WO2017211144A1 - 二氧化钒薄膜生长方法 - Google Patents

二氧化钒薄膜生长方法 Download PDF

Info

Publication number
WO2017211144A1
WO2017211144A1 PCT/CN2017/082368 CN2017082368W WO2017211144A1 WO 2017211144 A1 WO2017211144 A1 WO 2017211144A1 CN 2017082368 W CN2017082368 W CN 2017082368W WO 2017211144 A1 WO2017211144 A1 WO 2017211144A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
vanadium dioxide
vanadium
sample
Prior art date
Application number
PCT/CN2017/082368
Other languages
English (en)
French (fr)
Inventor
林媛
梁伟正
高敏
路畅
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学 filed Critical 电子科技大学
Publication of WO2017211144A1 publication Critical patent/WO2017211144A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate

Definitions

  • the invention relates to the technology of film making, in particular to the technology of making vanadium dioxide film.
  • Vanadium dioxide is a classic strong associated electronic material. It undergoes metal insulator phase transitions around 340K, and has potential applications in transistors, optical switches, sensors, actuators, and smart windows. The excellent electrical and optical properties of vanadium dioxide can only be obtained in pure phase vanadium dioxide. Since vanadium has many valence states (including 0, +2, +3, +4, and +5), vanadium oxide has many kinds of phases, generally expressed as VO X (1 ⁇ X ⁇ 2.5), and the valence state is easy to change. Therefore, the growth window of vanadium dioxide is also very narrow, and growth is very difficult.
  • vanadium dioxide film + 4 valence V ion is unstable, and it is very easy to lose oxygen and price during high temperature growth. It is easy to form a large number of oxygen vacancies to affect its performance and performance. Degradation, the accumulation of oxygen vacancies to a certain amount will also cause the V 7 O 13 phase to precipitate in the film, which will seriously degrade the film properties.
  • the vanadium dioxide film can be industrially applied, and it is necessary to find a The method can stabilize the valence state of +4 valence V (vanadium ion) during the growth of vanadium dioxide film, and prevent the formation and accumulation of oxygen vacancies in the vanadium dioxide film.
  • the object of the present invention is to overcome the problem that the valence state of the +4 valence vanadium ion is unstable when the vanadium dioxide film is grown, and to provide a method for growing a vanadium dioxide film.
  • the vanadium dioxide film growth method is characterized in that it comprises the following steps:
  • Step 1 Insert a substrate sample pre-coated with a precursor containing V ions or a substrate sample previously grown with a VO X film into a quartz boat or corundum boat and push it into a tube furnace or a muffle furnace, wherein , 1 ⁇ X ⁇ 2.5;
  • Step 2 mixing a certain amount of water vapor with a nitrogen-hydrogen mixed gas and passing it into a tube furnace or a muffle furnace;
  • Step 3 Set a sintering process of the tube furnace or the muffle furnace, and perform sintering treatment on the obtained substrate sample to finally obtain a vanadium dioxide film grown on the substrate sample.
  • the substrate sample which is pre-spin-coated with the precursor containing V ions is prepared by using a polymer precursor containing vanadium ions or a sol-gel containing vanadium ions.
  • the precursor is dropped on the pre-cleaned substrate, and the gel is dispensed using a homogenizer to uniformly spin the precursor onto the substrate.
  • the speed of the glue machine is 1000-10000 rmp/min, and the glue time is 10-60 seconds.
  • the substrate sample is an Al 2 O 3 substrate or a TiO 2 substrate or a Si substrate or a SiO 2 substrate or a Ge substrate or a Fe 3 O 4 substrate or La 1-y Sr. y MnO 3 substrate or ITO substrate or LaAlO 3 substrate or SrTiO 3 substrate or AlN substrate or GaN substrate or mica substrate or graphene sheet or MoS 2 substrate or black phosphorus substrate.
  • the substrate sample is surface-grown with an Al 2 O 3 film or a TiO 2 film or a Si film or a SiO 2 film or a Ge film or a Fe 3 O 4 film or a La 1-y Sr y MnO film. 3 film or ITO film or LaAlO 3 film or SrTiO 3 film or various substrates of AlN film or GaN film.
  • the substrate sample in which the VO x film is grown in advance is subjected to a magnetron sputtering method or an evaporation method or a pulse laser deposition method or an atomic layer deposition method.
  • the hydrogen content in the nitrogen-hydrogen mixed gas ranges from 0.001% to 10%.
  • the sufficient mixing of the certain amount of water vapor and the nitrogen-hydrogen mixed gas means that the content of the water vapor is 0.01%-99% in the gas obtained after the water vapor and the nitrogen-hydrogen mixed gas are sufficiently mixed. .
  • the gas pipe used is wound and insulated by using the heat insulating material and the heating belt.
  • step 3 the sintering procedure is performed on a substrate sample pre-coated with a V-ion precursor, and the sintering procedure can be set to: heating to 450 ° C-550 at a temperature increase rate of 1-10 ° C / min. °C, and held at this temperature for 1-10 hours, the organic matter in the V ion precursor is removed to form an amorphous vanadium oxide film. Then heating to an annealing temperature at a temperature increase rate of 1-10 ° C / min, and holding at an annealing temperature for 1-10 hours, crystallizing the amorphous vanadium oxide film to form a vanadium dioxide film;
  • the sintering procedure can be set to: heating to the annealing temperature at a temperature increase rate of 1-10 ° C / min, and holding the VO x film for 1-10 hours at the annealing temperature to crystallize the VO x film. Vanadium dioxide film.
  • the invention has the beneficial effects that in the solution of the present invention, water vapor is added to the growth atmosphere of the vanadium dioxide film by the above-mentioned vanadium dioxide thin film growth method, and the water vapor can prevent the formation and accumulation of oxygen vacancies to a certain extent.
  • the purpose of stabilizing the valence state of the +4 valence V ion is to broaden the annealing window of the vanadium dioxide film while improving the crystal quality and performance of the vanadium dioxide film.
  • Figure 1 is a flow chart showing a method of growing a vanadium dioxide film in the present invention.
  • FIG. 2 is a graph showing the relationship between the change ratio of the phase change resistance of the vanadium dioxide film grown and the annealing temperature in the case where the water vapor content in the growth atmosphere is 0% in the embodiment of the present invention.
  • FIG 3 is a graph showing the relationship between the change ratio of the phase change resistance of the vanadium dioxide film grown and the annealing temperature in the case where the water vapor content in the growth atmosphere is 1.57% in the embodiment of the present invention.
  • Fig. 4 is a graph showing the relationship between the resistance of the vanadium dioxide film grown and the temperature when the water vapor content in the growth atmosphere is 0% in the embodiment of the present invention.
  • Fig. 5 is a graph showing the relationship between the resistance of the vanadium dioxide film grown and the temperature when the water vapor content in the growth atmosphere is 1.57% in the embodiment of the present invention.
  • Fig. 6 is an X-ray diffraction 2 ⁇ scan pattern of a vanadium dioxide film grown in a growth atmosphere having a water vapor content of 1.57% in the embodiment of the present invention.
  • Fig. 7 is a graph showing the relationship between the change ratio of the phase change resistance of the vanadium dioxide film grown and the annealing temperature in the case where the water vapor content in the growth atmosphere is 5.5% in the embodiment of the present invention.
  • Figure 8 is a graph showing the relationship between the resistance of the vanadium dioxide film grown and the temperature when the water vapor content in the growth atmosphere is 5.5% in the embodiment of the present invention.
  • Figure 9 is a graph showing the X-ray diffraction 2? scan mode of the grown vanadium dioxide film in the case where the water vapor content in the growth atmosphere is 5.5% in the embodiment of the present invention.
  • Figure 10 is an X-ray diffraction Phi scan pattern of a vanadium dioxide film grown in a growth atmosphere having a water vapor content of 5.5% in the embodiment of the present invention.
  • Fig. 11 is a view showing the distribution of the phase change resistance change ratio of the vanadium dioxide thin film grown on a three-inch sapphire substrate on the film in the case where the water vapor content in the growth atmosphere is 3.1% in the embodiment of the present invention.
  • Fig. 12 is a view showing the distribution of the phase transition temperature Tc of the vanadium dioxide film grown on a three-inch sapphire substrate on the film in the case where the water vapor content in the growth atmosphere is 3.1% in the embodiment of the present invention.
  • Step 1 Insert a substrate sample pre-coated with a precursor containing V ions or a substrate sample previously grown with a VO X film into a quartz boat or corundum boat and push it into a tube furnace or a muffle furnace, wherein , 1 ⁇ X ⁇ 2.5.
  • the substrate sample which is pre-spin-coated with the precursor containing V ions may be prepared by dropping a polymer precursor containing V ions or a sol-gel precursor containing vanadium ions.
  • the glue is used to carry out the glue, and the solution is evenly spin-coated on the substrate to obtain a sample of the substrate, wherein the speed of the homogenizer can be 1000-10000 rmp/min, and the glue time can be 10-60 seconds.
  • the substrate sample (including the substrate sample preliminarily coated with the substrate sample containing the V ion solution and the substrate sample previously grown with the VO X film) may be an Al 2 O 3 substrate or a TiO 2 substrate.
  • Si substrate or SiO 2 substrate or Ge substrate or Fe 3 O 4 substrate or La 1-y Sr y MnO 3 substrate or ITO substrate or LaAlO 3 substrate or SrTiO 3 substrate or AlN substrate or GaN substrate or mica substrate or graphene substrate or MoS 2 substrate or black phosphorus substrate may also be surface-grown with Al 2 O 3 film or TiO 2 film or Si film or SiO 2 film or Ge film or Fe 3 O 4 film or La 1-y Sr y MnO 3 film or ITO film or LaAlO 3 film or SrTiO 3 film or various substrates of AlN film or GaN film, and then spin-coating the precursor containing V ions or The VO x film is grown in advance.
  • the growth method may be an existing growth method such as magnetron sputtering or vapor deposition or pulsed laser deposition or atomic layer deposition.
  • Step 2 Mix a certain amount of water vapor with a nitrogen-hydrogen mixed gas and pass it into a tube furnace or a muffle furnace.
  • the hydrogen content in the nitrogen-hydrogen mixed gas ranges from 0.001% to 10%, and a certain amount of water vapor is sufficiently mixed with the nitrogen-hydrogen mixed gas to mean a gas obtained by thoroughly mixing the water vapor with the nitrogen-hydrogen mixed gas.
  • the water vapor content may be from 0.01 to 99%.
  • Step 3 Set a sintering process of the tube furnace or the muffle furnace, and perform sintering treatment on the obtained substrate sample to finally obtain a vanadium dioxide film grown on the substrate sample.
  • the sintering process is performed on a substrate sample pre-coated with a V-ion precursor, and the sintering procedure can be set to: heating to 450 ° C - 550 ° C at a temperature increase rate of 1-10 ° C / min, and The temperature is maintained at this temperature for 1-10 hours to remove the organic matter in the V ion solution to form an amorphous vanadium oxide film. Then heating to an annealing temperature at a temperature increase rate of 1-10 ° C / min, and holding at an annealing temperature for 1-10 hours, crystallizing the amorphous vanadium oxide film to form a vanadium dioxide film;
  • the sintering procedure can be set to: heating to the annealing temperature at a temperature increase rate of 1-10 ° C / min, and holding the VO x film for 1-10 hours at the annealing temperature to crystallize the VO x film. Vanadium dioxide film.
  • Step 1 The polymer precursor containing vanadium ions is dropped on a pre-cleaned Al 2 O 3 (10-10) substrate having a size of 10 mm ⁇ 10 mm, and the gel is glued using a homogenizer to uniformly spin the precursor. It was coated on an Al 2 O 3 (10-10) substrate at a speed of 6000 rpm/min for 40 s.
  • the Al 2 O 3 (10-10) substrate spin-coated with the precursor was placed in a quartz boat, and the quartz boat was pushed into the tube furnace.
  • Step 2 Mixing a nitrogen-hydrogen mixed gas having a nitrogen gas and a hydrogen ratio of 98.5:1.5 with water vapor to generate water vapor.
  • a mixed gas of nitrogen, hydrogen, and water vapor having a content of 1.57% was introduced into the tube furnace at a flow rate of 200 ml/min.
  • the gas pipeline is insulated with a heat insulating material and a heating belt to maintain the temperature of the pipeline at about 50 ° C to prevent condensation of water vapor in the mixed gas.
  • Step 3 Sintering the substrate sample, specifically: heating from room temperature to 450 ° C, heating rate is 1 ° C / min, and then holding at this temperature for 2 hours, in order to allow the polymer precursors bound with vanadium ions
  • the body is fully decomposed to form an amorphous vanadium oxide film; the temperature is raised from 450 ° C to an annealing temperature of 486 ° C for annealing, and the temperature is kept at this temperature for 2 hours in order to crystallize the amorphous vanadium oxide film.
  • Vanadium dioxide film The temperature was lowered from 486 ° C to room temperature, and the cooling rate was 5 ° C / min. After the temperature was lowered to room temperature, the sample was taken out to obtain a vanadium dioxide film sample.
  • a nitrogen-hydrogen mixed gas having a ratio of nitrogen and hydrogen of 98.5:1.5 is introduced into the tube furnace, and steps 1 and 3 are repeatedly repeated at annealing temperatures of 480 ° C, 482 ° C, 484 ° C, and 486 ° C, respectively.
  • a set of vanadium dioxide film samples for reference was synthesized at 488 ° C, 490 ° C, 492 ° C, 494 ° C, and 496 ° C.
  • the abscissa is the annealing temperature of the sample
  • the vanadium dioxide sample sintered in a gas mixture of nitrogen and hydrogen without water vapor can make the annealing temperature range of ⁇ R/R 100 > 10000 less than 6K.
  • FIG. 3 it is a graph of ⁇ R/R 100 of the vanadium dioxide sample sintered in a gas mixture of nitrogen and hydrogen having a water vapor content of 1.57%, and an annealing temperature. It can be seen from Fig. 3 that the annealing temperature range of the vanadium dioxide film capable of growing ⁇ R/R 100 > 10000 is 12K, indicating that ⁇ R/R 100 >10000 can be grown after mixing 1.57% of water vapor in the nitrogen-hydrogen mixed gas. The annealing window of the vanadium dioxide film sample was broadened.
  • Figure 4 is a graph showing the relationship between the optimum resistance of vanadium dioxide film resistance when 0% water vapor is added to a tube furnace.
  • the abscissa is the temperature at which the sample is tested during performance testing and the ordinate is the resistance of the sample.
  • Figure 5 is a graph showing the relationship between the optimum vanadium dioxide film resistance and temperature obtained when 1.57% of water vapor is added to a tube furnace.
  • the abscissa is the temperature at which the sample is tested during performance testing and the ordinate is the resistance of the sample.
  • ⁇ R/R 100 85000, the performance of the film sample is better than that of the optimum sample in the atmosphere without water vapor, indicating that mixing a certain amount of water vapor in the nitrogen-hydrogen mixed gas can effectively improve the quality of the vanadium dioxide film. .
  • Figure 6 is a graph of the vanadium dioxide film in an X-ray diffraction 2? scan mode when 1.57% of water vapor is added to the tube furnace.
  • the abscissa is 2 Theta, and the unit is degrees. It can be seen from Fig. 6 that no diffraction peaks other than the diffraction peaks of the substrates Al 2 O 3 (30-30) and VO 2 (-402) are observed in the XRD pattern, indicating that the film sample is a pure phase M1. