WO2018003990A1 - マグネット式チップコンベア - Google Patents

マグネット式チップコンベア Download PDF

Info

Publication number
WO2018003990A1
WO2018003990A1 PCT/JP2017/024237 JP2017024237W WO2018003990A1 WO 2018003990 A1 WO2018003990 A1 WO 2018003990A1 JP 2017024237 W JP2017024237 W JP 2017024237W WO 2018003990 A1 WO2018003990 A1 WO 2018003990A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
magnets
chip conveyor
plate
type chip
Prior art date
Application number
PCT/JP2017/024237
Other languages
English (en)
French (fr)
Inventor
昌治 佐澤
Original Assignee
有限会社ショウナンエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ショウナンエンジニアリング filed Critical 有限会社ショウナンエンジニアリング
Priority to JP2018525308A priority Critical patent/JP6371933B2/ja
Priority to US16/313,471 priority patent/US10625946B2/en
Priority to CN201780002580.XA priority patent/CN107848087B/zh
Priority to KR1020187002781A priority patent/KR102015966B1/ko
Publication of WO2018003990A1 publication Critical patent/WO2018003990A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0332Component parts; Auxiliary operations characterised by the magnetic circuit using permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0042Devices for removing chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/16Magnetic separation acting directly on the substance being separated with material carriers in the form of belts
    • B03C1/18Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with magnets moving during operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/16Magnetic separation acting directly on the substance being separated with material carriers in the form of belts
    • B03C1/18Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with magnets moving during operation
    • B03C1/20Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with magnets moving during operation in the form of belts, e.g. cross-belt type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B25/00Accessories or auxiliary equipment for turning-machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • B65G17/02Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface comprising a load-carrying belt attached to or resting on the traction element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • B65G17/30Details; Auxiliary devices
    • B65G17/46Means for holding or retaining the loads in fixed position on the load-carriers, e.g. magnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G54/00Non-mechanical conveyors not otherwise provided for
    • B65G54/02Non-mechanical conveyors not otherwise provided for electrostatic, electric, or magnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G54/00Non-mechanical conveyors not otherwise provided for
    • B65G54/02Non-mechanical conveyors not otherwise provided for electrostatic, electric, or magnetic
    • B65G54/025Non-mechanical conveyors not otherwise provided for electrostatic, electric, or magnetic the load being magnetically coupled with a piston-like driver moved within a tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation whereby the particles to be separated are in solid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/04Bulk

