024240 WO2018003991A1 (ja) 2016-06-30 2017-06-30 探針の製造方法及び探針

Country Status (6)

Country Link
US (1) US10900905B2 (ja)
EP (1) EP3480583B1 (ja)
JP (1) JP6989851B2 (ja)
KR (1) KR102581662B1 (ja)
CN (1) CN109416326B (ja)
WO (1) WO2018003991A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200036302A (ko) * 2018-09-28 2020-04-07 전북대학교산학협력단 원자간력현미경 팁 및 이의 제조 방법
CN111693737A (zh) * 2020-06-18 2020-09-22 中国科学院力学研究所 一种用于样品表面形貌测量的纳米纤维探针针尖制作方法
JP2021517251A (ja) * 2018-03-26 2021-07-15 ブルカー ナノ インコーポレイテッドBruker Nano,Inc. 大きな半径のプローブ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110488045B (zh) * 2019-09-11 2021-09-03 重庆医药高等专科学校 防脱落型探针装载设备
EP3816637A1 (en) 2019-10-31 2021-05-05 ETH Zurich Method for manufacturing a probe
CN110954714B (zh) * 2019-12-20 2021-10-19 江苏集萃微纳自动化系统与装备技术研究所有限公司 一种原子力显微镜的探针的刚度实时调节方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145726A (ja) * 1995-11-27 1997-06-06 Mitsubishi Electric Corp 原子間力顕微鏡およびカンチレバーのクリーニング方法
JP2006071448A (ja) * 2004-09-02 2006-03-16 Sii Nanotechnology Inc 近接場顕微鏡用プローブおよびその製造方法ならびにそのプローブを用いた走査型プローブ顕微鏡
JP2006153831A (ja) * 2004-10-27 2006-06-15 Mitsubishi Chemicals Corp カンチレバーセンサ、センサシステム及び検体液中の検出対象物質の検出方法
JP2009156602A (ja) 2007-12-25 2009-07-16 Institute Of Physical & Chemical Research チップ増強ラマンプローブ及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002471A (en) 1996-11-04 1999-12-14 California Institute Of Technology High resolution scanning raman microscope
JP4526626B2 (ja) * 1999-12-20 2010-08-18 独立行政法人科学技術振興機構 電気特性評価装置
US7335908B2 (en) * 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
JP2008051556A (ja) * 2006-08-22 2008-03-06 Sii Nanotechnology Inc 光学式変位検出機構及びそれを用いた表面情報計測装置
CN101299457B (zh) 2008-05-09 2010-06-02 华南师范大学 无汞碱性锌锰和锌银扣式电池负极盖表面处理方法
DE112010002070A5 (de) * 2009-05-22 2012-09-13 Technische Universität Dresden Vorrichtung und verfahren zur metallisierung von rastersondenspitzen
CN103741122A (zh) 2014-01-20 2014-04-23 厦门大学 一种制备光滑尖锐afm-ters针尖的化学镀方法
JP6065886B2 (ja) 2014-07-22 2017-01-25 トヨタ自動車株式会社 金属皮膜の成膜方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145726A (ja) * 1995-11-27 1997-06-06 Mitsubishi Electric Corp 原子間力顕微鏡およびカンチレバーのクリーニング方法
JP2006071448A (ja) * 2004-09-02 2006-03-16 Sii Nanotechnology Inc 近接場顕微鏡用プローブおよびその製造方法ならびにそのプローブを用いた走査型プローブ顕微鏡
JP2006153831A (ja) * 2004-10-27 2006-06-15 Mitsubishi Chemicals Corp カンチレバーセンサ、センサシステム及び検体液中の検出対象物質の検出方法
JP2009156602A (ja) 2007-12-25 2009-07-16 Institute Of Physical & Chemical Research チップ増強ラマンプローブ及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PRZEMYSLAW R. BREJNA: "Electroless Deposition of Silver Onto Silicon as a Method of Preparation of Reproducible Surface-Enhanced Raman Spectroscopy Substrates and Tip-Enhanced Raman Spectroscopy Tips", APPLIED SPECTROSCOPY, vol. 64, no. 5, 1 May 2010 (2010-05-01), pages 493 - 499, XP055556911 *
YOSUKE FUKUHARA: "Optimized Measurement of Tapping-AFM based Tip-enhanced Raman Spectroscopy", EXTENDED ABSTRACTS OF THE 61ST JSAP SPRING MEETING (2014 SPRING AOYAMA GAKUIN UNIVERSITY, 2014, pages 06-284, XP055562023 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021517251A (ja) * 2018-03-26 2021-07-15 ブルカー ナノ インコーポレイテッドBruker Nano,Inc. 大きな半径のプローブ
JP7002672B2 (ja) 2018-03-26 2022-01-20 ブルカー ナノ インコーポレイテッド 大きな半径のプローブ
KR20200036302A (ko) * 2018-09-28 2020-04-07 전북대학교산학협력단 원자간력현미경 팁 및 이의 제조 방법
KR102101854B1 (ko) * 2018-09-28 2020-04-20 전북대학교산학협력단 원자간력현미경 팁 및 이의 제조 방법
CN111693737A (zh) * 2020-06-18 2020-09-22 中国科学院力学研究所 一种用于样品表面形貌测量的纳米纤维探针针尖制作方法

Also Published As

Publication number Publication date
CN109416326A (zh) 2019-03-01
CN109416326B (zh) 2021-12-14
US10900905B2 (en) 2021-01-26
EP3480583A4 (en) 2020-02-26
EP3480583B1 (en) 2024-04-24
KR102581662B1 (ko) 2023-09-22
JPWO2018003991A1 (ja) 2019-06-13
US20190170651A1 (en) 2019-06-06
JP6989851B2 (ja) 2022-01-12
KR20190024901A (ko) 2019-03-08
EP3480583A1 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
WO2018003991A1 (ja) 探針の製造方法及び探針
Wang et al. Tip-enhanced Raman spectroscopy for surfaces and interfaces
Furube et al. Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication
Yu et al. Quantifying wavelength-dependent plasmonic hot carrier energy distributions at metal/semiconductor interfaces
Ren et al. Raman spectroscopy on transition metals
US7450227B2 (en) Surface enhanced Raman spectroscopy (SERS) substrates exhibiting uniform high enhancement and stability
JP4818197B2 (ja) 表面増強振動分光分析用プローブおよびその製造方法
JP5172331B2 (ja) 走査型プローブ顕微鏡用カンチレバー及びそれを具備する走査型プローブ顕微鏡
Giallongo et al. Silver nanoparticle arrays on a DVD-derived template: an easy&cheap SERS substrate
JP6146898B2 (ja) 表面増強ラマン分光分析用(sers)基板、その製造方法、それを用いたバイオセンサおよびそれを用いたマイクロ流路デバイス
Huang et al. Rational fabrication of silver-coated AFM TERS tips with a high enhancement and long lifetime
JP2016538563A (ja) 表面増強ラマン分光用基板及びその製造方法
JP2006349463A (ja) 表面増強ラマン分光分析用治具及びその製造方法
PL238322B1 (pl) Sposób osadzania nanocząstek metalu na powierzchni w procesie elektrochemicznym, powierzchnia otrzymana tym sposobem i jej zastosowanie
Buividas et al. Novel method to determine the actual surface area of a laser-nanotextured sensor
JP2008164584A (ja) ラマン分光装置、及びこれを用いたラマン分光方法
US20050077184A1 (en) Method for preparing surface for obtaining surface-enhanced Raman scattering spectra of organic compounds
CN112647104A (zh) 一种花状金银纳米复合结构阵列的制备方法
JP5288197B2 (ja) 走査型プローブ顕微鏡用プローブ及びそのプローブの作製方法
JP5581337B2 (ja) 光学検出デバイスを作製する方法
Chen et al. An approach for fabricating self-assembled monolayer of Ag nanoparticles on gold as the SERS-active substrate
JP2012514748A5 (ja)
Moaen et al. Development of Effectual Substrates for SERS by Nanostructurs-Coated Porous Silicon
Kruszewski Surface enhanced Raman scattering phenomenon
Hu et al. Metal-coated Si nanograss as highly sensitive SERS sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018525309

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187037543

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017820345

Country of ref document: EP

Effective date: 20190130