WO2017222001A1 - ガスセンサ及び被測定ガス中の複数目的成分の濃度測定方法 - Google Patents

ガスセンサ及び被測定ガス中の複数目的成分の濃度測定方法 Download PDF

Info

Publication number
WO2017222001A1
WO2017222001A1 PCT/JP2017/022945 JP2017022945W WO2017222001A1 WO 2017222001 A1 WO2017222001 A1 WO 2017222001A1 JP 2017022945 W JP2017022945 W JP 2017022945W WO 2017222001 A1 WO2017222001 A1 WO 2017222001A1
Authority
WO
WIPO (PCT)
Prior art keywords
condition
concentration
gas
sensor output
sensor
Prior art date
Application number
PCT/JP2017/022945
Other languages
English (en)
French (fr)
Inventor
中垣邦彦
ディートマール シュミット
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN201780038692.0A priority Critical patent/CN109451749B/zh
Priority to DE112017003119.2T priority patent/DE112017003119T5/de
Priority to JP2018524152A priority patent/JP6820922B2/ja
Publication of WO2017222001A1 publication Critical patent/WO2017222001A1/ja
Priority to US16/228,827 priority patent/US11060996B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0037NOx
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0054Ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/021Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx

Definitions

  • the present invention relates to a gas sensor capable of measuring each concentration of a plurality of target components in a gas to be measured and a method for measuring the concentration of the plurality of target components in the gas to be measured.
  • a NOx sensor having a series two-chamber structure (series two-chamber NOx sensor), a NOx measurement method using the NOx sensor (see, for example, Japanese Patent Laid-Open No. 2015-200163), and a hybrid using an oxide semiconductor electrode
  • a potential-type or resistance-change type NO 2 sensor or NH 3 sensor is known (see, for example, Japanese Patent Application Laid-Open Nos. 2013-068632 and 2009-243942).
  • a method for measuring the NH 3 concentration using a mixed potential of an oxide semiconductor electrode is known.
  • the NOx concentration is measured by another sensor.
  • the mixed potential of the oxide semiconductor electrode is used as it is.
  • NO and NO 2 are present, the oxide semiconductor electrode is hybridized. This is a method of correcting the potential (see, for example, JP-T-2009-511859).
  • a selective reduction catalyst system (hereinafter referred to as an SCR system) that can perform NOx purification without impairing CO 2 emission, that is, fuel consumption, occupies the mainstream of NOx purification.
  • the SCR system reacts injected urea with exhaust gas to generate ammonia, and reacts ammonia and NOx to decompose into N 2 and O 2 .
  • DOC catalyst oxidation catalyst
  • DPF diesel particulate filter
  • SCR catalyst selective reduction catalyst
  • the NOx sensor and the NOx measuring method described in JP-A-2015-200633 described above convert the amount of O 2 generated by converting NO, NO 2 , NH 3 into NO and decomposing the converted NO, or the concentration thereof. taking measurement. Therefore, even if the total amount of NO, NO 2 and NH 3 could be measured, it was not possible to distinguish each.
  • Oxide semiconductor electrode of JP 2013-068632 and JP 2009-243942 JP is, NO, although having excellent selectivity NO 2, the output characteristic of the sensitivity to NO and NO 2 is positive and negative reversed Therefore, the NO or NO 2 concentration could not be measured correctly in an atmosphere where NO and NO 2 coexist.
  • the present invention has been made in consideration of such problems, and the concentration of a plurality of components (for example, NO, NO 2 , NH 3 ) coexisting in the presence of unburned components such as exhaust gas and oxygen is increased over a long period of time. It is an object of the present invention to provide a gas sensor that can accurately measure the concentration of a plurality of target components in a gas to be measured.
  • a plurality of components for example, NO, NO 2 , NH 3
  • a gas sensor includes a structure made of at least an oxygen ion conductive solid electrolyte, a gas inlet formed in the structure and into which a gas to be measured is introduced, and the structure.
  • a sensor element having an oxygen concentration adjusting chamber formed and communicating with the gas inlet; a measurement chamber formed in the structure and communicating with the oxygen concentration adjusting chamber; and controlling the oxygen concentration in the oxygen concentration adjusting chamber
  • Oxygen concentration control means for controlling, temperature control means for controlling the temperature of the sensor element, and at least one of the oxygen concentration of the oxygen concentration adjustment chamber and the temperature of the sensor element of the target component of the introduced gas to be measured
  • Condition setting means for setting the condition according to the type, and a plurality of different concentrations of the target component based on the respective sensor outputs obtained under a plurality of conditions according to the type of the target component And having a concentration calculation means for output.
  • the oxygen concentration adjusting chamber has a main adjusting chamber communicating with the gas inlet and a sub adjusting chamber communicating with the main adjusting chamber, and the measuring chamber is the auxiliary adjusting chamber. It may communicate with the adjustment chamber.
  • the oxygen concentration adjustment chamber has a pump electrode
  • the measurement chamber has a measurement electrode
  • the pump electrode is made of a material having lower catalytic activity than the measurement electrode. It is preferable.
  • a plurality of target component may be NO and NO 2.
  • the concentrations of NO and NO 2 may be calculated as follows. That is, the condition setting means sets a condition for converting all NO 2 to NO without decomposing NO as the first condition. The condition setting means sets a condition for converting a part of NO 2 to NO without decomposing NO as the second condition. The concentration calculation means calculates each concentration of NO and NO 2 based on the first relational expression and the second relational expression.
  • the first relational expression represents the relationship between NO, NO 2 and offset current constituting the sensor output under the first condition.
  • the second relational expression represents the relationship between NO, NO 2 and offset current constituting the sensor output under the second condition.
  • the concentrations of NO and NO 2 may be calculated as follows. That is, the condition setting means sets a condition for converting all NO 2 to NO without decomposing NO as the first condition.
  • the condition setting means sets a condition for converting a part of NO 2 to NO without decomposing NO as the second condition.
  • the density calculation means uses a first map.
  • the first map is a sensor output under the first condition obtained experimentally in advance, and an output difference obtained by subtracting the sensor output under the first condition from the sensor output under the second condition. The relationship between the NO concentration and the NO 2 concentration is registered for each point specified by the sensor output and the output difference under the first condition.
  • the concentration calculation means the output difference obtained by subtracting the sensor output under the first condition from the sensor output under the first condition under actual use and the sensor output under the second condition, Compared with the first map, each concentration of NO and NO 2 is obtained.
  • condition setting means sets the second condition after setting the first condition.
  • the plurality of target components may be NO, NO 2 and NH 3 .
  • the concentrations of NO, NO 2 and NH 3 may be calculated as follows. That is, the condition setting means, without decomposing NO, all NO 2 is converted to NO, and sets a condition for converting all also NH 3 NO as the first condition.
  • the condition setting means sets a condition for converting a part of NO 2 to NO and converting all of NH 3 to NO without decomposing NO as a second condition.
  • the condition setting means sets a condition for converting NO 2 to NO while partially decomposing NO and converting a part of NH 3 to NO as a third condition.
  • the concentration calculating means calculates each concentration of NO, NO 2 and NH 3 based on the third relational expression, the fourth relational expression, and the fifth relational expression.
  • the third relational expression represents the relationship among NO, NO 2 , NH 3 and offset current constituting the sensor output under the first condition.
  • the fourth relational expression represents the relationship among NO, NO 2 , NH 3 and offset current that constitute the sensor output under the second condition.
  • the fifth relational expression represents the relationship among NO, NO 2 , NH 3 and offset current constituting the sensor output under the third condition.
  • the concentrations of NO, NO 2 and NH 3 may be calculated as follows. That is, the condition setting means, without decomposing NO, all NO 2 is converted to NO, and sets a condition for converting all also NH 3 NO as the first condition.
  • the condition setting means sets a condition for converting a part of NO 2 to NO and converting all of NH 3 to NO without decomposing NO as a second condition.
  • the condition setting means sets a condition for converting NO 2 to NO while partially decomposing NO and converting a part of NH 3 to NO as a third condition.
  • the density calculation means uses a second map.
  • the second map includes a sensor output under the first condition obtained experimentally in advance, and a first output difference obtained by subtracting the sensor output under the first condition from the sensor output under the second condition.
  • the concentration calculating means outputs the sensor output under the first condition during actual use from the sensor output under the first condition during actual use and the sensor output under the second condition during actual use.
  • the difference is compared with the second map to determine each concentration of NO, NO 2 and NH 3 .
  • condition setting means sets the first condition, then sets the second condition, and then sets the third condition.
  • a method for measuring the concentration of a plurality of target components in a gas to be measured according to the second aspect of the present invention includes a structure composed of at least an oxygen ion conductive solid electrolyte, and is formed in the structure, and the gas to be measured is introduced.
  • a sensor element having a gas inlet, an oxygen concentration adjusting chamber formed in the structure and communicating with the gas inlet, and a measurement chamber formed in the structure and communicating with the oxygen concentration adjusting chamber.
  • a plurality of target component may be NO and NO 2.
  • the concentrations of NO and NO 2 may be calculated as follows. That is, the condition setting step sets a condition for converting all NO 2 to NO without decomposing NO as the first condition. In the condition setting step, a condition for converting a part of NO 2 to NO without decomposing NO is set as a second condition.
  • the concentration calculation step calculates each concentration of NO and NO 2 based on the first relational expression and the second relational expression.
  • the first relational expression represents the relationship between NO, NO 2 and offset current constituting the sensor output under the first condition.
  • the second relational expression represents the relationship between NO, NO 2 and offset current constituting the sensor output under the second condition.
  • the concentrations of NO and NO 2 may be calculated as follows. That is, the condition setting step sets a condition for converting all NO 2 to NO without decomposing NO as the first condition. In the condition setting step, a condition for converting a part of NO 2 to NO without decomposing NO is set as a second condition.
  • the density calculation step uses a first map.
  • the first map is a sensor output under the first condition obtained experimentally in advance, and an output difference obtained by subtracting the sensor output under the first condition from the sensor output under the second condition. The relationship between the NO concentration and the NO 2 concentration is registered for each point specified by the sensor output and the output difference under the first condition.
  • the concentration calculation step the output difference obtained by subtracting the sensor output under the first condition from the sensor output under the first condition under actual use and the sensor output under the second condition, Compared with the first map, each concentration of NO and NO 2 is obtained.
  • condition setting step is preferably set to the second condition after being set to the first condition.
  • the plurality of target components may be NO, NO 2 and NH 3 .
  • the concentrations of NO, NO 2 and NH 3 may be calculated as follows. That is, in the condition setting step, a condition for converting all NO 2 into NO and also converting all NH 3 into NO without decomposing NO is set as a first condition. In the condition setting step, a condition for converting a part of NO 2 into NO and converting all NH 3 into NO without decomposing NO is set as a second condition. The condition setting step sets a condition for converting NO 2 to NO while partially decomposing NO, and converting a part of NH 3 to NO as a third condition. The concentration calculating step calculates each concentration of NO, NO 2 and NH 3 based on the third relational expression, the fourth relational expression, and the fifth relational expression.
  • the third relational expression represents the relationship among NO, NO 2 , NH 3 and offset current constituting the sensor output under the first condition.
  • the fourth relational expression represents the relationship among NO, NO 2 , NH 3 and offset current that constitute the sensor output under the second condition.
  • the fifth relational expression represents the relationship among NO, NO 2 , NH 3 and offset current constituting the sensor output under the third condition.
  • the concentrations of NO, NO 2 and NH 3 may be calculated as follows. That is, in the condition setting step, a condition for converting all NO 2 into NO and also converting all NH 3 into NO without decomposing NO is set as a first condition. In the condition setting step, a condition for converting a part of NO 2 into NO and converting all NH 3 into NO without decomposing NO is set as a second condition. The condition setting step sets a condition for converting NO 2 to NO while partially decomposing NO, and converting a part of NH 3 to NO as a third condition. The density calculation step uses a second map.
  • the second map includes a sensor output under the first condition obtained experimentally in advance, and a first output difference obtained by subtracting the sensor output under the first condition from the sensor output under the second condition.
  • the sensor output under the first condition, the first output difference From the second output difference obtained by subtracting the sensor output under the second condition from the sensor output under the third condition, the sensor output under the first condition, the first output difference, The relationship between the NO concentration, the NO 2 concentration, and the NH 3 concentration is registered for each point specified by the two output differences.
  • the concentration calculation step includes sensor output under the first condition during actual use and sensor output under the first condition during actual use from the sensor output under the second condition during actual use.
  • the difference is compared with the second map to determine each concentration of NO, NO 2 and NH 3 .
  • condition setting step sets the first condition, then sets the second condition, and then sets the third condition.
  • a plurality of components that coexist in the presence of unburned components such as exhaust gas and oxygen (for example, NO, NO 2 , NH 3 ). Can be measured accurately over a long period of time.
  • FIG. 1 is a cross-sectional view showing one structural example of the gas sensor (first gas sensor) according to the first embodiment to the gas sensor (fourth gas sensor) according to the fourth embodiment.
  • FIG. 2 is a configuration diagram schematically showing the first gas sensor to the fourth gas sensor.
  • 3A and 3B are diagrams showing characteristics of the oxygen concentration in the oxygen concentration adjustment chamber with respect to the temperature of the sensor element (element temperature),
  • FIG. 3A shows the relationship between decomposition and undecomposition of NO, and
  • FIG. The relationship between decomposition and undecomposition of NO 2 is shown.
  • FIG. 4 is an explanatory view schematically showing a reaction in the oxygen concentration adjustment chamber and a reaction in the measurement chamber under the first condition in the first gas sensor and the second gas sensor.
  • FIG. 1 is a cross-sectional view showing one structural example of the gas sensor (first gas sensor) according to the first embodiment to the gas sensor (fourth gas sensor) according to the fourth embodiment.
  • FIG. 2 is a configuration diagram schematically showing the first gas
  • FIG. 5 is an explanatory diagram schematically showing a reaction in the oxygen concentration adjustment chamber and a reaction in the measurement chamber under the second condition in the first gas sensor and the second gas sensor.
  • FIG. 6A is a graph showing the sensor output characteristic with respect to the NO concentration under the first condition and the sensor output characteristic with respect to the NO concentration under the second condition.
  • Figure 6B is a graph showing the characteristics of sensor output with respect to NO 2 concentration in the first condition, the characteristics of sensor output with respect to NO 2 concentration in the second condition.
  • FIG. 7 is a flowchart showing a measurement process of NO and NO 2 by the first gas sensor.
  • FIG. 8 is a graph showing the first map used in the second gas sensor.
  • FIG. 9 is an explanatory diagram showing the first map used in the second gas sensor in the form of a table.
  • FIG. 10 is a flowchart showing NO and NO 2 measurement processing by the second gas sensor.
  • 11A and 11B are diagrams showing characteristics of the oxygen concentration in the oxygen concentration adjustment chamber with respect to the temperature of the sensor element (element temperature), FIG. 11A shows the relationship between decomposition and undecomposition of NO, and FIG. The relationship between decomposition and undecomposition of NO 2 is shown.
  • FIG. 12 is a diagram showing the characteristics of the oxygen concentration in the oxygen concentration adjustment chamber with respect to the temperature of the sensor element (element temperature), particularly the relationship between NH 3 decomposition and undecomposition.
  • FIG. 13 is an explanatory diagram schematically showing a reaction in the oxygen concentration adjustment chamber and a reaction in the measurement chamber under the first condition in the third gas sensor and the fourth gas sensor.
  • FIG. 14 is an explanatory diagram schematically showing a reaction in the oxygen concentration adjustment chamber and a reaction in the measurement chamber under the second condition in the third gas sensor and the fourth gas sensor.
  • FIG. 15 is an explanatory diagram schematically showing a reaction in the oxygen concentration adjustment chamber and a reaction in the measurement chamber under the third condition in the third gas sensor and the fourth gas sensor.
  • FIG. 16A shows the characteristics of the sensor output with respect to the NO concentration under the first condition, the characteristics of the sensor output with respect to the NO concentration under the second condition, and the characteristics of the sensor output with respect to the NO concentration under the third condition. It is a graph.
  • FIG. 16B is a characteristic of the sensor output with respect to NO 2 concentration in the first condition, and the characteristics of the sensor output with respect to NO 2 concentration in the second condition, the characteristics of the sensor output with respect to NO 2 concentration in the third condition It is a graph which shows.
  • Figure 17 is a characteristic of the sensor output with respect to NH 3 concentration in the first condition, and the characteristics of the sensor output with respect to NH 3 concentration in the second condition, the characteristics of the sensor output with respect to NH 3 concentration in the third condition It is a graph which shows.
  • FIG. 18 is a flowchart showing a measurement process of NO, NO 2 and NH 3 by the third gas sensor.
  • FIG. 19 is a diagram showing a second map used in the fourth gas sensor in a graph.
  • FIG. 20 is an explanatory diagram showing the second map used in the fourth gas sensor in the form of a table.
  • FIG. 21 is a flowchart (No. 1) showing a measurement process of NO, NO 2 and NH 3 by the fourth gas sensor.
  • FIG. 22 is a flowchart (No. 2) showing a measurement process of NO, NO 2 and NH 3 by the fourth gas sensor.
  • FIG. 23 is a time chart showing an example of a period set as the first condition, a period set as the second condition, and a period set as the third condition in one cycle.
  • Embodiments of a gas sensor and a method for measuring the concentration of a plurality of target components in a gas to be measured according to the present invention will be described below with reference to FIGS.
  • “to” indicating a numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
  • the gas sensor according to the first embodiment has a sensor element 12 as shown in FIGS.
  • the sensor element 12 includes a structure 14 made of an oxygen ion conductive solid electrolyte, a gas inlet 16 formed in the structure 14 for introducing a gas to be measured, and formed in the structure 14 to introduce gas. It has an oxygen concentration adjustment chamber 18 that communicates with the port 16 and a measurement chamber 20 that is formed in the structure 14 and communicates with the oxygen concentration adjustment chamber 18.
  • the oxygen concentration adjusting chamber 18 has a main adjusting chamber 18a that communicates with the gas inlet 16 and a sub adjusting chamber 18b that communicates with the main adjusting chamber 18a.
  • the measurement chamber 20 communicates with the auxiliary adjustment chamber 18b.
  • the structure 14 of the sensor element 12 includes a first substrate layer 22a, a second substrate layer 22b, a third substrate layer 22c, a first solid electrolyte layer 24, a spacer layer 26, and a second layer.
  • Six layers including the solid electrolyte layer 28 are laminated in this order from the lower side in the drawing view.
  • Each layer is composed of an oxygen ion conductive solid electrolyte layer such as zirconia (ZrO 2 ).
  • a gas inlet 16, a first diffusion rate limiting unit 30, and a main adjustment are provided on the tip end side of the sensor element 12 and between the lower surface of the second solid electrolyte layer 28 and the upper surface of the first solid electrolyte layer 24.
  • the chamber 18a, the 2nd diffusion control part 32, and the sub adjustment chamber 18b are provided.
  • a buffer space 34 and a third diffusion rate limiting unit 36 may be provided between the first diffusion rate limiting unit 30 and the oxygen concentration adjusting chamber 18.
  • the gas inlet 16, the first diffusion control unit 30, the buffer space 34, the third diffusion control unit 36, the main adjustment chamber 18 a, the second diffusion control unit 32, and the sub adjustment chamber 18 b communicate in this order. Are formed adjacent to each other.
  • a portion from the gas inlet 16 to the auxiliary adjustment chamber 18b is also referred to as a gas circulation part.
  • each upper portion is a lower surface of the second solid electrolyte layer 28
  • each lower portion is an upper surface of the first solid electrolyte layer 24
  • each side portion is a spacer.
  • the side of the layer 26 is partitioned.
  • the first diffusion rate limiting unit 30, the second diffusion rate limiting unit 32, and the third diffusion rate limiting unit 36 are all provided as two horizontally long slits (the direction perpendicular to the drawing is the longitudinal direction of the opening).
  • a reference gas introduction space 38 is provided at a position between the upper surface of the third substrate layer 22c and the lower surface of the spacer layer 26 and farther from the front end side than the gas circulation part.
  • the reference gas introduction space 38 is an internal space defined by an upper portion being the lower surface of the spacer layer 26, a lower portion being the upper surface of the third substrate layer 22 c, and a side portion being the side surface of the first solid electrolyte layer 24.
  • oxygen or air is introduced into the reference gas introduction space 38 as a reference gas.
  • the gas introduction port 16 is a part opened to the external space, and the gas to be measured is taken into the sensor element 12 from the external space through the gas introduction port 16.
  • the first diffusion control unit 30 is a part that imparts a predetermined diffusion resistance to the measurement gas taken in from the gas inlet 16.
  • the buffer space 34 is provided for the purpose of canceling the concentration fluctuation of the gas to be measured caused by the pressure fluctuation of the gas to be measured in the external space (exhaust pressure pulsation if the gas to be measured is an automobile exhaust gas).
  • the sensor element 12 may or may not include the buffer space 34.
  • the third diffusion control unit 36 is a part that imparts a predetermined diffusion resistance to the gas to be measured introduced from the buffer space 34 into the main adjustment chamber 18a.
  • the third diffusion rate controlling part 36 is a part provided in association with the provision of the buffer space 34.
  • the first diffusion rate limiting unit 30 and the main adjustment chamber 18a communicate directly.
  • the main adjustment chamber 18a is provided as a space for adjusting the oxygen partial pressure in the measurement gas introduced from the gas introduction port 16.
  • the oxygen partial pressure is adjusted by operating the main pump cell 40.
  • the main pump cell 40 is an electrochemical pump cell (main electrochemical pumping cell) including a main inner pump electrode 42, an outer pump electrode 44, and an oxygen ion conductive solid electrolyte sandwiched between these electrodes. ).
  • the main inner pump electrode 42 is provided on almost the entire upper surface of the first solid electrolyte layer 24, the lower surface of the second solid electrolyte layer 28, and the side surfaces of the spacer layer 26 that define the main adjustment chamber 18 a.
  • the outer pump electrode 44 is provided in a manner exposed to the external space in a region corresponding to the main inner pump electrode 42 on the upper surface of the second solid electrolyte layer 28.
  • the main inner pump electrode 42 and the outer pump electrode 44 are made of a material having a reduced reducing ability with respect to the NOx component in the gas to be measured.
  • it is formed as a porous cermet electrode having a rectangular shape in plan view (for example, a cermet electrode of ZrO 2 and a noble metal such as Pt containing 0.1 wt% to 30.0 wt% Au).
  • the main pump cell 40 applies a pump voltage Vp0 by a first variable power supply 46 provided outside the sensor element 12, and causes a pump current Ip0 to flow between the outer pump electrode 44 and the main inner pump electrode 42, thereby performing main adjustment.
  • Oxygen in the chamber 18a can be pumped into the external space, or oxygen in the external space can be pumped into the main adjustment chamber 18a.
  • the sensor element 12 includes a first oxygen partial pressure detection sensor cell 50 that is an electrochemical sensor cell.
  • the first oxygen partial pressure detection sensor cell 50 includes a main inner pump electrode 42, a reference electrode 48 sandwiched between the upper surface of the third substrate layer 22c and the first solid electrolyte layer 24, and oxygen ions sandwiched between these electrodes. And a conductive solid electrolyte.
  • the reference electrode 48 is an electrode having a substantially rectangular shape in plan view made of a porous cermet similar to the outer pump electrode 44 and the like.
  • a reference gas introduction layer 52 made of porous alumina and connected to the reference gas introduction space 38 is provided around the reference electrode 48. That is, the reference gas in the reference gas introduction space 38 is introduced to the surface of the reference electrode 48 through the reference gas introduction layer 52.
  • the first oxygen partial pressure detection sensor cell 50 is formed between the main inner pump electrode 42 and the reference electrode 48 due to an oxygen concentration difference between the atmosphere in the main adjustment chamber 18 a and the reference gas in the reference gas introduction space 38.
  • the electromotive force V0 generated in the first oxygen partial pressure detection sensor cell 50 changes according to the oxygen partial pressure of the atmosphere present in the main adjustment chamber 18a.
  • the sensor element 12 feedback-controls the first variable power supply 46 of the main pump cell 40 by the electromotive force V0.
  • the pump voltage Vp0 applied to the main pump cell 40 by the first variable power supply 46 can be controlled in accordance with the oxygen partial pressure in the atmosphere of the main adjustment chamber 18a.
  • the second diffusion control unit 32 gives a predetermined diffusion resistance to the gas to be measured whose oxygen concentration (oxygen partial pressure) is controlled by the operation of the main pump cell 40 in the main adjustment chamber 18a, and makes the gas to be measured a secondary gas. This is the part that leads to the adjustment chamber 18b.
  • the sub-adjustment chamber 18b further adjusts the oxygen partial pressure by the auxiliary pump cell 54 with respect to the gas to be measured introduced through the second diffusion control unit 32 after the oxygen concentration (oxygen partial pressure) is adjusted in the main adjustment chamber 18a in advance. It is provided as a space for performing the adjustment. As a result, the oxygen concentration in the sub-adjustment chamber 18b can be kept constant with high accuracy, so that the first gas sensor 10A can measure the NOx concentration with high accuracy.
  • the auxiliary pump cell 54 is an electrochemical pump cell, and an auxiliary pump electrode 56, an outer pump electrode 44, and a second solid electrolyte provided on substantially the entire lower surface of the second solid electrolyte layer 28 facing the sub-regulation chamber 18b. Layer 28.
  • auxiliary pump electrode 56 is also formed using a material having a reduced reducing ability with respect to the NOx component in the gas to be measured, similarly to the main inner pump electrode 42.
  • the auxiliary pump cell 54 applies a desired voltage Vp1 between the auxiliary pump electrode 56 and the outer pump electrode 44, thereby pumping out oxygen in the atmosphere in the sub-regulating chamber 18b to the external space or from the external space. It can be pumped into the adjustment chamber 18b.
  • auxiliary pump electrode 56 in order to control the oxygen partial pressure in the atmosphere in the sub-adjustment chamber 18b, the auxiliary pump electrode 56, the reference electrode 48, the second solid electrolyte layer 28, the spacer layer 26, and the first solid electrolyte layer 24 are used.
  • an electrochemical sensor cell that is, a second oxygen partial pressure detection sensor cell 58 for controlling the auxiliary pump is constituted.
  • the auxiliary pump cell 54 performs pumping by the second variable power source 60 that is voltage-controlled based on the electromotive force V1 detected by the second oxygen partial pressure detection sensor cell 58. Thereby, the oxygen partial pressure in the atmosphere in the sub-adjustment chamber 18b is controlled to a low partial pressure that does not substantially affect the measurement of NOx.
  • the pump current Ip1 of the auxiliary pump cell 54 is used for controlling the electromotive force V0 of the first oxygen partial pressure detection sensor cell 50.
  • the pump current Ip1 is input as a control signal to the first oxygen partial pressure detection sensor cell 50, and the electromotive force V0 is controlled, so that the pump current Ip1 is introduced into the sub-adjustment chamber 18b from the second diffusion rate limiting unit 32.
  • the gradient of the oxygen partial pressure in the gas to be measured is controlled so as to be always constant.
  • the oxygen concentration in the auxiliary adjustment chamber 18b is accurately maintained at a predetermined value for each condition by the action of the main pump cell 40 and the auxiliary pump cell 54.
  • the measurement of the NOx concentration is mainly performed by the operation of the measurement pump cell 61.
  • the measurement pump cell 61 is an electrochemical pump cell constituted by the measurement electrode 62, the outer pump electrode 44, the second solid electrolyte layer 28, the spacer layer 26, and the first solid electrolyte layer 24.
  • the measurement electrode 62 is provided directly on the upper surface of the first solid electrolyte layer 24 facing the sub-adjustment chamber 18 b and is covered with the fourth diffusion rate limiting unit 64.
  • the fourth diffusion control part 64 is a film made of a ceramic porous body such as alumina (Al 2 O 3 ).
  • the fourth diffusion control unit 64 plays a role of limiting the amount of NOx flowing into the measurement electrode 62.
  • the fourth diffusion rate controlling unit 64 also functions as a protective film for the measurement electrode 62. Accordingly, the periphery of the measurement electrode 62 functions as the measurement chamber 20.
  • the measurement electrode 62 is a porous cermet electrode made of a material that has a reduction ability for NOx components in the gas to be measured higher than that of the main inner pump electrode 42.
  • the measurement electrode 62 also functions as a NOx reduction catalyst that reduces NOx present in the atmosphere on the measurement electrode 62.
  • the measurement pump cell 61 pumps out oxygen generated by the decomposition of nitrogen oxides in the atmosphere around the measurement electrode 62 (measurement chamber 20), and can detect the generated amount as a pump current Ip2, that is, a sensor output. it can.
  • the first solid electrolyte layer 24, the measurement electrode 62, and the reference electrode 48 constitute an electrochemical sensor cell, that is, a measurement pump.
  • a third oxygen partial pressure detection sensor cell 66 for control is configured.
  • the third variable power supply 68 is controlled based on the electromotive force V2 detected by the third oxygen partial pressure detection sensor cell 66.
  • the gas to be measured introduced into the sub-adjustment chamber 18b reaches the measurement electrode 62 through the fourth diffusion rate-determining unit 64 in a state where the oxygen partial pressure is controlled.
  • Nitrogen oxide in the gas to be measured around the measurement electrode 62 is reduced to generate oxygen.
  • the generated oxygen is pumped by the measurement pump cell 61.
  • the voltage Vp2 of the third variable power supply 68 is controlled so that the electromotive force V2 detected by the third oxygen partial pressure detection sensor cell 66 is constant.
  • the amount of oxygen generated around the measurement electrode 62 is proportional to the concentration of nitrogen oxides in the measurement gas. Therefore, the nitrogen oxide concentration in the gas to be measured can be calculated using the pump current Ip2 of the measurement pump cell 61.
  • the first gas sensor 10A has an electrochemical sensor cell 70.
  • the sensor cell 70 includes a second solid electrolyte layer 28, a spacer layer 26, a first solid electrolyte layer 24, a third substrate layer 22c, an outer pump electrode 44, and a reference electrode 48. From the electromotive force Vref obtained by the sensor cell 70, the oxygen partial pressure in the gas to be measured outside the sensor can be detected.
  • the heater 72 is formed in a form sandwiched between the second substrate layer 22b and the third substrate layer 22c from above and below.
  • the heater 72 generates heat when power is supplied from outside through a heater electrode (not shown) provided on the lower surface of the first substrate layer 22a.
  • a heater electrode not shown
  • the heater 72 is embedded throughout the oxygen concentration adjustment chamber 18 so that a predetermined location of the sensor element 12 can be heated to a predetermined temperature and kept warm.
  • a heater insulating layer 74 made of alumina or the like is formed on the upper and lower surfaces of the heater 72 in order to obtain electrical insulation from the second substrate layer 22b and the third substrate layer 22c.
  • the first gas sensor 10A includes an oxygen concentration control means 100, a temperature control means 102, a condition setting means 104, and a concentration calculation means 106, as schematically shown in FIG.
  • the oxygen concentration control means 100 controls the oxygen concentration in the oxygen concentration adjusting chamber 18.
  • the temperature control unit 102 controls the temperature of the sensor element 12.
  • the condition setting means 104 sets at least one of the oxygen concentration in the oxygen concentration adjusting chamber 18 and the temperature of the sensor element 12 to a condition corresponding to the type of the target component of the introduced measurement gas.
  • the concentration calculation means 106 calculates the concentrations of a plurality of different target components based on the sensor outputs obtained under a plurality of conditions corresponding to the types of target components.
  • the oxygen concentration control means 100, the temperature control means 102, the condition setting means 104, and the concentration calculation means 106 are configured by one or more electronic circuits having, for example, one or a plurality of CPUs (central processing units) and a storage device. Is done.
  • the electronic circuit is a software function unit that realizes a predetermined function when a CPU executes a program stored in a storage device, for example.
  • an integrated circuit such as an FPGA (Field-Programmable Gate Array) in which a plurality of electronic circuits are connected in accordance with the function may be used.
  • all target components of NO and NO 2 are converted into NO in the oxygen concentration adjusting chamber 18 and then introduced into the measuring chamber 20 to measure the total amount of these two components. That is, the concentration for each of the two target components, that is, the concentrations of NO and NO 2 could not be measured.
  • the first gas sensor 10A includes the oxygen concentration control unit 100, the temperature control unit 102, the condition setting unit 104, and the concentration calculation unit 106 described above, thereby measuring each concentration of NO and NO 2. It is made to be able to.
  • the oxygen concentration control means 100 feedback-controls the first variable power supply 46 based on the condition set by the condition setting means 104 and the electromotive force V0 generated in the first oxygen partial pressure detection sensor cell 50 (see FIG. 1).
  • the oxygen concentration in the oxygen concentration adjusting chamber 18 is adjusted to a concentration according to the above conditions.
  • the temperature control unit 102 feedback-controls the heater 72 based on the condition set by the condition setting unit 104 and a measured value from a temperature sensor (not shown) that measures the temperature of the sensor element 12.
  • the temperature of the sensor element 12 is adjusted to a temperature according to the above conditions.
  • the condition setting means 104 sets a condition for converting all NO 2 to NO without decomposing NO as the first condition, and a condition for converting a part of NO 2 to NO without decomposing NO. Is set as the second condition.
  • FIGS. 3A and 3B show the characteristics of the oxygen concentration in the oxygen concentration adjusting chamber 18 with respect to the temperature of the sensor element 12.
  • FIG. 3A shows the relationship between decomposition and undecomposition of NO
  • FIG. 2 The relationship between decomposition and undecomposition of NO 2 is shown.
  • the first condition is set to a point Pa on the boundary line La where the NO decomposition rate is 0% in FIG. 3A. That is, in FIG. 3B, it is set to the point Pa on the boundary line La having a 100% decomposition rate from NO 2 to NO.
  • the second condition is set to a point Pb in the undecomposed region of NO in FIG. 3A. That is, in FIG. 3B, the point Pb is set between the NO 2 to NO decomposition rate 100% boundary line Lb and the NO 2 to NO decomposition rate 0% boundary line Lc. For example, the point Pb is set such that 80% of NO 2 is decomposed into NO and 20% of NO 2 is undecomposed.
  • the change from the first condition to the second condition in the present embodiment is performed, for example, by changing the oxygen concentration in the oxygen concentration adjusting chamber 18 while keeping the temperature constant.
  • the setting of the measurement conditions described above is merely an example, and the basic concept of the present invention is “the purpose that occurs in the oxygen concentration adjustment chamber by replacing the oxygen concentration and temperature setting conditions of the oxygen concentration adjustment chamber with the reference conditions.
  • the measurement conditions can be arbitrarily set as long as they do not deviate from “determining the component concentration”. For example, the temperature may be changed while keeping the oxygen concentration in the oxygen concentration adjusting chamber 18 constant.
  • the NO decomposition rate 0% boundary line and the NO decomposition rate 100% boundary line in FIG. 3A do not represent the progress of the absolute decomposition reaction.
  • the NO decomposition rate is 0% boundary line
  • the slope of the pump current Ip2 flowing in the measurement pump cell 61 arranged in the measuring chamber 20 with respect to the NO concentration That is, a combination of the oxygen concentration in the oxygen concentration adjusting chamber 18 and the measuring element temperature at which the sensitivity coefficient does not increase is shown.
  • the oxygen concentration adjustment chamber 18 does not increase the pump current Ip2 flowing in the measurement pump cell 61 arranged in the measurement chamber 20 even if the NO concentration in the gas to be measured is increased.
  • the combination of oxygen concentration and measuring element temperature is shown.
  • the NO 2 ⁇ NO decomposition rate 0% boundary line and the NO 2 ⁇ NO decomposition rate 100% boundary line in FIG. 3B also do not represent absolute progress of the decomposition reaction.
  • the NO 2 ⁇ NO decomposition rate 0% boundary line is a slope with respect to the NO 2 concentration of the pump current Ip 2 flowing in the measurement pump cell 61 disposed in the measurement chamber 20 even if the oxygen concentration in the oxygen concentration adjusting chamber 18 is further increased.
  • a combination of the oxygen concentration in the oxygen concentration adjusting chamber 18 and the measuring element temperature at which (ie, the sensitivity coefficient) does not increase is shown.
  • the NO 2 ⁇ NO decomposition rate 100% boundary line is a slope with respect to the NO 2 concentration of the pump current Ip 2 flowing in the measurement pump cell 61 arranged in the measurement chamber 20 even if the oxygen concentration in the oxygen concentration adjusting chamber 18 is further lowered.
  • a combination of the oxygen concentration in the oxygen concentration adjusting chamber 18 and the measuring element temperature at which (the sensitivity coefficient) does not decrease is shown.
  • NO is not decomposed in the oxygen concentration adjusting chamber 18 and remains NO.
  • NO 2 undergoes a decomposition reaction of 2NO 2 ⁇ 2NO + O 2 . Therefore, NO enters the measurement chamber 20 from the oxygen concentration adjustment chamber 18 and NO 2 does not enter.
  • NO enters the measurement chamber 20 from the oxygen concentration adjustment chamber 18 and NO 2 does not enter.
  • a decomposition reaction of NO ⁇ (1/2) N 2 + (1/2) O 2 occurs, and among these, O 2 is pumped out and detected as a sensor output (pump current Ip 2). Is done.
  • NO is not decomposed and remains NO in the oxygen concentration adjusting chamber 18.
  • NO 2 for example, 80% of NO 2 is decomposed into NO by the decomposition reaction of 2NO 2 ⁇ 2NO + O 2 , and the remaining 20% of NO 2 is not decomposed. Accordingly, NO and NO 2 enter the measurement chamber 20 from the oxygen concentration adjustment chamber 18.
  • a decomposition reaction of NO ⁇ (1/2) N 2 + (1/2) O 2 and a decomposition reaction of NO 2 ⁇ (1/2) N 2 + O 2 occur. Of these, O 2 is pumped out and detected as a sensor output (pump current Ip 2).
  • the sensor output with respect to the NO concentration is offset corresponding to the oxygen concentration at the point Pa in FIGS. 3A and 3B when the NO concentration is 0 ppm, as shown in FIG. 6A. Current OS 1 appears. As the NO concentration increases, the sensor output also increases proportionally.
  • the sensor output with respect to the NO 2 concentration shows an offset current OS 1 when the NO 2 concentration is 0 ppm, as in FIG. 6A.
  • the sensor output also increases proportionally, but the slope is smaller than the slope of the NO concentration under the first condition due to the difference in the diffusion coefficient between NO and NO 2 .
  • the slope of the NO concentration under the first condition is 1, it is about 0.9.
  • the first relational expression (1) between the sensor output IP 1 under the first condition and the sensor output (NO) corresponding to the NO concentration and the sensor output (NO 2 ) corresponding to the NO 2 concentration under the first condition ( 1) is as follows.
  • IP 1 NO + 0.9 NO 2 + OS 1 (1)
  • the sensor output with respect to the NO concentration is, as shown in FIG. 6A, the oxygen concentration at the point Pb in FIG. 3B when the NO concentration is 0 ppm. offset current OS 2 corresponding appear.
  • the sensor output also increases proportionally. Since only NO is introduced, the slope of the NO concentration is the same as in the first condition.
  • the sensor output with respect to the NO 2 concentration shows the offset current OS 2 when the NO 2 concentration is 0 ppm, as in FIG. 6A. .
  • the sensor output also increases proportionally, but the gradient is larger than the gradient of NO concentration under the first condition. This is because NO 2 reaching the measurement chamber 20 without being decomposed is decomposed, so that the amount of O 2 becomes larger than the amount of NO decomposed.
  • the slope of the NO concentration under the second condition is 1, it is about 1.12.
  • the second relational expression (the sensor output IP 2 under the second condition, the sensor output (NO) corresponding to the NO concentration under the second condition, and the sensor output (NO 2 ) corresponding to the NO 2 concentration ( 2) is as follows.
  • IP 2 NO + 1.12NO 2 + OS 2 (2)
  • step S ⁇ b > 1 of FIG. 7 the first gas sensor 10 ⁇ / b > A introduces a gas to be measured in which NO and NO 2 are mixed into the oxygen concentration adjusting chamber 18 through the gas inlet 16.
  • step S2 the condition setting means 104 sets the first condition and starts the oxygen concentration control means 100 or the temperature control means 102.
  • step S3 the oxygen concentration control means 100 or the temperature control means 102 adjusts the oxygen concentration in the oxygen concentration adjustment chamber 18 or the temperature of the sensor element 12 to the oxygen concentration or temperature according to the first condition.
  • step S4 the concentration calculation means 106 acquires the sensor output (IP 1 ) under the first condition.
  • step S5 the condition setting means 104 sets the second condition and starts the oxygen concentration control means 100 or the temperature control means 102.
  • step S6 the oxygen concentration control means 100 or the temperature control means 102 adjusts the oxygen concentration in the oxygen concentration adjusting chamber 18 or the temperature of the sensor element 12 to the oxygen concentration or sensor temperature according to the second condition.
  • step S7 the concentration calculation means 106 acquires the sensor output (IP 2 ) under the second condition.
  • step S8 the concentration calculation means 106 solves the binary simultaneous equations of the first relational expression (1) and the second relational expression (2) described above, thereby determining the concentration in the measurement gas in which NO and NO 2 are mixed. NO concentration and NO 2 concentration are calculated.
  • step S ⁇ b > 9 the first gas sensor 10 ⁇ / b > A determines whether or not there is a request for ending the NO and NO 2 measurement processing (power off, maintenance, etc.). If there is no termination request, the processing after step S1 is repeated. In step S9, the NO and NO 2 measurement processing in the first gas sensor 10A is terminated at the stage where the termination request is made.
  • the first gas sensor 10A acquires the sensor output under the condition (first condition) for converting all NO 2 into NO without decomposing NO, and also without decomposing NO.
  • the sensor output under the condition (second condition) for converting a part of 2 into NO is acquired.
  • a first relational expression of the sensor output under the first condition, the sensor output with respect to the NO concentration under the first condition and the sensor output with respect to the NO 2 concentration, the sensor output under the second condition, Each concentration of NO and NO 2 is calculated based on the second relational expression of the sensor output with respect to the NO concentration and the sensor output with respect to the NO 2 concentration under the conditions.
  • the first gas sensor 10A has a control system for the first gas sensor 10A without adding various measuring devices or the like as hardware to measure the concentration of NO and NO 2 that could not be realized in the past. It can be easily realized just by changing the software. As a result, it is possible to increase the accuracy of control and failure detection of the NOx purification system. In particular, it becomes possible to distinguish between NO and NO 2 in the exhaust gas downstream of the DOC (Diesel Oxidation Catalyst) catalyst, which contributes to detection of deterioration of the DOC catalyst.
  • DOC Diesel Oxidation Catalyst
  • a gas sensor according to the second embodiment (hereinafter referred to as a second gas sensor 10B) will be described with reference to FIGS.
  • the second gas sensor 10B has substantially the same configuration as the first gas sensor 10A described above, but the configuration of the concentration calculation means 106 is different.
  • the concentration calculation means 106 of the second gas sensor 10B has a sensor output under the first condition, an output difference obtained by subtracting the sensor output under the first condition from the sensor output under the second condition, Based on the map 110 (see FIGS. 8 and 9), the concentrations of NO and NO 2 are obtained.
  • the horizontal axis indicates the sensor output under the first condition
  • the vertical axis indicates the first output from the sensor output under the second condition.
  • points indicating the concentrations (or concentration ratios) of NO and NO 2 in the gas to be measured are present in a triangular region surrounded by three points p1, p7, and p20. Is shown.
  • point p1 is the upper limit concentration (for example, 500 ppm system) in which NO can be measured in the gas to be measured, and NO 2 is 0 ppm.
  • Sensor output Imax ( ⁇ A) under the first condition See line L1 and an intersection that connects an output difference ⁇ Imin ( ⁇ A) (see line L2) obtained by subtracting the sensor output under the first condition from the sensor output under the second condition.
  • point p7 is when NO is 0 ppm and NO 2 is 500 ppm.
  • the sensor output Imax ( ⁇ A) under the first condition (see line L1) and the sensor output under the second condition And an output difference ⁇ Imax ( ⁇ A) obtained by subtracting the sensor output under the first condition (see line L3).
  • Point p20 is when NO and NO 2 are both 0 ppm, and the sensor output 0 ( ⁇ A) (horizontal axis) under the first condition and the sensor output under the second condition from the first condition. This is an intersection point connecting the output difference ⁇ Imin ( ⁇ A) obtained by subtracting the sensor output of.
  • this first map 110 typically has points set for each of the same ratios from the line L2 for, for example, the 500 ppm system, the 250 ppm system, and the 125 ppm system, and the NO concentration and the NO 2 concentration correspond to each point. Assigned. When shown in a table format in an easy-to-understand manner, the contents are as shown in FIG. These concentrations are obtained by experiments or simulations.
  • the NO concentration and the NO 2 concentration can be obtained.
  • the NO concentration is 500 ppm
  • the NO 2 concentration is 0 ppm
  • the NO concentration is 400 ppm
  • the NO 2 concentration is 111 ppm
  • the NO concentration is 300 ppm and the NO 2 concentration is 222 ppm.
  • the closest point is specified, and for example, the NO concentration and the NO 2 concentration may be obtained by a known approximate calculation.
  • steps S101 to S107 in FIG. 10 are the same as the above-described processing of the first gas sensor 10A (see steps S1 to S7 in FIG. 7), and thus redundant description thereof is omitted.
  • step S108 the concentration calculation means 106 outputs the difference between the sensor output under the first condition and the output difference obtained by subtracting the sensor output under the first condition from the sensor output under the second condition [# 2- # 1. ], One point on the first map 110 is specified.
  • step S109 the NO concentration and the NO 2 concentration corresponding to the identified point are read from the first map 110, and are set as the currently measured NO concentration and NO 2 concentration.
  • the closest point is specified, and for example, the NO concentration and the NO 2 concentration are obtained by a known approximate calculation.
  • step S110 the second gas sensor 10B determines whether or not there is a request for termination of the NO and NO 2 measurement processes (power cut, maintenance, etc.). If there is no termination request, the processing from step S101 is repeated. In step S110, the NO and NO 2 measurement processes in the second gas sensor 10B are terminated at the stage where the termination request is made.
  • the second gas sensor 10B also has the same effect as the first gas sensor 10A described above.
  • FIG. 10C a gas sensor according to a third embodiment (hereinafter referred to as a third gas sensor 10C) will be described with reference to FIGS. 1, 2, and 11A to 18.
  • FIG. 10C a gas sensor according to a third embodiment
  • the third gas sensor 10C has substantially the same configuration as the first gas sensor 10A described above, but differs in that each concentration of three target components, that is, NO, NO 2 and NH 3 can be measured.
  • a condition for partially decomposing NO and converting a part of NH 3 to NO is set as the third condition.
  • FIG. 11A shows the relationship between decomposition and undecomposition of NO.
  • the vertical axis represents the oxygen concentration in the oxygen concentration adjustment chamber 18, and the horizontal axis represents the temperature of the sensor element 12.
  • a broken line La indicates a boundary line where the decomposition reaction of NO ⁇ (1/2) N 2 + (1/2) O 2 is 0%, that is, the decomposition reaction does not occur.
  • a broken line Ld indicates a boundary line at which the decomposition reaction occurs 100%.
  • Plot Pa shows the oxygen concentration and element temperature corresponding to the first condition.
  • the plot Pb shows the oxygen concentration and element temperature corresponding to the second condition.
  • the plot Pc shows the oxygen concentration and element temperature corresponding to the third condition. From FIG. 11A, the decomposition reaction of NO does not proceed under the first condition and the second condition, but 20% of NO under the third condition is NO ⁇ (1/2) N 2 + (1/2) O 2. It can be seen that
  • FIG. 11B shows the relationship between decomposition and undecomposition of NO 2 , where the vertical axis indicates the oxygen concentration in the oxygen concentration adjustment chamber 18, and the horizontal axis indicates the temperature of the sensor element 12.
  • a broken line Lc indicates a boundary line where the decomposition reaction of NO 2 ⁇ NO + (1/2) O 2 is 0%, that is, the decomposition reaction does not occur.
  • a broken line Lb indicates a boundary line where the decomposition reaction occurs 100%.
  • Plot Pa shows the oxygen concentration and element temperature corresponding to the first condition.
  • the plot Pb shows the oxygen concentration and element temperature corresponding to the second condition.
  • the plot Pc shows the oxygen concentration and element temperature corresponding to the third condition. From FIG. 11B, it can be seen that the NO 2 decomposition reaction proceeds 100% under the first condition and the third condition, but 20% of NO 2 is not decomposed under the second condition.
  • FIG. 12 shows the relationship between the oxidation and non-oxidation of NH 3.
  • the vertical axis represents the oxygen concentration in the oxygen concentration adjustment chamber 18, and the horizontal axis represents the temperature of the sensor element 12.
  • a broken line Le indicates a boundary line where the oxidation reaction of NH 3 + 5O 2 ⁇ 4NO + 6H 2 O is 0%, that is, the oxidation reaction does not occur.
  • a broken line Lf indicates a boundary line where the oxidation reaction occurs 100%.
  • Plot Pa shows the oxygen concentration and element temperature corresponding to the first condition.
  • the plot Pb shows the oxygen concentration and element temperature corresponding to the second condition.
  • the plot Pc shows the oxygen concentration and element temperature corresponding to the third condition. From FIG. 12, it can be seen that the oxidation reaction of NH 3 proceeds 100% under the first condition and the second condition, but 10% of NH 3 is not decomposed under the third condition.
  • the NH 3 oxidation rate 100% boundary line and the NH 3 oxidation rate 0% boundary line in FIG. 12 do not represent absolute progress of the oxidation reaction.
  • a combination of the oxygen concentration in the oxygen concentration adjusting chamber 18 and the measuring element temperature at which (ie, the sensitivity coefficient) does not increase is shown.
  • the oxygen concentration adjustment is such that the pump current Ip2 flowing in the measurement pump cell 61 flows in the direction of drawing oxygen into the measurement chamber 20 with respect to the NH 3 concentration in the gas to be measured.
  • a combination of the oxygen concentration in the chamber 18 and the measuring element temperature is shown. Since these boundary lines change depending on the catalytic activity of the main inner pump electrode 42 arranged in the oxygen concentration adjusting chamber 18 and the microstructure of the electrode, they are experimentally confirmed for each element temperature, electrode material, and electrode microstructure. Is to be done.
  • the change from the first condition to the third condition in the third embodiment is performed, for example, by changing the oxygen concentration in the oxygen concentration adjusting chamber 18 while keeping the temperature constant, but according to the basic concept of the present invention.
  • a change in the chemical equilibrium of the target components (NO, NO 2 , NH 3 ) that occurs in the oxygen concentration adjustment chamber by changing the oxygen concentration and temperature setting conditions in the oxygen concentration adjustment chamber from the standard conditions Set the measurement conditions arbitrarily as long as they do not deviate from ⁇ determining the concentration of each component from the sensor output under the reference conditions and the sensor output fluctuation due to the condition change '' by intentionally changing the sensor output obtained in the measurement room.
  • the temperature may be changed while keeping the oxygen concentration in the oxygen concentration adjusting chamber 18 constant.
  • NO is not decomposed and remains NO in the oxygen concentration adjusting chamber 18.
  • NO 2 a decomposition reaction of 2NO 2 ⁇ 2NO + O 2 occurs.
  • NH 3 is oxidized to NO by an oxidation reaction of 4NH 3 + 5O 2 ⁇ 4NO + 6H 2 O. Therefore, NO enters the measurement chamber 20 from the oxygen concentration adjustment chamber 18 and NO 2 and NH 3 do not enter.
  • NO enters the measurement chamber 20 from the oxygen concentration adjustment chamber 18 and NO 2 and NH 3 do not enter.
  • a decomposition reaction of NO ⁇ (1/2) N 2 + (1/2) O 2 occurs, and among these, O 2 is pumped out and detected as a sensor output (pump current Ip 2). Is done.
  • NO is not decomposed and remains NO in the oxygen concentration adjusting chamber 18.
  • NO 2 for example, 80% of NO 2 is decomposed into NO by a decomposition reaction of 2NO 2 ⁇ 2NO + O 2 , and the remaining 20% of NO 2 is not decomposed.
  • NH 3 is oxidized to NO by an oxidation reaction of 4NH 3 + 5O 2 ⁇ 4NO + 6H 2 O. Accordingly, NO and NO 2 enter the measurement chamber 20 from the oxygen concentration adjustment chamber 18.
  • a decomposition reaction of NO ⁇ (1/2) N 2 + (1/2) O 2 and a decomposition reaction of NO 2 ⁇ (1/2) N 2 + O 2 occur.
  • O 2 is pumped out and detected as a sensor output (pump current Ip 2). In this case, surplus oxygen ions are brought in by NO 2 entering the measurement chamber 20, and the sensor output is larger than that in the first condition and the third condition.
  • the sensor output for the NO concentration is the oxygen concentration in the oxygen concentration adjusting chamber 18 under the first condition when the NO concentration is 0 ppm.
  • the resulting offset current OS 1 appears.
  • the sensor output also increases proportionally.
  • the oxygen concentration adjustment chamber 18 of the first condition As shown in FIG. 16B, in the first condition, when introducing only NO 2, the sensor output with respect to NO 2 concentration, when NO 2 concentration is 0 ppm, the oxygen concentration adjustment chamber 18 of the first condition An offset current OS 1 derived from the oxygen concentration appears. As the NO 2 concentration increases, the sensor output also increases proportionally, but the slope is smaller than the slope of the NO concentration under the first condition due to the difference in the diffusion coefficient between NO and NO 2 . When the slope of the NO concentration under the first condition is 1, it is about 0.9.
  • the sensor output with respect to the NH 3 concentration is as follows in the oxygen concentration adjusting chamber 18 under the first condition when the NH 3 concentration is 0 ppm.
  • An offset current OS 1 derived from the oxygen concentration appears.
  • the sensor output also increases proportionally, but the gradient is larger than the gradient of NO concentration under the first condition.
  • the slope of the NO concentration under the first condition is 1, it is about 1.1.
  • the sensor output for the NO concentration is the oxygen concentration adjustment chamber under the second condition when the NO concentration is 0 ppm.
  • An offset current OS 2 derived from the oxygen concentration in 18 appears.
  • the sensor output also increases proportionally. Since only NO is introduced, the slope of the NO concentration is the same as in the first condition.
  • the sensor output with respect to the NO 2 concentration indicates that the NO 2 concentration in the oxygen concentration adjusting chamber 18 under the second condition is 0 ppm.
  • An offset current OS 2 derived from the oxygen concentration appears.
  • the sensor output also increases proportionally, but the gradient is larger than the gradient of NO concentration under the first condition. This is because NO 2 reaching the measurement chamber 20 without being decomposed is decomposed, so that the amount of O 2 becomes larger than the amount of NO decomposed.
  • the slope of the NO concentration under the second condition is 1, it is about 1.12.
  • the sensor output with respect to the NH 3 concentration is, when the NH 3 concentration is 0 ppm, in the oxygen concentration adjusting chamber 18 under the second condition.
  • An offset current OS 2 derived from the oxygen concentration appears.
  • the sensor output also increases proportionally, but the gradient is larger than the gradient of NO concentration under the first condition.
  • the slope of the NO concentration under the first condition is 1, it is about 1.1.
  • the sensor output with respect to the NO concentration is as shown in FIG. 16A when the NO concentration is 0 ppm, as shown in FIG. 16A.
  • An offset current OS 3 derived from the oxygen concentration in 18 appears.
  • the sensor output also increases proportionally, but the slope of the NO concentration is smaller than the slope of the NO concentration under the first condition. This is because 10% of NO is decomposed in the oxygen concentration adjusting chamber 18. When the slope of the NO concentration under the first condition is 1, it is about 0.9.
  • the sensor output with respect to the NO 2 concentration is, as shown in FIG. 16B, when the NO 2 concentration is 0 ppm, as shown in FIG. 16B.
  • An offset current OS 3 derived from the oxygen concentration appears.
  • the sensor output also increases proportionally, but the inclination is the difference between the diffusion coefficient of NO and NO 2 , and 10% of NO is decomposed in the oxygen concentration adjustment chamber 18.
  • the slope of the NO concentration under the first condition is smaller. When the slope of the NO concentration under the first condition is 1, it is about 0.8.
  • the sensor output with respect to the NH 3 concentration is, as shown in FIG. 17, when the NH 3 concentration is 0 ppm, as shown in FIG. An offset current OS 3 derived from the oxygen concentration appears.
  • the sensor output also increases proportionally, but the gradient is smaller than the gradient of NO concentration under the first condition.
  • the slope of the NO concentration under the first condition is 1, it is about 0.72.
  • step S ⁇ b > 201 of FIG. 18 the third gas sensor 10 ⁇ / b > C introduces a gas to be measured in which NO, NO 2, and NH 3 are mixed into the oxygen concentration adjusting chamber 18 through the gas inlet 16.
  • step S202 the condition setting means 104 sets the first condition and starts the oxygen concentration control means 100 or the temperature control means 102.
  • step S203 the oxygen concentration control means 100 or the temperature control means 102 adjusts the oxygen concentration in the oxygen concentration adjusting chamber 18 or the temperature of the sensor element 12 to the oxygen concentration or the sensor temperature according to the first condition.
  • step S204 the concentration calculation means 106 acquires the sensor output (IP 1 ) under the first condition.
  • step S205 the condition setting unit 104 sets the second condition and activates the oxygen concentration control unit 100 or the temperature control unit 102.
  • step S206 the oxygen concentration control means 100 or the temperature control means 102 adjusts the oxygen concentration in the oxygen concentration adjustment chamber 18 or the temperature of the sensor element 12 to the oxygen concentration or sensor temperature according to the second condition.
  • step S207 the concentration calculation unit 106 acquires the sensor output (IP 2 ) under the second condition.
  • step S208 the condition setting unit 104 sets the third condition and activates the oxygen concentration control unit 100 or the temperature control unit 102.
  • step S209 the oxygen concentration control means 100 or the temperature control means 102 adjusts the oxygen concentration in the oxygen concentration adjustment chamber 18 or the temperature of the sensor element 12 to the oxygen concentration or sensor temperature according to the third condition.
  • step S210 the concentration calculation unit 106 acquires the sensor output (IP 3 ) under the third condition.
  • step S211 the density calculating unit 106, a third relational expression as described above (3), by solving the ternary simultaneous equations of the fourth equation (4) and a fifth relational expression (5), NO, NO 2 and NO concentration in a measurement gas and NH 3 are mixed, to calculate the NO 2 concentration and NH 3 concentration.
  • step S212 the third gas sensor 10C determines whether or not there is a request for termination of measurement processing of NO, NO 2, and NH 3 (power off, maintenance, etc.). If there is no termination request, the processing from step S201 is repeated. In step S212, the NO, NO 2 and NH 3 measurement process in the third gas sensor 10C is terminated at the stage where the termination request is made.
  • the third gas sensor 10C acquires the sensor output under the condition (first condition) for converting all of NO 2 into NO without decomposing NO, and also without decomposing NO.
  • the sensor output under a condition (second condition) for converting a part of 2 to NO is acquired, a part of NO is decomposed, and a condition for converting a part of NH 3 to NO is set as a third condition. I have to.
  • the concentrations of NO, NO 2 and NH 3 are calculated based on the third relational expression, the fourth relational expression and the fifth relational expression described above.
  • the concentrations of the multi-purpose components can be accurately adjusted over a long period of time. Can be measured.
  • the third gas sensor 10C has a process for measuring the concentrations of NO, NO 2, and NH 3 that could not be realized conventionally, without adding various measuring devices as hardware and the like. It can be easily realized by simply changing the control system software. As a result, it is possible to increase the accuracy of control and failure detection of the NOx purification system. In particular, it becomes possible to distinguish NO and NO 2 in the exhaust gas downstream of the DOC catalyst, which contributes to detection of deterioration of the DOC catalyst. Moreover, it is possible to distinguish NO, NO 2 and NH 3 in the exhaust gas downstream of the SCR system, which contributes to precise control of the urea injection amount of the SCR system and detection of deterioration.
  • a gas sensor according to a fourth embodiment (hereinafter referred to as a fourth gas sensor 10D) will be described with reference to FIGS.
  • the fourth gas sensor 10D has substantially the same configuration as the third gas sensor 10C described above, but the configuration of the concentration calculation means 106 is different.
  • the concentration calculation means 106 of the fourth gas sensor 10D calculates the sensor output under the first condition and the first output difference [# 2 obtained by subtracting the sensor output under the first condition from the sensor output under the second condition. -# 1], the second output difference obtained by subtracting the sensor output under the second condition from the sensor output under the third condition [# 3- # 2], and the second map 112, NO, Each concentration of NO 2 and NH 3 is determined.
  • the sensor output under the first condition is set on the x-axis, and the first output difference [## on the y-axis orthogonal to the x-axis. 2- # 1] is set, and the second output difference [# 3- # 2] is set on the z-axis orthogonal to the x-axis and the y-axis.
  • the second map 112 a plurality of points are set, and NO concentration, NO 2 concentration, and NH 3 concentration are assigned to each point.
  • the contents are as shown in FIG. FIG. 20 typically shows only the 500 ppm system. These concentrations are obtained by experiments or simulations.
  • the second map 112 has a three-dimensional structure (see FIG. 19), the sensor output under the first condition, the first output difference [# 2- # 1], and the second output difference [# 3- With # 2], one point is specified. NO concentration corresponding to this point, by reading the NO 2 concentration and NH 3 concentration of the second map 112 can be obtained NO concentrations, NO 2 concentration and NH 3 concentration.
  • the NO concentration is 500 ppm
  • the NO 2 concentration is 0 ppm
  • the NH 3 concentration is 0 ppm
  • the point p10 is the NO concentration is 300 ppm
  • the NO 2 concentration is 222 ppm
  • the NH 3 concentration is 0 ppm
  • the point p18 is the NO concentration.
  • NO 2 concentration is 150 ppm
  • NH 3 concentration is 150 ppm.
  • the closest point may be specified, and for example, the NO concentration, the NO 2 concentration, and the NH 3 concentration may be obtained by a known approximate calculation.
  • steps S301 to S310 in FIG. 21 and FIG. 22 are the same as the processing of the third gas sensor 10C described above (see steps S201 to S210 in FIG. 18), and thus redundant description thereof is omitted.
  • the concentration calculation unit 106 calculates the first output difference obtained by subtracting the sensor output under the first condition from the sensor output under the first condition and the sensor output under the second condition [ # 2- # 1] and one point on the second map 112 from the second output difference [# 3- # 2] obtained by subtracting the sensor output under the second condition from the sensor output under the third condition Is identified.
  • step S312 the NO concentration, NO 2 concentration, and NH 3 concentration corresponding to the specified point in the second map 112 are read out, and set as the currently measured NO concentration, NO 2 concentration, and NH 3 concentration.
  • the closest point is specified, and for example, the NO concentration, NO 2 and NH 3 concentration are obtained by a known approximate calculation.
  • step S313 the fourth gas sensor 10D determines whether or not there is a request for termination of measurement processing of NO, NO 2, and NH 3 (power cut, maintenance, etc.). If there is no termination request, the processing from step S301 onward in FIG. 21 is repeated. In step S313, when there is an end request, the measurement process of NO, NO 2 and NH 3 in the fourth gas sensor 10D is ended.
  • the fourth gas sensor 10D also has the same effect as the third gas sensor 10C described above.
  • the NO concentration from the specified point on the second map 112, for may be read the NO 2 concentration and NH 3 concentration, becomes unnecessary complicated arithmetic processing, a short time NO concentration, NO 2 concentration and NH 3 concentration Can be obtained.
  • the gas sensor according to the present invention and the method for measuring the concentration of a plurality of target components in the gas to be measured are not limited to the above-described embodiments, but depart from the gist of the present invention, that is, the following (a) to (c). Of course, various configurations can be adopted.
  • B By changing the condition of (a), the chemical equilibrium of the target component (for example, NO, NO 2 , NH 3 ) occurring in the oxygen concentration adjustment chamber is changed, and the sensor output obtained in the measurement chamber is intentionally varied.
  • the sub-adjustment chamber 18b may be omitted, and the measurement chamber 20 having the measurement electrode 62 and the fourth diffusion rate limiting unit 64 may be provided on the back side of the oxygen concentration adjustment chamber 18 constituted only by the main adjustment chamber 18a. .
  • the period Ta set in the first condition may be kept long, and the period Tb set in the second condition and the period Tc set in the third condition may be shortened. .
  • the sensor output under the first condition as a reference can be ensured with high accuracy, and the NO concentration, NO 2 concentration, and NH 3 concentration can be accurately measured.
  • the first condition in the process of setting the third condition from the state set to the second condition, the first condition may be set once. The measurement accuracy of the sensor output under the third condition can be improved.
  • the period Ta set for the first condition, the period Tb set for the second condition, and the period Tc set for the third condition may be set equally.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本発明は、ガスセンサ及び被測定ガス中の複数目的成分の濃度測定方法に関する。ガスセンサは、酸素濃度調整室(18)内の酸素濃度を制御する酸素濃度制御手段(100)と、センサ素子(12)の温度を制御する温度制御手段(102)と、酸素濃度調整室(18)の酸素濃度及びセンサ素子(12)の温度の少なくとも一方を、導入された被測定ガスの目的成分の種類に応じた条件に設定する条件設定手段(104)と、目的成分の種類に応じた複数の条件下で得られた各センサ出力に基づいて複数のそれぞれ異なる目的成分の濃度を算出する濃度算出手段(106)とを有する。

Description

ガスセンサ及び被測定ガス中の複数目的成分の濃度測定方法
 本発明は、被測定ガス中の複数目的成分の各濃度を測定することが可能なガスセンサ及び被測定ガス中の複数目的成分の濃度測定方法に関する。
 従来から、直列2室構造を持ったNOxセンサ(直列2室型NOxセンサ)、及びそれを用いたNOx測定方法(例えば特開2015-200643号公報参照)や、酸化物半導体電極を用いた混成電位型、あるいは抵抗変化型のNOセンサ、あるいはNHセンサが知られている(例えば特開2013-068632号公報及び特開2009-243942号公報参照)。
 また、酸化物半導体電極の混成電位を用いてNH濃度を測定する方法が知られている。この方法は、NOx濃度を別のセンサで測定し、NO、NOが存在しない場合は酸化物半導体電極の混成電位をそのまま使用し、NO、NOが存在する場合は酸化物半導体電極の混成電位に補正を加える方法である(例えば特表2009-511859号公報参照)。
 近年、各国のCO排出量規制が強化される傾向にあり、ディーゼル車の普及率が増えつつある。希薄燃焼を用いるディーゼルエンジンは、CO排出量が少ない代わりに過剰な酸素を含む排気ガス中のNOx浄化が困難である欠点を持つ。そのため、CO排出量規制の強化と同様に、NOx排出量の規制も強化されつつある。現在は、CO排出量、すなわち、燃料消費量を損なわずにNOx浄化が行える選択還元型触媒システム(以下、SCRシステムと記す)がNOx浄化の主流を占めている。SCRシステムは、注入した尿素を排気ガスと反応させてアンモニアを生成し、アンモニアとNOxを反応させてNとOに分解する。このSCRシステムにおいて、NOx浄化効率を100%に近づけるためには、尿素の注入量を増やす必要があるが、尿素注入量を増やすと未反応のアンモニアが大気に排出されるおそれがある。このため、NOxとアンモニアを区別できるセンサが求められている。
 さらには、米国において、酸化触媒(以下、DOC触媒と記す)、ディーゼルパティキュレートフィルタ(以下、DPFと記す)、選択還元型触媒(以下、SCR触媒と記す)の個別故障診断の義務付けに対する準備が進められている。DPF、SCR触媒の故障診断は、既存のPMセンサ、NOxセンサで可能であるが、DOC触媒に対しては有効な故障診断手段が見つかっていない。現在は、200℃以下の低温時のDOC触媒下流に漏れ出す炭化水素(以下、HCと記す)量を測定する方法や、DOC触媒下流に排出されるNOとNOの比率から故障を判断する方法等が推奨されている。特に、NOとNOの比率におけるNOの減少は、HC流出量の増大よりも早期に起こるため、より安全な故障診断方法として期待されている。このため、NOとNOを区別できるセンサが求められている。
 上述した特開2015-200643号公報記載のNOxセンサ及びNOx測定方法は、NO、NO、NHをNOに変換し、変換後のNOを分解して発生したOの量、もしくは濃度を測定する。そのため、NO、NO、NHの総量は測定できても各々を区別することができなかった。
 特開2013-068632号公報及び特開2009-243942号公報記載の酸化物半導体電極は、NO、NOの選択性に優れている反面、NOとNOに対する感度の出力特性が正負逆であるため、NOとNOが共存する雰囲気下では、正しくNO、もしくはNO濃度を測定することができなかった。
 特表2009-511859号公報記載のセンサは、酸化物半導体電極の排気ガス中における不安定さ、及び基板との密着強度の弱さから、長期間にわたり精度良くNH濃度を測定することが困難であった。
 本発明はこのような課題を考慮してなされたものであり、排気ガスのような未燃成分、酸素の存在下に共存する複数成分(例えばNO、NO、NH)の濃度を長期間にわたり精度よく測定することができるガスセンサ及び被測定ガス中の複数目的成分の濃度測定方法を提供することを目的とする。
[1] 第1の本発明に係るガスセンサは、少なくとも酸素イオン伝導性の固体電解質からなる構造体と、該構造体に形成され、被測定ガスが導入されるガス導入口と、前記構造体内に形成され、前記ガス導入口に連通する酸素濃度調整室と、前記構造体内に形成され、前記酸素濃度調整室に連通する測定室とを有するセンサ素子と、前記酸素濃度調整室内の酸素濃度を制御する酸素濃度制御手段と、前記センサ素子の温度を制御する温度制御手段と、前記酸素濃度調整室の酸素濃度及び前記センサ素子の温度の少なくとも一方を、導入された前記被測定ガスの目的成分の種類に応じた条件に設定する条件設定手段と、前記目的成分の種類に応じた複数の条件下で得られた各センサ出力に基づいて複数のそれぞれ異なる前記目的成分の濃度を算出する濃度算出手段とを有することを特徴とする。
[2] 第1の本発明において、前記酸素濃度調整室は、前記ガス導入口に連通する主調整室と、前記主調整室に連通する副調整室とを有し、前記測定室は前記副調整室に連通していてもよい。
[3] 第1の本発明において、前記酸素濃度調整室内にポンプ電極を有し、前記測定室内に測定電極を有し、前記ポンプ電極は、前記測定電極よりも触媒活性が低い材料で構成されていることが好ましい。
[4] 第1の本発明において、複数の目的成分は、NO及びNOであってもよい。
[5] この場合、以下のようにして、NO及びNOの各濃度を算出してもよい。すなわち、前記条件設定手段は、NOを分解させることなく、NOを全てNOに変換する条件を第1条件として設定する。前記条件設定手段は、NOを分解させることなく、NOの一部をNOに変換する条件を第2条件として設定する。前記濃度算出手段は、第1関係式と第2関係式とに基づいて、NO及びNOの各濃度を算出する。ここで、前記第1関係式は、前記第1条件下でのセンサ出力を構成するNO、NO及びオフセット電流の関係を表す。前記第2関係式は、前記第2条件下でのセンサ出力を構成するNO、NO及びオフセット電流の関係を表す。
[6] あるいは、以下のようにして、NO及びNOの各濃度を算出してもよい。すなわち、前記条件設定手段は、NOを分解させることなく、NOを全てNOに変換する条件を第1条件として設定する。前記条件設定手段は、NOを分解させることなく、NOの一部をNOに変換する条件を第2条件として設定する。前記濃度算出手段は、第1マップを使用する。第1マップは、予め実験的に求められた前記第1条件下でのセンサ出力と、前記第2条件下でのセンサ出力から前記第1条件下でのセンサ出力を差し引いた出力差とから、前記第1条件下でのセンサ出力と前記出力差とで特定されるポイント毎にそれぞれNO濃度及びNO濃度の関係が登録されている。そして、前記濃度算出手段は、実使用中の前記第1条件下でのセンサ出力、及び前記第2条件下でのセンサ出力から前記第1条件下でのセンサ出力を差し引いた前記出力差を、前記第1マップと比較して、NO及びNOの各濃度を求める。
[7] [5]又は[6]において、前記条件設定手段は、前記第1条件に設定した後、前記第2条件に設定することが好ましい。
[8] 第1の本発明において、複数の目的成分は、NO、NO及びNHであってもよい。
[9] この場合、以下のようにして、NO、NO及びNHの各濃度を算出してもよい。すなわち、前記条件設定手段は、NOを分解させることなく、NOを全てNOに変換し、且つ、NHをも全てNOに変換する条件を第1条件として設定する。前記条件設定手段は、NOを分解させることなく、NOの一部をNOに変換し、且つ、NHの全てをNOに変換する条件を第2条件として設定する。前記条件設定手段は、NOをも一部分解させながらNOをNOに変換し、且つ、NHの一部をNOに変換する条件を第3条件として設定する。前記濃度算出手段は、第3関係式と第4関係式と第5関係式とに基づいて、NO、NO及びNHの各濃度を算出する。ここで、前記第3関係式は、前記第1条件下でのセンサ出力を構成するNO、NO、NH及びオフセット電流の関係を表す。第4関係式は、前記第2条件下でのセンサ出力を構成するNO、NO、NH及びオフセット電流の関係を表す。第5関係式は、前記第3条件下でのセンサ出力を構成するNO、NO、NH及びオフセット電流の関係を表す。
[10] あるいは、以下のようにして、NO、NO及びNHの各濃度を算出してもよい。すなわち、前記条件設定手段は、NOを分解させることなく、NOを全てNOに変換し、且つ、NHをも全てNOに変換する条件を第1条件として設定する。前記条件設定手段は、NOを分解させることなく、NOの一部をNOに変換し、且つ、NHの全てをNOに変換する条件を第2条件として設定する。前記条件設定手段は、NOをも一部分解させながらNOをNOに変換し、且つ、NHの一部をNOに変換する条件を第3条件として設定する。前記濃度算出手段は、第2マップを使用する。第2マップは、予め実験的に求められた前記第1条件下でのセンサ出力と、前記第2条件下でのセンサ出力から前記第1条件下でのセンサ出力を差し引いた第1出力差と、前記第3条件下でのセンサ出力から前記第2条件下でのセンサ出力を差し引いた第2出力差とから、前記第1条件下でのセンサ出力と、前記第1出力差と、前記第2出力差とで特定されるポイント毎にそれぞれNO濃度、NO濃度及びNH濃度の関係が登録されている。そして、前記濃度算出手段は、実使用中の前記第1条件下でのセンサ出力と、実使用中の前記第2条件下でのセンサ出力から実使用中の前記第1条件下でのセンサ出力を差し引いた実使用中の第1出力差、及び実使用中の前記第3条件下でのセンサ出力から実使用中の前記第2条件下でのセンサ出力を差し引いた実使用中の第2出力差を、前記第2マップと比較して、NO、NO及びNHの各濃度を求める。
[11] [9]又は[10]において、前記条件設定手段は、前記第1条件に設定した後、前記第2条件に設定し、その後、前記第3条件に設定することが好ましい。
[12] 第2の本発明に係る被測定ガス中の複数目的成分の濃度測定方法は、少なくとも酸素イオン伝導性の固体電解質からなる構造体と、該構造体に形成され、被測定ガスが導入されるガス導入口と、前記構造体内に形成され、前記ガス導入口に連通する酸素濃度調整室と、前記構造体内に形成され、前記酸素濃度調整室に連通する測定室とを有するセンサ素子を使用し、前記酸素濃度調整室の酸素濃度及び前記センサ素子の温度の少なくとも一方を、導入された前記被測定ガスの目的成分の種類に応じた条件に設定する条件設定ステップと、前記目的成分の種類に応じた複数の条件下で得られた各センサ出力に基づいて複数のそれぞれ異なる前記目的成分の濃度を算出する濃度算出ステップとを有することを特徴とする。
[13] 第2の本発明において、複数の目的成分は、NO及びNOであってもよい。
[14] この場合、以下のようにして、NO及びNOの各濃度を算出してもよい。すなわち、前記条件設定ステップは、NOを分解させることなく、NOを全てNOに変換する条件を第1条件として設定する。前記条件設定ステップは、NOを分解させることなく、NOの一部をNOに変換する条件を第2条件として設定する。前記濃度算出ステップは、第1関係式と第2関係式とに基づいて、NO及びNOの各濃度を算出する。ここで、第1関係式は、前記第1条件下でのセンサ出力を構成するNO、NO及びオフセット電流の関係を表す。第2関係式は、前記第2条件下でのセンサ出力を構成するNO、NO及びオフセット電流の関係を表す。
[15] あるいは、以下のようにして、NO及びNOの各濃度を算出してもよい。すなわち、前記条件設定ステップは、NOを分解させることなく、NOを全てNOに変換する条件を第1条件として設定する。前記条件設定ステップは、NOを分解させることなく、NOの一部をNOに変換する条件を第2条件として設定する。前記濃度算出ステップは、第1マップを使用する。第1マップは、予め実験的に求められた前記第1条件下でのセンサ出力と、前記第2条件下でのセンサ出力から前記第1条件下でのセンサ出力を差し引いた出力差とから、前記第1条件下でのセンサ出力と前記出力差とで特定されるポイント毎にそれぞれNO濃度及びNO濃度の関係が登録されている。そして、前記濃度算出ステップは、実使用中の前記第1条件下でのセンサ出力、及び前記第2条件下でのセンサ出力から前記第1条件下でのセンサ出力を差し引いた前記出力差を、前記第1マップと比較して、NO及びNOの各濃度を求める。
[16] [14]又は[15]において、前記条件設定ステップは、前記第1条件に設定した後、前記第2条件に設定することが好ましい。
[17] 第2の本発明において、複数の目的成分は、NO、NO及びNHであってもよい。
[18] この場合、以下のようにして、NO、NO及びNHの各濃度を算出してもよい。すなわち、前記条件設定ステップは、NOを分解させることなく、NOを全てNOに変換し、且つ、NHをも全てNOに変換する条件を第1条件として設定する。前記条件設定ステップは、NOを分解させることなく、NOの一部をNOに変換し、且つ、NHの全てをNOに変換する条件を第2条件として設定する。前記条件設定ステップは、NOをも一部分解させながらNOをNOに変換し、且つ、NHの一部をNOに変換する条件を第3条件として設定する。前記濃度算出ステップは、第3関係式と第4関係式と第5関係式とに基づいて、NO、NO及びNHの各濃度を算出する。ここで、前記第3関係式は、前記第1条件下でのセンサ出力を構成するNO、NO、NH及びオフセット電流の関係を表す。第4関係式は、前記第2条件下でのセンサ出力を構成するNO、NO、NH及びオフセット電流の関係を表す。第5関係式は、前記第3条件下でのセンサ出力を構成するNO、NO、NH及びオフセット電流の関係を表す。
[19] あるいは、以下のようにして、NO、NO及びNHの各濃度を算出してもよい。すなわち、前記条件設定ステップは、NOを分解させることなく、NOを全てNOに変換し、且つ、NHをも全てNOに変換する条件を第1条件として設定する。前記条件設定ステップは、NOを分解させることなく、NOの一部をNOに変換し、且つ、NHの全てをNOに変換する条件を第2条件として設定する。前記条件設定ステップは、NOをも一部分解させながらNOをNOに変換し、且つ、NHの一部をNOに変換する条件を第3条件として設定する。前記濃度算出ステップは、第2マップを使用する。第2マップは、予め実験的に求められた前記第1条件下でのセンサ出力と、前記第2条件下でのセンサ出力から前記第1条件下でのセンサ出力を差し引いた第1出力差と、前記第3条件下でのセンサ出力から前記第2条件下でのセンサ出力を差し引いた第2出力差とから、前記第1条件下でのセンサ出力と、前記第1出力差と、前記第2出力差とで特定されるポイント毎にそれぞれNO濃度、NO濃度及びNH濃度の関係が登録されている。そして、前記濃度算出ステップは、実使用中の前記第1条件下でのセンサ出力と、実使用中の前記第2条件下でのセンサ出力から実使用中の前記第1条件下でのセンサ出力を差し引いた実使用中の第1出力差、及び実使用中の前記第3条件下でのセンサ出力から実使用中の前記第2条件下でのセンサ出力を差し引いた実使用中の第2出力差を、前記第2マップと比較して、NO、NO及びNHの各濃度を求める。
[20] [18]又は[19]において、前記条件設定ステップは、前記第1条件に設定した後、前記第2条件に設定し、その後、前記第3条件に設定することが好ましい。
 本発明に係るガスセンサ及び被測定ガス中の複数目的成分の濃度測定方法によれば、排気ガスのような未燃成分、酸素の存在下に共存する複数成分(例えばNO、NO、NH)の濃度を長期間にわたり精度よく測定することができる。
図1は、第1の実施の形態に係るガスセンサ(第1ガスセンサ)~第4の実施の形態に係るガスセンサ(第4ガスセンサ)の一構造例を示す断面図である。 図2は、第1ガスセンサ~第4ガスセンサを模式的に示す構成図である。 図3A及び図3Bは、センサ素子の温度(素子温度)に対する酸素濃度調整室内の酸素濃度の特性を示す図であり、図3Aは、NOの分解、未分解の関係を示し、図3Bは、NOの分解、未分解の関係を示す。 図4は、第1ガスセンサ及び第2ガスセンサにおいて、第1条件下での酸素濃度調整室内の反応と測定室内の反応を模式的に示す説明図である。 図5は、第1ガスセンサ及び第2ガスセンサにおいて、第2条件下での酸素濃度調整室内の反応と測定室内の反応を模式的に示す説明図である。 図6Aは、第1条件下でのNO濃度に対するセンサ出力の特性と、第2条件下でのNO濃度に対するセンサ出力の特性を示すグラフである。図6Bは、第1条件下でのNO濃度に対するセンサ出力の特性と、第2条件下でのNO濃度に対するセンサ出力の特性を示すグラフである。 図7は、第1ガスセンサによるNO及びNOの測定処理を示すフローチャートである。 図8は、第2ガスセンサで使用される第1マップをグラフ化して示す図である。 図9は、第2ガスセンサで使用される第1マップをテーブルの形式で示す説明図である。 図10は、第2ガスセンサによるNO及びNOの測定処理を示すフローチャートである。 図11A及び図11Bは、センサ素子の温度(素子温度)に対する酸素濃度調整室内の酸素濃度の特性を示す図であり、図11Aは、NOの分解、未分解の関係を示し、図11Bは、NOの分解、未分解の関係を示す。 図12は、センサ素子の温度(素子温度)に対する酸素濃度調整室内の酸素濃度の特性、特に、NHの分解、未分解の関係を示す図である。 図13は、第3ガスセンサ及び第4ガスセンサにおいて、第1条件下での酸素濃度調整室内の反応と測定室内の反応を模式的に示す説明図である。 図14は、第3ガスセンサ及び第4ガスセンサにおいて、第2条件下での酸素濃度調整室内の反応と測定室内の反応を模式的に示す説明図である。 図15は、第3ガスセンサ及び第4ガスセンサにおいて、第3条件下での酸素濃度調整室内の反応と測定室内の反応を模式的に示す説明図である。 図16Aは、第1条件下でのNO濃度に対するセンサ出力の特性と、第2条件下でのNO濃度に対するセンサ出力の特性と、第3条件下でのNO濃度に対するセンサ出力の特性とを示すグラフである。図16Bは、第1条件下でのNO濃度に対するセンサ出力の特性と、第2条件下でのNO濃度に対するセンサ出力の特性と、第3条件下でのNO濃度に対するセンサ出力の特性とを示すグラフである。 図17は、第1条件下でのNH濃度に対するセンサ出力の特性と、第2条件下でのNH濃度に対するセンサ出力の特性と、第3条件下でのNH濃度に対するセンサ出力の特性とを示すグラフである。 図18は、第3ガスセンサによるNO、NO及びNHの測定処理を示すフローチャートである。 図19は、第4ガスセンサで使用される第2マップをグラフ化して示す図である。 図20は、第4ガスセンサで使用される第2マップをテーブルの形式で示す説明図である。 図21は、第4ガスセンサによるNO、NO及びNHの測定処理を示すフローチャート(その1)である。 図22は、第4ガスセンサによるNO、NO及びNHの測定処理を示すフローチャート(その2)である。 図23は、1サイクル内において、第1条件に設定している期間、第2条件に設定している期間及び第3条件に設定している期間の一例を示すタイムチャートである。
 以下、本発明に係るガスセンサ及び被測定ガス中の複数目的成分の濃度測定方法の実施の形態例を図1~図23を参照しながら説明する。なお、本明細書において、数値範囲を示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。
 先ず、第1の実施の形態に係るガスセンサ(以下、第1ガスセンサ10Aと記す)は、図1及び図2に示すように、センサ素子12を有する。センサ素子12は、酸素イオン伝導性の固体電解質からなる構造体14と、該構造体14に形成され、被測定ガスが導入されるガス導入口16と、構造体14内に形成され、ガス導入口16に連通する酸素濃度調整室18と、構造体14内に形成され、酸素濃度調整室18に連通する測定室20とを有する。
 酸素濃度調整室18は、ガス導入口16に連通する主調整室18aと、主調整室18aに連通する副調整室18bとを有する。測定室20は副調整室18bに連通している。
 具体的には、センサ素子12の構造体14は、第1基板層22aと、第2基板層22bと、第3基板層22cと、第1固体電解質層24と、スペーサ層26と、第2固体電解質層28との6つの層が、図面視で下側からこの順に積層されて構成されている。各層は、それぞれジルコニア(ZrO)等の酸素イオン伝導性固体電解質層にて構成されている。
 センサ素子12の先端部側であって、第2固体電解質層28の下面と第1固体電解質層24の上面との間には、ガス導入口16と、第1拡散律速部30と、主調整室18aと、第2拡散律速部32と、副調整室18bとが備わっている。さらに、第1拡散律速部30と酸素濃度調整室18との間には、緩衝空間34と、第3拡散律速部36とが設けられていてもよい。ガス導入口16と、第1拡散律速部30と、緩衝空間34と、第3拡散律速部36と、主調整室18aと、第2拡散律速部32と、副調整室18bは、この順に連通する態様にて隣接形成されている。ガス導入口16から副調整室18bに至る部位を、ガス流通部とも称する。
 ガス導入口16と、緩衝空間34と、主調整室18aと、副調整室18bは、スペーサ層26をくり抜いた態様にて設けられた内部空間である。緩衝空間34と、主調整室18aと、副調整室18bはいずれも、各上部が第2固体電解質層28の下面で、各下部が第1固体電解質層24の上面で、各側部がスペーサ層26の側面で区画されている。
 第1拡散律速部30、第2拡散律速部32、第3拡散律速部36はいずれも、2本の横長のスリット(図面に垂直な方向が開口の長手方向)として設けられている。
 また、第3基板層22cの上面と、スペーサ層26の下面との間であって、ガス流通部よりも先端側から遠い位置には、基準ガス導入空間38が設けられている。基準ガス導入空間38は、上部がスペーサ層26の下面で、下部が第3基板層22cの上面で、側部が第1固体電解質層24の側面で区画された内部空間である。基準ガス導入空間38には、基準ガスとして、例えば酸素や大気が導入される。
 ガス導入口16は、外部空間に対して開口している部位であり、該ガス導入口16を通じて外部空間からセンサ素子12内に被測定ガスが取り込まれる。
 第1拡散律速部30は、ガス導入口16から取り込まれた被測定ガスに対して、所定の拡散抵抗を付与する部位である。
 緩衝空間34は、外部空間における被測定ガスの圧力変動(被測定ガスが自動車の排気ガスの場合であれば排気圧の脈動)によって生じる被測定ガスの濃度変動を打ち消すことを目的として設けられる。なお、センサ素子12は、緩衝空間34を備えてもよいし、備えなくてもよい。
 第3拡散律速部36は、緩衝空間34から主調整室18aに導入される被測定ガスに、所定の拡散抵抗を付与する部位である。第3拡散律速部36は、緩衝空間34が設けられることに付随して設けられる部位である。
 緩衝空間34及び第3拡散律速部36が設けられない場合は、第1拡散律速部30と主調整室18aとが直接に連通する。
 主調整室18aは、ガス導入口16から導入された被測定ガス中の酸素分圧を調整するための空間として設けられる。酸素分圧は、主ポンプセル40が作動することによって調整される。
