WO2018003884A1 - 樹脂組成物、押出成形品、射出成形品及びブロー成形品 - Google Patents

樹脂組成物、押出成形品、射出成形品及びブロー成形品 Download PDF

Info

Publication number
WO2018003884A1
WO2018003884A1 PCT/JP2017/023819 JP2017023819W WO2018003884A1 WO 2018003884 A1 WO2018003884 A1 WO 2018003884A1 JP 2017023819 W JP2017023819 W JP 2017023819W WO 2018003884 A1 WO2018003884 A1 WO 2018003884A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
evoh
ethylene
temperature
ppm
Prior art date
Application number
PCT/JP2017/023819
Other languages
English (en)
French (fr)
Inventor
英里子 米谷
真人 岡本
光則 浅田
雅▲綺▼ 李
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to EP17820238.8A priority Critical patent/EP3480251B1/en
Priority to CN201780040721.7A priority patent/CN109312136B/zh
Priority to JP2018525229A priority patent/JP6890125B2/ja
Priority to US16/308,925 priority patent/US10808110B2/en
Publication of WO2018003884A1 publication Critical patent/WO2018003884A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • C08L23/0861Saponified vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to a resin composition, an extrusion molded product, an injection molded product, and a blow molded product.
  • An ethylene-vinyl alcohol copolymer (hereinafter sometimes abbreviated as “EVOH”) is excellent in oxygen barrier properties, transparency, oil resistance, non-charging properties, mechanical strength, etc., and is used in films, sheets, and containers. It is widely used as various packaging materials.
  • An EVOH molded body is usually molded by a melt molding method. Therefore, EVOH is required to have stability during melt molding and excellent appearance characteristics in melt molding (no coloration such as yellowing occurs and a transparent molded body can be obtained). .
  • EVOH compositions include acids such as carboxylic acid and phosphoric acid, and metal salts such as alkali metal salts and alkaline earth metal salts.
  • acids such as carboxylic acid and phosphoric acid
  • metal salts such as alkali metal salts and alkaline earth metal salts.
  • Various methods have been proposed for containing them in an appropriate content (see Japanese Patent Application Laid-Open Nos. 64-66262 and 2001-146539).
  • appearance characteristics and melt molding stability are improved, and a molded body having an excellent appearance is obtained.
  • the occurrence of coloring such as yellowing in melt molding cannot be sufficiently prevented, and there is room for improvement.
  • the lamellar crystals when crystallization occurs at a high temperature, the lamellar crystals are thick, the laminated lamellar structure grows and the spherulites grow. Conversely, when crystallization occurs at a low temperature, the thickness of the lamellar crystal is thin, the growth of the laminated lamellar structure is suppressed, and the spherulite becomes small. For this reason, when the crystalline polymer is crystallized under a narrow temperature range, the thickness of the lamellar crystal and the size of the spherulite have a relatively uniform distribution. On the other hand, when crystallized in a wide temperature range, the thickness of the lamellar crystal and the size of the spherulite are not uniform.
  • the thickness of lamellar crystals, the size of spherulites and their distribution are influenced not only by crystallization conditions but also by the material itself. This is because in the process of crystallizing a crystalline polymer from a molten state, there are two different mechanisms, homogeneous nucleation (homogeneous nucleation) and heterogeneous nucleation (heterogeneous nucleation).
  • Uniform nucleation is a mechanism in which crystal nuclei are generated with statistical probability by thermodynamic driving.
  • the heterogeneous nucleation is a mechanism in which crystal nuclei are generated by the interaction of impurities in the crystalline polymer with the crystalline polymer.
  • Crystallization by heterogeneous nucleation tends to occur at higher temperatures than crystallization by homogeneous nucleation. Since heterogeneous nucleation is caused by impurities in the material, in general, in crystallization of crystalline polymers, crystallization proceeds with a mixture of two mechanisms, homogeneous nucleation and heterogeneous nucleation. It is believed that. In consideration of such points, the growth of lamellar crystals and spherulites of crystalline polymers can be controlled by material design. For example, crystallization by heterogeneous nucleation can be promoted by adding a nucleating agent to the crystalline polymer. It is known to produce a large amount of crystal nuclei in the material by selectively causing crystallization by heterogeneous nucleation, and to improve the transparency and impact resistance of the material by reducing the size of the spherulites. Yes.
  • the thickness of the lamellar crystal, the size of the spherulite, the distribution of the size, the density, etc. have a great influence on various physical properties such as the hue and melt moldability of the crystalline polymer.
  • the lamellar crystal and the size of the spherulite are separated by the thermodynamically defined crystal thickness and melting temperature formula (Gibbs-Thomson formula).
  • the melting temperature is also non-uniform. Unevenness of the melting temperature of the material is not preferable because, for example, instability of flow in the extruder is induced.
  • the thickness of lamella crystals, the size of spherulites, and their distribution can be generally evaluated by observing the crystallization behavior when cooled from the molten state by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • a material having a high crystallization rate such as EVOH
  • crystallization occurs instantaneously, and therefore, crystallization due to uniform nucleation and heterogeneous nucleation cannot be separated in a normal DSC curve.
  • the signal representing the heat of crystallization is a single peak. This is because the heat of crystallization due to uniform nucleation and heterogeneous nucleation overlap. In other words, crystallization due to homogeneous nucleation and heterogeneous nucleation cannot be distinguished at a cooling rate that can be achieved with a normal DSC apparatus. For this reason, the relationship between an EVOH composition suitable for melt molding and the crystallization behavior of such an EVOH composition has been unclear.
  • the present invention has been made based on the circumstances as described above, and its object is to mold a resin composition having excellent stability and appearance characteristics during melt molding, and such a resin composition. It is to provide extrusion molded products, injection molded products and blow molded products.
  • the present inventors have found that by performing differential scanning calorimetry at an extremely fast cooling rate, crystallization by uniform nucleation and crystallization by heterogeneous nucleation can be distinguished even in an EVOH composition. Furthermore, the present invention has been completed by discovering that an EVOH composition having a low rate of crystallization due to heterogeneous nucleation has excellent stability and appearance characteristics during melt molding.
  • the invention made to solve the above problems is a resin composition mainly composed of an ethylene-vinyl alcohol copolymer, which is cooled from a molten state at 210 ° C. at a cooling rate of 150 ° C./second.
  • the area of the region (peak) surrounded by the curve and the base line Q hetero is the area in the range from the temperature 38 ° C. lower than the melting point to 75 ° C. lower than the melting point in the region (peak). is there.)
  • the melting point refers to the peak top temperature of the melting peak when obtained using a normal (general) DSC apparatus at a rate of temperature increase of 10 ° C./min.
  • the peak in the range from the temperature 38 ° C. lower than the melting point to the temperature 75 ° C. lower than the melting point in the DSC curve corresponds to the heat of crystallization due to heterogeneous nucleation.
  • the peak in the range from 75 ° C. below the melting point to 103 ° C. below the melting point corresponds to the heat of crystallization due to homogeneous nucleation. That is, in the heterogeneous nucleation index (f) is less than 0.6, which is the ratio of the amount of heat Q hetero released during crystallization by heterogeneous nucleation for heat Q total released upon all crystallization Being present means that the proportion of crystals produced by heterogeneous nucleation is low. Therefore, according to the resin composition, since the ratio of crystals generated by heterogeneous nucleation is low and the crystal size becomes uniform, the stability and appearance characteristics during melt molding are excellent.
  • the saponification degree of the ethylene-vinyl alcohol copolymer is preferably 99 mol% or more.
  • the ethylene content of the ethylene-vinyl alcohol copolymer is preferably 18 mol% or more and 55 mol% or less.
  • the content of the higher fatty acid amide with respect to the ethylene-vinyl alcohol copolymer in the resin composition is preferably 900 ppm or less.
  • the heterogeneous nucleation index (f) becomes lower, and the stability and appearance characteristics during melt molding can be further improved.
  • the resin composition preferably contains an alkali metal salt.
  • an alkali metal salt By containing an alkali metal salt, it is possible to increase thermal stability, interlayer strength when a multilayer structure is formed, and the like.
  • the content of the alkali metal salt is preferably 10 ppm to 500 ppm in terms of alkali metal element.
  • Another invention made to solve the above problems is an extrusion-molded article containing the resin composition.
  • Still another invention made to solve the above problems is an injection-molded article containing the resin composition.
  • Still another invention made to solve the above problems is a blow molded article containing the resin composition.
  • the extruded product, injection-molded product and blow-molded product are melt-molded with high stability and excellent appearance characteristics.
  • the present invention it is possible to provide a resin composition excellent in stability during melt molding and appearance characteristics, and an extrusion molded product, an injection molded product, and a blow molded product molded by such a resin composition. it can.
  • the resin composition concerning one Embodiment of this invention has EVOH as a main component.
  • the “main component” means a component having the largest content on a mass basis.
  • 50 mass% is preferable, 80 mass% is more preferable, 90 mass% is further more preferable, 95 mass% or more is further more preferable, 99 mass% is further more preferable 99.9% by mass is particularly preferable.
  • the ratio of uniform nucleation can be increased by increasing the content of EVOH.
  • the resin composition usually contains other components added intentionally as described later, and a small amount of impurity components mixed unintentionally.
  • the upper limit of the EVOH content in the resin composition may be substantially 100% by mass, but it is also preferable that an appropriate amount of additives and the like described later are contained. That is, the resin composition can also be referred to as, for example, a resin, a material, a resin material, and a melt-molded material.
  • the DSC curve is schematically shown in FIG.
  • Q total is based on a straight line connecting the heat flow value at a temperature 38 ° C. lower than the melting point (Tm) and the heat flow value at a temperature 103 ° C. lower than the melting point (Tm) in the DSC curve.
  • Q hetero is an area in a range from a temperature 38 ° C. lower than the melting point (Tm) in the region to a temperature 75 ° C. lower than the melting point.
  • the heat flow value may be referred to as a heat flux value or the like.
  • the heterogeneous nucleation index (f) is less than 0.6, but the upper limit of the heterogeneous nucleation index (f) is preferably 0.55, more preferably 0.51.
  • the resin composition has a uniform crystal size and is melt-formable. Excellent in stability and appearance characteristics.
  • the molded article obtained from the said resin composition can have sufficient impact resistance.
  • the lower limit of the heterogeneous nucleation index (f) is not particularly limited and may be 0, but may be 0.01 or 0.1. From the viewpoint of impact resistance of the obtained molded product, the lower limit of the heterogeneous nucleation index (f) is preferably 0.1, more preferably 0.2, and even more preferably 0.3.
  • the differential scanning calorimetry at the cooling rate of 150 ° C./second can be performed using “Flash DSC 1” of Mettler Toledo.
  • the “Flash DSC 1” employs a mechanism in which a sample is brought into direct contact with a sensor, and measurement is performed with a sample amount smaller than 100 ng. For this reason, it is excellent in the heat conduction between the sample and the sensor, and enables an extremely high temperature drop.
  • the shape of the sample piece (resin composition) at the time of measurement is a plate shape having a length of 80 ⁇ m, a width of 80 ⁇ m, and a thickness of 10 ⁇ m.
  • the heterogeneous nucleation index (f) can be lowered by relatively reducing the content of components that can be nucleating agents (the above (3) to (6) and the like).
  • the reason is not clear, it is possible to lower the heterogeneous nucleation index when the lubricant is slightly contained (for example, about 50 ppm or more and 500 ppm or less) than when it is not contained.
  • a low molecular weight component is generated with EVOH heating and the like, and this becomes a nucleating agent, and heterogeneous nucleation easily proceeds. For this reason, the heterogeneous nucleation index (f) can be lowered by manufacturing in an environment where thermal degradation is relatively unlikely ((7) to (9) above).
  • EVOH EVOH in the resin composition is a polymer having ethylene units (—CH 2 —CH 2 —) and vinyl alcohol units (—CH 2 —CHOH—) as main structural units.
  • EVOH may have other structural units as long as the effects of the present invention are not impaired.
  • the lower limit of the ethylene content of EVOH (that is, the ratio of the number of ethylene units to the total number of monomer units in EVOH) is preferably 18 mol%, more preferably 24 mol%, and even more preferably 27 mol%.
  • the upper limit of the ethylene content of EVOH is preferably 55 mol%, more preferably 48 mol%.
  • the lower limit of the saponification degree of EVOH (that is, the ratio of the number of vinyl alcohol units to the total number of vinyl alcohol units and vinyl ester units in EVOH) may be, for example, 90 mol%, preferably 99 mol%. 99.5 mol% is more preferable.
  • the upper limit of the saponification degree of EVOH is preferably 100 mol%, more preferably 99.99 mol%.
  • the resin composition may contain additives such as various acids and metal salts in order to enhance each performance.
  • additives such as various acids and metal salts in order to enhance each performance.
  • examples of the additive include alkali metal salts, carboxylic acids and / or carboxylic acid ions, phosphoric acid compounds, boron compounds, and lubricants. In some cases, these additives may not be contained.
  • the resin composition preferably contains an alkali metal ion from the viewpoints of thermal stability and interlayer strength when a multilayer structure is formed.
  • an alkali metal ion As a minimum of content of the alkali metal ion in the said resin composition, 10 ppm is preferable in conversion of an alkali metal element, and 50 ppm is more preferable.
  • the upper limit is preferably 500 ppm, more preferably 400 ppm, and even more preferably 300 ppm.
  • the heterogeneous nucleation index (f) of the resin composition can be made sufficiently low, and melt molding stability and appearance characteristics can be improved.
  • the method for adjusting the content of the alkali metal element to the above range is not particularly limited.
  • a method of containing an alkali metal element in the resin composition (EVOH) a method of immersing EVOH in a solution containing an alkali metal element, a method of melting EVOH and mixing a compound containing an alkali metal element or a solution containing an alkali metal element
  • a method in which EVOH is dissolved in a suitable solvent and mixed with a compound containing an alkali metal element is not particularly limited.
  • the concentration of the alkali metal element in the solution is not particularly limited.
  • the solvent of the solution is not particularly limited, but is preferably an aqueous solution from the viewpoint of ease of handling.
  • the solution mass at the time of immersing EVOH is usually 3 times or more and preferably 10 times or more with respect to the mass of EVOH at the time of drying.
  • the suitable range of immersion time varies depending on the form of EVOH, it is usually 1 hour or longer, preferably 2 hours or longer.
  • the immersion treatment in the solution is not particularly limited, and the immersion treatment may be divided into a plurality of solutions and may be performed at a time, but it is preferable to perform the treatment at a time from the viewpoint of simplifying the process. It is also preferable to continuously perform the immersion treatment using a tower-type apparatus.
  • the resin composition may contain a carboxylic acid and / or a carboxylic acid ion.
  • Carboxylic acid and carboxylate ions have the effect of controlling the pH of the resin composition, preventing gelation, and improving thermal stability.
  • the said resin composition contains carboxylic acid and / or carboxylate ion, as a minimum of content of carboxylic acid and carboxylate ion, 1 ppm is preferable and 10 ppm is more preferable.
  • the upper limit is preferably 400 ppm, more preferably 300 ppm, further preferably 200 ppm, further preferably 100 ppm, further preferably 50 ppm, and particularly preferably 25 ppm.
  • carboxylic acid examples include succinic acid, adipic acid, benzoic acid, capric acid, lauric acid, stearic acid, glycolic acid, lactic acid, citric acid, tartaric acid, formic acid, acetic acid, propionic acid and the like.
  • acetic acid, propionic acid and lactic acid are preferable, acetic acid and propionic acid are more preferable, and acetic acid is more preferable, from the viewpoint of suitable acidity and easy control of the pH of the resin composition.
  • the pH of the said resin composition is 4-7.
  • the pH is outside this range, that is, when the acidity is too high or becomes alkaline, the heterogeneous nucleation index (f) is increased due to the tendency of EVOH to deteriorate, and the melt molding stability and appearance characteristics are increased. May decrease.
  • the resin composition can contain a phosphoric acid compound.
  • the phosphoric acid compound has effects such as improving thermal stability.
  • content of the phosphoric acid compound in the said resin composition it can be 1 ppm or more and 500 ppm or less in conversion of a phosphate radical, for example.
  • the upper limit of the content of the phosphate compound is preferably 200 ppm, more preferably 100 ppm, further preferably 50 ppm, and particularly preferably 20 ppm in terms of phosphate radical.
  • the kind of phosphoric acid compound is not particularly limited, and various acids such as phosphoric acid and phosphorous acid and salts thereof can be used.
  • the phosphate may be in any form of primary phosphate, secondary phosphate, and tertiary phosphate, and the cationic species is not particularly limited, but is an alkali metal salt or alkaline earth metal salt. It is preferable. Among them, it is preferable to contain a phosphoric acid compound in the form of phosphoric acid, sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate and dipotassium hydrogen phosphate, and phosphoric acid, dihydrogen phosphate. More preferably, the phosphate compound is added in the form of sodium and potassium dihydrogen phosphate.
  • the resin composition may contain a boron compound.
  • the boron compound include boric acids such as orthoboric acid, metaboric acid, and tetraboric acid; boric acid esters, borates, borohydride compounds, and the like.
  • the borate include alkali metal salts, alkaline earth metal salts, and borax of the various boric acids described above.
  • the content can be 20 ppm or more and 2000 ppm or less in terms of boron element, for example.
  • the method for containing the carboxylic acid, carboxylate ion, phosphate compound and boron compound described above is not particularly limited.
  • a method similar to the method of containing the alkali metal element described above is employed.
  • the above-mentioned lubricant can enhance stability during melt molding, long run property, appearance characteristics, and the like. Further, as described above, the heterogeneous nucleation index (f) can be lowered by adding a small amount of lubricant.
  • the lubricant is not particularly limited, and examples thereof include higher fatty acid amides, higher fatty acid metal salts (for example, calcium stearate), low molecular weight polyolefins (for example, low molecular weight polyethylene having a molecular weight of about 500 to 10,000, or low molecular weight polypropylene). Although it is mentioned, it is not limited to this. Among these, higher fatty acid amides are preferably used.
  • higher saturated fatty acid amides for example, stearic acid amide, palmitic acid amide, lauric acid amide, etc.
  • higher unsaturated fatty acid amides for example, oleic acid amide, Erucic acid amide, etc.
  • higher bis fatty acid amides for example, ethylene bis stearic acid amide, methylene bis stearic acid amide, etc.
  • the higher fatty acid means a fatty acid having 6 or more carbon atoms, and more preferably 10 or more carbon atoms.
  • higher bis fatty acid amides are preferable, and ethylene bis stearic acid amide is more preferable.
  • the upper limit of the content of the lubricant is preferably 900 ppm, more preferably 500 ppm, and even more preferably 300 ppm with respect to EVOH on a mass basis.
  • the lower limit of the content is preferably 50 ppm, more preferably 100 ppm.
  • the resin composition includes plasticizers, stabilizers, antioxidants, surfactants, colorants, fluorescent brighteners, ultraviolet absorbers, electrification, as long as the effects of the present invention are not impaired.
  • An appropriate amount of an inhibitor, a desiccant, a crosslinking agent, a metal salt other than an alkali metal, a filler, a reinforcing agent such as various fibers, and the like can be added.
  • Thermoplastic resins include various polyolefins (polyethylene, polypropylene, poly 1-butene, poly 4-methyl-1-pentene, ethylene-propylene copolymers, copolymers of ethylene and ⁇ -olefins having 4 or more carbon atoms, polyolefins Copolymer of ethylene and maleic anhydride, ethylene-vinyl ester copolymer, ethylene-acrylic ester copolymer, or modified polyolefin obtained by graft-modifying these with unsaturated carboxylic acid or its derivatives), various nylons (nylon -6, nylon-6,6, nylon-6 / 6,6 copolymer, etc.), polyvinyl chloride, polyvinylidene chloride, polyester, polystyrene, polyacrylonitrile, polyurethane, polyacetal, and modified
  • the upper limit of the components other than the EVOH, alkali metal salt, carboxylic acid, carboxylate ion, phosphate compound, boron compound and lubricant may be preferably 10,000 ppm, 1,000 ppm may be more preferable, and 100 ppm may be more preferable.
  • the shape of the resin composition is not particularly limited, and may be any of solution, paste, powder, pellet, film, and the like.
  • the resin composition can be produced, for example, by the following steps. The following steps can be omitted as appropriate.
  • a step of copolymerizing ethylene and vinyl ester to obtain an ethylene-vinyl ester copolymer (EVAc) (polymerization step)
  • Step of saponifying the above EVAc to obtain EVOH (saponification step)
  • Step of obtaining pellets containing EVOH from the solution or paste containing EVOH pelletizing step
  • Step of cleaning the pellet cleaning the pellet (cleaning step)
  • Polymerization process It does not specifically limit as a copolymerization method of ethylene and vinyl ester, For example, any of solution polymerization, suspension polymerization, emulsion polymerization, bulk polymerization, etc. may be sufficient. Moreover, any of a continuous type and a batch type may be sufficient.
  • vinyl ester used for polymerization examples include vinyl acetate, vinyl propionate, and fatty acid vinyl such as vinyl pivalate. Among these, vinyl acetate is preferable.
  • a copolymerization component a monomer that can be copolymerized in addition to the above components, for example, alkenes other than ethylene; unsaturated acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, or anhydride thereof Products, salts, mono- or dialkyl esters, etc .; nitriles such as acrylonitrile and methacrylonitrile; amides such as acrylamide and methacrylamide; olefin sulfonic acids such as vinyl sulfonic acid, allyl sulfonic acid and methallyl sulfonic acid; Vinyl ethers, vinyl ketone, N-vinyl pyrrolidone, vinyl chloride, vinylidene chloride, 2-methylene-1,3-propanediol diacetate and the like can be copolymerized in a small amount.
  • unsaturated acids such as acrylic acid, methacrylic acid, cro
  • a vinylsilane compound can be contained as a copolymerization component.
  • the vinylsilane compound include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri ( ⁇ -methoxy-ethoxy) silane, ⁇ -methacryloyloxypropylmethoxysilane, and the like.
  • vinyltrimethoxysilane and vinyltriethoxysilane are preferably used.
  • the solvent used for the polymerization is not particularly limited as long as it is an organic solvent capable of dissolving ethylene, vinyl ester and ethylene-vinyl ester copolymer.
  • a solvent for example, alcohols such as methanol, ethanol, propanol, n-butanol and tert-butanol; dimethyl sulfoxide and the like can be used.
  • methanol is particularly preferable in terms of easy removal and separation after the reaction.
  • Examples of the catalyst used in the polymerization include 2,2-azobisisobutyronitrile, 2,2-azobis- (2,4-dimethylvaleronitrile), 2,2-azobis- (4-methoxy-2,4 -Dimethylvaleronitrile), 2,2-azobis- (2-cyclopropylpropionitrile) and other azonitrile initiators; isobutyryl peroxide, cumylperoxyneodecanoate, diisopropylperoxycarbonate, di-n- Organic peroxide initiators such as propyl peroxydicarbonate, t-butyl peroxyneodecanoate, lauroyl peroxide, benzoyl peroxide, t-butyl hydroperoxide and the like can be used.
  • the polymerization temperature may be, for example, 20 ° C. or higher and 90 ° C. or lower.
  • the polymerization time can be, for example, 2 hours or more and 15 hours or less.
  • the polymerization rate is preferably 10% or more and 90% or less with respect to the vinyl ester charged.
  • a polymerization inhibitor is added if necessary, unreacted ethylene gas is removed by evaporation, and then unreacted vinyl ester is removed.
  • the above copolymer solution is continuously supplied from the upper part of the tower packed with Raschig rings at a constant rate, and an organic solvent vapor such as methanol is blown from the lower part of the tower,
  • an organic solvent vapor such as methanol is blown from the lower part of the tower.
  • a method of distilling a mixed vapor of an organic solvent such as methanol and an unreacted vinyl ester and taking out a copolymer solution from which the unreacted vinyl ester has been removed from the bottom of the column is employed.
  • the saponification method can be either a continuous type or a batch type.
  • the catalyst at the time of saponification is not particularly limited, but an alkali catalyst is preferable.
  • sodium hydroxide, potassium hydroxide, alkali metal alcoholate and the like are used.
  • the copolymer solution concentration is 10% by mass or more and 50% by mass or less
  • the reaction temperature is 30 ° C. or more and 60 ° C. or less
  • the amount of catalyst used is 0 per mol of vinyl ester structural unit.
  • the saponification time can be 1 hour or more and 6 hours or less.
  • a solution or paste containing EVOH is obtained. Since EVOH after the saponification reaction contains an alkali catalyst, by-product salts such as sodium acetate and potassium acetate, and other impurities, it is preferable to remove these by neutralization and washing as necessary. Thereby, the heterogeneous nucleation index (f) can be further lowered.
  • EVOH after the saponification reaction is washed with water containing almost no metal ions such as ion-exchanged water, chloride ions, or the like, a part of sodium acetate, potassium acetate or the like may remain.
  • the method of pelletization is not particularly limited, and examples thereof include a method of cooling and solidifying EVOH alcohol / water mixed solution and cutting, and a method of discharging and cutting EVOH after melt-kneading with an extruder.
  • Specific examples of the EVOH cutting method include a method in which EVOH is extruded in a strand shape and then cut by a pelletizer, and a method in which EVOH discharged from a die is cut by a center hot cut method, an underwater cut method, or the like. .
  • the coagulating liquid to be precipitated includes water or a water / alcohol mixed solvent, aromatic hydrocarbons such as benzene, ketones such as acetone and methyl ethyl ketone, and ethers such as dipropyl ether.
  • Organic acid esters such as methyl acetate, ethyl acetate, and methyl propionate are used, but water or a water / alcohol mixed solvent is preferable in terms of easy handling.
  • alcohols such as methanol, ethanol, and propanol are used, and methanol is preferably used industrially.
  • the mass ratio of the coagulation liquid in the coagulation liquid to the EVOH strand is not particularly limited, but is preferably 50 or more and 10,000 or less. By setting the mass ratio within the above range, EVOH pellets having a uniform size distribution can be obtained.
  • the lower limit of the temperature at which the EVOH solution is brought into contact with the coagulation liquid is preferably ⁇ 10 ° C., more preferably 0 ° C.
  • 40 degreeC is preferable, 20 degreeC is more preferable, 15 degreeC is further more preferable, and 10 degreeC is still more preferable.
  • the EVOH solution is extruded into a strand form into the coagulation liquid by a nozzle having an arbitrary shape.
  • the shape of the nozzle is not particularly limited, but a cylindrical shape is preferable. In this manner, EVOH (solution) is extruded in a strand form from the nozzle.
  • the number of strands is not necessarily one, and the strand can be extruded in an arbitrary number between several to several hundreds.
  • the EVOH extruded into a strand shape is cut and pelletized after sufficiently solidifying, and then washed with water.
  • the size of the pellet can be, for example, 1 mm to 10 mm in diameter in the case of a columnar shape, 1 mm to 10 mm in length, and 1 mm to 10 mm in diameter in the case of a sphere.
  • the lower limit of the water temperature at the time of this water washing is preferably 10 ° C., for example.
  • the upper limit of the water temperature is preferably 80 ° C.
  • the washing with ion-exchanged water is preferably performed twice or more for 1 hour or more.
  • the water temperature of the ion exchange water at this time is preferably 5 ° C. or more and 60 ° C. or less, and the bath ratio is preferably 2 or more.
  • the pellet can be immersed in a solution containing an alkali metal or the like as described above so that the alkali metal or the like can be contained in the pellet.
  • the pellet of the dried resin composition is obtained by drying said pellet.
  • the lower limit of the drying time is, for example, 3 hours, and preferably 5 hours.
  • the upper limit is, for example, 100 hours, preferably 50 hours, and more preferably 30 hours.
  • the drying time of a pellet means the time required for the moisture content of a pellet to be less than 0.5 mass%.
  • the lower limit of the drying temperature (atmosphere temperature) during drying is preferably 100 ° C, more preferably 110 ° C, further preferably 120 ° C, and particularly preferably 125 ° C.
  • 150 degreeC is preferable and 140 degreeC is more preferable.
  • the drying may be performed in an air atmosphere, but is preferably performed in an inert gas atmosphere such as nitrogen gas. Thereby, deterioration of EVOH can be suppressed and the heterogeneous nucleation index (f) of the obtained resin composition can be lowered.
  • the drying may be performed under reduced pressure or while dehumidifying. It does not specifically limit as a drying method in the said drying process, Drying can also be performed by ultraviolet irradiation and infrared irradiation other than hot air drying.
  • the resin composition is excellent in stability during melt molding and appearance characteristics. Therefore, the resin composition can be suitably used as a melt molding material.
  • the molded product according to one embodiment of the present invention is a molded product including the resin composition.
  • the molded product can be usually obtained by melt molding of the resin composition.
  • the resin composition in the molded article is also maintained to have a heterogeneous nucleation index (f) of less than 0.6.
  • melt molding method for obtaining the molded body examples include extrusion molding, inflation extrusion, injection molding, blow molding, melt spinning and the like, and extrusion molding, injection molding and blow molding are preferable.
  • the effect that the resin composition is excellent in stability at the time of melt molding and excellent in appearance characteristics can be particularly sufficiently exhibited.
  • limit especially as a melting temperature in the case of melt molding 150 degreeC or more and about 300 degrees C or less are preferable.
  • the extrusion molded product (molded product obtained by extrusion molding of the resin composition) is not particularly limited, and examples thereof include a film, a sheet, a tube, a pipe, a fiber, and a container. These films, sheets and the like may be uniaxially or biaxially stretched. The same applies to films, sheets and the like obtained by other molding methods described below.
  • the injection-molded product (molded product obtained by injection molding of the resin composition) is not particularly limited, and examples thereof include containers, caps, daily necessities, household appliances and other machine resin parts.
  • the blow molded product (molded product obtained by blow molding of the resin composition) is not particularly limited, and examples thereof include containers, pipes, ducts, building materials, and daily necessities.
  • the molded product may be a molded product having a part formed from the resin composition and a part formed from another material.
  • a molded article include a multilayer structure including a layer formed from the resin composition and a layer formed from another material (thermoplastic resin) or the like.
  • a molded product as such a multilayer structure can be molded by co-extrusion of the resin composition and other thermoplastic resin or the like.
  • the co-extrusion method include a multi-manifold merging method T-die method, a feed block merging method T-die method, and an inflation method.
  • ⁇ Synthesis Example 1> (1) Synthesis of ethylene-vinyl acetate copolymer Vinyl acetate (hereinafter sometimes referred to as VAc) was placed in a 250 L pressure reactor equipped with a jacket, a stirrer, a nitrogen inlet, an ethylene inlet, and an initiator addition port. was charged with 105 kg and methanol (hereinafter sometimes referred to as MeOH) 38.3 kg. After the temperature was raised to 60 ° C., nitrogen was bubbled for 30 minutes to replace the inside of the reaction vessel with nitrogen. Next, ethylene was introduced so that the reaction vessel pressure (ethylene pressure) was 3.7 MPa.
  • VAc ethylene-vinyl acetate copolymer Vinyl acetate
  • EVOH ethylene-vinyl alcohol copolymer
  • This EVOH hydrous pellet was put into an acetic acid aqueous solution having a concentration of 1 g / L (bath ratio 20) and washed with stirring for 2 hours. This was drained, and further poured into a 1 g / L aqueous acetic acid solution (bath ratio 20), followed by stirring and washing for 2 hours. After the liquid removal, the acetic acid aqueous solution was renewed and the same operation was performed. Purified by repeating the operation of washing with acetic acid aqueous solution and removing the liquid into ion-exchanged water (bath ratio 20), stirring and washing for 2 hours, and removing the liquid three times.
  • Synthesis Example 3 Polymerization was performed in the same manner as in Synthesis Example 1 (1) except that the amount of MeOH was 25.2 kg, the ethylene pressure was 5.0 MPa, and the amount of the initiator was 32.2 g to obtain EVAAc. It was. After 4 hours, when the polymerization rate of VAc reached 42%, the reaction was cooled to stop the polymerization. Subsequently, EVOH was synthesized in the same manner as in Synthesis Example 1, and an EVOH crude dry product having an ethylene content of 44 mol% and a saponification degree of 99% or more was obtained. Thereafter, EVOH hydrous pellets were obtained in the same manner as in Synthesis Example 1.
  • Example 1 (1) Production of EVOH composition pellets (resin composition)
  • the EVOH hydrous pellets obtained in Synthesis Example 1 were mixed with sodium acetate concentration 0.7 g / L, acetic acid concentration 0.2 g / L, and phosphoric acid concentration 0.02 g / L and an aqueous solution having a boric acid concentration of 0.3 g / L (bath ratio 20) were immersed in the solution for 4 hours with regular stirring. This was drained and dried under air at 80 ° C. for 3 hours and under nitrogen at 130 ° C. for 7.5 hours.
  • ethylenebis stearamide (“Alfro H50FP” manufactured by NOF Corporation, powder, melting point: 143 ° C.) as a lubricant was added at 250 ppm to EVOH and mixed to obtain EVOH composition pellets.
  • the contained metal was analyzed by an ICP emission spectroscopic analyzer (“OPTIMA4300DV” manufactured by Perkin Elmer), and the contents of sodium element, phosphorus element and boron element were determined.
  • the sodium salt content was 200 ppm in terms of sodium element
  • the phosphate compound content was 10 ppm in terms of phosphate radical
  • the boric acid content was 700 ppm in terms of boron element.
  • the trimmed flakes were placed on a MultiSTAR UFS1 sensor provided by Mettler Toledo using an instrument such as a hair pin.
  • the MultiSTAR UFS1 sensor was used after conditioning in advance by the method recommended by the manufacturer.
  • the EVOH composition was heated from 25 ° C. to 210 ° C. at a rate of 100 ° C./sec and held at 210 ° C. for 0.1 sec, then 25 It cooled by the temperature-fall measurement of 100 degrees C / sec. This operation was performed twice, and it was confirmed that the flakes were in sufficient contact with the sensor. In the process of this operation, the flakes may be separated from the sensor due to static electricity or the like.
  • the work was started again from the production of the flakes.
  • crystallization of the EVOH composition was measured. That is, the sample was heated from 25 ° C. to 210 ° C. at a temperature rising rate of 100 ° C./sec, held at 210 ° C. for 0.1 sec, and then cooled from 210 ° C. to 25 ° C. at a temperature lowering rate of 150 ° C./sec.
  • the integrated value of the heat flow change observed in the temperature range of 145 ° C. to 80 ° C. was defined as the total crystallization heat (Q total ) of the EVOH composition.
  • Evaluation of the crystallization of the EVOH composition was carried out at least three times from the preparation of EVOH flakes to the measurement using the Flash DSC1 apparatus and the calculation of the heterogeneous nucleation index (f). An arithmetic average of f obtained in each case was adopted as f of the EVOH composition.
  • the f value of the EVOH composition (resin composition) obtained in Example 1 was 0.25.
  • the temperature condition of the extruder was changed as follows.
  • Cylinder temperature Supply unit: 200 ° C.
  • Compression unit 225 ° C.
  • Weighing unit 225 ° C.
  • Die temperature 225 ° C
  • Cylinder temperature supply unit: 170 ° C.
  • compression unit 195 ° C.
  • weighing unit 195 ° C.
  • Die temperature 195 ° C
  • the extrusion temperature and die temperature of each resin were set to 210 ° C with the blow molding machine "TB-ST-6P" manufactured by Suzuki Wood Works, and the layer structure of HDPE / adhesive resin / barrier material / adhesive resin / HDPE A five-layer parison having three types was extruded, blown in a mold at 15 ° C., and cooled for 20 seconds to obtain a 500 mL bottle made of a multilayer blow-molded product.
  • the bottle could be molded without any particular problems. The appearance of the bottle was good.
  • Examples 2 to 11 The EVOH hydrous pellets obtained in Synthesis Example 1 were put into an aqueous solution containing additives such as metal salts and organic acids shown in Table 1, and immersed for 4 hours with regular stirring. This was drained, dried under air at 80 ° C. for 3 hours, and then dried under the conditions shown in Table 1. After completion of drying, the lubricant was mixed in the same manner as in Example 1 under the conditions shown in Table 2 to obtain EVOH composition pellets. In the same manner as in Example 1, resin analysis, appearance characteristics, extrusion process stability, and impact resistance characteristics were evaluated. The evaluation results are shown in Table 2.
  • NaOAc sodium acetate
  • KOAc potassium acetate
  • AcOH is acetic acid
  • PrOH propionic acid
  • H 3 PO 4 is phosphoric acid
  • KH 2 PO 4 potassium phosphate
  • B OH 3 represents boric acid, respectively.
  • N 2 indicates drying under a nitrogen atmosphere
  • AIR indicates drying under an air atmosphere.
  • the heat flow value at a temperature 38 ° C. lower than the melting point and the heat flow value at a temperature 103 ° C. lower than the melting point Q total was determined as the area of the region surrounded by the DSC curve and the base line.
  • Qhetero was calculated
  • Example 12 The EVOH hydrous pellets obtained in Synthesis Example 2 were put into an aqueous solution containing additives such as metal salts and organic acids shown in Table 1, and immersed for 4 hours with regular stirring. This was drained, dried under air at 80 ° C. for 3 hours, and then dried under the conditions shown in Table 1. After completion of drying, the lubricant was mixed in the same manner as in Example 1 under the conditions shown in Table 2 to obtain EVOH composition pellets. In the same manner as in Example 1, resin analysis, appearance characteristics, extrusion process stability, and impact resistance characteristics were evaluated. The evaluation results are shown in Table 2.
  • Example 13 The EVOH hydrous pellets obtained in Synthesis Example 3 were put into an aqueous solution containing additives such as metal salts and organic acids shown in Table 1, and immersed for 4 hours with regular stirring. This was drained, dried under air at 80 ° C. for 3 hours, and then dried under the conditions shown in Table 1. After completion of drying, the lubricant was mixed in the same manner as in Example 1 under the conditions shown in Table 2 to obtain EVOH composition pellets. In the same manner as in Example 1, resin analysis, appearance characteristics, extrusion process stability, and impact resistance characteristics were evaluated. The evaluation results are shown in Table 2.
  • the EVOH composition pellets (resin compositions) of Examples 1 to 13 having an f value of less than 0.6 have good appearance characteristics, extrusion process stability, and impact resistance characteristics. Was showing.
  • the EVOH composition pellets (resin compositions) of Comparative Examples 1 to 11 having an f value of 0.6 or more had a level of appearance characteristics or extrusion stability that could not be used.
  • Comparative Example 1 The lubricant content is high.
  • Comparative Example 2 Drying in an air atmosphere, the drying time is relatively long, and the content of organic acid is also relatively large.
  • Comparative Example 3 High organic acid content.
  • Comparative Example 4 Drying in an air atmosphere and drying time is long.
  • Comparative Example 5 Drying time is long.
  • Comparative Example 6 Drying in an air atmosphere and relatively high lubricant content.
  • Comparative Example 7 The organic acid content is relatively high and no lubricant is added.
  • Comparative Example 8 Drying in an air atmosphere, the organic acid content is relatively high, and the ethylene content of EVOH is relatively low.
  • Comparative Example 9 EVOH has a low saponification degree. Comparative Example 10: The bath temperature during pelletizing is relatively high. On the other hand, from Examples 1 to 13, EVOH composition pellets (resin) having an f value of less than 0.6 were appropriately controlled by controlling EVOH saponification degree and ethylene content, additive content, drying conditions, and the like. It can be seen that a composition) is obtained.
  • the resin composition of the present invention can be suitably used as melt molding materials such as films, sheets, containers, pipes, fibers and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

