WO2018003531A1 - ピロロキノリンキノンモノナトリウム及びその製造方法、並びにそれを含む組成物 - Google Patents

ピロロキノリンキノンモノナトリウム及びその製造方法、並びにそれを含む組成物 Download PDF

Info

Publication number
WO2018003531A1
WO2018003531A1 PCT/JP2017/022206 JP2017022206W WO2018003531A1 WO 2018003531 A1 WO2018003531 A1 WO 2018003531A1 JP 2017022206 W JP2017022206 W JP 2017022206W WO 2018003531 A1 WO2018003531 A1 WO 2018003531A1
Authority
WO
WIPO (PCT)
Prior art keywords
monosodium
pqq
crystal
pyrroloquinoline quinone
crystals
Prior art date
Application number
PCT/JP2017/022206
Other languages
English (en)
French (fr)
Inventor
池本 一人
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to EP17819891.7A priority Critical patent/EP3480197B1/en
Priority to JP2018525047A priority patent/JP7335070B2/ja
Priority to CN201780036948.4A priority patent/CN109311873A/zh
Priority to KR1020187037542A priority patent/KR102479748B1/ko
Priority to US16/309,179 priority patent/US11021476B2/en
Publication of WO2018003531A1 publication Critical patent/WO2018003531A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F3/00Tea; Tea substitutes; Preparations thereof
    • A23F3/16Tea extraction; Tea extracts; Treating tea extract; Making instant tea
    • A23F3/30Further treatment of dried tea extract; Preparations produced thereby, e.g. instant tea
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4906Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom
    • A61K8/4926Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom having six membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to pyrroloquinoline quinone monosodium, a method for producing the same, and a composition containing the same.
  • PQQ Pyrroloquinoline quinone
  • Many physiological activities such as an action, an anti-cataract action, a liver disease preventive and therapeutic action, a wound healing action, an anti-allergic action, a reverse transcriptase inhibitory action, a glyoxalase I inhibitory action and an anticancer action have been clarified. Therefore, PQQ is attracting attention as a useful substance in the pharmaceutical, food, and cosmetic fields.
  • PQQ is expected to be applied as a therapeutic agent for heart, skin, nerves and the like.
  • PQQ is expected to be applied as a substance having a beautifying effect.
  • pyrroloquinoline quinone Since pyrroloquinoline quinone is produced by culturing and a production step is performed in an aqueous solution, it is usually obtained as an alkali metal salt.
  • pyrroloquinoline quinone Although pyrroloquinoline quinone is known to be water-soluble, PQQ having a free structure shows low water solubility, and in fact, water solubility is improved by using an alkali metal salt of PQQ.
  • the sodium salt of PQQ is easy to use because it is not toxic.
  • the disodium salt of PQQ is recognized and used as a food.
  • the crystal of the disodium salt of PQQ is known to be a hydrous crystal (see, for example, Patent Document 1, Non-Patent Documents 1 and 2).
  • the pyrroloquinoline quinone monosodium salt represented by the following structural formula is suitable for use for different purposes because of its greatly different solubility compared to the disodium salt. For example, it is suitable when it is desired to slowly dissolve in water.
  • a method for synthesizing a monosodium salt having a structure in which hydrogen and sodium at one site of a carboxylic acid of pyrroloquinoline quinone are replaced a method in which PQQ is dissolved in tetrahydrofuran and reacted with sodium hydroxide in an aqueous solution has been proposed (for example, , See Patent Document 2).
  • tetrahydrofuran used in the method described in Patent Document 2 is flammable and is not a solvent that can be used for food.
  • cultivated on neutral conditions is a structure which has a counter ion. Therefore, it is necessary to neutralize it by converting it to free form under acidic conditions.
  • the obtained substance has a fiber state structure, is bulky, and lacks fluidity. Therefore, there exists a fault that the content in the same volume falls.
  • fibrous crystals have poor fluidity in the solid state and are difficult to handle.
  • pyrroloquinoline quinone sodium salt changes stability, handling, and color due to different binding sites and crystal structures of sodium.
  • handling when it becomes a fibrous solid, it tends to be a film when filtered, and it is difficult to use because it has poor fluidity when handled as a powder.
  • an operation of pulverizing the film-solidified state is required. Since such an operation is different from the known methods for producing crystals, it is relatively difficult to obtain stable crystals, and a stable crystal and a method for producing the same are desired. In order to obtain stable crystals, it is particularly important to increase the bulk density. Thereby, the fluidity can also be improved.
  • a compound having a PQQ structure When a compound having a PQQ structure is applied to foods and cosmetics, a compound having a PQQ structure is required to be water-soluble, hardly change in color, and have high crystallinity. There is also a need for a method that can be manufactured safely and quickly.
  • this invention is providing the pyrroloquinoline quinone monosodium which has a novel structure and the manufacturing method of pyrroloquinoline quinone monosodium which does not use a harmful organic solvent and does not contain a fibrous crystal and has a high bulk density. . It is another object of the present invention to provide a method for rapidly producing a pyrroloquinoline quinone monosodium crystal and a pyrroloquinoline quinone monosodium crystal having a novel structure.
  • PQQ monosodium crystals having a novel structure can be obtained by preparing PQQ disodium or PQQ trisodium under specific conditions.
  • the inventor has also found that the PQQ monosodium crystal is not easily discolored.
  • the present invention is based on such knowledge.
  • Dipyrroloquinoline quinone monosodium having a structure represented by the following formula (2).
  • [7] The production method according to [5] or [6], wherein the step is performed in the presence of an aqueous solution having an ethanol concentration of 10 to 90% by mass.
  • [8] The production method according to any one of [5] to [7], wherein a mixed crystal of pyrroloquinoline quinone disodium and pyrroloquinoline quinone monosodium is obtained in the step.
  • [9] A composition comprising both pyrroloquinoline quinone monosodium according to [1] or [2] or dipyrroquinoline quinone monosodium according to [3] or [4] and pyrroloquinoline quinone disodium.
  • the PQQ monosodium crystal of the present invention not only has high purity, but also has improved solubility, dispersibility in solution and permeability to skin, and is useful as a component of cosmetics, pharmaceuticals or functional foods.
  • FIG. 2 is a photomicrograph of PQQ monosodium crystal 1 of Example 1.
  • 2 is a powder X-ray diffraction pattern of the PQQ monosodium crystal 1 of Example 1.
  • FIG. 3 is a powder X-ray diffraction pattern converted from PQQ monosodium crystal 1 single crystal data in Example 2.
  • FIG. 2 is a micrograph of PQQ monosodium crystal 1 having a high bulk density according to Example 6.
  • FIG. 4 is a photomicrograph of PQQ monosodium crystal 2 of Example 7.
  • 4 is a powder X-ray diffraction pattern of PQQ monosodium crystal 2 of Example 7.
  • FIG. It is the structure which showed the PQQ monosodium crystal 2 of Example 7 with the ball and stick.
  • 2 is a photomicrograph of PQQ monosodium of Comparative Example 2.
  • the PQQ monosodium of the present embodiment has a structure represented by the following formula (1), for example. These bond analyzes require single crystal structure analysis. Conventionally, it is considered that a carboxylic acid from which an acidic hydrogen atom has been removed and sodium are combined in a carboxylic acid salt of PQQ. A similar tendency is observed with the crystals of pyrroloquinoline quinone reported so far. However, pyrroloquinoline quinone monosodium (hereinafter also referred to as “PQQ monosodium 1”) having a structure represented by the following formula (1) has an unexpected structure from the conventional view.
  • the structure of PQQ monosodium in this embodiment is bonded to the quinoline structure, and sodium is bonded to the carboxylic acid in which hydrogen remains, the nitrogen atom in the quinoline structure, and the oxygen atom bonded to the quinoline structure.
  • hydrogen of the carboxylic acid that is bonded to the quinoline structure and not bonded to sodium is dissociated.
  • 1 and 2 show the crystal structure of the PQQ monosodium 1 of the present embodiment in a ball and stick manner.
  • the actual crystal of PQQ monosodium 1 of the present embodiment has a unit composed of two structures represented by the following formula (1).
  • the PQQ monosodium of this embodiment also has a structure represented by the following formula (2), for example.
  • Dipyrroloquinoline quinone monosodium having a structure represented by the following formula (2) (hereinafter also referred to as “PQQ monosodium 2”, and simply referred to as “PQQ monosodium” when not distinguished from PQQ monosodium 1)
  • PQQ monosodium 2 Dipyrroloquinoline quinone monosodium having a structure represented by the following formula (2)
  • PQQ monosodium 2 is bonded to the quinoline structure in one molecule of PQQ, and is bonded to the carboxylic acid in which hydrogen remains, the nitrogen atom in the quinoline structure, and the quinoline structure.
  • Sodium is bonded to the carboxylic acid bonded to the quinoline structure in the oxygen atom and another molecule of PQQ, in which no hydrogen remains, and to the carboxylic acid bonded to the pyrrole structure.
  • the crystal of PQQ monosodium in the present embodiment is preferably a water-containing crystal.
  • a hydrous crystal for example, the crystal structure of a certain PQQ monosodium derived from the crystal structure analysis is a structure having two PQQ units and two sodium.
  • the crystal of PQQ monosodium of this embodiment is different from the sodium salt reported so far, and is characterized in that it forms a bond with sodium as a non-ionized carboxylic acid COOH.
  • a pyrroloquinoline quinone having such a bond is not known, and is a PQQ monosodium crystal having a novel bond.
  • Crystals of PQQ monosodium 1 of the present embodiment are powder X-ray diffraction using Cu K ⁇ radiation, and are 7.9, 10.9, 11.2, 18.4. , 22.4, 25.7, 28.0, 28.8 ⁇ 0.4 ° PQQ monosodium crystal showing a peak of 2 ⁇ angle. This peak can be observed with a general powder X-ray diffractometer equipped with a monochromator.
  • the crystal defined in the present embodiment is a crystal form having a reasonable identity with respect to the peak angle.
  • the crystal water of the crystal 1 is, for example, 9.2% by mass. Actually, the amount of water varies depending on the influence of drying and humidity, and may be 15 to 18% by mass. This crystal form is a quadrangular prism. Since this crystal form is not fibrous, it is easy to handle as a powder.
  • the crystal of PQQ monosodium 2 of the present embodiment (hereinafter also referred to as “crystal 2” and simply referred to as “crystal” when not distinguished from crystal 1) is obtained by powder X-ray diffraction using Cu K ⁇ radiation. , 9.9, 16.1, 16.8, 28.1 ⁇ 0.4 °, a PQQ monosodium crystal showing a 2 ⁇ angle peak.
  • This crystal is a crystal obtained by further stabilizing the crystal form 1.
  • the crystal 2 has a low water content.
  • the water content of the crystal 2 is, for example, 4 to 7% by mass.
  • Low water content pyrroloquinoline quinone monosodium is more hydrophobic and has the advantage of improved affinity with oil.
  • the crystal 1 and the crystal 2 may be obtained in a mixed state.
  • the method for producing pyrroloquinoline quinone monosodium includes a step of contacting pyrroloquinoline quinone disodium and / or pyrroloquinoline quinone trisodium with an acid.
  • the acid is preferably an excess of acid.
  • Production can be carried out rapidly by contacting with an excess of acid.
  • the excess acid is preferably an acid amount of 2 to 200 times, more preferably 3 to 100 times, and still more preferably 5 to 5 times with respect to pyrroloquinoline quinone disodium and / or pyrroloquinoline quinone trisodium. 50 times.
  • contact means that pyrroloquinoline quinone disodium and / or pyrroloquinoline quinone trisodium and acid are in contact with each other, and pyrroloquinoline quinone disodium and / or pyrroloquinoline. This includes adding an acid to quinone trisodium, and mixing pyrroloquinoline quinone disodium and / or pyrroloquinoline quinone trisodium with an acid.
  • the crystals of PQQ monosodium obtained by the production method of the present embodiment are preferably used after being dried.
  • the crystal can be dried by lyophilization, atmospheric drying, or vacuum drying.
  • the drying temperature varies depending on the method, but can be, for example, ⁇ 80 to 250 ° C., preferably ⁇ 60 to 250 ° C.
  • the lower limit of the drying temperature is a starting temperature at the time of freeze-drying, and the upper limit is a temperature at which no crystal decomposition occurs.
  • the drying temperature can be ⁇ 80 to 0 ° C., preferably ⁇ 60 to 0 ° C. for freeze drying, 40 to 250 ° C. for atmospheric drying, and 0 for vacuum drying. It can be up to 250 ° C.
  • the production method of this embodiment is characterized in that sodium ions are removed from pyrroloquinoline quinone disodium or pyrroloquinoline quinone trisodium.
  • sodium ions are removed as the sodium salt of the acid. It is possible to crystallize at a high speed by using an excess acid, but at this time, it is preferable to allow sodium ions to coexist.
  • sodium chloride in the case of hydrochloric acid and sodium sulfate in the sulfuric acid.
  • the pyrroloquinoline quinone monosodium has low solubility, and the sodium salt to be removed is separated because of its high solubility.
  • the PQQ monosodium crystal 1 of the present embodiment is produced, for example, by suspending or dissolving PQQ disodium or PQQ trisodium in water or ethanol water and adding an acid. Crystal 1 is produced by reacting PQQ disodium or PQQ trisodium with an acid in water or ethanol water.
  • the PQQ monosodium of this embodiment is prepared by adding PQQ trisodium to an aqueous solution having an ethanol concentration of 0 to 90% by mass and then adding an acid to adjust the pH of the aqueous solution to 0 to By adjusting to the range of 2, it can be crystallized.
  • the PQQ monosodium of this embodiment is prepared by adding PQQ disodium to an aqueous solution having an ethanol concentration of 0 to 90% by mass, and then adding an acid to adjust the pH of the aqueous solution to 0 to By adjusting to the range of 2, it can be crystallized. More specifically, when PQQ disodium is used as a raw material and an aqueous solution having an ethanol concentration of 20 to 80% by mass is used, the reaction time must be shorter than 12 hours. In this case, if the reaction is performed for a longer time (12 hours or longer), the crystal 2 is mixed.
  • PQQ monosodium can be produced with an equivalent amount of acid in the case of PQQ disodium, and twice the amount of PQQ trisodium raw material. To quickly form crystals, an excess of acid may be added. At this time, the PQQ monosodium crystal 1 can be stably taken out by allowing a sodium salt, particularly sodium chloride to coexist.
  • the crystal 1 of PQQ monosodium of this embodiment is in a metastable state immediately before forming a free body. For this reason, if the reaction is performed for a long time under this condition, crystals containing no sodium may be precipitated. Therefore, it is preferable to select appropriate conditions for crystal production by controlling time and temperature.
  • the acid that can be used in the present embodiment is preferably a strong acid such as hydrochloric acid, sulfuric acid, or nitric acid, but a weak acid can similarly cause a reaction.
  • Weak acids that can be used are, for example, acetic acid, lactic acid, formic acid, citric acid, phosphoric acid.
  • the acid to be used is not limited, and may be performed under the condition that a target crystal is obtained.
  • the step of adding an excess acid in the presence of salt it is preferable to perform the step of adding an excess acid in the presence of salt.
  • the amount of sodium chloride is preferably 2 to 250 times, more preferably 5 to 100 times the mass of pyrroloquinoline quinone disodium and / or pyrroloquinoline quinone trisodium.
  • the PQQ monosodium crystal 1 of the present embodiment can be obtained, for example, by reacting for 0.1 to 140 hours after setting the pH of the aqueous solution to a predetermined value. More preferably, the reaction time can be 0.5 to 96 hours.
  • the reaction temperature can be 0 to 90 ° C, more preferably 3 to 60 ° C.
  • the crystallization conditions can be freely selected in consideration of the presence or absence of stirring and the strength of the strength of the resulting crystal.
  • the PQQ monosodium crystal 2 of the present embodiment can be obtained by, for example, reacting with PQQ disodium as a raw material in ethanol water, or recrystallizing the crystal 1 once crystallized in ethanol water. Easier conditions can be obtained by crystallization in an aqueous solution having an ethanol concentration of 20 to 80% by mass. These crystals can be produced and then recrystallized.
  • the PQQ monosodium crystal 2 of the present embodiment can be obtained, for example, by reacting for 12 to 140 hours. More preferably, the reaction time can be 12 to 90 hours.
  • the reaction temperature can be 0 to 90 ° C, more preferably 40 to 60 ° C.
  • the obtained crystals can be obtained by filtration, centrifugation, and decantation. Further, it can be provided by washing with alcohol or the like.
  • the step of adding an acid in the presence of an aqueous solution having an ethanol concentration of 10 to 90% by mass is preferably 15 to 85% by mass, more preferably 20 to 80% by mass, and further preferably 30 to 70% by mass.
  • the PQQ monosodium crystals 1 and 2 of this embodiment have a high bulk density and are easy to handle. Further, the PQQ monosodium crystals 1 and 2 of this embodiment are easy to prepare because they do not change like gelation when added to the solution. Further, the PQQ monosodium crystal 2 of this embodiment is a low moisture content crystal and has a high bulk density. The PQQ monosodium crystals 1 and 2 of this embodiment further have an advantage of high purity because they are crystals. Furthermore, the PQQ monosodium crystals of this embodiment can be mixed with disodium for control of solubility, dissolution rate, and color.
  • the composition of this embodiment contains both pyrroloquinoline quinone monosodium and pyrroloquinoline quinone disodium of this embodiment.
  • the mixing ratio of pyrroloquinoline quinone monosodium and pyrroloquinoline quinone disodium is such that the crystal content of pyrroloquinoline quinone monosodium is preferably 5 to 95% by mass, more preferably 5 to 50% by mass. is there.
  • the composition of this embodiment can be produced by mixing crystals, but it can also be produced by partially performing crystallization.
  • a mixed crystal of pyrroloquinoline quinone disodium and pyrroloquinoline quinone monosodium can be obtained by adding excess acid to the above-described pyrroloquinoline quinone disodium and / or pyrroloquinoline quinone trisodium.
  • the PQQ monosodium crystals 1 and 2 of this embodiment can be suitably used as foods, functional foods, nutrients, cosmetics, pharmaceuticals or quasi drugs for humans or animals.
  • Functional food here means foods taken for the purpose of maintaining nutrition or supplementing nutrition, such as health foods, nutritional supplements, functional nutritional foods, nutritional health foods, and foods for specified health use.
  • Specific forms of foods, functional foods, nutrients, cosmetics, pharmaceuticals or quasi drugs include capsules (eg gelatin capsules, soft capsules), tablets, chewable tablets, drinks, etc. It is not limited to these. Crystals 1 and 2 of PQQ monosodium in this embodiment are advantageous for being packed in capsules because of their high bulk density.
  • a pharmaceutical composition containing the above-mentioned crystals of PQQ monosodium.
  • the pharmaceutical composition of the present embodiment containing the above-mentioned crystals of PQQ monosodium can be a pharmaceutical composition for transdermal administration.
  • the above-mentioned crystals of PQQ monosodium are excellent in dispersibility in fats and oils, they are suitable for formulation into oil-dispersed preparations.
  • the pharmaceutical composition or cosmetic composition of the present embodiment containing the above-mentioned crystals of PQQ monosodium is preferably in the form of a dispersion preparation such as an emulsion or suspension, or a semi-solid such as an ointment or cream. It can be provided in the form of a formulation or in the form of a shaped formulation such as a soft capsule.
  • sweeteners coloring agents, preservatives, thickening stabilizers, antioxidants, color formers, bleaching agents, antibacterial agents are used as additives.
  • Antifungal agents, gum bases, bittering agents, enzymes, brighteners, acidulants, seasonings, emulsifiers, strengthening agents, manufacturing agents, fragrances, spice extracts and the like can be used.
  • the above-mentioned PQQ monosodium crystals are generally used in normal foods such as miso, soy sauce, instant miso soup, ramen, fried noodles, curry, corn soup, merdofu, marvo eggplant, pasta sauce, pudding, cake, It can be added to bread and the like.
  • the pharmaceutical composition of the present embodiment containing the above-mentioned PQQ monosodium crystal may contain the above-mentioned PQQ monosodium crystal and at least one pharmaceutical additive.
  • the cosmetic composition of the present embodiment may contain the above-mentioned crystals of PQQ monosodium and at least one cosmetic additive.
  • a pharmaceutical additive or cosmetic additive can be appropriately selected by those skilled in the art according to the formulation of the pharmaceutical composition or cosmetic composition.
  • Powder X-ray diffraction uses RINT2500 manufactured by Rigaku Corporation, X-ray: Cu / tube voltage 40 kV / tube current 100 mA Scan speed: 4.000 ° / min Sampling width: 0.020 ° I went there.
  • the water content (mass%) of the crystals was measured by the Karl Fischer method. Measuring method of Na amount
  • the sodium electrode used HORIBA compact ion meter LAQUATwin. Dissolve 1 mg of sample in 1 mL of 0.5% aqueous choline hydroxide solution. This solution was measured with a 200 ⁇ L sodium electrode. The lower limit of detection was 1 ppm or less.
  • Reference Example 1 Raw material PQQ trisodium and PQQ disodium PQQ disodium were manufactured by Mitsubishi Gas Chemical Co., Ltd. (trade name: BioPQQ). PQQ trisodium was obtained by salting out BioPQQ at pH 6-8.
  • Example 1 Crystal form 1 pyrroloquinoline quinone monosodium (NaCl excess, hydrochloric acid excess) PQQ disodium (1.0 g) was mixed with NaCl (2 g), concentrated hydrochloric acid (7 mL), and water (1 L) at 37 degrees. At this time, NaCl was present in the solution 10 times or more and hydrochloric acid 30 times or more with respect to PQQ disodium. The mixture was stirred for 3 hours, then centrifuged, washed with 2-propanol, and dried to obtain crystals having a mass of 0.72 g. The obtained crystals were found to be PQQ monosodium from the amount of Na. A micrograph of the obtained PQQ monosodium crystal is shown in FIG.
  • the result of the powder X-ray diffraction of the obtained crystal of PQQ monosodium is shown in FIG.
  • the obtained crystals of PQQ monosodium were square and fluid particles. Even if this crystal
  • the obtained crystals were 7.9, 10.9, 11.2, 18.4, 22.4, 25.7, 28.0, 28.8 ⁇ 0.4. It was found to be a PQQ monosodium crystal exhibiting a peak at 2 ° angle (FIG. 4). The water content of the obtained PQQ monosodium was 16.1% by mass.
  • Example 2 Single crystal structure analysis Single crystal structure analysis was performed to determine the atomic arrangement of crystals. In powder X-ray diffraction (XRD), XYZ-axis peaks of crystals are mixed and measured, but in single-crystal structure analysis, these can be separated and measured, so that the position of atoms can be easily determined.
  • XRD powder X-ray diffraction
  • R-AXIS RAPID Imaging Plate Diffractometer manufactured by Rigaku Corporation was used for measurement. 50 mg of disodium salt was added to 15 mL of artificial gastric juice and stirred. The resulting solution was filtered through a 0.2 micrometer filter, and the filtrate was stored at 4 ° C. for 1 week. Single crystal structure analysis of the precipitated single crystal of dark red was performed.
  • FIG. 6 shows a peak obtained by converting this crystal structure of the monosodium salt into powder X-ray diffraction data using Mercury, which is a structure analysis software. This peak was consistent with Example 1, and it was confirmed that all the crystal structures obtained by the present invention were the same.
  • Example 3 Crystal 1 Preparation of high concentration of pyrroloquinoline quinone disodium 1 L of water was mixed with 2 g of NaCl and 7 mL of concentrated hydrochloric acid. PQQ disodium 0.6 g was mixed with 40 mL of this solution. The mixture was stirred at 37 ° C. for 3 hours, centrifuged, washed with 2-propanol and dried to obtain crystals having a mass of 0.56 g. The obtained crystals were found to be PQQ monosodium from the amount of Na. The powder X-ray analysis of the obtained PQQ monosodium crystal also had the same peak as in Example 1.
  • Example 4 Crystal 1 High NaCl Concentration 0.50 g of PQQ disodium was mixed with 50 g of NaCl, 500 mL of water and 3.5 mL of concentrated hydrochloric acid, and reacted at 37 ° C. overnight. The obtained reaction solution was centrifuged, washed with 2-propanol, and dried to obtain crystals having a mass of 0.41 g. The obtained crystals were found to be PQQ monosodium from the amount of Na. The powder X-ray analysis of the obtained PQQ monosodium crystal also had the same peak as in Example 1.
  • Example 5 Crystal 1 Pyrroquinoline quinone trisodium raw material
  • the pyrroloquinoline quinone trisodium obtained in Reference Example 1 was used.
  • PQQ trisodium (0.50 g) was mixed with NaCl (50 g), water (500 mL), and concentrated hydrochloric acid (3.5 mL), and reacted at 37 ° C. overnight.
  • the obtained reaction solution was centrifuged, washed with 2-propanol, and dried to obtain crystals having a mass of 0.32 g.
  • the obtained crystals were found to be PQQ monosodium from the amount of Na.
  • the powder X-ray analysis of the obtained PQQ monosodium crystal also had the same peak as in Example 1.
  • Example 6 Crystal 1 Sample with large bulk specific gravity 2 g of PQQ trisodium, 25 mL of ethanol, 20 mL of water, and 5 mL of 2N hydrochloric acid were stirred at room temperature for 1 hour and reacted at 50 ° C. for 5 days. The obtained reaction solution was centrifuged, washed with 2-propanol, and dried to obtain crystals having a mass of 1.46 g. The obtained crystals also had the same peak as in Example 1 in the powder X-ray analysis of the obtained PQQ monosodium crystals. Moreover, the water content of the obtained PQQ monosodium was 15.7 mass%. Moreover, the micrograph of the obtained PQQ monosodium is shown in FIG. The bulk density increased as the crystals became larger. The fluidity was also very good compared to small crystals.
  • Example 7 Crystal 2 2 g of pyrroloquinoline quinone disodium was added to a mixed solution of 25 mL of ethanol and 22.5 mL of water. To this, 2.5 mL of 2N hydrochloric acid was added and stirred at room temperature for 1 hour. This suspension was heated to 50 ° C. to obtain a sample. After 5 days, the sample was filtered and dried under reduced pressure to obtain a crystal having a mass of 1.71 g. The obtained crystals were found to be PQQ monosodium from the amount of Na. Moreover, the micrograph of the obtained PQQ monosodium is shown in FIG. The result of the powder X-ray analysis of the obtained PQQ monosodium is shown in FIG.
  • the water content of the obtained PQQ monosodium was 5.0% by mass. It was a crystal with a low water content.
  • the single crystal structure analysis of the crystal 2 was performed in the same manner as in Example 2. As a result, it was a monosodium salt having the structure shown in FIG.
  • Comparative Example 1 Reaction of PQQ disodium and hydrochloric acid alone (conditions not containing salt) PQQ disodium (1.0 g) was mixed at 37 degrees with 7 mL of concentrated hydrochloric acid and 1 L of water. At this time, it was present in the solution of hydrochloric acid 30 times or more with respect to PQQ disodium. The obtained solution was stirred for 3 hours, centrifuged, washed with 2-propanol, and dried to obtain 0.71 g of crystals. The obtained crystal did not contain Na amount. Under these conditions, the obtained crystal was found to be PQQ free. It has been found that if sodium ions, which are a feature of the production of the present invention, are not added excessively, sodium may be dropped from the crystals and monosodium cannot be produced.
  • the obtained crystal was found to be a PQQ free body with no Na content and no sodium.
  • the PQQ free body obtained by this method was used as a raw material.
  • the PQQ free form was dissolved in tetrahydrofuran and mixed with an aqueous sodium hydroxide solution.
  • a micrograph of the obtained crystal is shown in FIG. Unlike the Examples, the obtained monosodium salt contained a long and thin fibrous solid. Furthermore, the obtained monosodium salt was very small, and the filtration solid became a film.
  • the water content of the obtained monosodium salt was 16.6% by mass.
  • the structure of the monosodium salt described in Patent Document 2 was as follows.
  • the bulk specific gravity of the crystal of Example is large, and the capsule can be made small if it has the same mass.
  • the ability to use small capsules is easy to swallow and has the advantage of reducing the burden on the user.
  • Suspension fluidity test crystals were mixed with water to a concentration of 100 g / L. After mixing at room temperature, the temperature was observed at 4 ° C.
  • the crystal of the example has fluidity even in a dense state. This has the advantage that it can be provided as a concentrated solution in the process of solution preparation.
  • the material of Comparative Example 2 has no fluidity and is difficult to use in a process prepared with a solution.
  • Examples 8-14 Solubility and Color of Mixture The monosodium crystal 1 used in Example 1 and the monosodium crystal 2 prepared in Example 7 were used. Powders were mixed at the ratio shown in Table 3 and the color of the powder was recorded. 1 mL of water was added to a crystal mass of 10 mg at room temperature. The obtained aqueous solution was subjected to ultrasonic waves for 5 minutes, heated with 70 ° C. hot water for 10 minutes, and then cooled to room temperature for 30 minutes. The aqueous solution after cooling was centrifuged to remove the supernatant. This was diluted with a phosphate buffer, and the solubility was calculated from the absorbance at 330 nm. The results are shown in Table 3.
  • Example 15 Preparation of a mixture of monosodium crystals and disodium 2 g of PQQ disodium was mixed with 25 g of ethanol and 23 g of water. 2N hydrochloric acid 2mL was added here. This was stirred at room temperature for 2 hours and left unstirred at 50 degrees for 18 hours. This was filtered, washed with ethanol, and dried under reduced pressure. A dark brown solid was obtained. The obtained solid had a sodium ratio of 1.5. As a result of observation with an optical microscope, the obtained solid was a mixture containing PQQ monosodium crystals 2.
  • Example 16 Capsules Capsule # 0 made of hydroxypropylmethylcellulose sold by Great England Co., Ltd. was used. A capsule was filled with 20 mg of the crystal sample obtained in the above-mentioned Examples and Comparative Examples. Crystals 1 and 2 could be encapsulated as they were. The solid of Comparative Example 2 was too bulky to be put directly. I was able to stuff it by crushing in a mortar. The crystals of the examples were suitable for the use of hard capsules because they could be introduced into capsules without any operation of crushing solids.
  • Example 17 Thermal stability test (70 ° C discoloration test) 1 mg of the crystals obtained in Examples 1 and 6 and Comparative Example 2 were placed in a 70 ° C. oven and the color change after 2 hours was observed. The results are shown in Table 4.
  • the crystals 1 and 2 of the example were stable and did not change color even at 70 ° C.
  • Example 18 Thermal stability test (change in solubility at 180 ° C. for 10 minutes) It was tested whether the solubility of crystals by heat treatment changed. 1 mg of the crystals obtained in Examples 1 and 6 and Comparative Example 2 were sandwiched between glass cover glasses and heated on a hot plate at 180 ° C. for 10 minutes. Thereafter, the crystals were mixed with 10 mL of water and stirred for 15 minutes. The situation was recorded at this time. The aqueous solution after stirring was filtered with a 0.5 ⁇ m filter, diluted to 1/10, and the absorbance at 330 nm was measured. From this measurement, the change in solubility of the crystals before and after the heat treatment was examined. Table 5 shows the solubility after heating with the solubility of crystals before heating as 100.
  • Example 19 Reaction with Matcha 2 mg of Matcha was mixed with 1 mg of the crystals obtained in Examples 1 and 6 and Comparative Example 2. 100 ⁇ L of water was added as a model in which the mixed powder was wet. In Crystal 2, the tea leaves did not change color. However, the crystal 1 and the fiber (Comparative Example 2) turned orange. Crystal 2 was very stable and excellent in powder mixing.
  • Example 20 Skin Permeability Test Porcine skin was washed with tap water and completely wiped off moisture. Each 5 mg of crystals was brought into contact with the pig's skin, and then wrapped and fixed to the skin. After 80 minutes at 37 ° C., the tape was peeled off, and the skin was washed with tap water to remove the test composition adhering to the skin surface. The test composition was taken in with a scanner and evaluated by measuring changes in skin brightness using image software (product name: Paint (Windows (registered trademark) XP attached software), manufactured by Microsoft Corporation). At this time, changes in skin brightness [[Untreated skin brightness-brightness after treatment] / [untreated skin brightness]] ⁇ 100 Calculated by
  • the crystals of the examples had excellent skin penetration and were suitable for use in cosmetic applications.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Dermatology (AREA)
  • Birds (AREA)
  • Nutrition Science (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Pulmonology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

本発明は、下記式(1)に示される構造を有するピロロキノリンキノンモノナトリウムを提供する。

Description

ピロロキノリンキノンモノナトリウム及びその製造方法、並びにそれを含む組成物
 本発明は、ピロロキノリンキノンモノナトリウム及びその製造方法、並びにそれを含む組成物に関する。
 ピロロキノリンキノン(以下、単に「PQQ」ということがある)は細菌に限らず、真核生物のカビ、酵母に存在し、補酵素として重要な働きを行っており、近年までに細胞の増殖促進作用、抗白内障作用、肝臓疾患予防治療作用、創傷治癒作用、抗アレルギ-作用、逆転写酵素阻害作用、グリオキサラ-ゼI阻害作用-制癌作用などの多くの生理活性が明らかにされている。そのため、PQQは、医薬品、食品、及び化粧品分野で有用な物質として注目を集めている。例えば、医薬品分野では、PQQは、心臓、皮膚、神経等の治療薬としてその応用が期待されている。また、化粧品分野では、PQQは、美肌効果を有する物質として、その応用が期待されている。
 ピロロキノリンキノンは、培養で作られ、水溶液中で生成工程が行われるため、通常、アルカリ金属塩で得られる。ピロロキノリンキノンは水溶性であることが知られているが、フリー体構造のPQQは低い水溶性を示し、実際にはPQQのアルカリ金属塩にすることで水溶性が向上している。特にPQQのナトリウム塩は毒性がないため使用しやすい。実際、PQQのジナトリウム塩が食品として認められて使用されている。PQQのジナトリウム塩の結晶は、含水結晶であるものが知られている(例えば、特許文献1、非特許文献1及び2参照)
 下記構造式で示されるピロロキノリンキノンモノナトリウム塩はジナトリウム塩に比べ、溶解性が大きく異なっていることから、異なる使用目的で使用するのに適している。例えば、水への溶解をゆっくりとしたい場合に適している。
Figure JPOXMLDOC01-appb-C000003
 ピロロキノリンキノンのカルボン酸の1箇所の水素とナトリウムとが入れ替わった構造のモノナトリウム塩の合成方法としてテトラヒドロフランにPQQを溶解させ、水溶液中の水酸化ナトリウムと反応させる方法が提案されている(例えば、特許文献2参照)。
国際公開第2011/007633号 中国特許出願公開第101885725号明細書
Ishida, T. et al., "Molecular and crystal structure of PQQ (methoxatin), a novel coenzyme of quinoproteins: extensive stacking character and metal ion interaction", Journal of American Chemical Society, 1998, Vol. 111, p. 6822-6828 Ikemoto, K. et al., Crystal structure and characterization of pyrroloquinoline quinone disodium trihydrate, Chemistry Central Journal 2012, 6:57  doi:10.1186/1752-153X-6-57
 しかし、特許文献2に記載の方法で用いるテトラヒドロフランは引火性があり、食品に使用できる溶媒ではない。また、特許文献2に記載のナトリウム塩の製造方法においてピロロキノリンキノンを培養から製造する場合には、中性条件で培養したピロロキノリンキノン含有溶液は対イオンを有する構造である。そのため酸性条件にしてフリー体に変換して、さらに中和する必要がある。また、得られる物質は繊維状態構造で、嵩が高く、流動性に乏しい。そのため、同一体積での含量が低下する欠点がある。また、繊維状の結晶は固体状態では流動性に乏しく、取り扱いが困難である。
 ピロロキノリンキノンナトリウム塩は、ナトリウムの結合場所、結晶構造が異なることで安定性や取り扱い、色が変わることは知られている。取り扱いに関しては繊維状の固体になるとろ過をするとフィルム状になりやすく、粉体として取り扱う上で流動性に乏しく、使いにくい。これを改善するにはフィルム状に固まった状態を粉砕する操作が必要である。このような操作はこれまでに知られている結晶の作り方とは異なるため安定な結晶を得ることが比較的困難であり、安定な結晶及びその製造方法が求められている。安定な結晶を得るためには、特にかさ密度を上げることは重要である。これにより流動性の改善も図ることができる。
 PQQの構造を有する化合物を食品や化粧品に応用する上では、PQQの構造を有する化合物には水溶性で色が変化しにくく結晶性が高いものが求められる。また、安全で迅速に製造できる方法が求められている。
 そこで、本発明は、有害な有機溶媒を使用せず、繊維状結晶を含まないかさ密度の高いピロロキノリンキノンモノナトリウムの製造方法及び新規な構造を有するピロロキノリンキノンモノナトリウムを提供することにある。さらに迅速なピロロキノリンキノンモノナトリウム結晶の製造方法及び新規な構造を有するピロロキノリンキノンモノナトリウム結晶を提供することを目的とする。
 本発明者は、PQQジナトリウム又はPQQトリナトリウムを特定条件下で調製することにより、新規な構造を有するPQQモノナトリウム結晶が得られることを見出した。本発明者はまた、このPQQモノナトリウム結晶は、変色しにくいことを見出した。本発明は、このような知見に基づく発明である。
 すなわち、本発明によれば以下の発明が提供される。
 [1]
下記式(1)に示される構造を有するピロロキノリンキノンモノナトリウム。
Figure JPOXMLDOC01-appb-C000004
 [2]
結晶であり、Cu Kα放射線を用いた粉末X線回折で7.9、10.9、11.2、18.4、22.4、25.7、28.0、28.8±0.4°に2θ角度のピークを示す[1]に記載のピロロキノリンキノンモノナトリウム。
 [3]
下記式(2)に示される構造を有するジピロロキノリンキノンモノナトリウム。
Figure JPOXMLDOC01-appb-C000005
 [4]
結晶であり、Cu Kα放射線を用いた粉末X線回折で9.9、16.1、16.8、28.1±0.4°に2θ角度のピークを示す[3]に記載のジピロロキノリンキノンモノナトリウム。
 [5]
[1]に記載のピロロキノリンキノンモノナトリウムの製造方法であって、
ピロロキノリンキノンジナトリウム及び/又はピロロキノリンキノントリナトリウムと過剰の酸とを接触させる工程を含むピロロキノリンキノンモノナトリウムの製造方法。
 [6]
前記工程を食塩存在下で行う[5]に記載の製造方法。
 [7]
前記工程をエタノール濃度が10~90質量%の水溶液の存在下で行う[5]又は[6]に記載の製造方法。
 [8]
前記工程でピロロキノリンキノンジナトリウムとピロロキノリンキノンモノナトリウムとの混合結晶を得る[5]~[7]のいずれかに記載の製造方法。
 [9]
[1]又は[2]に記載のピロロキノリンキノンモノナトリウム或いは[3]又は[4]に記載のジピロロキノリンキノンモノナトリウムのいずれかとピロロキノリンキノンジナトリウムとを共に含む組成物。
 本発明のPQQモノナトリウム結晶は、高い純度を有するだけでなく、溶解度と溶液中における分散性及び皮膚への浸透性が向上しており、化粧品、医薬品又は機能性食品の成分として有用である。
本発明のPQQモノナトリウム結晶をボールアンドスティックで示した構造である。 側面から見た本発明のPQQモノナトリウム結晶をボールアンドスティックで示した構造である。 実施例1のPQQモノナトリウム結晶1の顕微鏡写真である。 実施例1のPQQモノナトリウム結晶1の粉末X線回折である。 実施例2のPQQモノナトリウム結晶をボールアンドスティックで示した構造である。 実施例2のPQQモノナトリウム結晶1単結晶データから変換した粉末X線回折である。 実施例6のかさ密度の高いPQQモノナトリウム結晶1の顕微鏡写真である。 実施例7のPQQモノナトリウム結晶2の顕微鏡写真である。 実施例7のPQQモノナトリウム結晶2の粉末X線回折である。 実施例7のPQQモノナトリウム結晶2をボールアンドスティックで示した構造である。 比較例2のPQQモノナトリウムの顕微鏡写真である。
 以下、本発明の実施形態(以下「本実施形態」とも記す。)について詳細に説明する。なお、以下の実施形態は、本発明を説明するための例示であり、本発明はその実施形態のみに限定されない。
 本発明者はかさ密度の高い結晶を得るためにあるPQQモノナトリウムの結晶構造を調べた結果、それがこれまで報告されていない結合を有する塩であることが判明した。従来のピロロキノリンキノンの塩は、カルボン酸の水素がはずれ、代わりにナトリウムが入った構造を有する。本発明では下記式(1)に示される構造を有するPQQモノナトリウムである。
 本実施形態のPQQモノナトリウムは、例えば下記式(1)に示される構造を有する。これらの結合解析には単結晶構造解析が必要である。従来、PQQのカルボン酸の塩では酸性の水素原子が抜けたカルボン酸とナトリウムとが結合すると考えられている。ピロロキノリンキノンのこれまで報告された結晶でも同様の傾向がある。しかし、下記式(1)に示される構造を有するピロロキノリンキノンモノナトリウム(以下、「PQQモノナトリウム1」とも記す。)は、従来の考えからは予想外の構造を有している。本実施形態のPQQモノナトリウムの構造は、キノリン構造に結合しており、水素が残っているカルボン酸と、キノリン構造中の窒素原子と、キノリン構造に結合している酸素原子とにナトリウムが結合し、キノリン構造に結合しており、ナトリウムが結合していないカルボン酸の水素が解離している。
 図1及び図2は本実施形態のPQQモノナトリウム1の結晶構造をボールアンドスティックで示したものである。本実施形態のPQQモノナトリウム1の実際の結晶は下記式(1)に示される構造2つからなるユニットを有している。
Figure JPOXMLDOC01-appb-C000006
 本実施形態のPQQモノナトリウムは、また例えば下記式(2)に示される構造を有する。下記式(2)に示される構造を有するジピロロキノリンキノンモノナトリウム(以下、「PQQモノナトリウム2」とも記し、PQQモノナトリウム1と区別しない場合には、単に「PQQモノナトリウム」と記す。)も、従来の考えからは予想外の構造を有している。本実施形態のPQQモノナトリウム2の構造は、1分子のPQQにおける、キノリン構造に結合しており、水素が残っているカルボン酸と、キノリン構造中の窒素原子と、キノリン構造に結合している酸素原子と、もう1分子のPQQにおける、キノリン構造に結合しており、水素が残っていないカルボン酸と、ピロール構造に結合しているカルボン酸とにナトリウムが結合している。
Figure JPOXMLDOC01-appb-C000007
 本実施形態のPQQモノナトリウムの結晶は、含水結晶であることが好ましい。含水結晶として、例えば結晶構造解析から導かれたあるPQQモノナトリウムの結晶構造は2つのPQQユニットと2つのナトリウムを有する構造である。本実施形態のPQQモノナトリウムの結晶はこれまで報告されたナトリウム塩とは異なり、イオン化していないカルボン酸COOHのままナトリウムと結合を作っていることが特徴である。このような結合をもつピロロキノリンキノンは知られておらず、新規な結合をもつPQQモノナトリウム結晶である。
 単結晶によって構造決定された結晶はこのデータから粉末X線回折のデータに変換して同定可能である。そのためこの構造を有する結晶は単結晶構造解析だけでなく、確認は粉末X線回折で確認できる。本実施形態のPQQモノナトリウム1の結晶(以下、「結晶1」とも記す。)は、Cu Kα放射線を用いた粉末X線回折で、7.9、10.9、11.2、18.4、22.4、25.7、28.0、28.8±0.4°に2θ角度のピークを示すPQQモノナトリウム結晶である。このピークは、モノクロメータが装着された一般的な粉末X線回折装置で観測することができる。測定データには測定誤差も含まれることから、本実施形態で規定する結晶は、ピークの角度に関する合理的な同一性を有する結晶形である。この結晶1の結晶水は例えば9.2質量%である。実際には乾燥や湿度の影響によって水分量が変わり、15~18質量%になることもある。この結晶形は四角柱である。この結晶形は繊維状でないことで粉末としての取り扱いが容易である。
 本実施形態のPQQモノナトリウム2の結晶(以下、「結晶2」とも記記し、結晶1と区別しない場合には、単に「結晶」と記す。)はCu Kα放射線を用いた粉末X線回折で、9.9、16.1、16.8、28.1±0.4°に2θ角度のピークを示すPQQモノナトリウム結晶である。この結晶は結晶形1をさらに安定化した結晶である。この結晶2は水分量が少ない。結晶2の水分量は例えば4~7質量%である。低い水分量のピロロキノリンキノンモノナトリウムはより疎水的で油分との親和性向上メリットがある。実際の結晶では結晶1と結晶2とが混合した状態で得られることもある。
 本実施形態のピロロキノリンキノンモノナトリウムの製造方法は、ピロロキノリンキノンジナトリウム及び/又はピロロキノリンキノントリナトリウムと酸とを接触させる工程を含む。酸は過剰の酸であることが好ましい。過剰の酸と接触させることにより迅速に製造を行うことができる。ここで過剰の酸とは、ピロロキノリンキノンジナトリウム及び/又はピロロキノリンキノントリナトリウムに対して酸が好ましくは2~200倍であり、より好ましくは3~100倍であり、さらに好ましくは5~50倍である。ここで、「接触させる」とは、ピロロキノリンキノンジナトリウム及び/又はピロロキノリンキノントリナトリウムと酸との少なくとも一部が接触していることを意味し、ピロロキノリンキノンジナトリウム及び/又はピロロキノリンキノントリナトリウムに酸を加えること、ピロロキノリンキノンジナトリウム及び/又はピロロキノリンキノントリナトリウムと酸とを混合することが含まれる。
 本実施形態の製造方法で得られるPQQモノナトリウムの結晶は、乾燥して使用されることが好ましい。具体的には、結晶の乾燥は、凍結乾燥、常圧乾燥や減圧乾燥により行うことができる。乾燥温度は、方法によって異なるが、例えば、-80~250℃、好ましくは、-60~250℃とすることができる。乾燥温度の下限は、凍結乾燥する際の出発温度であり、上限は結晶の分解が生じない温度である。例えば、乾燥温度は、凍結乾燥では、-80~0℃、好ましくは、-60~0℃とすることができ、常圧乾燥では、40~250℃とすることができ、減圧乾燥では、0~250℃とすることができる。
 本実施形態の製造方法はピロロキノリンキノンジナトリウムやピロロキノリンキノントリナトリウムからナトリウムイオンを除去することが特徴である。酸を加えることでナトリウムイオンは酸のナトリウム塩として除去される。過剰の酸を使用することで高速で結晶化させることが可能であるが、このときにはナトリウムイオンを共存させることが好ましい。具体的には塩酸の場合では塩化ナトリウム、硫酸では硫酸ナトリウムである。ピロロキノリンキノンモノナトリウムは溶解度が低く、除去されるナトリウム塩は溶解度が高いために分離される。
 本実施形態のPQQモノナトリウムの結晶1は、例えば、PQQジナトリウム又はPQQトリナトリウムを水又はエタノール水に懸濁もしくは溶解させ、酸を添加して製造される。結晶1は、水又はエタノール水中でPQQジナトリウム又はPQQトリナトリウムを酸と反応する工程で製造される。PQQトリナトリウムを原料とする場合、本実施形態のPQQモノナトリウムは、エタノール濃度0~90質量%の水溶液に、PQQトリナトリウムを添加し、次いで、酸を添加して、水溶液のpHを0~2の範囲に調整することで結晶化させることができる。PQQジナトリウムを原料とする場合、本実施形態のPQQモノナトリウムは、エタノール濃度0~90質量%の水溶液に、PQQジナトリウムを添加し、次いで、酸を添加して、水溶液のpHを0~2の範囲に調整することで結晶化させることができる。より詳細に記載すると、PQQジナトリウムを原料とし、エタノール濃度20~80質量%の水溶液を用いる場合、反応時間を12時間より短くする必要がある。この場合、これより長時間(12時間以上)反応を行うと結晶2が混入する。酸の添加量はPQQジナトリウムの場合は等量、PQQトリナトリウム原料では2倍量のモルでPQQモノナトリウムを製造できる。迅速に結晶を作るには過剰の酸を添加すればよく、このときにナトリウム塩、特に食塩を共存させることでPQQモノナトリウムの結晶1を安定に取り出すことができる。本実施形態のPQQモノナトリウムの結晶1はフリー体を形成する直前の準安定状態である。そのため、この条件では長時間反応させるとナトリウムを含まない結晶が析出するおそれがある。そのため、結晶作製には時間、温度を制御して適切な条件を選択することが好ましい。本実施形態で使用できる酸は塩酸、硫酸、硝酸の強酸が好ましいが、弱酸でも同様に反応を起こせる。使用できる弱酸は例えば酢酸、乳酸、蟻酸、クエン酸、リン酸である。使用する酸は限定されず、目的の結晶が得られる条件で行えばよい。
 また、本実施形態のPQQモノナトリウムの結晶1の製造方法は、過剰の酸を加える工程を食塩存在下で行うことが好ましい。
 ここで食塩の量は、ピロロキノリンキノンジナトリウム及び/又はピロロキノリンキノントリナトリウムの質量に対して、好ましくは2~250倍であり、より好ましくは5~100倍である。
 本実施形態のPQQモノナトリウムの結晶1は、例えば水溶液のpHを所定の値にしてから0.1~140時間反応させることにより得ることができる。より好ましくは、反応時間は0.5~96時間とすることができる。また、反応温度は0~90℃、より好ましくは3~60℃で行うことができる。結晶化の条件は、できる結晶の品質に対する攪拌の有無や強弱の影響を勘案して、自由に選択できる。
 本実施形態のPQQモノナトリウムの結晶2は、例えばPQQジナトリウムを原料としてエタノール水で反応させるか、いったん結晶化した結晶1をエタノール水中で再結晶することでできる。より作りやすい条件はエタノール濃度20~80質量%の水溶液で結晶化させることで得ることができる。これらの結晶は製造した後、再結晶することもできる。本実施形態のPQQモノナトリウムの結晶2は、例えば12~140時間反応させることにより得ることができる。より好ましくは、反応時間は12~90時間とすることができる。また、反応温度は0~90℃、より好ましくは40~60℃で行うことができる。
 得られた結晶は、ろ過、遠心分離、デカンテーションで得ることができる。さらにこれをアルコール等で洗って提供することも可能である。
 さらに、本実施形態のPQQモノナトリウムの結晶2の製造方法は、酸を加える工程をエタノール濃度が10~90質量%の水溶液の存在下で行うことがより好ましい。当該エタノール濃度は、15~85質量%であることが好ましく、20~80質量%であることがより好ましく、30~70質量%であることがさらに好ましい。
 本実施形態のPQQモノナトリウムの結晶1及び2は、かさ密度が高く取り扱いやすい。また、本実施形態のPQQモノナトリウムの結晶1及び2は、溶液に加えた場合もゲル化のような変化をしないために溶液調合が容易である。また、本実施形態のPQQモノナトリウムの結晶2は、低水分含量結晶であり、かさ密度が高い。本実施形態のPQQモノナトリウム結晶1及び2は、さらに、結晶であることから高純度であるという利点を有している。
 さらに本実施形態のPQQモノナトリウムの結晶は、溶解度、溶解速度、色の制御のためにジナトリウムと混合することができる。
 本実施形態の組成物は、本実施形態のピロロキノリンキノンモノナトリウムとピロロキノリンキノンジナトリウムとを共に含む。
 本実施形態の組成物において、ピロロキノリンキノンモノナトリウムとピロロキノリンキノンジナトリウムとの混合比率はピロロキノリンキノンモノナトリウムの結晶含量が好ましくは5~95質量%、より好ましくは5~50質量%である。本実施形態の組成物は結晶をそれぞれ混合して製造することもできるが、結晶化を部分的に行うことで製造することも可能である。すなわち上述したピロロキノリンキノンジナトリウム及び/又はピロロキノリンキノントリナトリウムに過剰の酸を加える工程でピロロキノリンキノンジナトリウムとピロロキノリンキノンモノナトリウムとの混合結晶を得ることができる。
 従って、本実施形態のPQQモノナトリウムの結晶1と2とは、ヒト用又は動物用として、食品、機能性食品、栄養剤、化粧品、医薬品又は医薬部外品として好適に使用することができる。ここでいう機能性食品とは、健康食品、栄養補助食品、栄養機能食品、栄養保健食品、及び特定保健用食品等、健康の維持あるいは食事にかわり栄養補給の目的で摂取する食品を意味している。食品、機能性食品、栄養剤、化粧品、医薬品又は医薬部外品の具体的な形態としては、カプセル剤(例えば、ゼラチンカプセル、ソフトカプセル)、タブレット、チュアブル、錠剤、ドリンク剤等が挙げられるが、これらに限定されるものではない。本実施形態のPQQモノナトリウムの結晶1及び結晶2は、かさ密度が高いためにカプセルにつめるのに有利である。
 本実施形態では、上述のPQQモノナトリウムの結晶を含んでなる、医薬組成物、化粧組成物、機能性食品及び栄養剤が提供される。特に上述のPQQモノナトリウムの結晶は皮膚に対する浸透性に優れることから、上述のPQQモノナトリウムの結晶を含む本実施形態の医薬組成物は、経皮投与用の医薬組成物とすることができる。また、上述のPQQモノナトリウムの結晶は油脂中における分散性に優れることから、オイル分散系の製剤への処方に適している。従って、上述のPQQモノナトリウムの結晶を含む本実施形態の医薬組成物や化粧組成物は、好ましくは、乳剤や懸濁剤のような分散製剤の形態、軟膏剤やクリーム剤のような半固形製剤の形態あるいはソフトカプセルのような成形製剤の形態で提供されうる。
 上述のPQQモノナトリウムの結晶を機能性食品として製品化する場合には、添加剤として、例えば、甘味料、着色料、保存料、増粘安定剤、酸化防止剤、発色剤、漂白剤、防菌防黴剤、ガムベース、苦味料、酵素、光沢剤、酸味料、調味料、乳化剤、強化剤、製造用剤、香料、香辛料抽出物等を用いることができる。また、上述のPQQモノナトリウム結晶は、一般的には、通常の食品、例えば、味噌、醤油、インスタントみそ汁、ラーメン、焼きそば、カレー、コーンスープ、マーボードーフ、マーボーなす、パスタソース、プリン、ケーキ、パン等に加えることが可能である。また、上述のPQQモノナトリウムの結晶を含む本実施形態の医薬組成物は、上述のPQQモノナトリウムの結晶と少なくとも1つ以上の製剤用添加剤を含んでいてもよい。また、本実施形態の化粧組成物は、上述のPQQモノナトリウムの結晶と少なくとも1以上の化粧品添加剤とを含んでいてもよい。製剤用添加剤や化粧品添加剤は、医薬組成物や化粧組成物の処方形態に従って、当業者であれば適宜選択することができる。
 以下、参考例、実施例及び比較例によって本発明をより詳細に説明するが、本発明はこれらの例にのみ限定されるものではない。
 粉末X線回折は、株式会社RIGAKU製RINT2500を使用し、
 X線:Cu/管電圧40kV/管電流100mA
 スキャンスピード:4.000°/min
 サンプリング幅:0.020°
で行った。
 結晶の水分含量(質量%)の測定は、カールフィッシャー法により行った。
Na量の測定方法
ナトリウム電極はHORIBA コンパクトイオンメーター LAQUAtwin を使用した。
サンプル1mgを0.5%コリン水酸化物水溶液1mLに溶解する。この溶液を200μLナトリウム電極で測定した。検出下限1ppm以下であった。
参考例1:原料PQQトリナトリウム及びPQQジナトリウム
PQQジナトリウムは三菱ガス化学株式会社製(商品名:BioPQQ)を使用した。PQQトリナトリウムはBioPQQをpH6-8で塩析することで得た。
実施例1
結晶形1:ピロロキノリンキノンモノナトリウム(NaCl 過剰、塩酸過剰)
 PQQジナトリウム1.0gをNaCl 2g、濃塩酸7mL、水1Lに37度で混合した。この時、PQQジナトリウムに対し、NaClは10倍以上、塩酸30倍以上溶液に存在した。3時間攪拌して、その後、遠心分離、2‐プロパノール洗浄、乾燥して質量0.72gの結晶を得た。得られた結晶は、Na量からPQQモノナトリウムであることが判明した。得られたPQQモノナトリウムの結晶の顕微鏡写真を図3に示す。さらに得られたPQQモノナトリウムの結晶の粉末X線回折の結果を図4に示す。
 得られたPQQモノナトリウムの結晶は四角形であり、流動性のある粒子であった。この結晶はろ過を行ってもフィルム状にならず、分散性のよいものであった。短時間の処理時間で結晶化を行えた。
 粉末X線回折を行ったところ、得られた結晶は、7.9、10.9、11.2、18.4、22.4、25.7、28.0、28.8±0.4°2θ角度のピークを示すPQQモノナトリウム結晶であることが分かった(図4)。
 得られたPQQモノナトリウムの水分量は16.1質量%であった。
実施例2:単結晶構造解析
 結晶の原子配置を決定するために単結晶構造解析を行った。粉末X線回折(XRD)では結晶のXYZ軸のピークが混合して測定されるが単結晶構造解析ではこれらを分離して測定できるため、原子の位置決定が容易に行える。株式会社RIGAKU製R-AXIS RAPID Imaging Plate Diffractometerを使用して測定した。
 人工胃液15mLに50mgのジナトリウム塩を加え、攪拌した。得られた溶液を0.2マイクロメートルのフィルターでろ過し、ろ液を4℃で1週間保存した。析出した濃赤色の結晶一粒の単結晶構造解析を行った。その結果、図5に示す構造のモノナトリウム塩であった。
 この構造はピロロキノリンキノン2つとナトリウム2つとからなる構造を有し、結晶水を4つ含んでいた。一般に予想される構造とは異なりナトリウムの位置は式(1)で示される位置にあったが、このナトリウムと結合するカルボン酸の水素は解離せずに結合していた。
 モノナトリウム塩のこの結晶構造を構造解析ソフトであるマーキュリーで粉末X線回折のデータに変換したピークを図6に示す。このピークは実施例1と一致しており、本発明で得られる結晶構造はすべて同一であることが確認できた。
実施例3:結晶1 ピロロキノリンキノンジナトリウムの高濃度仕込み
 水1Lに対しNaCl 2g、濃塩酸7mLで混合した。この溶液40mLにPQQジナトリウム0.6gを混合した。37℃3時間攪拌し、遠心分離、2-プロパノール洗浄、乾燥して質量0.56gの結晶を得た。得られた結晶は、Na量からPQQモノナトリウムであることが判明した。得られたPQQモノナトリウムの結晶の粉末X線解析も実施例1と同一のピークを有していた。
実施例4 結晶1 高いNaCl濃度
 PQQジナトリウム 0.50gをNaCl 50g、水500mL、濃塩酸3.5mLと混合し、37℃一晩反応させた。得られた反応液を、遠心分離、2-プロパノール洗浄、乾燥して質量0.41gの結晶を得た。得られた結晶は、Na量からPQQモノナトリウムであることが判明した。得られたPQQモノナトリウムの結晶の粉末X線解析も実施例1と同一のピークを有していた。
実施例5 結晶1 ピロロキノリンキノントリナトリウム原料
 参考例1で得られたピロロキノリンキノントリナトリウムを使用した。PQQトリナトリウム 0.50gをNaCl 50g、水500mL、濃塩酸3.5mLと混合し、37℃一晩反応させた。得られた反応液を、遠心分離、2-プロパノール洗浄、乾燥して質量0.32gの結晶を得た。得られた結晶は、Na量からPQQモノナトリウムであることが判明した。得られたPQQモノナトリウムの結晶の粉末X線解析も実施例1と同一のピークを有していた。
実施例6 結晶1 かさ比重の大きいサンプル
 PQQトリナトリウム2g、エタノール25mL、水20mL、2N塩酸5mLを室温で1時間攪拌した後、50℃5日間反応させた。得られた反応液を、遠心分離、2-プロパノール洗浄、乾燥して質量1.46gの結晶を得た。得られた結晶は、得られたPQQモノナトリウムの結晶の粉末X線解析も実施例1と同一のピークを有していた。また、得られたPQQモノナトリウムの水分量は15.7質量%であった。
 また、得られたPQQモノナトリウムの顕微鏡写真を図7に示す。
 結晶が大きくなることでかさ密度が高くなった。流動性も小さな結晶と比較して非常によかった。
実施例7 結晶2
 ピロロキノリンキノンジナトリウム2gをエタノール25mL、水22.5mLの混合液に加えた。ここに2N塩酸2.5mL加え、室温で1時間攪拌した。この懸濁液を50℃に加熱してサンプルを得た。5日後、サンプルをろ過したのち、減圧乾燥して質量1.71gの結晶を得た。得られた結晶は、Na量からPQQモノナトリウムであることが判明した。
 また、得られたPQQモノナトリウムの顕微鏡写真を図8に示す。得られたPQQモノナトリウムの粉末X線解析の結果を図9に示す。
 得られたPQQモノナトリウムの水分量は5.0質量%であった。水分量の少ない結晶であった。
 実施例2と同様に結晶2の単結晶構造解析を行った。その結果、図10に示す構造のモノナトリウム塩であった。
比較例1:PQQジナトリウムと塩酸のみの反応(食塩を含まない条件)
 PQQジナトリウム1.0gを濃塩酸7mL、水1Lに37度で混合した。この時、PQQジナトリウムに対し塩酸30倍以上溶液に存在した。得られた溶液を、3時間攪拌、遠心分離、2-プロパノール洗浄、乾燥して質量0.71gの結晶を得た。得られた結晶は、Na量が含まれていなかった。この条件では得られた結晶はPQQフリー体であることが判明した。本発明の製造の特徴であるナトリウムイオンを過剰に入れないと結晶中からナトリウムが脱落してモノナトリウムを作ることができない場合があることがわかった。
比較例2
中国公開公報(CN101885725A)に記載される内容にもとづく実験
 ピロロキノリンキノンジナトリウム塩2gを水198gに加えてジナトリウム塩水溶液を得た。得られた溶液はNaOHでpH9にあわせた。次に、この溶液に和光純薬製濃塩酸を水で50%希釈した液7.7gを攪拌しながら添加してpHを0.9にした。得られた溶液を、30分攪拌後、析出した固体をろ過し、水、イソプロパノールで洗った。これを減圧乾燥50℃で一晩行った。回収した赤色結晶の質量は1.6gであった。Na分析によると、得られた結晶は、Na含有量0でナトリウムが含まれず、PQQフリー体であることがわかった。この方法で得られたPQQフリー体を原料にした。PQQフリー体をテトラヒドロフランに溶かし、水酸化ナトリウム水溶液と混合した。
得られた結晶の顕微鏡写真を図11に示す。
 得られたモノナトリウム塩は実施例と異なり長細い繊維状の固体を含むものであった。さらに得られたモノナトリウム塩は、非常に小さく、ろ過固体はフィルム状になった。得られたモノナトリウム塩の水分量16.6質量%であった。例えば特許文献2に記載されているモノナトリウム塩の構造は以下のとおりであった。
Figure JPOXMLDOC01-appb-C000008
かさ密度測定
10mLメスフラスコを使用してかさ密度を測定した。
その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000009
 実施例の結晶のかさ比重は大きく、同一質量であればカプセルを小さくできる。小さなカプセルを使用できるのは飲み込みやすく、使用者の負担を減らせる利点がある。
懸濁液流動性試験
結晶を100g/L濃度になるように水と混合した。室温で混合後4℃にして様子を観察した。
Figure JPOXMLDOC01-appb-T000010
 実施例の結晶は濃厚な状態にしても流動性を有していることがわかった。これは溶液調合の際のプロセスで濃厚溶液として提供できる利点がある。比較例2の物質は流動性がなく、溶液で調製するプロセスで使用しにくい。
実施例8~14
 混合物の溶解性及び色
 モノナトリウム結晶1として実施例1、モノナトリウム結晶2として実施例7で作ったものを使用した。表3に示す割合で粉末を混合して粉末の色を記録した。室温で結晶質量10mgに水1mL加えた。得られた水溶液を、超音波に5分かけ、70度のお湯で10分温めたら、室温の水30分冷やした。冷却後の水溶液を、遠心分離して、上澄み液を取り出した。これをリン酸バッファーで希釈して330nmの吸光度より溶解度を算出した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000011
 実施例の混合物によって色、溶解性を自由に設定できることがわかった。また、同じモノナトリウムで結晶形の異なるものを混合することでも色、溶解性を変えることができることがわかった。溶解性の制御は吸収性や食品成分との相互作用を変えることができるため、優れていることがわかった。色を重視する化粧品、食品用途に使用しやすいことがわかった。
実施例15 モノナトリウム結晶とジナトリウムの混合物製造
 PQQジナトリウム2gをエタノール25gと水23gと混合した。ここに2N塩酸 2mL加えた。これを室温で2時間攪拌し、50度18時間攪拌せずに置いた。これをろ過し、エタノールで洗い、減圧乾燥した。こげ茶色の固体を得た。得られた固体は、ナトリウムが1.5の割合になっていた。光学顕微鏡観察の結果、得られた固体は、PQQモノナトリウム結晶2が含まれた混合物であった。
実施例16:カプセル
 グレートアングランド株式会社販売のヒドロキシプロピルメチルセルロース製カプセル♯0を使用した。カプセルに20mgの上記実施例及び比較例で得られた結晶のサンプルをつめた。
 結晶1と結晶2とではそのまま、カプセルに入れることができた。比較例2の固体ではかさが高く直接入れられなかった。乳鉢ですりつぶすことでつめることができた。
 実施例の結晶は固体をつぶす操作をいれずにカプセルに導入でき、ハードカプセルの使用に関して適した結晶であった。
実施例17 熱安定性試験(70℃変色試験)
 実施例1及び6並びに比較例2で得られた結晶1mgを70℃オーブンに入れ、2時間後の色の変化を観察した。
その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000012
 実施例の結晶1及び2は70℃でも変色せず、安定であった。
実施例18 熱安定性試験(180℃10分による溶解性変化)
 熱処理による結晶の溶解性が変化するか試験した。
 実施例1及び6並びに比較例2で得られた結晶1mgをガラス製カバーガラスにはさんでホットプレートで180℃10分加熱した。その後、結晶を水10mLに混合し、15分間攪拌した。この時様子を記録した。攪拌後の水溶液を0.5μmのフィルターで濾過し、1/10に希釈して330nmの吸光度を測定した。この測定より加熱処理前後の結晶の溶解性の変化を調べた。加熱前の結晶の溶解度を100として加熱後の溶解度を表5に示す。
Figure JPOXMLDOC01-appb-T000013
 実験に使用したすべての結晶は加熱処理前に水に溶けた。加熱処理を行うと溶けにくい成分が増えて変質した。結晶2は特に安定で溶解性の変化はなかった。結晶2は見た目には沈殿物は見えなかったが、吸光度は下がっており、微小な不溶結晶になっていると考えられる。繊維状に比べると変化は小さかった。比較例の繊維状は溶けない成分が現れ、沈殿物として見えた。また、吸光度からも不溶成分が多いことは明らかであった。
 実施例の結晶1及び2は食品加工で使われる高温でも安定であった。従来のものでは沈殿物ができ、変質していた。
実施例19 抹茶との反応
 抹茶2mgと、実施例1及び6並びに比較例2で得られた結晶1mgを混合した。混合粉末がぬれたモデルとして100μLの水を加えた。結晶2では茶葉は変色しなかった。しかし、結晶1及び繊維状(比較例2)ではオレンジ色に変色した。結晶2は非常に安定で粉末混合に優れていた。
実施例20 皮膚への浸透性試験
 ブタの皮膚を水道水で洗浄し、水分を完全に拭き取った。このブタの皮膚に結晶を5mgずつ接触させ、その後、ラップして皮膚に固定した。37℃、80分間後に、テープを剥がし、皮膚を水道水で洗浄して皮膚表面に付着した試験用組成物を除去した。試験用組成物をスキャナで取り込んで、画像ソフト(製品名:ペイント(ウィンドウズ(登録商標)XP付属ソフト)、マイクロソフト社製)を用いて皮膚の明るさの変化を測定することにより評価した。この際、皮膚の明るさの変化は
[[未処理の皮膚の明るさ-処理後の明るさ]/ [未処理の皮膚の明るさ]]×100
により算出した。
Figure JPOXMLDOC01-appb-T000014
 実施例の結晶は皮膚への浸透性が優れており、化粧品用途で使用するのに適していた。
 本出願は、2016年6月29日に日本国特許庁へ出願された日本特許出願(特願2016-128941号)に基づくものであり、それらの内容はここに参照として取り込まれる。