 主ポンプセル40は、主内側ポンプ電極42と、外側ポンプ電極44と、これらの電極に挟まれた酸素イオン伝導性の固体電解質とを含んで構成される電気化学的ポンプセル(主電気化学的ポンピングセル)である。主内側ポンプ電極42は、主調整室18aを区画する第1固体電解質層24の上面、第2固体電解質層28の下面、及び、スペーサ層26の側面のそれぞれのほぼ全面に設けられている。外側ポンプ電極44は、第2固体電解質層28の上面の主内側ポンプ電極42と対応する領域に外部空間に露出する態様にて設けられている。主内側ポンプ電極42と外側ポンプ電極44は、被測定ガス中のNOx成分に対する還元能力を弱めた材料で構成される。例えば平面視矩形状の多孔質サーメット電極(例えば、0.1wt%~30.0wt%のAuを含むPt等の貴金属とZrOとのサーメット電極)として形成される。
 主ポンプセル40は、センサ素子12の外部に備わる第1可変電源46によりポンプ電圧Vp0を印加して、外側ポンプ電極44と主内側ポンプ電極42との間にポンプ電流Ip0を流すことにより、主調整室18a内の酸素を外部空間に汲み出し、あるいは、外部空間の酸素を主調整室18a内に汲み入れることが可能となっている。
 また、センサ素子12は、電気化学的センサセルである第1酸素分圧検出センサセル50を有する。この第1酸素分圧検出センサセル50は、主内側ポンプ電極42と、第3基板層22cの上面と第1固体電解質層24とに挟まれる基準電極48と、これらの電極に挟まれた酸素イオン伝導性の固体電解質とによって構成されている。基準電極48は、外側ポンプ電極44等と同様の多孔質サーメットからなる平面視ほぼ矩形状の電極である。また、基準電極48の周囲には、多孔質アルミナからなり、且つ、基準ガス導入空間38につながる基準ガス導入層52が設けられている。すなわち、基準電極48の表面に、基準ガス導入空間38の基準ガスが基準ガス導入層52を介して導入されるようになっている。第1酸素分圧検出センサセル50は、主調整室18a内の雰囲気と基準ガス導入空間38の基準ガスとの間の酸素濃度差に起因して主内側ポンプ電極42と基準電極48との間に起電力V0が発生する。
 第1酸素分圧検出センサセル50において生じる起電力V0は、主調整室18aに存在する雰囲気の酸素分圧に応じて変化する。センサ素子12は、上記起電力V0によって、主ポンプセル40の第1可変電源46をフィードバック制御する。これにより、第1可変電源46が主ポンプセル40に印加するポンプ電圧Vp0を、主調整室18aの雰囲気の酸素分圧に応じて制御することができる。
 第2拡散律速部32は、主調整室18aでの主ポンプセル40の動作により酸素濃度(酸素分圧)が制御された被測定ガスに所定の拡散抵抗を付与して、該被測定ガスを副調整室18bに導く部位である。
 副調整室18bは、予め主調整室18aにおいて酸素濃度(酸素分圧)が調整された後、第2拡散律速部32を通じて導入された被測定ガスに対して、さらに補助ポンプセル54による酸素分圧の調整を行うための空間として設けられている。これにより、副調整室18b内の酸素濃度を高精度に一定に保つことができるため、この第1ガスセンサ10Aは、精度の高いNOx濃度測定が可能となる。
 補助ポンプセル54は、電気化学的ポンプセルであり、副調整室18bに面する第2固体電解質層28の下面のほぼ全体に設けられた補助ポンプ電極56と、外側ポンプ電極44と、第2固体電解質層28とによって構成される。
 なお、補助ポンプ電極56についても、主内側ポンプ電極42と同様に、被測定ガス中のNOx成分に対する還元能力を弱めた材料を用いて形成される。
 補助ポンプセル54は、補助ポンプ電極56と外側ポンプ電極44との間に所望の電圧Vp1を印加することにより、副調整室18b内の雰囲気中の酸素を外部空間に汲み出し、あるいは、外部空間から副調整室18b内に汲み入れることが可能となっている。
 また、副調整室18b内における雰囲気中の酸素分圧を制御するために、補助ポンプ電極56と、基準電極48と、第2固体電解質層28と、スペーサ層26と、第1固体電解質層24とによって電気化学的センサセル、すなわち、補助ポンプ制御用の第2酸素分圧検出センサセル58が構成されている。
 なお、この第2酸素分圧検出センサセル58にて検出される起電力V1に基づいて電圧制御される第2可変電源60にて、補助ポンプセル54がポンピングを行う。これにより、副調整室18b内の雰囲気中の酸素分圧は、NOxの測定に実質的に影響がない低い分圧にまで制御されるようになっている。
 また、これと共に、補助ポンプセル54のポンプ電流Ip1が、第1酸素分圧検出センサセル50の起電力V0の制御に用いられるようになっている。具体的には、ポンプ電流Ip1は、制御信号として第1酸素分圧検出センサセル50に入力され、その起電力V0が制御されることにより、第2拡散律速部32から副調整室18b内に導入される被測定ガス中の酸素分圧の勾配が常に一定となるように制御される。第1ガスセンサ10AをNOxセンサとして使用する際は、主ポンプセル40と補助ポンプセル54との働きによって、副調整室18b内での酸素濃度は各条件の所定の値に精度良く保たれる。
 NOx濃度の測定は、主として、測定用ポンプセル61の動作により行われる。測定用ポンプセル61は、測定電極62と、外側ポンプ電極44と、第2固体電解質層28と、スペーサ層26と、第1固体電解質層24とによって構成された電気化学的ポンプセルである。測定電極62は、副調整室18bに面する第1固体電解質層24の上面に直に設けられ、第4拡散律速部64によって被覆されている。第4拡散律速部64は、アルミナ(Al)等のセラミックス多孔体にて構成される膜である。第4拡散律速部64は、測定電極62に流入するNOxの量を制限する役割を担う。また、第4拡散律速部64は、測定電極62の保護膜としても機能する。従って、測定電極62の周囲は測定室20として機能する。測定電極62は、被測定ガス中のNOx成分に対する還元能力を、主内側ポンプ電極42よりも高めた材料にて構成された多孔質サーメット電極である。測定電極62は、測定電極62上の雰囲気中に存在するNOxを還元するNOx還元触媒としても機能する。
 測定用ポンプセル61は、測定電極62の周囲(測定室20)の雰囲気中における窒素酸化物の分解によって生じた酸素を汲み出して、その発生量をポンプ電流Ip2、すなわち、センサ出力として検出することができる。
 また、測定電極62の周囲(測定室20)の酸素分圧を検出するために、第1固体電解質層24と、測定電極62と、基準電極48とによって電気化学的センサセル、すなわち、測定用ポンプ制御用の第3酸素分圧検出センサセル66が構成されている。第3酸素分圧検出センサセル66にて検出された起電力V2に基づいて第3可変電源68が制御される。
 副調整室18b内に導かれた被測定ガスは、酸素分圧が制御された状況下で第4拡散律速部64を通じて測定電極62に到達する。測定電極62の周囲の被測定ガス中の窒素酸化物は還元されて酸素を発生する。そして、この発生した酸素は測定用ポンプセル61によってポンピングされる。その際、第3酸素分圧検出センサセル66にて検出された起電力V2が一定となるように第3可変電源68の電圧Vp2が制御される。測定電極62の周囲において発生する酸素の量は、被測定ガス中の窒素酸化物の濃度に比例する。従って、測定用ポンプセル61のポンプ電流Ip2を用いて被測定ガス中の窒素酸化物濃度を算出することができる。
 また、この第1ガスセンサ10Aは、電気化学的なセンサセル70を有する。このセンサセル70は、第2固体電解質層28と、スペーサ層26と、第1固体電解質層24と、第3基板層22cと、外側ポンプ電極44と、基準電極48とを有する。このセンサセル70によって得られる起電力Vrefにより、センサ外部の被測定ガス中の酸素分圧が検出可能となっている。
 さらに、センサ素子12においては、第2基板層22bと第3基板層22cとに上下から挟まれた態様にて、ヒータ72が形成されている。ヒータ72は、第1基板層22aの下面に設けられた図示しないヒータ電極を通して外部から給電されることより発熱する。ヒータ72が発熱することによって、センサ素子12を構成する固体電解質の酸素イオン伝導性が高められる。ヒータ72は、酸素濃度調整室18の全域にわたって埋設されており、センサ素子12の所定の場所を所定の温度に加熱、保温することができるようになっている。なお、ヒータ72の上下面には、第2基板層22b及び第3基板層22cとの電気的絶縁性を得る目的で、アルミナ等からなるヒータ絶縁層74が形成されている。
 さらに、第1ガスセンサ10Aは、図2に模式的に示すように、酸素濃度制御手段100と、温度制御手段102と、条件設定手段104と、濃度算出手段106とを有する。酸素濃度制御手段100は、酸素濃度調整室18内の酸素濃度を制御する。温度制御手段102は、センサ素子12の温度を制御する。条件設定手段104は、酸素濃度調整室18の酸素濃度及びセンサ素子12の温度の少なくとも一方を、導入された被測定ガスの目的成分の種類に応じた条件に設定する。濃度算出手段106は、目的成分の種類に応じた複数の条件下で得られた各センサ出力に基づいて複数のそれぞれ異なる目的成分の濃度を算出する。
 なお、酸素濃度制御手段100、温度制御手段102、条件設定手段104及び濃度算出手段106は、例えば1つ又は複数のCPU(中央処理ユニット)と記憶装置等を有する1以上の電子回路にて構成される。電子回路は、例えば記憶装置に記憶されているプログラムをCPUが実行することにより、所定の機能が実現されるソフトウェア機能部である。もちろん、複数の電子回路を機能に合わせて接続したFPGA(Field-Programmable Gate Array)等の集積回路で構成してもよい。
 従来は、NO、NOの目的成分に対して、酸素濃度調整室18内で全てをNOに変換した後、測定室20に導入し、これら2成分の総量を測定していた。つまり、2つの目的成分毎の濃度、すなわち、NO及びNOの各濃度を測定することができなかった。
 これに対して、第1ガスセンサ10Aは、上述した酸素濃度制御手段100、温度制御手段102、条件設定手段104及び濃度算出手段106を具備することで、NO及びNOの各濃度を測定することができるようにしたものである。
 酸素濃度制御手段100は、条件設定手段104にて設定された条件と、第1酸素分圧検出センサセル50(図1参照)において生じる起電力V0とに基づいて、第1可変電源46をフィードバック制御することにより、酸素濃度調整室18内の酸素濃度を、上記条件に従った濃度に調整する。
 温度制御手段102は、条件設定手段104にて設定された条件と、センサ素子12の温度を計測する温度センサ(図示せず)からの計測値とに基づいて、ヒータ72をフィードバック制御することにより、センサ素子12の温度を、上記条件に従った温度に調整する。
 条件設定手段104は、NOを分解させることなく、NOを全てNOに変換する条件を第1条件として設定し、また、NOを分解させることなく、NOの一部をNOに変換する条件を第2条件として設定する。
 ここで、第1条件及び第2条件について、図3A及び図3Bを参照しながら説明する。図3A及び図3Bは、センサ素子12の温度に対する酸素濃度調整室18内の酸素濃度の特性を示すもので、特に、図3Aは、NOの分解、未分解の関係を示し、図3Bは、NOの分解、未分解の関係を示す。
 そして、第1条件は、図3Aにおいて、NO分解率が0%の境界線La上のポイントPaに設定される。すなわち、図3Bにおいて、NOからNOへの分解率100%境界線La上のポイントPaに設定される。第2条件は、図3Aにおいて、NOの未分解領域内のポイントPbに設定される。すなわち、図3Bにおいて、NOからNOへの分解率100%境界線LbとNOからNOへの分解率0%境界線Lcとの間のポイントPbに設定される。例えばNOの80%がNOに分解し、NOの20%が未分解となるポイントPbに設定される。本実施の形態における第1条件から第2条件への変更は、例えば温度を一定にして、酸素濃度調整室18内の酸素濃度を変更することにより行われる。上述の測定条件の設定は、あくまでも一例であり、本発明の基本概念である「酸素濃度調整室の酸素濃度や温度の設定条件を基準となる条件から置き換えることで、酸素濃度調整室内で起こる目的成分(NO、NO、NH)の化学平衡を変化させて、意図的に測定室で得られるセンサ出力を変動させ、基準条件でのセンサ出力、及び条件置き換えによるセンサ出力の変動分から各々の成分濃度を求める」から外れない限り、任意に測定条件を設定することができる。例えば、酸素濃度調整室18内の酸素濃度を一定にして温度を変更する等がある。
 なお、図3AにおけるNO分解率0%境界線、NO分解率100%境界線は、絶対的な分解反応の進行を表すものではない。例えばNO分解率0%境界線であれば、それ以上、酸素濃度調整室18の酸素濃度を上げても、測定室20に配置された測定用ポンプセル61に流れるポンプ電流Ip2のNO濃度に対する傾き(すなわち、感度係数)が増加しなくなる酸素濃度調整室18の酸素濃度と測定素子温度の組合せを示す。NO分解率100%境界線であれば、被測定ガス中のNO濃度を増加させても測定室20に配置された測定用ポンプセル61に流れるポンプ電流Ip2が増加しないような酸素濃度調整室18の酸素濃度と測定素子温度の組合せを示す。
 これらの境界線は酸素濃度調整室18内に配置される主内側ポンプ電極42の触媒活性や電極の微構造によって変化するため、素子温度や電極材料、及び電極微構造ごとに実験的に確認されるべきものである。
 図3BにおけるNO→NO分解率0%境界線、及びNO→NO分解率100%境界線も同様に絶対的な分解反応の進行を表すものではない。例えばNO→NO分解率0%境界線は、それ以上、酸素濃度調整室18の酸素濃度を上げても測定室20に配置された測定用ポンプセル61に流れるポンプ電流Ip2のNO濃度に対する傾き(すなわち、感度係数)が増加しなくなる酸素濃度調整室18の酸素濃度と測定素子温度の組合せを示す。NO→NO分解率100%境界線は、それ以上、酸素濃度調整室18の酸素濃度を下げても、測定室20に配置された測定用ポンプセル61に流れるポンプ電流Ip2のNO濃度に対する傾き(すなわち、感度係数)が低下しなくなる酸素濃度調整室18の酸素濃度と測定素子温度の組合せを示す。
 ここで、酸素濃度調整室18内での反応と測定室20内での反応を図4及び図5の模式図並びに図6A及び図6Bのグラフを参照しながら簡単に説明する。
 先ず、第1条件に設定した場合、図4に示すように、酸素濃度調整室18内ではNOは分解されず、NOのままである。一方、NOは、2NO→2NO+Oの分解反応が生じる。従って、酸素濃度調整室18から測定室20内にNOが入り込み、NOは入り込まない。測定室20内では、NO→(1/2)N+(1/2)Oの分解反応が生じ、このうち、Oが汲み出されることによって、センサ出力(ポンプ電流Ip2)として検出される。
 第2条件に設定した場合は、図5に示すように、酸素濃度調整室18内では、NOは分解されず、NOのままである。一方、NOについては、例えば80%のNOが2NO→2NO+Oの分解反応によってNOに分解され、残りの20%のNOは分解されない。従って、酸素濃度調整室18から測定室20内にNOとNOが入り込むこととなる。測定室20内では、NO→(1/2)N+(1/2)Oの分解反応と、NO→(1/2)N+Oの分解反応が生じる。このうち、Oが汲み出されることによって、センサ出力(ポンプ電流Ip2)として検出される。
 第1条件下において、NOのみを導入する場合に、NO濃度に対するセンサ出力は、図6Aに示すように、NO濃度が0ppmのとき、図3A及び図3BにおけるポイントPaの酸素濃度に対応したオフセット電流OSが現れる。そして、NO濃度が上昇するにつれて、センサ出力も比例的に上昇する。
 第1条件下において、NOのみを導入する場合に、NO濃度に対するセンサ出力は、図6Bに示すように、NO濃度が0ppmのとき、図6Aと同様に、オフセット電流OSが現れる。そして、NO濃度が上昇するにつれて、センサ出力も比例的に上昇するが、その傾きは、NOとNOの拡散係数の差によって、第1条件下でのNO濃度の傾きよりも小さい。第1条件下でのNO濃度の傾きを1としたとき、0.9程度となる。
 従って、第1条件下でのセンサ出力IPと、第1条件下でのNO濃度に対応するセンサ出力(NO)及びNO濃度に対応するセンサ出力(NO)との第1関係式(1)は、以下の通りになる。
   IP=NO+0.9NO+OS  ……(1)
 同様に、今度は、第2条件下において、NOのみを導入した場合に、NO濃度に対するセンサ出力は、図6Aに示すように、NO濃度が0ppmのとき、図3BにおけるポイントPbの酸素濃度に対応したオフセット電流OSが現れる。そして、NO濃度が上昇するにつれて、センサ出力も比例的に上昇する。NOのみを導入することから、NO濃度の傾きは、第1条件の場合と同じになる。
 第2条件下において、NOのみを導入した場合に、NO濃度に対するセンサ出力は、図6Bに示すように、NO濃度が0ppmのとき、図6Aと同様に、オフセット電流OSが現れる。そして、NO濃度が上昇するにつれて、センサ出力も比例的に上昇するが、その傾きは、第1条件下でのNO濃度の傾きよりも大きい。これは、分解されずに測定室20に到達したNOが分解されることで、Oの量が、NOが分解される量よりも多くなることによる。第2条件下でのNO濃度の傾きを1としたとき、1.12程度となる。
 従って、第2条件下でのセンサ出力IPと、第2条件下でのNO濃度に対応するセンサ出力(NO)及びNO濃度に対応するセンサ出力(NO)との第2関係式(2)は、以下の通りになる。
   IP=NO+1.12NO+OS  ……(2)
 オフセット電流OS及びOSは共に定数であることから、第1関係式(1)及び第2関係式(2)の2元連立方程式を解くことにより、NOとNOとが混在した被測定ガス中のNO濃度とNO濃度を算出することができる。
 ここで、第1ガスセンサ10AによるNO及びNOの測定処理について図7のフローチャートも参照しながら説明する。
 先ず、図7のステップS1において、第1ガスセンサ10Aは、ガス導入口16を通じて酸素濃度調整室18内にNO及びNOが混在する被測定ガスを導入する。
 ステップS2において、条件設定手段104は、第1条件に設定して、酸素濃度制御手段100あるいは温度制御手段102を起動する。
 ステップS3において、酸素濃度制御手段100あるいは温度制御手段102は、酸素濃度調整室18内の酸素濃度あるいはセンサ素子12の温度を第1条件に従った酸素濃度あるいは温度に調整する。
 ステップS4において、濃度算出手段106は、第1条件下でのセンサ出力(IP)を取得する。
 ステップS5において、条件設定手段104は、第2条件に設定して、酸素濃度制御手段100あるいは温度制御手段102を起動する。
 ステップS6において、酸素濃度制御手段100あるいは温度制御手段102は、酸素濃度調整室18内の酸素濃度あるいはセンサ素子12の温度を第2条件に従った酸素濃度あるいはセンサ温度に調整する。
 ステップS7において、濃度算出手段106は、第2条件下でのセンサ出力(IP)を取得する。
 ステップS8において、濃度算出手段106は、上述した第1関係式(1)及び第2関係式(2)の2元連立方程式を解くことにより、NOとNOとが混在した被測定ガス中のNO濃度とNO濃度を算出する。
 ステップS9において、第1ガスセンサ10Aは、NO及びNOの測定処理の終了要求(電源断、メンテナンス等)があるか否かを判別する。終了要求がなければ、ステップS1以降の処理を繰り返す。そして、ステップS9において、終了要求があった段階で、第1ガスセンサ10AでのNO及びNOの測定処理を終了する。
 このように、第1ガスセンサ10Aは、NOを分解させることなく、NOを全てNOに変換する条件(第1条件)下でのセンサ出力を取得し、また、NOを分解させることなく、NOの一部をNOに変換する条件(第2条件)下でのセンサ出力を取得するようにしている。そして、第1条件下でのセンサ出力と、第1条件下でのNO濃度に対するセンサ出力及びNO濃度に対するセンサ出力との第1関係式と、第2条件下でのセンサ出力と、第2条件下でのNO濃度に対するセンサ出力及びNO濃度に対するセンサ出力との第2関係式とに基づいて、NO及びNOの各濃度を算出するようにしている。
 これにより、排気ガスのような未燃成分、酸素の存在下に共存する複数目的成分(例えばNO、NO)の雰囲気下においても、複数目的成分の各濃度を長期間にわたり精度よく測定することができる。
 しかも、第1ガスセンサ10Aは、従来では実現できなかったNOとNOの各濃度を測定する処理を、ハードウェアとしての各種測定装置等を別途付加することなく、第1ガスセンサ10Aの制御系のソフトウェアを変更するだけで、容易に実現することができる。その結果、NOx浄化システムの制御並びに故障検知に対する精度を高めることができる。特に、DOC(Diesel Oxidation Catalyst)触媒下流の排気ガス中のNOとNOとを区別することが可能となり、DOC触媒の劣化検知に寄与する。
 次に、第2の実施の形態に係るガスセンサ(以下、第2ガスセンサ10Bと記す)について、さらに図8及び図9も参照しながら説明する。
 この第2ガスセンサ10Bは、上述した第1ガスセンサ10Aとほぼ同様の構成を有するが、濃度算出手段106の構成が異なる。
 すなわち、第2ガスセンサ10Bの濃度算出手段106は、第1条件下でのセンサ出力と、第2条件下でのセンサ出力から第1条件下でのセンサ出力とを差し引いた出力差と、第1マップ110(図8及び図9参照)とに基づいて、NO及びNOの各濃度を求める。
 第1マップ110は、グラフ化して示すと、例えば図8に示すように、横軸に、第1条件下でのセンサ出力が設定され、縦軸に第2条件下でのセンサ出力から第1条件下でのセンサ出力とを差し引いた出力差[#2-#1]が設定されたグラフとなる。
 この第1マップ110は、被測定ガス中のNO及びNOの濃度(あるいは濃度比)を示すポイントが、3つのポイントp1、p7及びp20で囲まれた三角形状の領域に存在していることを示している。
 図8中、ポイントp1は、被測定ガス中、NOが計測可能な上限濃度(例えば500ppm系)で、NOが0ppmである場合であって、第1条件下でのセンサ出力Imax(μA)(ラインL1参照)と、第2条件下でのセンサ出力から第1条件下でのセンサ出力を差し引いた出力差ΔImin(μA)(ラインL2参照)とを結ぶ交点である。
 同様に、ポイントp7は、NOが0ppmで、NOが500ppmである場合であって、第1条件下でのセンサ出力Imax(μA)(ラインL1参照)と、第2条件下でのセンサ出力から第1条件下でのセンサ出力を差し引いた出力差ΔImax(μA)(ラインL3参照)とを結ぶ交点である。
 ポイントp20は、NO及びNOが共に0ppmである場合であって、第1条件下でのセンサ出力0(μA)(横軸)と、第2条件下でのセンサ出力から第1条件下でのセンサ出力を差し引いた出力差ΔImin(μA)とを結ぶ交点である。
 さらに、この第1マップ110は、代表的に、例えば500ppm系、250ppm系、125ppm系について、ラインL2からそれぞれ同じ割合毎にポイントを設定し、各ポイントに対応してそれぞれNO濃度とNO濃度を割り当てている。分かり易くテーブルの形式で示すと、図9に示すような内容となる。これらの濃度は、実験あるいはシミュレーションにて求めている。
 第1条件下でのセンサ出力と上記出力差[#2-#1]から第1マップ110上のポイントを特定することで、NO濃度とNO濃度を求めることができる。例えばポイントp1では、NO濃度が500ppm、NO濃度が0ppm、ポイントp2では、NO濃度が400ppm、NO濃度が111ppm、ポイントp3では、NO濃度が300ppm、NO濃度が222ppmである。第1マップ110上に該当するポイントが存在しない場合は、最も近いポイントを特定し、例えば既知の近似計算にてNO濃度とNO濃度を求めればよい。
 ここで、第2ガスセンサ10BによるNO及びNOの測定処理について図10のフローチャートも参照しながら説明する。
 先ず、図10のステップS101~S107は、上述した第1ガスセンサ10Aの処理(図7のステップS1~S7参照)と同様であるため、その重複説明を省略する。
 その後、ステップS108において、濃度算出手段106は、第1条件下でのセンサ出力と、第2条件下でのセンサ出力から第1条件下でのセンサ出力を差し引いた出力差[#2-#1]とから第1マップ110上の1つのポイントを特定する。
 ステップS109において、第1マップ110から、特定したポイントに対応するNO濃度及びNO濃度を読み出して、今回、測定したNO濃度及びNO濃度とする。第1マップ110上に該当するポイントが存在しない場合は、上述したように、最も近いポイントを特定し、例えば既知の近似計算にてNO濃度とNO濃度を求める。
 ステップS110において、第2ガスセンサ10Bは、NO及びNOの測定処理の終了要求(電源断、メンテナンス等)があるか否かを判別する。終了要求がなければ、ステップS101以降の処理を繰り返す。そして、ステップS110において、終了要求があった段階で、第2ガスセンサ10BでのNO及びNOの測定処理を終了する。
 この第2ガスセンサ10Bにおいても、上述した第1ガスセンサ10Aと同様の効果を奏する。特に、第1マップ110上の特定したポイントからNO濃度及びNO濃度を読み出せばよいため、複雑な演算処理が不要となり、短時間でNO濃度及びNO濃度を取得することができる。
 次に、第3の実施の形態に係るガスセンサ(以下、第3ガスセンサ10Cと記す)について図1、図2、図11A~図18を参照しながら説明する。
 この第3ガスセンサ10Cは、上述した第1ガスセンサ10Aとほぼ同様の構成を有するが、3つの目的成分、すなわち、NO、NO及びNHの各濃度を測定することができる点で異なる。
 すなわち、上述した第1条件及び第2条件に加えて、NOを一部分解させて、NHの一部をNOに変換する条件を第3条件として設定する。
 ここで、NHを考慮した第1条件~第3条件について、図11A~図12を参照しながら説明する。
 図11Aは、NOの分解、未分解の関係を示したもので、縦軸に酸素濃度調整室18内の酸素濃度を示し、横軸にセンサ素子12の温度を示す。図11A中、破線Laは、NO→(1/2)N+(1/2)Oの分解反応が0%、すなわち、当該分解反応が発生しない境界線を示す。破線Ldは、当該分解反応が100%起こる境界線を示す。また、プロットPaは、第1条件に相当する酸素濃度と素子温度を示す。プロットPbは、第2条件に相当する酸素濃度と素子温度を示す。プロットPcは、第3条件に相当する酸素濃度と素子温度を示す。この図11Aから、第1条件及び第2条件ではNOの分解反応は進まないが、第3条件ではNOのうちの20%がNO→(1/2)N+(1/2)Oに分解することがわかる。
 同様に、図11Bは、NOの分解、未分解の関係を示したもので、縦軸に酸素濃度調整室18内の酸素濃度を示し、横軸にセンサ素子12の温度を示す。図11B中、破線Lcは、NO→NO+(1/2)Oの分解反応が0%、すなわち、当該分解反応が発生しない境界線を示す。破線Lbは、当該分解反応が100%起こる境界線を示す。また、プロットPaは、第1条件に相当する酸素濃度と素子温度を示す。プロットPbは、第2条件に相当する酸素濃度と素子温度を示す。プロットPcは、第3条件に相当する酸素濃度と素子温度を示す。この図11Bから、第1条件及び第3条件ではNOの分解反応が100%進むが、第2条件ではNOのうちの20%が分解されないことがわかる。
 図12は、NHの酸化、未酸化の関係を示したもので、縦軸に酸素濃度調整室18内の酸素濃度を示し、横軸にセンサ素子12の温度を示す。図12中、破線Leは、NH+5O→4NO+6HOの酸化反応が0%、すなわち、当該酸化反応が発生しない境界線を示す。破線Lfは、当該酸化反応が100%起こる境界線を示す。また、プロットPaは、第1条件に相当する酸素濃度と素子温度を示す。プロットPbは、第2条件に相当する酸素濃度と素子温度を示す。プロットPcは、第3条件に相当する酸素濃度と素子温度を示す。この図12から、第1条件及び第2条件ではNHの酸化反応が100%進むが、第3条件ではNHのうちの10%が分解されないことがわかる。
 なお、図12におけるNH酸化率100%境界線、NH酸化率0%境界線は絶対的な酸化反応の進行を表すものではない。例えばNH酸化率100%境界線であれば、それ以上、酸素濃度調整室18の酸素濃度を上げても測定室20に配置された測定用ポンプセル61に流れるポンプ電流Ip2のNH濃度に対する傾き(すなわち、感度係数)が増加しなくなる酸素濃度調整室18の酸素濃度と測定素子温度の組合せを示す。NH酸化率0%境界線であれば、被測定ガス中のNH濃度に対して測定用ポンプセル61に流れるポンプ電流Ip2が測定室20内に酸素を汲み込む方向に流れるような酸素濃度調整室18の酸素濃度と測定素子温度の組合せを示している。これらの境界線は、酸素濃度調整室18内に配置される主内側ポンプ電極42の触媒活性や電極の微構造によって変化するため、素子温度や電極材料、及び電極微構造ごとに実験的に確認されるべきものである。
 第3の実施の形態における第1条件から第3条件への変更は、例えば温度を一定にして、酸素濃度調整室18内の酸素濃度を変更することにより行われるが、本発明の基本概念である「酸素濃度調整室の酸素濃度や温度の設定条件を基準となる条件から変更することで、酸素濃度調整室内で起こる目的成分(NO、NO、NH)の化学平衡を変化させて、意図的に測定室で得られるセンサ出力を変動させ、基準条件でのセンサ出力、及び条件変更によるセンサ出力の変動分から各々の成分濃度を求める」から外れない限り、任意に測定条件を設定することができる。例えば、酸素濃度調整室18内の酸素濃度を一定にして温度を変更する等がある。
 ここで、酸素濃度調整室18内での反応と測定室20内での反応を図13~図15の模式図を参照しながら簡単に説明する。
 先ず、第1条件に設定した場合、図13に示すように、酸素濃度調整室18内では、NOは分解されず、NOのままである。NOについては、2NO→2NO+Oの分解反応が生じる。NHについては、4NH+5O→4NO+6HOの酸化反応によってNOに酸化される。従って、酸素濃度調整室18から測定室20内にNOが入り込み、NO及びNHは入り込まない。測定室20内では、NO→(1/2)N+(1/2)Oの分解反応が生じ、このうち、Oが汲み出されることによって、センサ出力(ポンプ電流Ip2)として検出される。
 第2条件に設定した場合は、図14に示すように、酸素濃度調整室18内では、NOは分解されず、NOのままである。NOについては、例えば80%のNOが2NO→2NO+Oの分解反応によってNOに分解され、残りの20%のNOは分解されない。NHについては、4NH+5O→4NO+6HOの酸化反応によってNOに酸化される。従って、酸素濃度調整室18から測定室20内にNOとNOが入り込むこととなる。測定室20内では、NO→(1/2)N+(1/2)Oの分解反応とNO→(1/2)N+Oの分解反応が生じる。このうち、Oが汲み出されることによって、センサ出力(ポンプ電流Ip2)として検出される。この場合、測定室20内に入り込んだNOにより余剰の酸素イオンが持ち込まれることになり、第1条件、第3条件に比べてセンサ出力は大きくなる。
 第3条件に設定した場合は、図15に示すように、酸素濃度調整室18内では、NOについては、例えば20%のNOが(1/2)N+(1/2)Oの分解反応によって分解され、残りの80%のNOは分解されない。NOについては、2NO→2NO+Oの分解反応が生じると共に、分解反応で生成されたNOの20%も(1/2)N+(1/2)Oの分解反応によって分解される。NHについては、例えば90%のNHが4NH+5O→4NO+6HOの酸化反応によってNOに酸化され、残りの10%のNHは酸化されない。ここでも酸化反応で生成したNOの20%が(1/2)N+(1/2)Oの分解反応によって分解される。従って、酸素濃度調整室18から測定室20内にNOとNHが入り込むこととなる。測定室20内では、NO→(1/2)N+(1/2)Oの分解反応とNH+(3/2)NO→(3/2)HO+(5/4)Nの分解反応が生じる。この場合、測定室20内のNOがNHの分解に消費され、第1条件、及び第2条件に比べてセンサ出力が低下する。
 図16Aに示すように、第1条件下において、NOのみを導入する場合に、NO濃度に対するセンサ出力は、NO濃度が0ppmのとき、第1条件下の酸素濃度調整室18内の酸素濃度に由来するオフセット電流OSが現れる。そして、NO濃度が上昇するにつれて、センサ出力も比例的に上昇する。
 図16Bに示すように、第1条件下において、NOのみを導入する場合に、NO濃度に対するセンサ出力は、NO濃度が0ppmのとき、第1条件下の酸素濃度調整室18内の酸素濃度に由来するオフセット電流OSが現れる。そして、NO濃度が上昇するにつれて、センサ出力も比例的に上昇するが、その傾きは、NOとNOの拡散係数の差によって、第1条件下でのNO濃度の傾きよりも小さい。第1条件下でのNO濃度の傾きを1としたとき、0.9程度となる。
 図17に示すように、第1条件下において、NHのみを導入する場合に、NH濃度に対するセンサ出力は、NH濃度が0ppmのとき、第1条件下の酸素濃度調整室18内の酸素濃度に由来するオフセット電流OSが現れる。そして、NH濃度が上昇するにつれて、センサ出力も比例的に上昇するが、その傾きは、第1条件下でのNO濃度の傾きよりも大きい。第1条件下でのNO濃度の傾きを1としたとき、1.1程度となる。
 従って、第1条件下でのセンサ出力IPと、第1条件下でのNO濃度に対応するセンサ出力(NO)、NO濃度に対応するセンサ出力(NO)及びNH濃度に対応するセンサ出力(NH)との第3関係式(3)は、以下の通りになる。
   IP=NO+0.9NO+1.1NH+OS  ……(3)
 同様に、図16Aに示すように、今度は、第2条件下において、NOのみを導入する場合に、NO濃度に対するセンサ出力は、NO濃度が0ppmのとき、第2条件下の酸素濃度調整室18内の酸素濃度に由来するオフセット電流OSが現れる。そして、NO濃度が上昇するにつれて、センサ出力も比例的に上昇する。NOのみを導入することから、NO濃度の傾きは、第1条件の場合と同じになる。
 図16Bに示すように、第2条件下において、NOのみを導入する場合に、NO濃度に対するセンサ出力は、NO濃度が0ppmのとき、第2条件下の酸素濃度調整室18内の酸素濃度に由来するオフセット電流OSが現れる。そして、NO濃度が上昇するにつれて、センサ出力も比例的に上昇するが、その傾きは、第1条件下でのNO濃度の傾きよりも大きい。これは、分解されずに測定室20に到達したNOが分解されることで、Oの量が、NOが分解される量よりも多くなることによる。第2条件下でのNO濃度の傾きを1としたとき、1.12程度となる。
 図17に示すように、第2条件下において、NHのみを導入する場合に、NH濃度に対するセンサ出力は、NH濃度が0ppmのとき、第2条件下の酸素濃度調整室18内の酸素濃度に由来するオフセット電流OSが現れる。そして、NH濃度が上昇するにつれて、センサ出力も比例的に上昇するが、その傾きは、第1条件下でのNO濃度の傾きよりも大きい。第1条件下でのNO濃度の傾きを1としたとき、1.1程度となる。
 従って、第2条件下でのセンサ出力IPと、第2条件下でのNO濃度に対応するセンサ出力(NO)、NO濃度に対応するセンサ出力(NO)及びNH濃度に対応するセンサ出力(NH)との第4関係式(4)は、以下の通りになる。
   IP=NO+1.12NO+1.1NH+OS  ……(4)
 同様に、今度は、第3条件下において、NOのみを導入する場合に、NO濃度に対するセンサ出力は、NO濃度が0ppmのとき、図16Aに示すように、第3条件下の酸素濃度調整室18内の酸素濃度に由来するオフセット電流OSが現れる。そして、NO濃度が上昇するにつれて、センサ出力も比例的に上昇するが、NO濃度の傾きは、第1条件下でのNO濃度の傾きよりも小さい。これは、酸素濃度調整室18内で10%のNOが分解されることによる。第1条件下でのNO濃度の傾きを1としたとき、0.9程度となる。
 第3条件下において、NOのみを導入する場合に、NO濃度に対するセンサ出力は、NO濃度が0ppmのとき、図16Bに示すように、第3条件下の酸素濃度調整室18内の酸素濃度に由来するオフセット電流OSが現れる。そして、NO濃度が上昇するにつれて、センサ出力も比例的に上昇するが、その傾きは、NOとNOの拡散係数の差、及び酸素濃度調整室18内で10%のNOが分解されることによって、第1条件下でのNO濃度の傾きよりも小さい。第1条件下でのNO濃度の傾きを1としたとき、0.8程度となる。
 第3条件下において、NHのみを導入する場合に、NH濃度に対するセンサ出力は、NH濃度が0ppmのとき、図17に示すように、第3条件下の酸素濃度調整室18内の酸素濃度に由来するオフセット電流OSが現れる。そして、NH濃度が上昇するにつれて、センサ出力も比例的に上昇するが、その傾きは、第1条件下でのNO濃度の傾きよりも小さい。第1条件下でのNO濃度の傾きを1としたとき、0.72程度となる。
 従って、第3条件下でのセンサ出力IPと、第3条件下でのNO濃度に対応するセンサ出力(NO)、NO濃度に対応するセンサ出力(NO)及びNH濃度に対応するセンサ出力(NH)との第5関係式(5)は、以下の通りになる。
  IP=0.9NO+0.8NO+0.72NH+OS  ……(5)
 オフセット電流OS、OS及びOSは共に定数であることから、第3関係式(3)、第4関係式(4)及び第5関係式(5)の3元連立方程式を解くことにより、NO、NO及びNHとが混在した被測定ガス中のNO濃度、NO濃度及びNH濃度を算出することができる。
 ここで、第3ガスセンサ10CによるNO、NO及びNHの測定処理について図18のフローチャートを参照しながら説明する。
 先ず、図18のステップS201において、第3ガスセンサ10Cは、ガス導入口16を通じて酸素濃度調整室18内にNO、NO及びNHが混在する被測定ガスを導入する。
 ステップS202において、条件設定手段104は、第1条件に設定して、酸素濃度制御手段100あるいは温度制御手段102を起動する。
 ステップS203において、酸素濃度制御手段100あるいは温度制御手段102は、酸素濃度調整室18内の酸素濃度あるいはセンサ素子12の温度を第1条件に従った酸素濃度あるいはセンサ温度に調整する。
 ステップS204において、濃度算出手段106は、第1条件下でのセンサ出力(IP)を取得する。
 ステップS205において、条件設定手段104は、第2条件に設定して、酸素濃度制御手段100あるいは温度制御手段102を起動する。
 ステップS206において、酸素濃度制御手段100あるいは温度制御手段102は、酸素濃度調整室18内の酸素濃度あるいはセンサ素子12の温度を第2条件に従った酸素濃度あるいはセンサ温度に調整する。
 ステップS207において、濃度算出手段106は、第2条件下でのセンサ出力(IP)を取得する。
 ステップS208において、条件設定手段104は、第3条件に設定して、酸素濃度制御手段100あるいは温度制御手段102を起動する。
 ステップS209において、酸素濃度制御手段100あるいは温度制御手段102は、酸素濃度調整室18内の酸素濃度あるいはセンサ素子12の温度を第3条件に従った酸素濃度あるいはセンサ温度に調整する。
 ステップS210において、濃度算出手段106は、第3条件下でのセンサ出力(IP)を取得する。
 ステップS211において、濃度算出手段106は、上述した第3関係式(3)、第4関係式(4)及び第5関係式(5)の3元連立方程式を解くことにより、NO、NO及びNHとが混在した被測定ガス中のNO濃度、NO濃度及びNH濃度を算出する。
 ステップS212において、第3ガスセンサ10Cは、NO、NO及びNHの測定処理の終了要求(電源断、メンテナンス等)があるか否かを判別する。終了要求がなければ、ステップS201以降の処理を繰り返す。そして、ステップS212において、終了要求があった段階で、第3ガスセンサ10CでのNO、NO及びNHの測定処理を終了する。
 このように、第3ガスセンサ10Cは、NOを分解させることなく、NOを全てNOに変換する条件(第1条件)下でのセンサ出力を取得し、また、NOを分解させることなく、NOの一部をNOに変換する条件(第2条件)下でのセンサ出力を取得し、NOを一部分解させて、NHの一部をNOに変換する条件を第3条件として設定するようにしている。そして、上述した第3関係式、第4関係式及び第5関係式に基づいて、NO、NO及びNHの各濃度を算出するようにしている。
 これにより、排気ガスのような未燃成分、酸素の存在下に共存する複数目的成分(例えばNO、NO、NH)の雰囲気下においても、複数目的成分の各濃度を長期間にわたり精度よく測定することができる。
 しかも、第3ガスセンサ10Cは、従来では実現できなかったNO、NO及びNHの各濃度を測定する処理を、ハードウェアとしての各種測定装置等を別途付加することなく、第3ガスセンサ10Cの制御系のソフトウェアを変更するだけで、容易に実現することができる。その結果、NOx浄化システムの制御並びに故障検知に対する精度を高めることができる。特に、DOC触媒下流の排気ガス中のNOとNOとを区別することが可能となり、DOC触媒の劣化検知に寄与する。しかも、SCRシステム下流の排気ガス中のNO、NO及びNHとを区別することも可能となり、SCRシステムの尿素注入量の精密制御、及び劣化検知に寄与する。
 次に、第4の実施の形態に係るガスセンサ(以下、第4ガスセンサ10Dと記す)について、さらに図19及び図20も参照しながら説明する。
 この第4ガスセンサ10Dは、上述した第3ガスセンサ10Cとほぼ同様の構成を有するが、濃度算出手段106の構成が異なる。
 すなわち、第4ガスセンサ10Dの濃度算出手段106は、第1条件下でのセンサ出力と、第2条件下でのセンサ出力から第1条件下でのセンサ出力を差し引いた第1出力差[#2-#1]と、第3条件下でのセンサ出力から第2条件下でのセンサ出力を差し引いた第2出力差[#3-#2]と、第2マップ112とに基づいて、NO、NO及びNHの各濃度を求める。
 第2マップ112は、グラフ化して示すと、例えば図19に示すように、x軸に、第1条件下でのセンサ出力が設定され、x軸と直交するy軸に第1出力差[#2-#1]が設定され、x軸及びy軸と直交するz軸に第2出力差[#3-#2]が設定されたグラフとなる。
 そして、この第2マップ112は、複数のポイントが設定され、各ポイントに対してそれぞれNO濃度、NO濃度及びNH濃度を割り当てている。分かり易くテーブルの形式で示すと、図20に示すような内容となる。図20では、代表的に500ppm系のみを示している。これらの濃度は、実験あるいはシミュレーションにて求めている。この第2マップ112は、三次元構造(図19参照)を有するため、第1条件下でのセンサ出力と、第1出力差[#2-#1]と、第2出力差[#3-#2]とで、1つのポイントが特定される。このポイントに対応するNO濃度、NO濃度及びNH濃度を第2マップ112から読み出すことで、NO濃度、NO濃度及びNH濃度を求めることができる。
 例えばポイントp1では、NO濃度が500ppm、NO濃度が0ppm、NH濃度が0ppm、ポイントp10では、NO濃度が300ppm、NO濃度が222ppm、NH濃度が0ppm、ポイントp18では、NO濃度が200ppm、NO濃度が150ppm、NH濃度が150ppmである。第2マップ112上に該当するポイントが存在しない場合は、最も近いポイントを特定し、例えば既知の近似計算にてNO濃度、NO濃度及びNH濃度を求めればよい。
 ここで、第4ガスセンサ10DによるNO、NO及びNHの測定処理について図21及び図22のフローチャートを参照しながら説明する。
 先ず、図21及び図22のステップS301~S310は、上述した第3ガスセンサ10Cの処理(図18のステップS201~S210参照)と同様であるため、その重複説明を省略する。
 その後、図22のステップS311において、濃度算出手段106は、第1条件下でのセンサ出力と、第2条件下でのセンサ出力から第1条件下でのセンサ出力を差し引いた第1出力差[#2-#1]と、第3条件下でのセンサ出力から第2条件下でのセンサ出力を差し引いた第2出力差[#3-#2]とから第2マップ112上の1つのポイントを特定する。
 ステップS312において、第2マップ112のうち、特定したポイントに対応するNO濃度、NO濃度及びNH濃度を読み出して、今回、測定したNO濃度、NO濃度及びNH濃度とする。第2マップ112上に該当するポイントが存在しない場合は、最も近いポイントを特定し、例えば既知の近似計算にてNO濃度、NO及びNH濃度を求める。
 ステップS313において、第4ガスセンサ10Dは、NO、NO及びNHの測定処理の終了要求(電源断、メンテナンス等)があるか否かを判別する。終了要求がなければ、図21のステップS301以降の処理を繰り返す。そして、ステップS313において、終了要求があった段階で、第4ガスセンサ10DでのNO、NO及びNHの測定処理を終了する。
 この第4ガスセンサ10Dにおいても、上述した第3ガスセンサ10Cと同様の効果を奏する。特に、第2マップ112上の特定したポイントからNO濃度、NO濃度及びNH濃度を読み出せばよいため、複雑な演算処理が不要となり、短時間でNO濃度、NO濃度及びNH濃度を取得することができる。
 なお、本発明に係るガスセンサ及び被測定ガス中の複数目的成分の濃度測定方法は、上述の実施の形態に限らず、本発明の要旨、すなわち、下記(a)~(c)を逸脱することなく、種々の構成を採り得ることはもちろんである。
 (a) 目的成分の種類、成分数に応じて酸素濃度調整室の酸素濃度や温度の設定条件を、基準となる条件から他の条件に置き換える。
 (b) (a)の条件の置き換えによって、酸素濃度調整室内で起こる目的成分(例えばNO、NO、NH)の化学平衡を変化させて、意図的に測定室で得られるセンサ出力を変動させる。
 (c) 基準となる条件でのセンサ出力、及び条件の置き換えによるセンサ出力の変動分から各々の成分濃度を求める。
 例えば副調整室18bを省略して、主調整室18aのみで構成された酸素濃度調整室18の奥側に測定電極62と第4拡散律速部64を有する測定室20を設けるようにしてもよい。
 また、図23に示すように、第1条件に設定している期間Taを長く保ち、第2条件に設定している期間Tbと第3条件に設定している期間Tcを短くしてもよい。この場合、基準となる第1条件下でのセンサ出力を精度よく確保することができ、NO濃度、NO濃度及びNH濃度を正確に測定することができる。また、第2条件に設定している状態から第3条件に設定する過程で、一旦、第1条件に設定してもよい。第3条件下でのセンサ出力の測定精度を向上させることができる。もちろん、第1条件に設定している期間Ta、第2条件に設定している期間Tb及び第3条件に設定している期間Tcをそれぞれ均等に設定してもよい。