溶融成形の際の安定性や、外観特性に優れる樹脂組成物、並びにこのような樹脂組成物により成形される押出成形品、射出成形品及びブロー成形品を提供する。本発明は、エチレン-ビニルアルコール共重合体を主成分とする樹脂組成物であって、210℃の溶融状態から150℃/秒の冷却速度で冷却したときの示差走査熱量測定(DSC)により得られるDSC曲線に基づき下記式(1)で求められる不均一核生成指数(f)が0.6未満であることを特徴とする樹脂組成物である。式(1)中、Qtotalは、上記DSC曲線において、上記DSC曲線とベースラインとに囲まれた領域の面積である。Qheteroは、上記領域中の上記融点より38℃低い温度から融点より75℃低い温度までの範囲における面積である。 f=Qhetero/Qtotal ・・・ (1)

Description

樹脂組成物、押出成形品、射出成形品及びブロー成形品
 本発明は、樹脂組成物、押出成形品、射出成形品及びブロー成形品に関する。
 エチレン-ビニルアルコール共重合体(以下、「EVOH」と略記することがある。)は、酸素遮断性、透明性、耐油性、非帯電性、機械強度等に優れており、フィルム、シート、容器などの各種包装材料等として広く用いられている。EVOHの成形体は、通常、溶融成形法により成形される。従って、EVOHには、溶融成形の際の安定性や、溶融成形における優れた外観特性(黄変等の着色の発生が生じておらず、透明な成形体を得ることができること)等が求められる。
 EVOHに要求されているこれらの諸特性、特に、外観特性を向上させるために、EVOH組成物として、カルボン酸、リン酸等の酸や、アルカリ金属塩、アルカリ土類金属塩等の金属塩を適当な含有率で含有させる方法が各種提案されている(特開昭64-66262号公報及び特開2001-146539号公報参照)。これらの方法で得られるEVOH組成物によれば、外観特性及び溶融成形安定性が高まり、優れた外観を備える成形体が得られるとされている。しかしながら、これらの組成物によっても、溶融成形における黄変等の着色の発生を十分には防止することはできず、改善の余地がある。
特開昭64-66262号公報 特開2001-146539号公報
 一方、結晶性高分子の高次構造に着目すると、結晶性高分子を溶融状態から冷却した際には、分子鎖の折り畳み結晶であるラメラ晶、ラメラ晶と非晶領域とが交互に積層した積層ラメラ構造、及び積層ラメラ構造が放射状に成長した球晶が観測される。このとき、ラメラ晶、積層ラメラ構造及び球晶の大きさや生成量は、熱力学的要請及び速度論的要請の影響を受ける。例えば、温度が高いときは結晶核の生成速度は小さく、反対に温度が低いときは結晶核の生成速度が大きい。従って、例えば結晶化を高い温度で起こす場合は、ラメラ晶の厚みが厚く、積層ラメラ構造は成長し、球晶は大きくなる。反対に結晶化を低い温度で起こす場合、ラメラ晶の厚みは薄く、積層ラメラ構造の成長は抑えられ、球晶は小さくなる。このことから、結晶性高分子が狭い範囲の温度下で結晶化した場合には、ラメラ晶の厚さや球晶の大きさは比較的均一な分布となる。反対に、幅広い温度領域で結晶化した場合、ラメラ晶の厚さや球晶の大きさは不均一となる。
 ラメラ晶の厚さや球晶の大きさ及びその分布は、結晶化条件だけではなく、材料自身にも影響される。なぜなら結晶性高分子が溶融状態から結晶化する過程においては、均一核生成(均質核生成)と不均一核生成(不均質核生成)の2つの異なるメカニズムがあるためである。均一核生成とは、熱力学的駆動によって統計的確率で結晶核が生成する機構である。不均一核生成とは、結晶性高分子中の不純物等と結晶性高分子が相互作用することによって、結晶核の生成が起こる機構である。不均一核生成による結晶化は均一核生成による結晶化よりも高い温度で起こりやすい。不均一核生成は材料中の不純物によって起こるため、一般的に結晶性高分子の結晶化においては、均一核生成と不均一核生成との2つのメカニズムが混合した状態で結晶化が進行するものと考えられている。このような点を踏まえて、結晶性高分子のラメラ晶や球晶の成長は、材料設計によって制御することが可能である。例えば、結晶性高分子に核剤を添加することで不均一核生成による結晶化を促すことができる。不均一核生成による結晶化を選択的に起こすことで材料中に多量の結晶核を作り出し、球晶の大きさを小さくすることで材料の透明性や耐衝撃性を改良することが知られている。
 また、ラメラ晶の厚さや球晶の大きさ、その大きさの分布、密度等は、結晶性高分子の色相や溶融成形性などの諸物性に大きな影響を及ぼす。例えば、ラメラ晶の厚さや球晶の大きさが不均一の場合には、熱力学的に定義される結晶の厚さと融解温度の式(Gibbs-Thomson式)によって、ラメラ晶と球晶とが融解する温度が同じく不均一となる。材料の融解温度の不均一化は、例えば押出機内での流動の不安定性を誘起することとなり好ましくない。
 ラメラ晶の厚さや球晶の大きさ及びその分布は、一般的に示差走査熱量測定(DSC)にて溶融状態から冷却したときの結晶化挙動を観測することで評価できる。DSCにより得られるDSC曲線において、均一核生成及び不均一核生成によるそれぞれの結晶化が起こる温度の範囲を知ることができる。しかしながら、EVOHのような結晶化速度が大きい材料の場合、結晶化は瞬時で起こるために、通常のDSC曲線においては均一核生成と不均一核生成とによる結晶化を分離することができない。例えば、EVOHをDSCにおいて溶融状態から100℃/分で室温まで冷却しても、結晶化熱量を表す信号は単一のピークである。この理由は、均一核生成と不均一核生成による結晶化の熱量が重なっていることが原因である。すなわち通常のDSC装置で達成できる冷却速度では、均一核生成と不均一核生成とによる結晶化を見分けることができない。このため、溶融成形に好適なEVOH組成物と、そのようなEVOH組成物の結晶化挙動との関係性は不明であった。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、溶融成形の際の安定性や、外観特性に優れる樹脂組成物、並びにこのような樹脂組成物により成形される押出成形品、射出成形品及びブロー成形品を提供することである。
 本発明者らは、極めて速い冷却速度で示差走査熱量測定を行うことにより、EVOH組成物においても均一核生成による結晶化と不均一核生成による結晶化とを区別することができることを知見した。さらに、不均一核生成による結晶化の割合の低いEVOH組成物が、溶融成形の際の安定性や外観特性に優れることを知見して本発明の完成に至った。
 すなわち、上記課題を解決するためになされた発明は、エチレン-ビニルアルコール共重合体を主成分とする樹脂組成物であって、210℃の溶融状態から150℃/秒の冷却速度で冷却したときの示差走査熱量測定(DSC)により得られるDSC曲線に基づいて下記式(1)で求められる不均一核生成指数(f)が、0.6未満であることを特徴とする樹脂組成物である。
 f=Qhetero/Qtotal ・・・ (1)
(式(1)中、Qtotalは、上記DSC曲線において、融点より38℃低い温度における熱流値と、融点より103℃低い温度における熱流値とを結ぶ直線をベースラインとしたときの、上記DSC曲線と上記ベースラインとに囲まれた領域(ピーク)の面積である。Qheteroは、上記領域(ピーク)中の上記融点より38℃低い温度から融点より75℃低い温度までの範囲における面積である。)
 ここで融点とは、通常の(一般的な)DSC装置を用いて10℃/minの昇温速度で得たときの融解ピークのピークトップ温度をいう。
 上記DSC曲線における融点より38℃低い温度から融点より75℃低い温度までの範囲におけるピークは、不均一核生成による結晶化熱量に対応する。一方、融点より75℃低い温度から融点より103℃低い温度までの範囲におけるピークは、均一核生成による結晶化熱量に対応する。すなわち、全ての結晶化の際に放出される熱量Qtotalに対する不均一核生成による結晶化の際に放出される熱量Qheteroの割合である不均一核生成指数(f)が0.6未満であるということは、不均一核生成により生成する結晶の割合が低いことを意味する。従って、当該樹脂組成物によれば、不均一核生成により生成される結晶の割合が低く、結晶サイズが均一的になるため、溶融成形の際の安定性や外観特性に優れる。
 上記エチレン-ビニルアルコール共重合体のケン化度としては、99モル%以上が好ましい。このようにケン化度の高いEVOHを用いることで、当該樹脂組成物の不均一核生成指数(f)がより低くなり、溶融成形の際の安定性や外観特性などをより高めることができる。
 上記エチレン-ビニルアルコール共重合体のエチレン含有量としては、18モル%以上55モル%以下が好ましい。EVOHのエチレン含有量を上記範囲とすることにより当該樹脂組成物の不均一核生成指数(f)がより低くなり、溶融成形の際の安定性や外観特性をより高めることができる。
 当該樹脂組成物における上記エチレン-ビニルアルコール共重合体に対する高級脂肪酸アミドの含有量が900ppm以下であることが好ましい。高級脂肪酸アミドの含有量を900ppm以下とすることで、不均一核生成指数(f)がより低くなり、溶融成形の際の安定性や外観特性をより高めることができる。
 当該樹脂組成物は、アルカリ金属塩を含有することが好ましい。アルカリ金属塩を含有することにより、熱安定性や多層構造体を形成した際の層間強度等を高めることなどができる。
 上記アルカリ金属塩の含有量としては、アルカリ金属元素換算で10ppm以上500ppm以下が好ましい。アルカリ金属塩の含有量を上記範囲とすることにより、当該樹脂組成物の不均一核生成指数(f)をより低くすることができ、溶融成形の際の安定性や外観特性をより高めることができる。
 上記課題を解決するためになされた別の発明は、当該樹脂組成物を含む押出成形品である。
 上記課題を解決するためになされたさらに別の発明は、当該樹脂組成物を含む射出成形品である。
 上記課題を解決するためになされたさらに別の発明は、当該樹脂組成物を含むブロー成形品である。
 当該押出成形品、射出成形品及びブロー成形品は、安定性高く溶融成形され、外観特性にも優れる。
 本発明によれば、溶融成形の際の安定性や、外観特性に優れる樹脂組成物、並びにこのような樹脂組成物により成形される押出成形品、射出成形品及びブロー成形品を提供することができる。
本発明の一実施形態に係る樹脂組成物において、150℃/秒の冷却速度で冷却したときのDSC曲線を示す模式図である。
 以下、適宜図面を参照にしつつ、本発明の一実施形態に係る樹脂組成物、押出成形品、射出成形品及びブロー成形品について詳説する。
<樹脂組成物>
 本発明の一実施形態にかかる樹脂組成物は、EVOHを主成分とする。ここで「主成分」とは、質量基準で最も含有量が大きい成分をいう。当該樹脂組成物においけるEVOHの含有量の下限としては、50質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましく、95質量%以上がさらに好ましく、99質量%がさらに好ましく、99.9質量%が特に好ましい。このように、EVOHの含有量を高めることで、均一核生成の割合を高めることができる。当該樹脂組成物には、通常、EVOH以外に後述するような意図的に添加された他の成分や、非意図的に混在する微量の不純物成分が含まれる。このように、当該樹脂組成物におけるEVOHの含有量の上限としては、実質的に100質量%であってよいが、後述する添加物等が適当な量含有されていることも好ましい。すなわち、当該樹脂組成物は、例えば樹脂、材料、樹脂材料、溶融成形材料などと称することもできる。
 当該樹脂組成物においては、210℃の溶融状態から150℃/秒の冷却速度で冷却したときの示差走査熱量測定(DSC)により得られるDSC曲線に基づいて、下記式(1)で求められる不均一核生成指数(f)が0.6未満である。
 f=Qhetero/Qtotal ・・・ (1)
 上記DSC曲線を模式的に図1に示す。式(1)中、Qtotalは、上記DSC曲線において、融点(Tm)より38℃低い温度における熱流値と、融点(Tm)より103℃低い温度における熱流値とを結ぶ直線をベースラインとしたときの、上記DSC曲線と上記ベースラインとに囲まれた領域の面積である。Qheteroは、上記領域中の上記融点(Tm)より38℃低い温度から融点より75℃低い温度までの範囲における面積である。なお、図1に示すように、上記融点より38℃低い温度と融点より75℃低い温度との間、及び上記融点より75℃低い温度と融点より103℃低い温度との間それぞれに極大値が現れていてもよいし、上記融点(Tm)より38℃低い温度と融点(Tm)より103℃低い温度との間に1つの極大値のみが現れていてもよい。また、熱流値は、熱流束値などと称されてもよい。
 上記不均一核生成指数(f)は、0.6未満であるが、不均一核生成指数(f)の上限は、0.55が好ましく、0.51がより好ましい。このように、不均一核生成による結晶化熱量が小さい、すなわち不均一核生成により形成される結晶の割合が小さいことにより、当該樹脂組成物は、結晶サイズが均一化され、溶融成形性の際の安定性や外観特性に優れる。また、当該樹脂組成物から得られる成形品は、十分な耐衝撃性を有することができる。一方、この不均一核生成指数(f)の下限は特に限定されず、0であってよいが、0.01であってもよく、0.1であってもよい。得られる成形品の耐衝撃性の観点からは、不均一核生成指数(f)の下限は0.1が好ましく、0.2がより好ましく、0.3がさらに好ましい。
 この150℃/秒の冷却速度による示差走査熱量測定は、Mettler Toledo社の「Flash DSC 1」を用いて行うことができる。上記「Flash DSC 1」は、試料を直接センサ上に接触させる機構を採用しており、また、100ngよりも少ない試料量で測定が行われる。このため、試料とセンサとの熱伝導に優れ、超高速の降温を可能としている。また、測定の際の試料片(樹脂組成物)の形状は、縦80μm、横80μm、厚さ10μmの板状とする。
 上記不均一核生成指数(f)を0.6未満に制御する手段としては、例えば
(1)EVOHのケン化度を高くすること
(2)EVOHのエチレン含有量を比較的多くすること
(3)十分な洗浄等により、不純物を低減すること
(4)含有されるアルカリ金属塩等の含有量を適当な範囲に調整すること
(5)含有されるカルボン酸及びカルボン酸イオンの含有量を適当な範囲に調整すること
(6)含有される滑剤の含有量を適当な範囲に調整すること
(7)ペレタイズ時の浴温を低く調整すること
(8)比較的短時間且つ高温でペレットを乾燥させること
(9)不活性ガス雰囲気下でペレットを乾燥させること
等を挙げることができる。これらの手段は、適宜複数を組み合わせて行うことができる。