Claims (9)

  1. 下記式(1)に示される構造を有するピロロキノリンキノンモノナトリウム。
    Figure JPOXMLDOC01-appb-C000001
  2. 結晶であり、Cu Kα放射線を用いた粉末X線回折で7.9、10.9、11.2、18.4、22.4、25.7、28.0、28.8±0.4°に2θ角度のピークを示す請求項1に記載のピロロキノリンキノンモノナトリウム。
  3. 下記式(2)に示される構造を有するジピロロキノリンキノンモノナトリウム。
    Figure JPOXMLDOC01-appb-C000002
  4. 結晶であり、Cu Kα放射線を用いた粉末X線回折で9.9、16.1、16.8、28.1±0.4°に2θ角度のピークを示す請求項3に記載のジピロロキノリンキノンモノナトリウム。
  5. 請求項1又は2に記載のピロロキノリンキノンモノナトリウムの製造方法であって、
    ピロロキノリンキノンジナトリウム及び/又はピロロキノリンキノントリナトリウムと酸とを接触させる工程を含むピロロキノリンキノンモノナトリウムの製造方法。
  6. 前記工程を食塩存在下で行う請求項5に記載の製造方法。
  7. 前記工程をエタノール濃度が10~90質量%の水溶液の存在下で行う請求項5又は6に記載の製造方法。
  8. 前記工程でピロロキノリンキノンジナトリウムとピロロキノリンキノンモノナトリウムとの混合結晶を得る請求項5~7のいずれか一項に記載の製造方法。
  9. 請求項1又は2に記載のピロロキノリンキノンモノナトリウム或いは請求項3又は4に記載のジピロロキノリンキノンモノナトリウムのいずれかとピロロキノリンキノンジナトリウムとを共に含む組成物。
PCT/JP2017/022206 2016-06-29 2017-06-15 ピロロキノリンキノンモノナトリウム及びその製造方法、並びにそれを含む組成物 WO2018003531A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17819891.7A EP3480197B1 (en) 2016-06-29 2017-06-15 Pyrroloquinone quinone monosodium, method for manufacturing same, and composition including same
JP2018525047A JP7335070B2 (ja) 2016-06-29 2017-06-15 ピロロキノリンキノンモノナトリウム及びその製造方法、並びにそれを含む組成物
CN201780036948.4A CN109311873A (zh) 2016-06-29 2017-06-15 吡咯并喹啉醌单钠及其制造方法、以及含有其的组合物
KR1020187037542A KR102479748B1 (ko) 2016-06-29 2017-06-15 피로로퀴놀린퀴논모노나트륨 및 그 제조방법, 그리고 이것을 포함하는 조성물
US16/309,179 US11021476B2 (en) 2016-06-29 2017-06-15 Pyrroloquinoline quinone monosodium and method for producing the same, and composition comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016128941 2016-06-29
JP2016-128941 2016-06-29

Publications (1)

Publication Number Publication Date
WO2018003531A1 true WO2018003531A1 (ja) 2018-01-04

Family

ID=60786637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022206 WO2018003531A1 (ja) 2016-06-29 2017-06-15 ピロロキノリンキノンモノナトリウム及びその製造方法、並びにそれを含む組成物

Country Status (6)

Country Link
US (1) US11021476B2 (ja)
EP (1) EP3480197B1 (ja)
JP (2) JP7335070B2 (ja)
KR (1) KR102479748B1 (ja)
CN (1) CN109311873A (ja)
WO (1) WO2018003531A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3845074A4 (en) * 2018-08-30 2021-10-27 Mitsubishi Gas Chemical Company, Inc. PHOTODEGRADATION INHIBITOR, DRINK WITH IT AND PROCESS FOR INHIBITING PHOTODEGRADATION

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115246829A (zh) * 2021-04-27 2022-10-28 浙江医药股份有限公司新昌制药厂 吡咯并喹啉醌单钠盐、其制备方法及组合物
CN115724840A (zh) * 2021-08-26 2023-03-03 浙江医药股份有限公司新昌制药厂 涉及一种吡咯并喹啉醌三钠盐结晶、其制备方法及包含其的组合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246575A (ja) * 1986-04-17 1987-10-27 Mitsubishi Gas Chem Co Inc ピロロキノリンキノンの精製方法
CN101885725A (zh) 2009-05-12 2010-11-17 江苏道琪生物科技有限公司 吡咯喹啉醌钠盐衍生物及其制备方法
WO2011007633A1 (ja) 2009-07-16 2011-01-20 三菱瓦斯化学株式会社 ピロロキノリンキノンのナトリウム塩結晶
WO2011055796A1 (ja) * 2009-11-06 2011-05-12 三菱瓦斯化学株式会社 ピロロキノリンキノンのフリー体
JP2016128941A (ja) 2015-01-09 2016-07-14 日本電気株式会社 出力判定装置、出力判定方法、出力判定プログラム、及び、静的解析装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019739A (ja) * 2010-07-15 2012-02-02 Mitsubishi Gas Chemical Co Inc ストレス低減食品
ES2651238T3 (es) * 2011-06-16 2018-01-25 Mitsubishi Gas Chemical Company, Inc. Cristal de sal disódica de pirroloquinolina quinona y procedimiento para su fabricación
WO2013051414A1 (ja) 2011-10-03 2013-04-11 三菱瓦斯化学株式会社 ピロロキノリンキノンアルコール付加物
JP2013112677A (ja) 2011-12-01 2013-06-10 Mitsubishi Gas Chemical Co Inc ピロロキノリンキノンジナトリウム結晶
WO2014027669A1 (ja) 2012-08-17 2014-02-20 三菱瓦斯化学株式会社 ピロロキノリンキノンテトラアルカリ塩及びその結晶、これらの製造方法、並びに、組成物
CN102942567B (zh) 2012-11-09 2017-02-08 诸城市浩天药业有限公司 吡咯并喹啉醌的二钠盐结晶
WO2017050171A1 (zh) * 2015-09-25 2017-03-30 浙江海正药业股份有限公司 吡咯并喹啉醌钠盐的晶型及其制备方法和用途
CN105315278B (zh) * 2015-11-02 2018-01-16 诸城市浩天药业有限公司 吡咯喹啉醌a晶型及其制备方法
KR101885725B1 (ko) 2016-03-29 2018-08-06 최이분 핫멜트 접착제를 이용한 날개사 제조장치 및 그 장치에 의해 제조된 날개사

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246575A (ja) * 1986-04-17 1987-10-27 Mitsubishi Gas Chem Co Inc ピロロキノリンキノンの精製方法
CN101885725A (zh) 2009-05-12 2010-11-17 江苏道琪生物科技有限公司 吡咯喹啉醌钠盐衍生物及其制备方法
WO2011007633A1 (ja) 2009-07-16 2011-01-20 三菱瓦斯化学株式会社 ピロロキノリンキノンのナトリウム塩結晶
WO2011055796A1 (ja) * 2009-11-06 2011-05-12 三菱瓦斯化学株式会社 ピロロキノリンキノンのフリー体
JP2016128941A (ja) 2015-01-09 2016-07-14 日本電気株式会社 出力判定装置、出力判定方法、出力判定プログラム、及び、静的解析装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IKEMOTO, K. ET AL.: "Crystal structure and characterization of pyrroloquinoline quinone disodium trihydrate", CHEMISTRY CENTRAL JOURNAL, vol. 6, 2012, pages 57, XP021137638, DOI: doi:10.1186/1752-153X-6-57
ISHIDA, T. ET AL.: "Molecular and crystal structure of PQQ (methoxatin), a novel coenzyme of quinoproteins: extensive stacking character and metal ion interaction", JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 111, 1998, pages 6822 - 6828, XP008149475, DOI: doi:10.1021/ja00199a050

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3845074A4 (en) * 2018-08-30 2021-10-27 Mitsubishi Gas Chemical Company, Inc. PHOTODEGRADATION INHIBITOR, DRINK WITH IT AND PROCESS FOR INHIBITING PHOTODEGRADATION
TWI823998B (zh) * 2018-08-30 2023-12-01 日商三菱瓦斯化學股份有限公司 光劣化抑制劑、含有其之飲料,及光劣化抑制方法

Also Published As

Publication number Publication date
US20190330205A1 (en) 2019-10-31
CN109311873A (zh) 2019-02-05
EP3480197B1 (en) 2024-04-03
EP3480197A1 (en) 2019-05-08
JP7335070B2 (ja) 2023-08-29
US11021476B2 (en) 2021-06-01
JP2023099033A (ja) 2023-07-11
JPWO2018003531A1 (ja) 2019-04-18
KR20190022560A (ko) 2019-03-06
EP3480197C0 (en) 2024-04-03
KR102479748B1 (ko) 2022-12-21
EP3480197A4 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
WO2012173217A1 (ja) ピロロキノリンキノンジナトリウム塩の結晶およびその製造方法
JP2023099033A (ja) ピロロキノリンキノンモノナトリウム及びその製造方法、並びにそれを含む組成物
JP5842819B2 (ja) ピロロキノリンキノンのカルシウム塩
WO2013100105A1 (ja) メイラード反応阻害剤
JP5979376B2 (ja) 溶解性の高いピロロキノリンキノン塩及びその製造方法
JP6160621B2 (ja) ピロロキノリンキノンテトラアルカリ塩及びその結晶、これらの製造方法、並びに、組成物
JP5803150B2 (ja) ピロロキノリンキノンーシクロデキストリン包接体
JP7362646B2 (ja) 共結晶
Liu et al. The role of 3-OH in the self-assembly of pharmaceutical cocrystals of dihydroflavonol with 4, 4′-bipyridine
JP2013053115A (ja) α環状ジペプチドの製造方法
KR101882849B1 (ko) 흑삼 추출물을 포함하는 금속 나노입자 제조용 조성물 및 이의 용도
JP2011219388A (ja) 吸湿性の低いピロロキノリンキノン固体
JP2017031126A (ja) ピロロキノリンキノン結晶の製造方法
JP6825330B2 (ja) オートファジー誘導剤
JP2006508968A (ja) ウルソル酸−大豆レシチン凍結乾燥ナノ粒子注射剤およびその製造方法
US6271397B1 (en) L-ascorbic acid-2-phosphoric acid potassium crystal and method for producing the same
KR101404990B1 (ko) 코엔자임 q10 전분 복합체를 포함하는 기능성 음료 및 이의 제조방법
Singh et al. Evaluation of in-vitro anti-inflammatory activity of chebulinic acid from Terminalia chebula Linn. against the denaturation of protein
EP0962461B1 (en) Crystalline potassium salt of L-ascorbic acid-2-phosphoric acid and method for producting the same
RU2429224C1 (ru) Смешанный ангидрид дихлоруксусной и аминоуксусной кислот и способ его получения
JP2024057691A (ja) ピロロキノリンキノン含有塩又はその溶媒和物、それらを含む組成物、及びその製造方法
TW201742617A (zh) 美白化粧料及其所含有的白蛋白類化合物之製造方法
JP2003171302A (ja) 抗炎症剤および組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018525047

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819891

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187037542

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017819891

Country of ref document: EP

Effective date: 20190129