Claims (20)

  1.  少なくとも酸素イオン伝導性の固体電解質からなる構造体(14)と、該構造体(14)に形成され、被測定ガスが導入されるガス導入口(16)と、前記構造体(14)内に形成され、前記ガス導入口(16)に連通する酸素濃度調整室(18)と、前記構造体(14)内に形成され、前記酸素濃度調整室(18)に連通する測定室(20)とを有するセンサ素子(12)と、
     前記酸素濃度調整室(18)内の酸素濃度を制御する酸素濃度制御手段(100)と、
     前記センサ素子(12)の温度を制御する温度制御手段(102)と、
     前記酸素濃度調整室(18)の酸素濃度及び前記センサ素子(12)の温度の少なくとも一方を、導入された前記被測定ガスの目的成分の種類に応じた条件に設定する条件設定手段(104)と、
     前記目的成分の種類に応じた複数の条件下で得られた各センサ出力に基づいて複数のそれぞれ異なる前記目的成分の濃度を算出する濃度算出手段(106)とを有することを特徴とするガスセンサ。
  2.  請求項1記載のガスセンサにおいて、
     前記酸素濃度調整室(18)は、前記ガス導入口(16)に連通する主調整室(18a)と、前記主調整室(18a)に連通する副調整室(18b)とを有し、
     前記測定室(20)は前記副調整室(18b)に連通していることを特徴とするガスセンサ。
  3.  請求項1又は2記載のガスセンサにおいて、
     前記酸素濃度調整室(18)内にポンプ電極(42)を有し、
     前記測定室(20)内に測定電極(62)を有し、
     前記ポンプ電極(42)は、前記測定電極(62)よりも触媒活性が低い材料で構成されていることを特徴とするガスセンサ。
  4.  請求項1~3のいずれか1項に記載のガスセンサにおいて、
     複数の目的成分は、NO及びNOであることを特徴とするガスセンサ。
  5.  請求項4記載のガスセンサにおいて、
     前記条件設定手段(104)は、
     NOを分解させることなく、NOを全てNOに変換する条件を第1条件として設定し、
     NOを分解させることなく、NOの一部をNOに変換する条件を第2条件として設定し、
     前記濃度算出手段(106)は、
     前記第1条件下でのセンサ出力を構成するNO、NO及びオフセット電流の関係を表す第1関係式と、
     前記第2条件下でのセンサ出力を構成するNO、NO及びオフセット電流の関係を表す第2関係式と、
     に基づいて、NO及びNOの各濃度を算出することを特徴とするガスセンサ。
  6.  請求項4記載のガスセンサにおいて、
     前記条件設定手段(104)は、
     NOを分解させることなく、NOを全てNOに変換する条件を第1条件として設定し、
     NOを分解させることなく、NOの一部をNOに変換する条件を第2条件として設定し、
     前記濃度算出手段(106)は、
     予め実験的に求められた前記第1条件下でのセンサ出力と、前記第2条件下でのセンサ出力から前記第1条件下でのセンサ出力を差し引いた出力差とから、前記第1条件下でのセンサ出力と前記出力差とで特定されるポイント毎にそれぞれNO濃度及びNO濃度の関係が登録された第1マップ(110)を使用し、
     前記濃度算出手段(106)は、
     実使用中の前記第1条件下でのセンサ出力、及び前記第2条件下でのセンサ出力から前記第1条件下でのセンサ出力を差し引いた前記出力差を、前記第1マップ(110)と比較して、NO及びNOの各濃度を求めることを特徴とするガスセンサ。
  7.  請求項5又は6記載のガスセンサにおいて、
     前記条件設定手段(104)は、
     前記第1条件に設定した後、前記第2条件に設定することを特徴とするガスセンサ。
  8.  請求項1~3のいずれか1項に記載のガスセンサにおいて、
     複数の目的成分は、NO、NO及びNHであることを特徴とするガスセンサ。
  9.  請求項8記載のガスセンサにおいて、
     前記条件設定手段(104)は、
     NOを分解させることなく、NOを全てNOに変換し、且つ、NHをも全てNOに変換する条件を第1条件として設定し、
     NOを分解させることなく、NOの一部をNOに変換し、且つ、NHの全てをNOに変換する条件を第2条件として設定し、
     NOをも一部分解させながらNOをNOに変換し、且つ、NHの一部をNOに変換する条件を第3条件として設定し、
     前記濃度算出手段(106)は、
     前記第1条件下でのセンサ出力を構成するNO、NO、NH及びオフセット電流の関係を表す第3関係式と、
     前記第2条件下でのセンサ出力を構成するNO、NO、NH及びオフセット電流の関係を表す第4関係式と、
     前記第3条件下でのセンサ出力を構成するNO、NO、NH及びオフセット電流の関係を表す第5関係式と、
     に基づいて、NO、NO及びNHの各濃度を算出することを特徴とするガスセンサ。
  10.  請求項8記載のガスセンサにおいて、
     前記条件設定手段(104)は、
     NOを分解させることなく、NOを全てNOに変換し、且つ、NHをも全てNOに変換する条件を第1条件として設定し、
     NOを分解させることなく、NOの一部をNOに変換し、且つ、NHの全てをNOに変換する条件を第2条件として設定し、
     NOをも一部分解させながらNOをNOに変換し、且つ、NHの一部をNOに変換する条件を第3条件として設定し、
     前記濃度算出手段(106)は、
     予め実験的に求められた前記第1条件下でのセンサ出力と、前記第2条件下でのセンサ出力から前記第1条件下でのセンサ出力を差し引いた第1出力差と、前記第3条件下でのセンサ出力から前記第2条件下でのセンサ出力を差し引いた第2出力差とから、前記第1条件下でのセンサ出力と、前記第1出力差と、前記第2出力差とで特定されるポイント毎にそれぞれNO濃度、NO濃度及びNH濃度の関係が登録された第2マップ(112)を使用し、
     前記濃度算出手段(106)は、
     実使用中の前記第1条件下でのセンサ出力と、実使用中の前記第2条件下でのセンサ出力から実使用中の第1条件下でのセンサ出力を差し引いた実使用中の第1出力差、及び実使用中の前記第3条件下でのセンサ出力から実使用中の前記第2条件下でのセンサ出力を差し引いた実使用中の前記第2出力差を、前記第2マップ(112)と比較して、NO、NO及びNHの各濃度を求めることを特徴とするガスセンサ。
  11.  請求項9又は10記載のガスセンサにおいて、
     前記条件設定手段(104)は、
     前記第1条件に設定した後、前記第2条件に設定し、その後、前記第3条件に設定することを特徴とするガスセンサ。
  12.  少なくとも酸素イオン伝導性の固体電解質からなる構造体(14)と、該構造体(14)に形成され、被測定ガスが導入されるガス導入口(16)と、前記構造体(14)内に形成され、前記ガス導入口(16)に連通する酸素濃度調整室(18)と、前記構造体(14)内に形成され、前記酸素濃度調整室(18)に連通する測定室(20)とを有するセンサ素子(12)を使用し、
     前記酸素濃度調整室(18)の酸素濃度及び前記センサ素子(12)の温度の少なくとも一方を、導入された前記被測定ガスの目的成分の種類に応じた条件に設定する条件設定ステップと、
     前記目的成分の種類に応じた複数の条件下で得られた各センサ出力に基づいて複数のそれぞれ異なる前記目的成分の濃度を算出する濃度算出ステップとを有することを特徴とする被測定ガス中の複数目的成分の濃度測定方法。
  13.  請求項12記載の被測定ガス中の複数目的成分の濃度測定方法において、
     複数の目的成分は、NO及びNOであることを特徴とする被測定ガス中の複数目的成分の濃度測定方法。
  14.  請求項13記載の被測定ガス中の複数目的成分の濃度測定方法において、
     前記条件設定ステップは、
     NOを分解させることなく、NOを全てNOに変換する条件を第1条件として設定し、
     NOを分解させることなく、NOの一部をNOに変換する条件を第2条件として設定し、
     前記濃度算出ステップは、
     前記第1条件下でのセンサ出力を構成するNO、NO及びオフセット電流の関係を表す第1関係式と、
     前記第2条件下でのセンサ出力を構成するNO、NO及びオフセット電流の関係を表す第2関係式と、
     に基づいて、NO及びNOの各濃度を算出することを特徴とする被測定ガス中の複数目的成分の濃度測定方法。
  15.  請求項13記載の被測定ガス中の複数目的成分の濃度測定方法において、
     前記条件設定ステップは、
     NOを分解させることなく、NOを全てNOに変換する条件を第1条件として設定し、
     NOを分解させることなく、NOの一部をNOに変換する条件を第2条件として設定し、
     前記濃度算出ステップは、
     予め実験的に求められた前記第1条件下でのセンサ出力と、前記第2条件下でのセンサ出力から前記第1条件下でのセンサ出力を差し引いた出力差とから、前記第1条件下でのセンサ出力と前記出力差とで特定されるポイント毎にそれぞれNO濃度及びNO濃度の関係が登録された第1マップ(110)を使用し、
     前記濃度算出ステップは、
     実使用中の前記第1条件下でのセンサ出力、及び前記第2条件下でのセンサ出力から前記第1条件下でのセンサ出力を差し引いた前記出力差を、前記第1マップ(110)と比較して、NO及びNOの各濃度を求めることを特徴とする被測定ガス中の複数目的成分の濃度測定方法。
  16.  請求項14又は15記載の被測定ガス中の複数目的成分の濃度測定方法において、
     前記条件設定ステップは、
     前記第1条件に設定した後、前記第2条件に設定することを特徴とする被測定ガス中の複数目的成分の濃度測定方法。
  17.  請求項12記載の被測定ガス中の複数目的成分の濃度測定方法において、
     複数の目的成分は、NO、NO及びNHであることを特徴とする被測定ガス中の複数目的成分の濃度測定方法。
  18.  請求項17記載の被測定ガス中の複数目的成分の濃度測定方法において、
     前記条件設定ステップは、
     NOを分解させることなく、NOを全てNOに変換し、且つ、NHをも全てNOに変換する条件を第1条件として設定し、
     NOを分解させることなく、NOの一部をNOに変換し、且つ、NHの全てをNOに変換する条件を第2条件として設定し、
     NOをも一部分解させながらNOをNOに変換し、且つ、NHの一部をNOに変換する条件を第3条件として設定し、
     前記濃度算出ステップは、
     前記第1条件下でのセンサ出力を構成するNO、NO、NH及びオフセット電流の関係を表す第3関係式と、
     前記第2条件下でのセンサ出力を構成するNO、NO、NH及びオフセット電流の関係を表す第4関係式と、
     前記第3条件下でのセンサ出力を構成するNO、NO、NH及びオフセット電流の関係を表す第5関係式と、
     に基づいて、NO、NO及びNHの各濃度を算出することを特徴とする被測定ガス中の複数目的成分の濃度測定方法。
  19.  請求項17記載の被測定ガス中の複数目的成分の濃度測定方法において、
     前記条件設定ステップは、
     NOを分解させることなく、NOを全てNOに変換し、且つ、NHをも全てNOに変換する条件を第1条件として設定し、
     NOを分解させることなく、NOの一部をNOに変換し、且つ、NHの全てをNOに変換する条件を第2条件として設定し、
     NOをも一部分解させながらNOをNOに変換し、且つ、NHの一部をNOに変換する条件を第3条件として設定し、
     前記濃度算出ステップは、予め実験的に求められた前記第1条件下でのセンサ出力と、前記第2条件下でのセンサ出力から前記第1条件下でのセンサ出力を差し引いた第1出力差と、前記第3条件下でのセンサ出力から前記第2条件下でのセンサ出力を差し引いた第2出力差とから、前記第1条件下でのセンサ出力と、前記第1出力差と、前記第2出力差とで特定されるポイント毎にそれぞれNO濃度、NO濃度及びNH濃度の関係が登録された第2マップ(112)を使用し、
     前記濃度算出ステップは、
     実使用中の前記第1条件下でのセンサ出力と、実使用中の前記第2条件下でのセンサ出力から実使用中の前記第1条件下でのセンサ出力を差し引いた実使用中の第1出力差、及び実使用中の前記第3条件下でのセンサ出力から実使用中の前記第2条件下でのセンサ出力を差し引いた実使用中の第2出力差を、前記第2マップ(112)と比較して、NO、NO及びNHの各濃度を求めることを特徴とする被測定ガス中の複数目的成分の濃度測定方法。
  20.  請求項18又は19記載の被測定ガス中の複数目的成分の濃度測定方法において、
     前記条件設定ステップは、
     前記第1条件に設定した後、前記第2条件に設定し、その後、前記第3条件に設定することを特徴とする被測定ガス中の複数目的成分の濃度測定方法。
PCT/JP2017/022945 2016-06-23 2017-06-22 ガスセンサ及び被測定ガス中の複数目的成分の濃度測定方法 WO2017222001A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780038692.0A CN109451749B (zh) 2016-06-23 2017-06-22 气体传感器以及被测定气体中的多个目标成分的浓度测定方法
DE112017003119.2T DE112017003119T5 (de) 2016-06-23 2017-06-22 Gassensor und Verfahren zum Messen von Konzentrationen einer Vielzahl von Sollkomponenten in zu messendem Gas
JP2018524152A JP6820922B2 (ja) 2016-06-23 2017-06-22 ガスセンサ及び被測定ガス中の複数目的成分の濃度測定方法
US16/228,827 US11060996B2 (en) 2016-06-23 2018-12-21 Gas sensor, and method for measuring concentrations of plurality of target components in gas to be measured

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016124420 2016-06-23
JP2016-124420 2016-06-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/228,827 Continuation US11060996B2 (en) 2016-06-23 2018-12-21 Gas sensor, and method for measuring concentrations of plurality of target components in gas to be measured

Publications (1)

Publication Number Publication Date
WO2017222001A1 true WO2017222001A1 (ja) 2017-12-28

Family

ID=60784104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022945 WO2017222001A1 (ja) 2016-06-23 2017-06-22 ガスセンサ及び被測定ガス中の複数目的成分の濃度測定方法

Country Status (5)

Country Link
US (1) US11060996B2 (ja)
JP (1) JP6820922B2 (ja)
CN (1) CN109451749B (ja)
DE (1) DE112017003119T5 (ja)
WO (1) WO2017222001A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019219176A (ja) * 2018-06-15 2019-12-26 日本碍子株式会社 ガスセンサ及びその製造方法
JP2019219175A (ja) * 2018-06-15 2019-12-26 日本碍子株式会社 ガスセンサ
WO2020011427A1 (de) * 2018-07-12 2020-01-16 Vitesco Technologies GmbH Verfahren und vorrichtung zur ermittlung der ammoniakkonzentration und der stickstoffmonoxidkonzentration im abgasstrom eines kraftfahrzeugs
WO2020011428A1 (de) * 2018-07-12 2020-01-16 Vitesco Technologies GmbH Verfahren und vorrichtung zur ermittlung der stickoxidkonzentration und eines stickoxidverhältnisses im abgasstrom eines kraftfahrzeugs
DE102019203749A1 (de) * 2019-03-19 2020-04-02 Vitesco Technologies GmbH Verfahren zum Ermitteln eines Fehlers eines Abgassensors einer Brennkraftmaschine
DE102019007451A1 (de) 2018-10-26 2020-04-30 Ngk Insulators, Ltd. Gassensor
DE102018219573A1 (de) 2018-11-15 2020-05-20 Continental Automotive Gmbh Verfahren und Abgassensor zum Erfassen des Ammoniakanteils im Abgas einer Brennkraftmaschine
DE102019209456B3 (de) 2019-06-28 2020-06-18 Vitesco Technologies GmbH Verfahren zum signal-optimierten Betreiben eines NOx/NH3-Abgassensors für eine Brennkraftmaschine
DE102019203707B3 (de) 2019-03-19 2020-07-02 Vitesco Technologies GmbH Verfahren zum Ermitteln eines Fehlers eines Abgassensors einer Brennkraftmaschine
DE102019203704A1 (de) * 2019-03-19 2020-09-24 Vitesco Technologies GmbH Verfahren zum Ermitteln eines Fehlers eines Abgassensors einer Brennkraftmaschine
DE102019204771A1 (de) * 2019-04-03 2020-10-08 Vitesco Technologies GmbH Verfahren zum Ermitteln des Ammoniakanteils im Abgas einer Brennkraftmaschine und Abgassensor hierfür
WO2024084889A1 (ja) * 2022-10-21 2024-04-25 日本碍子株式会社 ガスセンサ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018213352A1 (de) * 2018-08-08 2020-02-13 Continental Automotive Gmbh Verfahren zum Ermitteln des Ammoniakanteils im Abgas einer Brennkraftmaschine und Abgassensor hierfür
GB2592561A (en) * 2019-12-20 2021-09-08 Univ Loughborough Determining a proportion of hydrogen in a mixture of hydrogen and natural gas
JP7349397B2 (ja) * 2020-03-19 2023-09-22 日本碍子株式会社 ガスセンサセット及び被測定ガス中の複数目的成分の濃度測定方法
DE102022106136A1 (de) * 2021-03-29 2022-09-29 Ngk Insulators, Ltd. Sensorelement und verfahren zum erfassen eines gases unter verwendung des sensorelements
DE102022106164A1 (de) * 2021-03-29 2022-09-29 Ngk Insulators, Ltd. Sensorelement

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100161242A1 (en) * 2008-12-18 2010-06-24 Delphi Technologies, Inc. Exhaust gas sensing system and method for determining concentrations of exhaust gas constituents
JP2013221931A (ja) * 2012-04-19 2013-10-28 Ngk Spark Plug Co Ltd マルチガスセンサおよびマルチガスセンサ装置
JP2014139579A (ja) * 2014-03-24 2014-07-31 Ngk Spark Plug Co Ltd NOx濃度の検出装置およびその検出方法
JP2015031604A (ja) * 2013-08-02 2015-02-16 日本碍子株式会社 ガスセンサ
JP2015034814A (ja) * 2013-07-09 2015-02-19 日本特殊陶業株式会社 マルチガスセンサ及びマルチガスセンサ装置
JP2015200643A (ja) * 2014-03-31 2015-11-12 日本碍子株式会社 ガスセンサ
JP2016014597A (ja) * 2014-07-02 2016-01-28 株式会社日本自動車部品総合研究所 ガス濃度測定システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083176A (en) * 1998-08-11 2000-07-04 Medical Device Technologies, Inc. Automated biopsy needle handle
US7527718B2 (en) * 2004-03-29 2009-05-05 Ngk Insulators, Ltd. Method of treating gas sensor element
US7294252B2 (en) * 2005-10-07 2007-11-13 Delphi Technologies, Inc. NOx sensor and methods of using the same
US20070080074A1 (en) 2005-10-07 2007-04-12 Delphi Technologies, Inc. Multicell ammonia sensor and method of use thereof
JP5240432B2 (ja) 2008-03-28 2013-07-17 国立大学法人九州大学 炭化水素濃度測定用センサ素子、および炭化水素濃度測定方法
JP5204903B2 (ja) * 2010-01-19 2013-06-05 日本碍子株式会社 ガスセンサー及びその製造方法
JP2013068632A (ja) 2012-12-11 2013-04-18 Kyushu Univ 炭化水素濃度測定用センサ素子、および炭化水素濃度測定方法
US10036724B2 (en) * 2013-08-21 2018-07-31 Denso Corporation Gas sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100161242A1 (en) * 2008-12-18 2010-06-24 Delphi Technologies, Inc. Exhaust gas sensing system and method for determining concentrations of exhaust gas constituents
JP2013221931A (ja) * 2012-04-19 2013-10-28 Ngk Spark Plug Co Ltd マルチガスセンサおよびマルチガスセンサ装置
JP2015034814A (ja) * 2013-07-09 2015-02-19 日本特殊陶業株式会社 マルチガスセンサ及びマルチガスセンサ装置
JP2015031604A (ja) * 2013-08-02 2015-02-16 日本碍子株式会社 ガスセンサ
JP2014139579A (ja) * 2014-03-24 2014-07-31 Ngk Spark Plug Co Ltd NOx濃度の検出装置およびその検出方法
JP2015200643A (ja) * 2014-03-31 2015-11-12 日本碍子株式会社 ガスセンサ
JP2016014597A (ja) * 2014-07-02 2016-01-28 株式会社日本自動車部品総合研究所 ガス濃度測定システム

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019219175A (ja) * 2018-06-15 2019-12-26 日本碍子株式会社 ガスセンサ
JP2019219176A (ja) * 2018-06-15 2019-12-26 日本碍子株式会社 ガスセンサ及びその製造方法
JP7022011B2 (ja) 2018-06-15 2022-02-17 日本碍子株式会社 ガスセンサ及びその製造方法
JP7022010B2 (ja) 2018-06-15 2022-02-17 日本碍子株式会社 ガスセンサ
CN112352154A (zh) * 2018-07-12 2021-02-09 纬湃科技有限责任公司 用于判定机动车辆的废气流中的氨气浓度和一氧化氮浓度的方法和装置
WO2020011427A1 (de) * 2018-07-12 2020-01-16 Vitesco Technologies GmbH Verfahren und vorrichtung zur ermittlung der ammoniakkonzentration und der stickstoffmonoxidkonzentration im abgasstrom eines kraftfahrzeugs
WO2020011428A1 (de) * 2018-07-12 2020-01-16 Vitesco Technologies GmbH Verfahren und vorrichtung zur ermittlung der stickoxidkonzentration und eines stickoxidverhältnisses im abgasstrom eines kraftfahrzeugs
US11977064B2 (en) 2018-07-12 2024-05-07 Vitesco Technologies GmbH Method and apparatus for determining the nitrogen oxide concentration and a nitrogen oxide ratio in the exhaust gas flow of a motor vehicle
CN112352155A (zh) * 2018-07-12 2021-02-09 纬湃科技有限责任公司 用于判定机动车辆的废气流中的氮氧化物浓度和氮氧化物比率的方法和设备
DE102019007451A1 (de) 2018-10-26 2020-04-30 Ngk Insulators, Ltd. Gassensor
JP2020067408A (ja) * 2018-10-26 2020-04-30 日本碍子株式会社 ガスセンサ
JP7122220B2 (ja) 2018-10-26 2022-08-19 日本碍子株式会社 ガスセンサ
US11275049B2 (en) 2018-10-26 2022-03-15 Ngk Insulators, Ltd. Gas sensor
DE102018219573A1 (de) 2018-11-15 2020-05-20 Continental Automotive Gmbh Verfahren und Abgassensor zum Erfassen des Ammoniakanteils im Abgas einer Brennkraftmaschine
DE102019203707B3 (de) 2019-03-19 2020-07-02 Vitesco Technologies GmbH Verfahren zum Ermitteln eines Fehlers eines Abgassensors einer Brennkraftmaschine
DE102019203704A1 (de) * 2019-03-19 2020-09-24 Vitesco Technologies GmbH Verfahren zum Ermitteln eines Fehlers eines Abgassensors einer Brennkraftmaschine
WO2020187879A1 (de) 2019-03-19 2020-09-24 Vitesco Technologies GmbH Verfahren zum ermitteln eines fehlers eines abgassensors einer brennkraftmaschine
DE102019203704B4 (de) 2019-03-19 2023-10-26 Vitesco Technologies GmbH Verfahren zum Steuern des Betriebs eines mit zwei Messpfaden ausgestatteten Abgassensors einer Brennkraftmaschine zum Ermitteln eines Fehlers des Abgassensors durch Vergleich der Pumpströme beider Messpfade
DE102019203749A1 (de) * 2019-03-19 2020-04-02 Vitesco Technologies GmbH Verfahren zum Ermitteln eines Fehlers eines Abgassensors einer Brennkraftmaschine
DE102019204771A1 (de) * 2019-04-03 2020-10-08 Vitesco Technologies GmbH Verfahren zum Ermitteln des Ammoniakanteils im Abgas einer Brennkraftmaschine und Abgassensor hierfür
DE102019209456B3 (de) 2019-06-28 2020-06-18 Vitesco Technologies GmbH Verfahren zum signal-optimierten Betreiben eines NOx/NH3-Abgassensors für eine Brennkraftmaschine
WO2020260330A1 (de) 2019-06-28 2020-12-30 Vitesco Technologies GmbH Verfahren zum betreiben eines abgassensors für eine brennkraftmaschine und abgassensor für eine brennkraftmaschine
WO2024084889A1 (ja) * 2022-10-21 2024-04-25 日本碍子株式会社 ガスセンサ

Also Published As

Publication number Publication date
DE112017003119T5 (de) 2019-03-07
CN109451749B (zh) 2021-05-14
CN109451749A (zh) 2019-03-08
JPWO2017222001A1 (ja) 2019-04-18
JP6820922B2 (ja) 2021-01-27
US11060996B2 (en) 2021-07-13
US20190137441A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
JP6820922B2 (ja) ガスセンサ及び被測定ガス中の複数目的成分の濃度測定方法
JP6826596B2 (ja) ガスセンサ及び被測定ガス中の複数目的成分の濃度測定方法
JP6757794B2 (ja) 排ガス浄化システム及び排ガス浄化方法
JP6595745B1 (ja) ガスセンサ
JP3885705B2 (ja) ガス濃度検出装置
JP6475117B2 (ja) センサ制御方法およびセンサ制御装置
CN107340326A (zh) 氮氧化物传感器的控制装置
JP7230211B2 (ja) 測定ガス中の、結合酸素を有する測定ガス成分の少なくとも一部を検出するセンサシステムの動作方法
WO2020100644A1 (ja) ガスセンサ
JP7122220B2 (ja) ガスセンサ
JP7304317B2 (ja) アンモニア濃度検出装置
JP2021152520A (ja) ガスセンサ
JP2006162325A (ja) 排気ガス成分濃度検出方法
JP2010071192A (ja) 排気ガス浄化装置
Van Nieuwstadt et al. NO x sensor compensation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018524152

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815468

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17815468

Country of ref document: EP

Kind code of ref document: A1