Definitions

  • the present invention relates to a magnet type chip conveyor. More specifically, the present invention relates to a magnetic chip conveyor that prevents long chips such as a lathe from staying.
  • Magnet type chip conveyors are known that allow chips to fall out (Patent Document 1, Patent Document 2, Patent Document 3). Such a magnetic chip conveyor is preferable because chips generated during processing can be separated and discharged from the coolant, so that the coolant is not taken out to the outside.
  • the conventional magnetic chip conveyor when long chips such as lathe chips are generated, attracts both ends of the endless chain at the same time by the magnets on the upstream and downstream sides of the endless chain.
  • the frictional force between the surface and the chip, the gravity of the chip, etc. may be balanced with a certain probability. In such a case, there is a problem that long chips do not move on the surface of the nonmagnetic plate and long chips stay on the surface of the nonmagnetic plate.
  • An object of the present invention is to provide a magnetic chip conveyor that prevents long chips from staying.
  • the present invention employs the following means in order to solve the above problems.
  • the magnetic chip conveyor of the present invention 1 A magnetic plate placed on the surface, guided from one end to the other, and discharged to the other end; a non-magnetic plate; A plurality of magnets arranged on the back surface of the plate at regular intervals along the other end from the one end, and adsorbing chips on the surface of the plate;
  • the magnet-type chip conveyor configured to move the plurality of magnets simultaneously from the one end to the other end and move the chips from the one end to the other end, The magnets having different magnetic forces are arranged adjacent to each other.
  • the magnet type chip conveyor of the present invention 2 is characterized in that, in the present invention 1, the magnets are a group of magnets composed of unit magnets.
  • the magnet type chip conveyor of the present invention 3 is characterized in that, in the present invention 1 or 2, the magnet moving mechanism is an endless track that transmits power from the driving vehicle to the driven vehicle.
  • the magnet type chip conveyor of the present invention 4 is characterized in that, in the present invention 1 or 2, the surface in the vicinity of the other end is formed with irregularities.
  • the magnets of adjacent magnets are different from each other, so that the magnets on the upstream side and the downstream side of the magnet moving mechanism are less likely to adsorb long chips and are long on the surface of the non-magnetic plate. There is no problem of chip accumulation.
  • FIG. 1 is an overall longitudinal sectional view showing a magnet type chip conveyor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is an exploded view of the endless chain of FIG. 4 shows the vicinity of a chip dropping portion at the left end of the nonmagnetic plate of FIG. 1
  • FIG. 4 (a) is an enlarged longitudinal sectional view
  • FIG. 4 (b) is a plan view of FIG. 4 (a).
  • FIG. 1 is an overall longitudinal sectional view showing a magnet type chip conveyor according to an embodiment of the present invention
  • FIG. 2 is an AA sectional view of FIG. 3 is a developed view of the endless chain shown in FIG. 1
  • FIG. 4 shows the vicinity of a chip dropping portion at the left end of the non-magnetic plate in FIG. 1
  • FIG. 4 (a) is an enlarged longitudinal sectional view
  • FIG. ) Is a plan view of FIG.
  • a magnetic chip conveyor 1 according to an embodiment of the present invention includes a box-shaped chip conveyor body 2 that is long in the left-right direction in FIG.
  • the chip conveyor body 2 of this example is mounted and placed on a bed 3 of a machine tool.
  • a plate 4 having a smooth surface made of a thin nonmagnetic material (SUS304 or the like) is integrally fixed.
  • the plate 4 includes a horizontal part 41, an inclined part 42, and a chip dropping part 43.
  • the horizontal portion 41 is a belt-like substantially horizontal plane
  • the inclined portion 42 is an inclined surface that continuously rises from the horizontal plane
  • the chip dropping portion 43 forms a vertical plane with an arc surface sandwiched from the inclined surface.
  • the plate 4 is a chip discharge path and a cover for the endless chain 5.
  • the magnetic chips that fall along with the machining liquid on the surface of the horizontal portion 41 of the plate 4 are attracted by the permanent magnets 61, 62, and 63 of the endless chain 5 disposed on the back surface of the plate 4.
  • the chips move to the left shown in FIG. 1 and are separated by causing the coolant to flow down by gravity at the inclined portion 42.
  • the separated chips fall to the chip box 31 from the chip dropping part 43 extending downward from the left end of the inclined part 42.
  • the coolant that has fallen together with the chips on the surface of the horizontal portion 41 flows out of the punching metals 21 and 21 on the side surface of the chip conveyor body 2 and returns to the coolant tank side (not shown) of the machine tool.
  • An endless chain 5 is wound around the sprocket wheels 51 and 52 on the back surface of the plate 4.
  • the left end sprocket wheel 51 is rotated by a motor 53, and the endless chain 5 rotates counterclockwise in FIG.
  • twelve magnet holders 6 are fixed to the endless chain 5 at equal intervals.
  • permanent magnets (permanent magnets such as rare earths) 61, 62, and 63, which are composed of three types of unit magnets having different magnetic forces of a rectangular parallelepiped or a rectangular parallelepiped, are fixed to the magnet holder 6. That is, each permanent magnet 61, 62, 63 constitutes a magnet by combining a group of unit magnets.
  • the permanent magnet 61 is composed of a group of six unit magnets 61a in this example
  • the permanent magnet 63 is composed of a group of six unit magnets 63a in this example.
  • the magnetic force surface magnetic flux density / attraction force
  • FIG. 3 a permanent magnet 61 having a thickness of T1, a permanent magnet 62 having a thickness of T2, and a permanent magnet 63 having a thickness of T3 are sequentially arranged from the left as shown in FIG. 6 is fixed by bonding.
  • the permanent magnets 61, 62, and 63 are configured by arranging six unit magnets that are rectangular parallelepipeds in the left-right direction in FIG.
  • T1 has a thickness of 6 mm
  • T2 has a thickness of 9 mm
  • T3 has a thickness of 15 mm.
  • the permanent magnets 61, 62, and 63 are fixed and arranged on the magnet holder 6 with the magnetic poles facing in the same direction.
  • the magnetic force (magnetic flux density) of the permanent magnet 61 is 3000 G (Gauss)
  • the magnetic force of the permanent magnet 62 is 4000 G (Gauss)
  • the magnetic force of the permanent magnet 63 is 5000 G (Gauss).
  • This magnetic force is proportional to the thickness t (see FIG. 2) of the thickness if the plane size of the magnet is constant.
  • permanent magnets 61, 62, 63 are fixedly arranged at regular intervals in the moving direction of the endless chain 5 (see FIG. 3).
  • the permanent magnets 61, 62, and 63 are each composed of a plurality of magnets (see FIG. 2).
  • the permanent magnets 61, 62, 63 have the same magnetic force of the magnets arranged in the direction orthogonal to the moving direction of the endless chain 5.
  • the magnitude of the magnetic force differs in the adjacent magnets in the moving direction of the endless chain 5 (see FIG. 3).
  • the permanent magnets 61, 62, and 63 in the above-described embodiment have a rectangular parallelepiped shape or a rectangular parallelepiped shape, but may have other shapes such as a columnar shape.
  • magnetic force was adjusted with the thickness, you may adjust magnetic force with the number of magnets and the material of a magnet.
  • the endless chain is used.
  • an endless belt may be used instead of the chain.
  • the endless chain and the endless belt are a kind of endless track, but a reciprocating mechanism may be used to make the endless track compact instead of the endless track.
  • the magnet moves in a rectangular manner by a link mechanism, a cam mechanism, etc., and the chips are sent to one side.
  • the chips remain on the surface of the plate 4 due to frictional force and do not fall.
  • it is configured by three types of permanent magnets having different magnetic forces, but may be configured by two types or four or more types of permanent magnets.
  • corrugation of a plate is formed in the waveform, the unevenness
  • a permanent magnet is used for chip adsorption, but an electromagnet may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Non-Mechanical Conveyors (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Turning (AREA)

Abstract

本発明のマグネット式チップコンベアは、2種類以上の異なる磁力の磁石により長い切屑の両端部を互いに吸着し合うことを少なくさせ、長い切屑が滞留しないようにするものである。 プレート4の裏面には、無端チェーン5がスプロケットホイール51、52に巻き付けられて配置されている。スプロケットホイール51はモータ53によって反時計方向に回転し、無端チェーン5は反時計方向に回転する。無端チェーン5には、等間隔に12個の磁石保持体6が固定されている。磁石保持体6には、磁力が異なる3種類の永久磁石61、62、63が各々接着されて固定されている。

Description

マグネット式チップコンベア
 本発明は、マグネット式チップコンベアに関する。更に詳しくは、旋盤等の長い切屑が滞留しないようにしたマグネット式チップコンベアに関する。
 非磁性体のプレートの表面に磁性体の切屑を載置し、このプレートの裏面の無端チェーンに取り付けられた複数の磁石を、このプレートの一端から他端に移動して、このプレートの他端から切屑を落下させるマグネット式チップコンベアが知られている(特許文献1、特許文献2、特許文献3)。このような、マグネット式チップコンベアは、加工中に発生した切屑をクーラントから分離して排出できるため、クーラントの外部への持ち出しが少なく、好ましい。
 しかし、従来のマグネット式チップコンベアは、旋盤の切屑のような長い切屑が発生すると、無端チェーンの上流側と下流側の磁石により、その磁力で長い切屑の両端部を同時に吸着する吸着力、搬送面と切屑の間の摩擦力、切屑の重力等が、ある確率で均衡することがある。このような場合、非磁性体のプレートの表面を長い切屑が移動せず、非磁性体のプレートの表面に長い切屑が滞留する不具合が生じる。
特開2001-113200号公報 特開2016-36874号公報 特開平10-151362号公報
 本発明は、以上のような背景で発明されたものであり、以下の目的を達成するものである。本発明の目的は、長い切屑が滞留しないようにしたマグネット式チップコンベアを提供することにある。
 本発明は、前記課題を解決するために、次の手段を採る。
 本発明1のマグネット式チップコンベアは、
 磁性体の切屑を表面に載置して一端から他端に案内し、前記他端に排出する非磁性体のプレートと、
 前記プレートの裏面に、前記一端から前記他端に沿って一定間隔に配置され、前記プレートの表面の切屑を吸着する複数の磁石と、
 前記複数の磁石を前記一端から前記他端に同時に移動させて、前記切屑を前記一端から前記他端に移動させる磁石移動機構と
 から構成されるマグネット式チップコンベアにおいて、
 前記磁石は、磁力が異なるものが隣接して配置されていることを特徴とする。
 本発明2のマグネット式チップコンベアは、本発明1において、前記磁石は、単位磁石からなる一群の磁石であることを特徴とする。
 本発明3のマグネット式チップコンベアは、本発明1又は2において、前記磁石移動機構は、原動車から従動車に動力を伝達する無限軌道であることを特徴とする。
 本発明4のマグネット式チップコンベアは、本発明1又は2において、前記他端の近傍の前記表面は、凹凸が形成されていることを特徴とする。
 本発明5のマグネット式チップコンベアは、本発明2において、前記一群の磁石は、前記磁石移動機構の移動方向に等間隔に、前記磁石移動機構に取り付けられた磁石保持体に固着されており、前記磁石は、前記磁石移動機構の移動方向において、隣接する前記単位磁石の肉厚が異なることを特徴とする。
 本発明のマグネット式チップコンベアは、隣接する磁石の磁力が異なるため、磁石移動機構の上流側と下流側の磁石が長い切屑を吸着し合うことが少なくなり、非磁性体のプレートの表面に長い切屑が滞留する不具合が生じない。
図1は、本発明の実施の形態のマグネット式チップコンベアを示す全体縦断面図である。 図2は、図1のA-A断面図である。 図3は、図1の無端チェーンを展開した展開図である。 図4は、図1の非磁性体のプレートの左端の切屑落下部近傍を示し、図4(a)は拡大縦断面図、図4(b)は図4(a)の平面図である。
 以下、本発明の実施の形態を図面に基づいて説明する。図1は本発明の実施の形態のマグネット式チップコンベアを示す全体縦断面図、図2は図1のA-A断面図である。図3は図1の無端チェーンを展開した展開図、図4は図1の非磁性体のプレートの左端の切屑落下部近傍を示し、図4(a)は拡大縦断面図、図4(b)は図4(a)の平面図である。本発明の実施の形態のマグネット式チップコンベア1は、図1の左右方向に長い箱状のチップコンベア本体2を備えている。本例のチップコンベア本体2は、工作機械のベッド3上に搭載し載置されている。チップコンベア本体2の上部には、非磁性体(SUS304等)の薄板で、平滑な表面を有するプレート4が一体に固定して配置されている。プレート4は、水平部41、傾斜部42、切屑落下部43で構成されている。
 この設置例では、水平部41は帯状の略水平面であり、傾斜部42はこの水平面から連続的に上昇する傾斜面であり、切屑落下部43は傾斜面から円弧面を挟んで鉛直面を構成する。プレート4は、切屑の排出路であり無端チェーン5のカバーでもある。プレート4の水平部41の表面に加工液と共に落下した磁性体の切屑は、このプレート4の裏面に配置された無端チェーン5の永久磁石61、62、63により吸着され、その水平部41上に吸着される。そして、この切屑は、図1に示す左方に移動し、傾斜部42でクーラントを重力により流下させて分離される。分離された切屑は、傾斜部42の左端から下方に延びる切屑落下部43からチップボックス31に落下する。
 一方、水平部41の表面に切屑と共に落下したクーラントは、チップコンベア本体2の側面のパンチングメタル21、21から流出して、工作機械の図示しないクーラントタンク側に戻る。プレート4の裏面には、無端チェーン5がスプロケットホイール51、52に巻き付けられて配置されている。左端のスプロケットホイール51はモータ53によって回転され、無端チェーン5は図1では反時計方向に回転する。無端チェーン5には、本例では等間隔に12個の磁石保持体6が固定されている。磁石保持体6には、本例では直方体又は正方体の磁力が異なる3種類の単位磁石からなる永久磁石(希土類等の永久磁石)61、62、63が各々接着されて固定されている。即ち、各永久磁石61、62、63は、一群の単位磁石を組み合わせてそれぞれの磁石を構成する。
 図2に示すように、永久磁石61は、本例では6個からなる一群の単位磁石61aで構成されており、永久磁石63は、本例では6個からなる一群の単位磁石63aで構成されている。磁力(表面磁束密度・吸着力)は、表面磁束密度が飽和するまでは磁石の厚みが増すと大きくなることが知られている。即ち、図3に示すように、厚さがT1の永久磁石61、厚さがT2の永久磁石62、厚さがT3の永久磁石63が、図3に示すように左側から順番に磁石保持体6に接着して固定されている。図2に示すように、本例では永久磁石61、62、63は、直方体である単位磁石を図2の左右方向に6個並べて構成されている。本発明の実施の形態では、T1が6mm、T2が9mm、T3が15mmの肉厚を有する。また、各永久磁石61、62、63は、磁極が同じ方向に向いて磁石保持体6に固定、配置されている。永久磁石61の磁力(磁束密度)が3000G(ガウス)、永久磁石62の磁力が4000G(ガウス)、永久磁石63の磁力が5000G(ガウス)である。
 この磁力は、磁石の平面の大きさが一定とすれば、肉厚の厚さt(図2参照)の大きさに比例する。また、無端チェーン5の移動方向に一定間隔に永久磁石61、62、63が固定して配置されている(図3参照)。永久磁石61、62、63は、それぞれ複数の磁石から構成されている(図2参照)。各永久磁石61、62、63は、無端チェーン5の移動方向と直交する方向に配置された磁石の磁力は同一である。しかしながら、永久磁石61、62、63のそれぞれの磁石の厚みが異なるので、その磁力の大きさは、無端チェーン5の移動方向で隣接するものは異なっている(図3参照)。モータ53によって無端チェーン5が図1の反時計方向に回転すると、プレート4の裏面に沿って、永久磁石61、62、63が、図1の左方に移動される。
 このとき、プレート4の表面上の切屑は、永久磁石61、62、63に吸着されて、図1の左方に移動される。図1に示す左端のスプロケットホイール51の位置で、無端チェーン5が反転し、切屑落下部43から永久磁石61、62、63が離れるため、切屑は磁力を失い、切屑落下部43からチップボックス31に落下する。本発明の実施の形態のものは、隣接する永久磁石61、62、63の磁力が異なるため、無端チェーン5の上流側と下流側の永久磁石が、長い切屑の両端部を互いに吸着し合うことが少なくなり、非磁性体のプレート4の表面に長い切屑が滞留することがない。また、図4に示すように、プレート4には、傾斜部42の左端と切屑落下部43に波形の凹凸7が形成されている。波形の凹凸7は、プレート4の幅Wの全長に渡って形成されている。
 従って、傾斜部42の左端と切屑落下部43に載置された切屑とプレート4の表面との間には、空間が形成される。そのため、プレート4に付着したクーラントや潤滑油によって、切屑がプレート4に付着することが少なくなるため、切屑落下部43から切屑が落下し易くなる。
[他の実施の形態]
 以上、本発明の実施の形態を説明したが、本発明は前述した実施の形態に限定されることはない。前述した実施の形態の永久磁石61、62、63は、直方体又は正方体状のものであったが、円柱状等の他の形状のものであっても良い。また、その肉厚によって、磁力を調整するものであったが、磁石の数、磁石の材質によって、磁力を調整するものであっても良い。更に、前述した実施の形態では、無端チェーンであったが、チェーンに換えて無端ベルトであってもよい。更に、無端チェーン、無端ベルトは、無限軌道の一種であるが、無限軌道に換えてコンパクトにするために往復運動機構のものを用いても良い。
 即ち、リンク機構、カム機構等により、磁石を矩形運動をさせて切屑を一方に送るものである。但し、このときは、戻り動作のときに、磁力の影響で切屑が逆流しないように、プレート4の裏面から磁石の間隔を若干置く必要がある。このとき、プレート4の傾斜が大きくない限り、切屑はプレート4の表面に摩擦力で留まり落下することはない。また、前述した実施の形態では、3種類の磁力の異なる永久磁石で構成されているが、2種類、又は4種類以上の永久磁石で構成されていてもよい。また、プレートの凹凸は波形に形成されているが、他の形状の凹凸でもよい。更に、前述した実施の形態は、切屑の吸着に永久磁石を用いたが電磁石であっても良い。
1…マグネット式チップコンベア
2…チップコンベア本体
21…パンチングメタル
3…ベッド
31…チップボックス
4…プレート
41…水平部
42…傾斜部
43…切屑落下部
5…無端チェーン
51、52…スプロケットホイール
53…モータ
6…磁石保持体
61、62、63…永久磁石
7…凹凸

Claims (5)

  1.  磁性体の切屑を表面に載置して一端から他端に案内し、前記他端に排出する非磁性体のプレートと、
     前記プレートの裏面に、前記一端から前記他端に沿って一定間隔に配置され、前記プレートの表面の切屑を吸着する複数の磁石と、
     前記複数の磁石を前記一端から前記他端に同時に移動させて、前記切屑を前記一端から前記他端に移動させる磁石移動機構と
     から構成されるマグネット式チップコンベアにおいて、
     前記磁石は、磁力が異なるものが隣接して配置されている
     ことを特徴とするマグネット式チップコンベア。
  2.  請求項1に記載のマグネット式チップコンベアにおいて、
     前記磁石は、単位磁石からなる一群の磁石である
     ことを特徴とするマグネット式チップコンベア。
  3.  請求項1又は2に記載のマグネット式チップコンベアにおいて、
     前記磁石移動機構は、原動車から従動車に動力を伝達する無限軌道である
     ことを特徴とするマグネット式チップコンベア。
  4.  請求項1又は2に記載のマグネット式チップコンベアにおいて、
     前記他端の近傍の前記表面は、凹凸が形成されている
     ことを特徴とするマグネット式チップコンベア。
  5.  請求項2に記載のマグネット式チップコンベアにおいて、
     前記一群の磁石は、前記磁石移動機構の移動方向に等間隔に、前記磁石移動機構に取り付けられた磁石保持体に固着されており、
     前記磁石は、前記磁石移動機構の移動方向において、隣接する前記単位磁石の肉厚が異なる
     ことを特徴とするマグネット式チップコンベア。
PCT/JP2017/024237 2016-06-30 2017-06-30 マグネット式チップコンベア WO2018003990A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018525308A JP6371933B2 (ja) 2016-06-30 2017-06-30 マグネット式チップコンベア
US16/313,471 US10625946B2 (en) 2016-06-30 2017-06-30 Magnetic chip conveyor
CN201780002580.XA CN107848087B (zh) 2016-06-30 2017-06-30 磁式碎屑输送机
KR1020187002781A KR102015966B1 (ko) 2016-06-30 2017-06-30 마그넷식 칩 컨베이어

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-130844 2016-06-30
JP2016130844 2016-06-30

Publications (1)

Publication Number Publication Date
WO2018003990A1 true WO2018003990A1 (ja) 2018-01-04

Family

ID=60786074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024237 WO2018003990A1 (ja) 2016-06-30 2017-06-30 マグネット式チップコンベア

Country Status (5)

Country Link
US (1) US10625946B2 (ja)
JP (1) JP6371933B2 (ja)
KR (1) KR102015966B1 (ja)
CN (1) CN107848087B (ja)
WO (1) WO2018003990A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017008420A1 (de) * 2017-09-07 2019-03-07 Gleason-Pfauter Maschinenfabrik Gmbh Verfahren zur spanabhebenden Erzeugung oder Bearbeitung eines Werkstücks mit anschließender Spanabfuhr
EP3832860A1 (en) 2019-12-05 2021-06-09 Phi-Power AG Single sided axial flux electrical machine with additional passive stator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109434553B (zh) * 2018-12-18 2024-02-27 浙江振兴阿祥集团有限公司 一种数控机床排屑装置
CN111774923A (zh) * 2020-07-07 2020-10-16 芜湖天达重工有限公司 一种环链式建筑钢板切割废渣回收装置
KR102417244B1 (ko) * 2022-02-22 2022-07-05 임형순 위치 이동 가능한 무선 비상 스위치 시스템
CN115446221B (zh) * 2022-11-10 2023-03-10 江苏助您智能机械科技有限公司 一种轻量化模架冲压供料机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177548U (ja) * 1981-05-01 1982-11-10
JPS60212253A (ja) * 1984-04-05 1985-10-24 Mitsubishi Seikou Jizai Kk 磁鉄鉱石中の混入鉄片用磁選機
JP2003033676A (ja) * 2001-07-25 2003-02-04 Makoto:Kk マグネットスクリュー式濾過機
EP2243730A1 (de) * 2009-03-23 2010-10-27 Berger Feinmechanik GmbH Fördervorrichtung
JP2016014184A (ja) * 2014-07-03 2016-01-28 株式会社神戸製鋼所 金属鉄の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2697513A (en) * 1952-06-09 1954-12-21 Gerber Prod Magnetic switching device
JPS5781010A (en) * 1980-11-07 1982-05-20 Tokitsu Yukie Magnet tip conveyor
US4642419A (en) 1981-04-06 1987-02-10 International Rectifier Corporation Four-leaded dual in-line package module for semiconductor devices
US5004036A (en) * 1988-11-10 1991-04-02 Lanxide Technology Company, Lp Method for making metal matrix composites by the use of a negative alloy mold and products produced thereby
JP2880972B2 (ja) 1996-11-22 1999-04-12 四国工業株式会社 液体に含まれるスラッジの分離装置
JP3313343B2 (ja) 1999-10-18 2002-08-12 四国工業株式会社 研削液に含まれる微細スラッジの分離装置
WO2005087381A1 (ja) * 2004-03-11 2005-09-22 The Kansai Electric Power Co., Inc. 磁気分離回収装置
CN101371996B (zh) * 2007-08-21 2012-02-08 上海金发科技发展有限公司 塑料除铁屑用复合式磁力分离装置
CN201676747U (zh) * 2010-05-27 2010-12-22 江阴市鑫达药化机械制造有限公司 带式除铁机
CN201776184U (zh) * 2010-09-10 2011-03-30 安徽燕之坊食品有限公司 一种可控磁力磁选机
KR101749243B1 (ko) * 2010-12-06 2017-06-21 한국전자통신연구원 자기력을 이용한 혈장 분리 방법 및 장치
WO2014061256A1 (ja) * 2012-10-16 2014-04-24 Jfeスチール株式会社 磁力選別装置、磁力選別方法および鉄源の製造方法
CN203140151U (zh) * 2013-02-22 2013-08-21 四川省隆昌海燕橡胶有限公司 皮带式再生胶磁选机
JP6375544B2 (ja) 2014-08-07 2018-08-22 サンエス工業株式会社 マグネット式チップコンベア
KR101797303B1 (ko) * 2015-11-17 2017-11-13 강수동 마그네틱 칩 컨베이어 필터장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177548U (ja) * 1981-05-01 1982-11-10
JPS60212253A (ja) * 1984-04-05 1985-10-24 Mitsubishi Seikou Jizai Kk 磁鉄鉱石中の混入鉄片用磁選機
JP2003033676A (ja) * 2001-07-25 2003-02-04 Makoto:Kk マグネットスクリュー式濾過機
EP2243730A1 (de) * 2009-03-23 2010-10-27 Berger Feinmechanik GmbH Fördervorrichtung
JP2016014184A (ja) * 2014-07-03 2016-01-28 株式会社神戸製鋼所 金属鉄の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017008420A1 (de) * 2017-09-07 2019-03-07 Gleason-Pfauter Maschinenfabrik Gmbh Verfahren zur spanabhebenden Erzeugung oder Bearbeitung eines Werkstücks mit anschließender Spanabfuhr
US11504721B2 (en) 2017-09-07 2022-11-22 Gleason-Pfauter Maschinenfabrik Gmbh Method and device for the chip-removing production or machining of a workpiece with subsequent chip discharge
EP3832860A1 (en) 2019-12-05 2021-06-09 Phi-Power AG Single sided axial flux electrical machine with additional passive stator

Also Published As

Publication number Publication date
KR20180021878A (ko) 2018-03-05
KR102015966B1 (ko) 2019-08-29
CN107848087A (zh) 2018-03-27
CN107848087B (zh) 2020-07-17
US20190241368A1 (en) 2019-08-08
JPWO2018003990A1 (ja) 2018-08-23
US10625946B2 (en) 2020-04-21
JP6371933B2 (ja) 2018-08-08

Similar Documents

Publication Publication Date Title
JP6371933B2 (ja) マグネット式チップコンベア
US8776994B2 (en) Chain conveyor system
JP5214761B2 (ja) チェーンコンベヤ装置
US6024530A (en) System for transferring plate-like objects from a first position to a second position
JP2005217136A (ja) 積層電子部品の整列方法及び装置
JPH0973888A (ja) 電池の箱詰め方法
KR101545712B1 (ko) 부품의 고정 지그 및 고정 장치와 고정 반송 캐리어
JP2016216255A (ja) 部品供給装置および供給方法
JP2018003095A (ja) マスク吸着装置
JP2021120174A (ja) 電磁ホルダ
JP2001287827A (ja) 部品供給装置
JP2013018076A (ja) ロボットハンド
KR101377739B1 (ko) 영구자석을 갖는 이동수단의 자성 이물질 제거장치
WO2019202777A1 (ja) 磁性体、及び非磁性体を吸着搬送するための装置
JP2010265071A (ja) 搬送装置
US4739710A (en) Apparatus for conveyance with the aid of a magnetic liquid
JP4547646B2 (ja) 電磁装置
JP2004256250A (ja) リフタマグネット
JPH09275011A (ja) 吸着用磁石ユニットおよびそれを用いた磁石ベルト、磁石付きチェーン
JPH09290344A (ja) 工作物搬送装置
JP3980497B2 (ja) リフタマグネット
JP2005239320A (ja) 板材吸着器具及び板材運搬装置
JP6528668B2 (ja) セラミックコアのバリ取り方法、バリ取り装置、及びセラミックコアの製造方法
JPH01264740A (ja) 切粉搬送装置
JP3440370B2 (ja) リフターマグネット

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187002781

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018525308

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820344

Country of ref document: EP

Kind code of ref document: A1