 当該樹脂組成物中に添加剤やその他の不純物が存在すると、これらが核剤となり、不均一核生成が進行しやすくなる。このため、核剤となり得る成分の含有量を比較的少なくすることで、上記不均一核生成指数(f)を低くすることができる(上記(3)~(6)等)。但し、理由は定かではないが、滑剤については、含有していない場合よりも、若干含有させた方(例えば、50ppm以上500ppm以下程度)が、不均一核生成指数を低くすることができる。また、樹脂組成物の製造工程において、EVOHの加熱等に伴って低分子量成分が生成し、これが核剤となり、不均一核生成が進行しやすくなる。このため、熱劣化が比較的生じにくい環境で製造することで、上記不均一核生成指数(f)を低くすることができる(上記(7)~(9)等)。
 以下、当該樹脂組成物の組成等について説明する。
(EVOH)
 当該樹脂組成物におけるEVOHは、主構造単位として、エチレン単位(-CH-CH-)及びビニルアルコール単位(-CH-CHOH-)を有する重合体である。EVOHは、本発明の効果を損なわない範囲で、その他の構造単位を有していてもよい。
 EVOHのエチレン含有量(すなわち、EVOH中の単量体単位の総数に対するエチレン単位の数の割合)の下限としては18モル%が好ましく、24モル%がより好ましく、27モル%がさらに好ましい。一方、EVOHのエチレン含有量の上限としては55モル%が好ましく、48モル%がより好ましい。EVOHのエチレン含有量を上記下限以上とすることで、得られる成形品の高湿度下でのガスバリア性、溶融成形性、黄変等の発生の抑制性等を高めることができる。逆に、EVOHのエチレン含有量を上記上限以下とすることで、得られる成形体のガスバリア性をより高めることができる。
 EVOHのケン化度(すなわち、EVOH中のビニルアルコール単位及びビニルエステル単位の総数に対するビニルアルコール単位の数の割合)の下限としては、例えば90モル%であってもよいが、99モル%が好ましく、99.5モル%がより好ましい。一方、EVOHのケン化度の上限としては100モル%が好ましく、99.99モル%がさらに好ましい。EVOHのケン化度が上記下限以上とすることで、不均一核生成指数(f)が低くなり、溶融成形の際の安定性や外観特性を高めることができる。
 (添加剤)
 当該樹脂組成物は、各性能を高めるため種々の酸や金属塩等の添加物を含有することができる。この添加物としては、アルカリ金属塩、カルボン酸及び/又はカルボン酸イオン、リン酸化合物、ホウ素化合物、滑剤等が挙げられる。なお、これらの各添加剤は、含有しない場合がよいこともある。
 当該樹脂組成物はアルカリ金属イオンを含有していることが、熱安定性や多層構造体を形成した際の層間強度等の観点から好ましい。当該樹脂組成物中のアルカリ金属イオンの含有量の下限としてはアルカリ金属元素換算で、10ppmが好ましく、50ppmがより好ましい。一方、この上限としては、500ppmが好ましく、400ppmがより好ましく、300ppmがさらに好ましい。
 アルカリ金属イオンの含有量を上記下限以上とすることで、アルカリ金属イオンを添加させたことによる効果が十分に発揮することができる。一方、アルカリ金属イオンの含有量を上記上限以下とすることで、当該樹脂組成物の不均一核生成指数(f)を十分に低くし、溶融成形安定性や、外観特性を高めることができる。
 アルカリ金属元素の含有量を上記範囲に調整する方法は特に限定されない。樹脂組成物(EVOH)にアルカリ金属元素を含有させる方法としては、EVOHをアルカリ金属元素を含む溶液に浸漬させる方法、EVOHを溶融させてアルカリ金属元素を含む化合物又はアルカリ金属元素を含む溶液と混合する方法、EVOHを適当な溶媒に溶解させてアルカリ金属元素を含む化合物と混合させる方法などが挙げられる。
 EVOHをアルカリ金属元素を含む溶液に浸漬する場合において、この溶液中のアルカリ金属元素の濃度は特に限定されない。また、溶液の溶媒も特に限定されないが、取り扱いやすさなどの観点から水溶液であることが好ましい。EVOHを浸漬する際の溶液質量は、通常は乾燥時のEVOHの質量に対して3倍以上であり、10倍以上であることが好ましい。浸漬時間はEVOHの形態によってその好適な範囲は異なるが、通常1時間以上、好ましくは2時間以上である。溶液への浸漬処理は特に限定されず、複数の溶液に分けて浸漬してもよく、一度に処理しても構わないが、工程の簡素化の点から一度に処理することが好ましい。塔式の装置を用いて、浸漬の処理を連続的に行うことも好適に用いられる。
 当該樹脂組成物は、カルボン酸及び/又はカルボン酸イオンを含有していてもよい。カルボン酸及びカルボン酸イオンは、樹脂組成物のpHを制御し、ゲル化を防止して熱安定性を改善する効果がある。当該樹脂組成物がカルボン酸及び/又はカルボン酸イオンを含有する場合、カルボン酸及びカルボン酸イオンの含有量の下限としては、1ppmが好ましく、10ppmがより好ましい。一方、この上限としては、400ppmが好ましく、300ppmがより好ましく、200ppmがさらに好ましく、100ppmがさらに好ましく、50ppmがさらに好ましく、25ppmが特に好ましい。カルボン酸及びカルボン酸イオンの含有量を上記下限以上とすることで、カルボン酸及びカルボン酸イオンを添加する効果を十分に奏することができる。一方、この含有量を上記上限以下とすることで、不均一核生成指数(f)を低くし、溶融成形安定性や外観特性をより高めることができる。
 上記カルボン酸としてはコハク酸、アジピン酸、安息香酸、カプリン酸、ラウリン酸、ステアリン酸、グリコール酸、乳酸、クエン酸、酒石酸、蟻酸、酢酸、プロピオン酸などが挙げられる。これらの中でも、酸性度が適当であり、樹脂組成物のpHを制御しやすい観点から、酢酸、プロピオン酸及び乳酸が好ましく、酢酸及びプロピオン酸がより好ましく、酢酸がさらに好ましい。
 なお、当該樹脂組成物のpHは、4以上7以下であることが好ましい。pHがこの範囲を外れる場合、すなわち酸性度が高すぎる又はアルカリ性になる場合、EVOHの劣化が生じやすくなることなどにより、不均一核生成指数(f)が高くなり、溶融成形安定性や外観特性が低下するおそれがある。
 当該樹脂組成物は、リン酸化合物を含有することができる。リン酸化合物は、熱安定性を改善することなどの効果を有する。当該樹脂組成物におけるリン酸化合物の含有量としては、例えばリン酸根換算で1ppm以上500ppm以下とすることができる。このリン酸化合物の含有量の上限は、リン酸根換算で200ppmが好ましく、100ppmがより好ましく、50ppmがさらに好ましく、20ppmが特に好ましい。リン酸化合物の種類は特に限定されず、リン酸、亜リン酸などの各種の酸やその塩を用いることができる。リン酸塩としては、第一リン酸塩、第二リン酸塩、第三リン酸塩のいずれの形でもよく、そのカチオン種も特に限定されないが、アルカリ金属塩、アルカリ土類金属塩であることが好ましい。中でも、リン酸、リン酸2水素ナトリウム、リン酸2水素カリウム、リン酸水素2ナトリウム及びリン酸水素2カリウムの形でリン酸化合物を含有していることが好ましく、リン酸、リン酸2水素ナトリウム及びリン酸2水素カリウムの形でリン酸化合物を添加することがより好ましい。
 当該樹脂組成物はホウ素化合物を含有していてもよい。ホウ素化合物としては、オルトホウ酸、メタホウ酸、四ホウ酸などのホウ酸類;ホウ酸エステル、ホウ酸塩、水素化ホウ素化合物類等が挙げられる。ホウ酸塩としては上記の各種ホウ酸類のアルカリ金属塩、アルカリ土類金属塩、ホウ砂等が挙げられる。ホウ素化合物を添加する場合、その含有量は、例えばホウ素元素換算で20ppm以上2000ppm以下とすることができる。
 上述したカルボン酸、カルボン酸イオン、リン酸化合物及びホウ素化合物を含有させる方法は特に限定されない。例えば、上述のアルカリ金属元素を含有させる方法と同様の方法が採用される。
 上記滑剤は、溶融成形の際の安定性、ロングラン性、外観特性等を高めることができる。また、上述のように、滑剤の少量の添加により、不均一核生成指数(f)を低くすることができる。
 上記滑剤は特に限定されるものではなく、例えば高級脂肪酸アミド、高級脂肪酸金属塩(例えばステアリン酸カルシウムなど)、低分子量ポリオレフィン(例えば分子量500~10000程度の低分子量ポリエチレン、または低分子量ポリプロピレンなど)などが挙げられるが、これに限定されない。これらの中でも、高級脂肪酸アミドを用いることが好適であり、具体的には高級飽和脂肪酸アミド(例えばステアリン酸アミド、パルミチン酸アミド、ラウリン酸アミドなど)、高級不飽和脂肪酸アミド(例えばオレイン酸アミド、エルカ酸アミドなど)、高級ビス脂肪酸アミド(例えばエチレンビスステアリン酸アミド、メチレンビスステアリン酸アミドなど)などが例示される。なお、ここで高級脂肪酸とは、炭素数6以上の脂肪酸のことを意味するが、炭素数が10以上であることがより好ましい。これらの中でも、高級ビス脂肪酸アミドが好ましく、エチレンビスステアリン酸アミドがより好ましい。
 上記滑剤、特には高級脂肪酸アミドの含有量の上限としては、質量基準でEVOHに対して900ppmが好ましく、500ppmがより好ましく、300ppmがさらに好ましい。一方、この含有量の下限としては、50ppmが好ましく、100ppmがさらに好ましい。滑剤の含有量を上記範囲とすることで、不均一核生成指数(f)を低くすることができ、溶融成形の際の安定性、ロングラン性、外観特性等を高めることができる。
 当該樹脂組成物には、上記添加剤の他、本発明の効果を損なわない範囲で、可塑剤、安定剤、酸化防止剤、界面活性剤、色剤、蛍光増白剤、紫外線吸収剤、帯電防止剤、乾燥剤、架橋剤、アルカリ金属以外の金属塩、充填剤、各種繊維等の補強剤等を適量添加することも可能である。
 また、当該樹脂組成物は、本発明の効果を損なわない範囲で、EVOH以外の熱可塑性樹脂を適量配合することも可能である。熱可塑性樹脂としては各種ポリオレフィン(ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテン、エチレン-プロピレン共重合体、エチレンと炭素数4以上のα-オレフィンとの共重合体、ポリオレフィンと無水マレイン酸との共重合体、エチレン-ビニルエステル共重合体、エチレン-アクリル酸エステル共重合体、又はこれらを不飽和カルボン酸若しくはその誘導体でグラフト変性した変性ポリオレフィンなど)、各種ナイロン(ナイロン-6、ナイロン-6,6、ナイロン-6/6,6共重合体など)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエステル、ポリスチレン、ポリアクリロニトリル、ポリウレタン、ポリアセタール及び変性ポリビニルアルコール樹脂などが用いられる。
 なお、当該樹脂組成物において、上記EVOH、アルカリ金属塩、カルボン酸、カルボン酸イオン、リン酸化合物、ホウ素化合物及び滑剤以外の成分の含有量の上限としては、10,000ppmが好ましいこともあり、1,000ppmがより好ましいこともあり、100ppmがさらに好ましいこともある。このように、その他の成分の含有量を上記上限以下とすることで、他の成分が核剤となって不均一核生成が進行することを抑制し、不均一核生成指数(f)をより低くすることができる。
 当該樹脂組成物の形状としては、特に限定されず、溶液状、ペースト状、粉末状、ペレット形状、フィルム形状等のいずれであってもよい。
(樹脂組成物の製造方法)
 当該樹脂組成物は、例えば以下の工程により製造することができる。なお、以下の各工程は、適宜省略することもできる。
(1)エチレンとビニルエステルとの共重合を行い、エチレン-ビニルエステル共重合体(EVAc)を得る工程(重合工程)
(2)上記EVAcをケン化し、EVOHを得る工程(ケン化工程)
(3)上記EVOHを含む溶液又はペーストから、EVOHを含むペレットを得る工程(ペレット化工程)
(4)上記ペレットを洗浄する工程(洗浄工程)
(5)上記ペレットを乾燥する工程(乾燥工程)
(1)重合工程
 エチレンとビニルエステルとの共重合方法としては、特に限定されず、例えば溶液重合、懸濁重合、乳化重合、バルク重合等のいずれであってもよい。また、連続式及び回分式のいずれであってもよい。
 重合に用いられるビニルエステルとしては、酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニルなどの脂肪酸ビニルなどを挙げることができるが、これらの中でも酢酸ビニルが好ましい。
 上記重合において、共重合成分として、上記成分以外にも共重合し得る単量体、例えばエチレン以外のアルケン;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸等の不飽和酸又はその無水物、塩、又はモノ若しくはジアルキルエステル等;アクリロニトリル、メタクリロニトリル等のニトリル;アクリルアミド、メタクリルアミド等のアミド;ビニルスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸又はその塩;アルキルビニルエーテル類、ビニルケトン、N-ビニルピロリドン、塩化ビニル、塩化ビニリデン、2-メチレン―1,3-プロパンジオールジアセテートなどを少量共重合させることもできる。
 また、共重合成分として、ビニルシラン化合物を含有させることができる。ここで、ビニルシラン化合物としては、例えばビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(β-メトキシ-エトキシ)シラン、γ-メタクリロイルオキシプロピルメトキシシランなどが挙げられる。この中でも、ビニルトリメトキシシラン及びビニルトリエトキシシランが好適に用いられる。
 重合に用いられる溶媒としては、エチレン、ビニルエステル及びエチレン-ビニルエステル共重合体を溶解し得る有機溶媒であれば特に限定されない。そのような溶媒として、例えばメタノール、エタノール、プロパノール、n-ブタノール、tert-ブタノール等のアルコール;ジメチルスルホキシドなどを用いることができる。その中でも、反応後の除去分離が容易である点で、メタノールが特に好ましい。
 重合に用いられる触媒としては、例えば2,2-アゾビスイソブチロニトリル、2,2-アゾビス-(2,4-ジメチルバレロニトリル)、2,2-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2-アゾビス-(2-シクロプロピルプロピオニトリル)等のアゾニトリル系開始剤;イソブチリルパーオキサイド、クミルパーオキシネオデカノエイト、ジイソプロピルパーオキシカーボネート、ジ-n-プロピルパーオキシジカーボネート、t-ブチルパーオキシネオデカノエイト、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド等の有機過酸化物系開始剤などを用いることができる。
 重合温度としては、例えば20℃以上90℃以下とすることができる。重合時間としては、例えば2時間以上15時間以下とすることができる。重合率は、仕込みのビニルエステルに対して好ましくは10%以上90%以下とすることができる。
 通常、所定時間の重合後又は所定の重合率に達した後、必要に応じて重合禁止剤を添加し、未反応のエチレンガスを蒸発除去した後、未反応のビニルエステルを除去する。未反応のビニルエステルを除去する方法としては、例えばラシヒリングを充填した塔の上部から上記共重合体溶液を一定速度で連続的に供給し、塔下部よりメタノール等の有機溶剤蒸気を吹き込み、塔頂部よりメタノール等の有機溶剤と未反応ビニルエステルの混合蒸気を留出させ、塔底部より未反応のビニルエステルを除去した共重合体溶液を取り出す方法などが採用される。
(2)ケン化工程
 次いで、上記工程で得られたEVAcをケン化する。ケン化方法は、連続式及び回分式のいずれも可能である。また、ケン化時の触媒としては特に限定されないが、アルカリ触媒が好ましく、例えば水酸化ナトリウム、水酸化カリウム、アルカリ金属アルコラートなどが用いられる。
 ケン化の条件としては、例えば回分式の場合、共重合体溶液濃度が10質量%以上50質量%以下、反応温度が30℃以上60℃以下、触媒使用量がビニルエステル構造単位1モル当たり0.02モル以上0.6モル以下、ケン化時間が1時間以上6時間以下とすることができる。
 このようにしてEVOHを含む溶液又はペーストが得られる。なお、ケン化反応後のEVOHは、アルカリ触媒、酢酸ナトリウムや酢酸カリウムなどの副生塩類、その他不純物を含有するため、これらを必要に応じて中和、洗浄することにより除去することが好ましい。これにより、不均一核生成指数(f)をより低くすることができる。ここで、ケン化反応後のEVOHを、イオン交換水等の金属イオン、塩化物イオン等をほとんど含まない水で洗浄する際、酢酸ナトリウム、酢酸カリウム等を一部残存させてもよい。
(3)ペレット化工程
 次に、得られたEVOH溶液又はペーストをペレット化する。ペレット化の方法としては、特に限定されず、EVOHのアルコール/水混合溶液を冷却凝固させてカットする方法、EVOHを押出機で溶融混練してから吐出してカットする方法などが挙げられる。EVOHのカット方法としては、EVOHをストランド状に押し出してからペレタイザーでカットする方法、ダイスから吐出したEVOHをセンターホットカット方式やアンダーウォーターカット方式などでカットする方法などが具体的な例として挙げられる。
 EVOH溶液をストランド状に押し出してペレット化する場合、析出させる凝固液としては水又は水/アルコール混合溶媒、ベンゼン等の芳香族炭化水素類、アセトン、メチルエチルケトン等のケトン類、ジプロピルエーテル等のエーテル類、酢酸メチル、酢酸エチル、プロピオン酸メチル等の有機酸エステル等が用いられるが、取り扱いの容易な点で水又は水/アルコール混合溶媒が好ましい。このアルコールとしては、メタノール、エタノール、プロパノール等のアルコールが用いられるが、工業上好ましくはメタノールが用いられる。凝固液中の凝固液とEVOHのストランドとの質量比(凝固液/EVOHのストランド)としては特に限定されないが、50以上10,000以下であることが好ましい。上記範囲の質量比にすることにより、寸法分布が均一なEVOHペレットを得ることが可能となる。
 EVOH溶液を凝固液と接触させる温度(ペレタイズ時の浴温)の下限としては、-10℃が好ましく、0℃がより好ましい。一方、この上限としては、40℃が好ましく、20℃がより好ましく、15℃がさらに好ましく、10℃がよりさらに好ましい。上記温度を上記下限以上とすることで、低分子量成分の析出が抑えられ、不均一核生成指数(f)をより低くすることができる。逆に、上記温度を上記上限以下とすることで、EVOHの熱劣化により不均一核生成指数(f)が高まることを抑えることができる。
 EVOH溶液は任意の形状を有するノズルにより、上記凝固液中にストランド状に押出される。かかるノズルの形状としては、特に限定されないが、円筒形状が好ましい。このようにしてノズルよりEVOH(溶液)がストランド状に押し出される。この際、ストランドは必ずしも一本である必要はなく、数本~数百本の間の任意の数で押し出し可能である。
 次いで、ストランド状に押し出されたEVOHは凝固が十分進んでから切断され、ペレット化され、その後水洗される。かかるペレットのサイズは、例えば円柱状の場合は径が1mm以上10mm以下、長さ1mm以上10mm以下、球状の場合は径が1mm以上10mm以下とすることができる。
(4)洗浄工程
 続いて、上記EVOHペレットを水槽中で水洗する。かかる水洗処理により、EVOHペレット中のオリゴマーや不純物が除去される。この水洗の際の水温の下限としては例えば10℃が好ましい。一方、この水温の上限としては80℃が好ましい。また、この水洗には、酢酸水溶液やイオン交換水を用いることができるが、最終的にはイオン交換水により水洗することが好ましい。イオン交換水による水洗は、1時間以上の水洗を2回以上行うことが好ましい。また、この際のイオン交換水の水温は5℃以上60℃以下が好ましく、浴比は2以上が好ましい。これにより、オリゴマーや不純物の十分な除去が行われ、不均一核生成指数(f)をより低くすることができる。
 この洗浄工程後、必要に応じて、上述したように、アルカリ金属等を含む溶液にペレットを浸漬させ、アルカリ金属等をペレットに含有させることができる。
(5)乾燥工程
 続いて、上記のペレットを乾燥することで、乾燥された樹脂組成物のペレットが得られる。この際、乾燥時間の下限としては、例えば3時間であり、5時間が好ましい。一方、この上限としては、例えば100時間であり、50時間が好ましく、30時間がより好ましい。なお、本明細書中においてペレットの乾燥時間とはペレットの含水率が0.5質量%未満となるのに要する時間をいう。
 乾燥の際の乾燥温度(雰囲気温度)の下限としては、100℃が好ましく、110℃がより好ましく、120℃がさらに好ましく、125℃が特に好ましい。一方、この上限としては、150℃が好ましく、140℃がより好ましい。乾燥温度を上記下限以上とすることで、効率的に十分な乾燥を行うことができ、乾燥時間を短くすることができる。一方、乾燥温度を上記上限以下とすることで、EVOHの熱劣化を抑制することができる。
 上記乾燥は、空気雰囲気下で行ってもよいが、窒素ガス等の不活性ガス雰囲気下で行うことが好ましい。これによりEVOHの劣化が抑えられ、得られる樹脂組成物の不均一核生成指数(f)を低くすることができる。また、上記乾燥は、減圧下で行ってもよいし、除湿しながら行ってもよい。上記乾燥工程における乾燥方法としては特に限定されず、熱風乾燥の他、紫外線照射や赤外線照射により乾燥を行うこともできる。
(用途等)
 当該樹脂組成物は、溶融成形の際の安定性や、外観特性に優れる。従って、当該樹脂組成物は、溶融成形材料として好適に用いることができる。
<成形品(押出成形品、射出成形品、ブロー成形品等)>
 本発明の一実施形態にかかる成形品は、当該樹脂組成物を含む成形品である。当該成形品は、通常、当該樹脂組成物の溶融成形により得ることができる。当該成形品中の樹脂組成物も、不均一核生成指数(f)が0.6未満であることが維持されている。
 当該成形体を得るための溶融成形法としては、押出成形、インフレーション押出、射出成形、ブロー成形、溶融紡糸等を挙げることができるが、押出成形、射出成形及びブロー成形が好ましい。これらの成形の場合、当該樹脂組成物が溶融成形の際の安定性に優れ、外観特性にも優れるという効果を特に十分に発揮することができる。溶融成形の際の溶融温度としては特に制限されないが、150℃以上300℃以下程度が好ましい。
 押出成形品(当該樹脂組成物の押出成形により得られる成形品)としては、特に限定されず、フィルム、シート、チューブ、パイプ、繊維、容器等を挙げることができる。これらのフィルム、シート等は一軸又は二軸延伸されていてもよい。以下の、他の成形方法で得られたフィルム、シート等も同様である。
 射出成形品(当該樹脂組成物の射出成形により得られる成形品)としては、特に限定されず、容器、キャップ、日用品、家電やその他機械の樹脂部品等を挙げることができる。
 ブロー成形品(当該樹脂組成物のブロー成形により得られる成形品)としては、特に限定されず、容器、パイプ、ダクト、建材、日用品等を挙げることができる。
 なお、当該成形品は、当該樹脂組成物から形成された部分と、他の材料から形成された部分とを有する成形品であってもよい。このような成形品としては、当該樹脂組成物から形成される層と、他の材料(熱可塑性樹脂)等から形成される層とを備える多層構造体を挙げることができる。このような多層構造体としての成形品は、当該樹脂組成物と他の熱可塑性樹脂等との共押出等により成形することができる。この共押出の方法としては、例えばマルチマニホールド合流方式Tダイ法、フィードプロック合流方式Tダイ法、インフレーション法等を挙げることができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこの実施例に限定されるものではない。
<合成例1>
(1)エチレン-酢酸ビニル共重合体の合成
 ジャケット、攪拌機、窒素導入口、エチレン導入口及び開始剤添加口を備えた250L加圧反応槽に、酢酸ビニル(以下、VAcと称することもある)を105kg、メタノール(以下、MeOHと称することもある)を38.3kg仕込み、60℃に昇温した後、30分間窒素バブリングして反応槽内を窒素置換した。次いで反応槽圧力(エチレン圧力)が3.7MPaとなるようにエチレンを導入した。反応槽内の温度を60℃に調整した後、開始剤として24.4gの2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業社の「V-65」)をメタノール溶液として添加し、重合を開始した。重合中はエチレン圧力を3.7MPaに、重合温度を60℃に維持した。4時間後にVAcの重合率が44%となったところで冷却して重合を停止した。反応槽を開放して脱エチレンした後、窒素ガスをバブリングして脱エチレンを完全に行った。次いで減圧下で未反応のVAcを除去した後、エチレン-酢酸ビニル共重合体(以下、EVAcと称することもある)にMeOHを添加して20質量%MeOH溶液とした。
(2)EVAcのケン化
 ジャケット、攪拌機、窒素導入口、還流冷却器及び溶液添加口を備えた500L反応槽に上記(1)で得たEVAcの20質量%MeOH溶液250kgを仕込んだ。この溶液に窒素を吹き込みながら60℃に昇温し、水酸化ナトリウム4kgを濃度2規定のMeOH溶液として添加した。水酸化ナトリウムの添加終了後、系内温度を60℃に保ちながら2時間攪拌してケン化反応を進行させた。2時間経過した後に、再度、同様の方法で水酸化ナトリウムを4kg添加し、2時間加熱攪拌を継続した。その後、酢酸を14kg添加してケン化反応を停止し、イオン交換水50kgを添加した。加熱攪拌しながら反応槽外にMeOHと水を留出させ反応液を濃縮した。3時間経過した後、更にイオン交換水50kgを添加し、エチレンービニルアルコール共重合体(以下、EVOHと称することもある)を析出させた。デカンテーションにより析出したEVOHを収集し、ミキサーで粉砕した。得られたEVOH粉末を1g/Lの酢酸水溶液(浴比20:イオン交換水200Lに対し粉末10kgの割合)に投入して2時間攪拌洗浄した。これを脱液し、さらに1g/Lの酢酸水溶液(浴比20)に投入して2時間攪拌洗浄した。これを脱液したものを、イオン交換水(浴比20)に投入して攪拌洗浄を2時間行い脱液する操作を3回繰り返して精製を行った。これを60℃で16時間乾燥させることでEVOHの粗乾燥物を25kg得た。
(3)EVOH中の各構造単位の含有量
 上記(2)で得たEVOHの粗乾燥物中の構造単位を確認するため、1H-NMR測定を行った。上記(2)で得られたEVOHの粗乾燥物を、内部標準物質としてテトラメチルシラン、添加剤としてテトラフルオロ酢酸(TFA)を含むジメチルスルホキシド(DMSO)-d6に溶解し、500MHzの1H-NMR(日本電子社の「GX-500」)を用いて80℃で測定した。
 上記測定のスペクトル中の各ピークは、以下のように帰属される。
0.6~1.9ppm:エチレン単位のメチレンプロトン(4H)、ビニルアルコール単位のメチレンプロトン(2H)、酢酸ビニル単位のメチレンプロトン(2H)
1.9~2.0ppm:酢酸ビニル単位のメチルプロトン(3H)
3.1~4.2ppm:ビニルアルコール単位のメチンプロトン(1H)
 これらピーク強度比からエチレン含量及びケン化度を求めた。上記(2)で得たEVOHの粗乾燥物のエチレン含量は32mol%、ケン化度は99%以上であった。
(4)EVOH含水ペレットの製造
 ジャケット、攪拌機及び還流冷却器を備えた100L攪拌槽に、上記(2)で得たEVOHの粗乾燥物25kg、水20kg及びMeOH20gを仕込み、70℃に昇温して溶解させた。この溶解液を径3mmのガラス管を通して5℃に冷却した重量比で水/MeOH=90/10の混合液中に押し出してストランド状に析出させ、このストランドをストランドカッターでペレット状にカットすることでEVOHの含水ペレットを得た。このEVOHの含水ペレットを濃度1g/Lの酢酸水溶液(浴比20)に投入して2時間攪拌洗浄した。これを脱液し、さらに1g/Lの酢酸水溶液(浴比20)に投入して2時間攪拌洗浄した。脱液後、酢酸水溶液を更新し同様の操作を行った。酢酸水溶液で洗浄してから脱液したものを、イオン交換水(浴比20)に投入して攪拌洗浄を2時間行い脱液する操作を3回繰り返して精製を行い、ケン化反応時の触媒残渣とストランド析出時に使用したMeOHが除去された、EVOHの含水ペレットを得た。得られたEVOHの含水ペレットの含水率をメトラー社のハロゲン水分計「HR73」で測定したところ、110質量%であった。
<合成例2>
 上記合成例1の(1)において、MeOH量を44.8kgにし、エチレン圧力を3.0MPaにし、開始剤の量を21.7gにした以外は、同様の方法で重合を行い、EVAcを得た。4時間後にVAcの重合率が45%となったところで冷却し重合を停止した。引き続き、合成例1と同様にして、EVOHを合成し、エチレン含有量27mol%、ケン化度99%以上のEVOHの粗乾燥物が得られた。その後、合成例1と同様にして、EVOHの含水ペレットを得た。
<合成例3>
 上記合成例1の(1)において、MeOH量を25.2kgにし、エチレン圧力を5.0MPaにし、開始剤の量を32.2gにした以外は、同様の方法で重合を行い、EVAcを得た。4時間後にVAcの重合率が42%となったところで冷却し重合を停止した。引き続き、合成例1と同様にして、EVOHを合成し、エチレン含有量44mol%、ケン化度99%以上のEVOHの粗乾燥物が得られた。その後、合成例1と同様にして、EVOHの含水ペレットを得た。
<合成例4>
 ジャケット、攪拌機、窒素導入口、還流冷却器及び溶液添加口を備えた500L反応槽に上記(1)で得たEVAcの20質量%MeOH溶液250kgを仕込んだ。この溶液に窒素を吹き込まず、60℃に昇温し、水酸化ナトリウム3kgを濃度2規定のMeOH溶液として添加した。水酸化ナトリウムの添加終了後、系内温度を60℃に保ちながら0.5時間攪拌してケン化反応を進行させた。0.5時間経過した後に、酢酸を8kg添加してケン化反応を停止し、イオン交換水50kgを添加した。加熱攪拌しながら反応槽外にMeOHと水を留出させ反応液を濃縮した。3時間経過した後、更にイオン交換水50kgを添加し、EVOHを析出させた。デカンテーションにより析出したEVOHを収集し、ミキサーで粉砕した。得られたEVOH粉末を1g/Lの酢酸水溶液(浴比20:イオン交換水200Lに対し粉末10kgの割合)に投入して2時間攪拌洗浄した。これを脱液し、さらに1g/Lの酢酸水溶液(浴比20)に投入して2時間攪拌洗浄した。これを脱液したものを、イオン交換水(浴比20)に投入して攪拌洗浄を2時間行い脱液する操作を3回繰り返して精製を行った。これを60℃で16時間乾燥させることでエチレン含有量32mol%、ケン化度98%のEVOHの粗乾燥物を27kg得た。その後、合成例1と同様にして、EVOHの含水ペレットを得た。
<合成例5>
 上記合成例1の(4)においてストランドを析出させる際の混合液の温度を20℃にした以外は、合成例1と同様にして、EVOHの含水ペレットを得た。
<実施例1>
(1)EVOH組成物ペレット(樹脂組成物)の製造
 上記合成例1で得たEVOHの含水ペレットを酢酸ナトリウム濃度0.7g/L、酢酸濃度0.2g/L、リン酸濃度0.02g/L及びホウ酸濃度0.3g/Lの水溶液(浴比20)に投入し、定期的に攪拌しながら4時間浸漬させた。これを脱液し、空気下で80℃、3時間、及び窒素下で130℃、7.5時間乾燥した。乾燥終了後、滑剤としてエチレンビスステアリン酸アミド(日本油脂社の「アルフローH50FP」、粉末、融点143℃)をEVOHに対し250ppm添加し、混合することにより、EVOH組成物ペレットを得た。
(2)EVOH組成物ペレット中のアルカリ金属含有量、リン酸化合物含有量及びホウ酸含有量
 上記(1)で得たEVOH組成物ペレット0.5gをテフロン(登録商標)製圧力容器に入れ、ここに濃硝酸5mLを加えて室温で30分間分解させた。30分後蓋をし、湿式分解装置(アクタック社の「MWS-2」)により150℃で10分間、次いで180℃で5分間加熱することで分解を行い、その後室温まで冷却した。この処理液を50mLのメスフラスコ(TPX製)に移し純水でメスアップした。この溶液について、ICP発光分光分析装置(パーキンエルマー社の「OPTIMA4300DV」)により含有金属の分析を行い、ナトリウム元素、リン元素及びホウ素元素の含有量を求めた。ナトリウム塩含有量は、ナトリウム元素換算値で200ppmであり、リン酸化合物含有量はリン酸根換算値で10ppmであり、ホウ酸含有量はホウ素元素換算で700ppmであった。
(3)EVOH組成物ペレット中の有機酸量
 上記(1)で得たEVOH組成物ペレット20gとイオン交換水100mlを共栓付き200ml三角フラスコに投入し、冷却コンデンサーを付け、95℃で6時間攪拌抽出した。得られた抽出液にフェノールフタレインを指示薬としてN/50のNaOHで中和滴定し、有機酸の含有量を定量した。酢酸含有量は、20ppmであった。
(4)Flash DSC1の測定
 EVOH組成物ペレットをカミソリで2~3mm角の大きさに切り出し、ロータリーミクロトーム等の切削機を使用して、厚さ10μmの薄片を作製した。得られた厚さ10μmの薄片をスライドガラスに設置し、Flash DSC1装置に付属の顕微鏡で観察しながら、片刃カミソリ等を使用して縦80μm、横80μmの大きさにトリミングした。
 トリミングした薄片を毛ピン等の器具を用いて、Mettler Toledo社により提供されているMultiSTAR UFS1センサに設置した。なお、MultiSTAR UFS1センサはメーカーが推奨する方法で事前にコンディショニングを実施してから使用した。測定の前に薄片とセンサの接触を促すために、100℃/secの昇温速度にて、25℃から210℃までEVOH組成物を加熱し、210℃で0.1sec保持したのちに、25℃まで100℃/secの降温測定にて冷却した。本操作を2回実施し、薄片がセンサと十分に接触していることを確認した。なお、本操作の過程において、静電気等の原因によって薄片がセンサから離れてしまうことがあった。その場合は、薄片の作製から作業をやり直した。EVOH組成物の薄片が十分にセンサに接触していることを確認した後、EVOH組成物の結晶化を測定した。すなわち100℃/secの昇温速度にて25℃から210℃まで加熱し、210℃で0.1sec保持した後、150℃/secの降温速度にて210℃から25℃まで冷却した。
(5)DSCチャートの解析
 上記(4)の冷却過程で得られたDSCチャートに対して、ベースライン処理を実施した。145℃(融点183℃より38℃低い温度)と80℃(融点183℃より103℃低い温度)における熱流値を結ぶ直線を求め、DSCチャートからその直線をベースラインとして差し引いた。ここで熱流値のばらつきを考慮し、145℃の熱流値は144℃から146℃における熱流値の算出平均とし、80℃の熱流値は79℃から81℃における熱流値の算出平均とした。なお、熱流値のばらつきが大きい場合は正しくベースラインを定義できないことから、その測定データは破棄し、EVOH組成物の薄片作製作業からやり直した。ベースラインを差し引いた後、145℃から80℃の温度範囲で観測された熱流変化の積分値をEVOH組成物の全結晶化熱量(Qtotal)とした。また、145℃から108℃(融点183℃より75℃低い温度)の温度範囲で観測された熱流変化の積分値を不均一核生成による結晶化熱量(Qhetero)とした。すなわち不均一核生成による結晶化の寄与を表す不均一核生成指数(f)を次式で計算した。
f=Qhetero/Qtotal
 EVOH組成物の結晶化の評価は、EVOHの薄片作製からFlash DSC1装置による測定、不均一核生成指数(f)の算出の一連の操作を少なくとも3回実施した。それぞれで得られたfを算術平均したものをそのEVOH組成物のfとして採用した。実施例1で得たEVOH組成物(樹脂組成物)のf値は0.25であった。
(6)外観特性(透明性及び着色)
 EVOH組成物ペレット8gを用いて、加熱圧縮プレス装置にて220℃で6分間加熱溶融させて、厚み3mmの円盤状サンプルを作製した。得られた円盤状サンプルの透明性及び着色状況を目視で確認し、下記のA~Cの基準に従い評価することで溶融成形後の外観特性(透明性及び着色)の指標とした。基準Bが実使用に耐えるボーダーレベルである。下記のA~Cに分類した結果を表2に示す。
 A :透明性に優れ、かつほとんど着色していない。
 B :透明性がわずかに低い、又はわずかに着色している。
 C :不透明、又は激しく着色(褐色)している。
(7)押出加工安定性
 上記(1)で得られたEVOH組成物ペレットを用いて、プラスチック工学研究所社の40mm押出機「GT-40-26」(D(mm)=40、L/D=26、圧縮比=3.2、スクリュー:ダブルフライト)を用いて以下の条件にて単層製膜を行った。
 シリンダー温度:供給部190℃、圧縮部205℃、計量部205℃
 ダイ温度:205℃
 スクリュー回転数:60rpm
 吐出量:14~16kg/時間
 引取りロール温度:80℃
 引取りロール速度:3.4~3.7m/分
 フィルム厚み:90~100μm
 なお、他の実施例で、合成例2又は合成例3で得たEVOH組成物ペレットを用いる場合、以下の通り押出機の温度条件を変更した。
・合成例2で得たEVOH組成物ペレットを用いる場合
  シリンダー温度:供給部:200℃、圧縮部:225℃、計量部:225℃
  ダイ温度:225℃
・合成例3で得たEVOH組成物ペレットを用いる場合
  シリンダー温度:供給部:170℃、圧縮部:195℃、計量部:195℃
  ダイ温度:195℃
 この単層製膜中、計量部の樹脂圧変動を測定し、下記のA~Cの基準で評価することで押出加工安定性の指標とした。基準Bが実使用に耐えるボーダーレベルである。下記のA~Cに分類した結果を表2に示す。
 A :±0.3MPa未満
 B :±0.3MPa以上、±1.0MPa未満
 C :±1.0MPa以上
(8)ボトルの作製
 高密度ポリエチレン(HDPE)として三井石油化学社の「HZ8200B」(190℃、2160g荷重におけるMFR=0.01g/10分)、接着性樹脂として三井化学社の「アドマーGT4」(190℃、2160g荷重下におけるMFR=0.2g/10分)を、バリア材として実施例1で作製したEVOH組成物ペレットを用いた。鈴木製工所社のブロー成形機「TB-ST-6P」にて各樹脂の押出温度及びダイス温度を210℃に設定し、HDPE/接着性樹脂/バリア材/接着性樹脂/HDPEの層構成を有する3種5層パリソンを押し出し、15℃の金型内でブローし、20秒冷却して、多層ブロー成形物からなる500mLボトルを得た。上記ボトルの全層厚みは2175μmであり、その層構成は、(内側)HDPE/接着性樹脂/バリア材/接着性樹脂/HDPE(外側)=1000/50/75/50/1000μmであった。ボトルは特に問題なく成形できた。また、ボトルの外観は良好であった。
(9)耐衝撃特性
 上記(8)で得られた多層容器に、エチレングリコールを内容積に対して60%充填し、-40℃の冷凍室に3日間放置した後コンクリート上に落下させ、ボトルの破壊(容器内部のエチレングリコールが漏れる)する落下高さを求めた。破壊高さは、n=30の試験結果を用いて、JIS試験法(K7211の「8.計算」の部分)に示される計算方法を用いて、50%破壊高さを求めた。下記のA~Cに分類した結果を表2に示す。基準Bが実使用に耐えるボーダーレベルである。下記のA~Cに分類した結果を表2に示す。
 A :5m以上
 B :5m未満、4m以上
 C :4m未満
<実施例2~11>
 上記合成例1で得たEVOH含水ペレットを表1に示す金属塩、有機酸等の添加剤を含む水溶液に投入し、定期的に攪拌しながら4時間浸漬させた。これを脱液し、空気下で80℃、3時間で乾燥した後、表1に示す条件で乾燥した。乾燥終了後、表2に示す条件で実施例1と同様の方法で滑剤を混合し、EVOH組成物ペレットを得た。実施例1と同様に、樹脂分析、外観特性、押出加工安定性、耐衝撃特性を評価した。評価結果を表2に示す。なお、表中、NaOAcは酢酸ナトリウムを、KOAcは酢酸カリウムを、AcOHは酢酸を、PrOHはプロピオン酸を、HPOはリン酸を、KHPOはリン酸カリウムを、B(OH)はホウ酸を、それぞれ示す。また、乾燥雰囲気の欄における「N」は窒素雰囲気下での乾燥を、「AIR」は空気雰囲気下での乾燥をそれぞれ示す。
 なお、不均一核生成指数(f)の算出に関しては、各EVOH樹脂組成物の融点を基準に、DSC曲線において、融点より38℃低い温度における熱流値と、融点より103℃低い温度における熱流値とを結ぶ直線をベースラインとし、上記DSC曲線と上記ベースラインとに囲まれた領域の面積として、Qtotalを求めた。また、上記領域中の上記融点より38℃低い温度から融点より75℃低い温度までの範囲における面積として、Qheteroを求めた。以下同様である。
<実施例12>
 上記合成例2で得たEVOHの含水ペレットを表1に示す金属塩、有機酸等の添加剤を含む水溶液に投入し、定期的に攪拌しながら4時間浸漬させた。これを脱液し、空気下で80℃、3時間で乾燥した後、表1に示す条件で乾燥した。乾燥終了後、表2に示す条件で実施例1と同様の方法で滑剤を混合し、EVOH組成物ペレットを得た。実施例1と同様に、樹脂分析、外観特性、押出加工安定性、耐衝撃特性を評価した。評価結果を表2に示す。
<実施例13>
 上記合成例3で得たEVOHの含水ペレットを表1に示す金属塩、有機酸等の添加剤を含む水溶液に投入し、定期的に攪拌しながら4時間浸漬させた。これを脱液し、空気下で80℃、3時間で乾燥した後、表1に示す条件で乾燥した。乾燥終了後、表2に示す条件で実施例1と同様の方法で滑剤を混合し、EVOH組成物ペレットを得た。実施例1と同様に、樹脂分析、外観特性、押出加工安定性、耐衝撃特性を評価した。評価結果を表2に示す。
<比較例1~7>
 上記合成例1で得たEVOHの含水ペレットを表1に示す金属塩、有機酸等の添加剤を含む水溶液に投入し、定期的に攪拌しながら4時間浸漬させた。これを脱液し、空気下で80℃、3時間で乾燥した後、表1に示す条件で乾燥した。乾燥終了後、表2に示す条件で実施例1と同様の方法で滑剤を混合し、EVOH組成物ペレットを得た。実施例1と同様に、樹脂分析、外観特性、押出加工安定性、耐衝撃特性を評価した。評価結果を表2に示す。
<比較例8>
 上記合成例2で得たEVOHの含水ペレットを表1に示す金属塩、有機酸等の添加剤を含む水溶液に投入し、定期的に攪拌しながら4時間浸漬させた。これを脱液し、空気下で80℃、3時間で乾燥した後、表1に示す条件で乾燥した。乾燥終了後、表2に示す条件で実施例1と同様の方法で滑剤を混合し、EVOH組成物ペレットを得た。実施例1と同様に、樹脂分析、外観特性、押出加工安定性、耐衝撃特性を評価した。評価結果を表2に示す。
<比較例9>
 上記合成例4で得たEVOHの含水ペレットを表1に示す金属塩、有機酸等の添加剤を含む水溶液に投入し、定期的に攪拌しながら4時間浸漬させた。これを脱液し、空気下で80℃、3時間で乾燥した後、表1に示す条件で乾燥した。乾燥終了後、表2に示す条件で実施例1と同様の方法で滑剤を混合し、EVOH組成物ペレットを得た。実施例1と同様に、樹脂分析、外観特性、押出加工安定性、耐衝撃特性を評価した。評価結果を表2に示す。
<比較例10>
 上記合成例5で得たEVOHの含水ペレットを表1に示す金属塩、有機酸等の添加剤を含む水溶液に投入し、定期的に攪拌しながら4時間浸漬させた。これを脱液し、空気下で80℃、3時間で乾燥した後、表1に示す条件で乾燥した。乾燥終了後、表2に示す条件で実施例1と同様の方法で滑剤を混合し、EVOH組成物ペレットを得た。実施例1と同様に、樹脂分析、外観特性、押出加工安定性、耐衝撃特性を評価した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記表2に示されるように、f値が0.6未満である実施例1~13のEVOH組成物ペレット(樹脂組成物)は、外観特性、押出加工安定性及び耐衝撃特性が良好な結果を示していた。一方、f値が0.6以上である比較例1~11のEVOH組成物ペレット(樹脂組成物)は、外観特性又は押出加工安定性が実使用に耐えない水準であった。
 なお、比較例1~10においてf値が0.6以上である主な要因は以下のとおりである。
 比較例1:滑剤の含有量が多い。
 比較例2:空気雰囲気下の乾燥であり、乾燥時間が比較的長く、有機酸の含有量も比較的多い。
 比較例3:有機酸含有量が多い。
 比較例4:空気雰囲気下の乾燥であり、乾燥時間が長い。
 比較例5:乾燥時間が長い。
 比較例6:空気雰囲気下の乾燥であり、かつ滑剤含有量が比較的多い。
 比較例7:有機酸含有量が比較的多く、かつ滑剤が添加されていない。
 比較例8:空気雰囲気下の乾燥であり、有機酸含有量が比較的多く、かつEVOHのエチレン含有量が比較的低い。
 比較例9:EVOHのケン化度が低い。
 比較例10:ペレタイズ時の浴温が比較的高い。
 一方、実施例1~13から、EVOHのケン化度及びエチレン含有量、添加剤の含有量、乾燥条件等を適切に制御することで、f値が0.6未満のEVOH組成物ペレット(樹脂組成物)が得られることがわかる。
 本発明の樹脂組成物は、フィルム、シート、容器、パイプ、繊維等の溶融成形材料などとして好適に用いることができる。

Claims (9)

  1.  エチレン-ビニルアルコール共重合体を主成分とする樹脂組成物であって、
     210℃の溶融状態から150℃/秒の冷却速度で冷却したときの示差走査熱量測定(DSC)により得られるDSC曲線に基づいて下記式(1)で求められる不均一核生成指数(f)が、0.6未満であることを特徴とする樹脂組成物。
     f=Qhetero/Qtotal ・・・ (1)
    (式(1)中、Qtotalは、上記DSC曲線において、融点より38℃低い温度における熱流値と、融点より103℃低い温度における熱流値とを結ぶ直線をベースラインとしたときの、上記DSC曲線と上記ベースラインとに囲まれた領域の面積である。Qheteroは、上記領域中の上記融点より38℃低い温度から融点より75℃低い温度までの範囲における面積である。)
  2.  上記エチレン-ビニルアルコール共重合体のケン化度が、99モル%以上である請求項1に記載の樹脂組成物。
  3.  上記エチレン-ビニルアルコール共重合体のエチレン含有量が、18モル%以上55モル%以下である請求項1又は請求項2に記載の樹脂組成物。
  4.  上記エチレン-ビニルアルコール共重合体に対する高級脂肪酸アミドの含有量が900ppm以下である請求項1から請求項3のいずれか1項に記載の樹脂組成物。
  5.  アルカリ金属塩を含有する請求項1から請求項4のいずれか1項に記載の樹脂組成物。
  6.  上記アルカリ金属塩の含有量が、アルカリ金属元素換算で10ppm以上500ppm以下である請求項5に記載の樹脂組成物。
  7.  請求項1から請求項6のいずれか1項に記載の樹脂組成物を含む押出成形品。
  8.  請求項1から請求項6のいずれか1項に記載の樹脂組成物を含む射出成形品。
  9.  請求項1から請求項6のいずれか1項に記載の樹脂組成物を含むブロー成形品。
     
PCT/JP2017/023819 2016-06-29 2017-06-28 樹脂組成物、押出成形品、射出成形品及びブロー成形品 WO2018003884A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17820238.8A EP3480251B1 (en) 2016-06-29 2017-06-28 Resin composition, extrusion-molded article, injection-molded article, and blow-molded article
CN201780040721.7A CN109312136B (zh) 2016-06-29 2017-06-28 树脂组合物、挤出成型品、注射成型品和吹塑成型品
JP2018525229A JP6890125B2 (ja) 2016-06-29 2017-06-28 樹脂組成物、押出成形品、射出成形品及びブロー成形品
US16/308,925 US10808110B2 (en) 2016-06-29 2017-06-28 Resin composition, extrusion-molded article, injection-molded article and blow-molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016129442 2016-06-29
JP2016-129442 2016-06-29

Publications (1)

Publication Number Publication Date
WO2018003884A1 true WO2018003884A1 (ja) 2018-01-04

Family

ID=60786686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023819 WO2018003884A1 (ja) 2016-06-29 2017-06-28 樹脂組成物、押出成形品、射出成形品及びブロー成形品

Country Status (6)

Country Link
US (1) US10808110B2 (ja)
EP (1) EP3480251B1 (ja)
JP (1) JP6890125B2 (ja)
CN (1) CN109312136B (ja)
TW (1) TWI650360B (ja)
WO (1) WO2018003884A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007004A (ja) * 2017-06-27 2019-01-17 日本合成化学工業株式会社 エチレン−ビニルアルコール系共重合体組成物およびそれからなるペレットおよびそれを用いた多層構造体
WO2020138443A1 (ja) 2018-12-28 2020-07-02 株式会社クラレ 水溶性フィルムおよび包装体
KR102467557B1 (ko) * 2021-06-16 2022-11-16 장 춘 페트로케미컬 컴퍼니 리미티드 에틸렌-비닐 알코올 공중합체 수지 조성물, 이로부터 형성된 에틸렌-비닐 알코올 공중합체 필름, 및 이를 함유하는 다층 구조체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001277341A (ja) * 2000-01-28 2001-10-09 Kuraray Co Ltd 共射出延伸ブロー成形容器
JP2002284811A (ja) * 2001-01-19 2002-10-03 Kuraray Co Ltd エチレン−ビニルアルコール共重合体樹脂の製造方法
JP2014098169A (ja) * 1999-09-29 2014-05-29 Kuraray Co Ltd ロングラン性に優れたエチレン−ビニルアルコール共重合体からなる樹脂組成物およびペレット
JP2015071709A (ja) * 2013-10-03 2015-04-16 株式会社クラレ 樹脂組成物、多層構造体及びそれからなる熱成形容器
JP2015071696A (ja) * 2013-10-02 2015-04-16 株式会社クラレ エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2667830B2 (ja) 1987-09-07 1997-10-27 株式会社クラレ エチレン−ビニルアルコール系共重合体組成物
TW431967B (en) * 1998-04-09 2001-05-01 Kuraray Co Coinjection stretch blow molded container
CA2283989C (en) * 1998-09-28 2005-11-08 Kuraray Co., Ltd. Multilayered film
JP4722270B2 (ja) 1999-09-07 2011-07-13 株式会社クラレ 低臭性および層間接着性に優れたエチレン−ビニルアルコール共重合体からなる樹脂組成物およびそれを用いた多層構造体
CA2321320C (en) 1999-09-29 2006-08-15 Kuraray Co., Ltd. Resin composition of good long-run workability comprising ethylene-vinyl alcohol copolymer
US6686011B1 (en) 2000-01-28 2004-02-03 Kuraray Co., Ltd. Coinjection stretch-blow molded container
US6838029B2 (en) 2001-01-19 2005-01-04 Kuraray Co., Ltd. Method for producing ethylene-vinyl alcohol copolymer resin
CN100591709C (zh) * 2002-02-18 2010-02-24 可乐丽股份有限公司 乙烯-乙烯醇共聚物树脂组合物及其制备方法
DE602004019852D1 (de) * 2003-08-07 2009-04-23 Kuraray Co Harzzusammensetzung und Verfahren zur Herstellung
CA2473520C (en) * 2003-08-11 2012-03-27 Kuraray Co., Ltd. Blow molded container and method for producing the same
AU2004323623B2 (en) * 2004-09-28 2010-07-08 The Nippon Synthetic Chemical Industry Co., Ltd. Ethylene/vinyl alcohol copolymer composition and multilayer structure using the same
US20070117905A1 (en) * 2005-11-22 2007-05-24 Mitsui Chemicals, Inc. Thermoplastic resin composition and molded product from the same
US10081167B2 (en) 2013-10-02 2018-09-25 Kuraray Co., Ltd. Ethylene-vinyl alcohol resin composition, multilayer structure, multilayer sheet, container and packaging material
US10207482B2 (en) 2013-10-03 2019-02-19 Kuraray Co., Ltd. Resin composition, multilayer structure, and thermoformed container including the same
BR112017003709A2 (pt) * 2014-08-28 2017-12-05 Kuraray Co composição de resina incluindo copolímero de etileno-álcool vinílico, artigo moldado e estrutura de múltiplas camadas
US11130319B2 (en) * 2017-12-29 2021-09-28 Kuraray Co., Ltd. Multilayer article suitable for use as a fumigation barrier
US20190202182A1 (en) * 2017-12-29 2019-07-04 Kuraray Co., Ltd. Multilayer article suitable for use as a solvent barrier
US20190202181A1 (en) * 2017-12-29 2019-07-04 Kuraray Co., Ltd. Multilayer article suitable for use as a gas barrier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098169A (ja) * 1999-09-29 2014-05-29 Kuraray Co Ltd ロングラン性に優れたエチレン−ビニルアルコール共重合体からなる樹脂組成物およびペレット
JP2001277341A (ja) * 2000-01-28 2001-10-09 Kuraray Co Ltd 共射出延伸ブロー成形容器
JP2002284811A (ja) * 2001-01-19 2002-10-03 Kuraray Co Ltd エチレン−ビニルアルコール共重合体樹脂の製造方法
JP2015071696A (ja) * 2013-10-02 2015-04-16 株式会社クラレ エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
JP2015071709A (ja) * 2013-10-03 2015-04-16 株式会社クラレ 樹脂組成物、多層構造体及びそれからなる熱成形容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3480251A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007004A (ja) * 2017-06-27 2019-01-17 日本合成化学工業株式会社 エチレン−ビニルアルコール系共重合体組成物およびそれからなるペレットおよびそれを用いた多層構造体
JP7070150B2 (ja) 2017-06-27 2022-05-18 三菱ケミカル株式会社 エチレン-ビニルアルコール系共重合体組成物およびそれからなるペレットおよびそれを用いた多層構造体
WO2020138443A1 (ja) 2018-12-28 2020-07-02 株式会社クラレ 水溶性フィルムおよび包装体
KR102467557B1 (ko) * 2021-06-16 2022-11-16 장 춘 페트로케미컬 컴퍼니 리미티드 에틸렌-비닐 알코올 공중합체 수지 조성물, 이로부터 형성된 에틸렌-비닐 알코올 공중합체 필름, 및 이를 함유하는 다층 구조체
US11566091B2 (en) 2021-06-16 2023-01-31 Chang Chun Petrochemical Co., Ltd. Ethylene vinyl alcohol copolymer resin composition, ethylene vinyl alcohol copolymer film formed therefrom, and multilayer structure containing the same

Also Published As

Publication number Publication date
JPWO2018003884A1 (ja) 2019-04-25
TW201815942A (zh) 2018-05-01
EP3480251A4 (en) 2020-01-08
CN109312136A (zh) 2019-02-05
CN109312136B (zh) 2021-08-10
US20190144650A1 (en) 2019-05-16
TWI650360B (zh) 2019-02-11
US10808110B2 (en) 2020-10-20
EP3480251B1 (en) 2021-05-05
EP3480251A1 (en) 2019-05-08
JP6890125B2 (ja) 2021-06-18

Similar Documents

Publication Publication Date Title
JP5944388B2 (ja) エチレン−ビニルアルコール共重合体樹脂組成物及びその製造方法
JP5824088B2 (ja) 樹脂組成物、その製造方法及び多層構造体
US7323503B2 (en) Process for producing ethylene-vinyl alcohol copolymer resin, process for producing pellets and resin pellets
JP5285953B2 (ja) エチレン−ビニルアルコール共重合体樹脂組成物およびそれからなるペレット
JP4954514B2 (ja) エチレン−ビニルアルコール共重合体樹脂組成物
WO2018003884A1 (ja) 樹脂組成物、押出成形品、射出成形品及びブロー成形品
JP4641939B2 (ja) エチレン−ビニルアルコール系共重合体およびその製造方法
JP2012211317A (ja) エチレン−ビニルアルコール共重合体樹脂の製造方法、エチレン−ビニルアルコール共重合体樹脂及び多層構造体
JP3704448B2 (ja) エチレン−ビニルアルコール共重合体樹脂ペレットの製造方法と樹脂ペレット
JP5236147B2 (ja) エチレン−ビニルアルコール共重合体及びエチレン−ビニルアルコール共重合体樹脂組成物
JP4588146B2 (ja) エチレン−ビニルアルコール共重合体樹脂の製造方法及びペレットの製造方法
JP4627354B2 (ja) 樹脂組成物の製造法
JP2005329718A (ja) エチレン−ビニルアルコール共重合体樹脂ペレットの製造方法と樹脂ペレット
US20190202182A1 (en) Multilayer article suitable for use as a solvent barrier
JP4312912B2 (ja) エチレン−ビニルアルコール共重合体樹脂の製造方法及びペレットの製造方法
JP5116186B2 (ja) エチレン−酢酸ビニル共重合体ケン化物組成物ペレットの製造法
JP4520557B2 (ja) エチレン−酢酸ビニル共重合体ケン化物組成物の製造法
JP3976809B2 (ja) エチレン−ビニルエステル共重合体ケン化物の処理方法
JP3602677B2 (ja) エチレン−ビニルエステル共重合体ケン化物組成物およびその製法
JP2001131235A (ja) エチレン−酢酸ビニル共重合体ケン化物組成物の製造法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018525229

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017820238

Country of ref document: EP

Effective date: 20190129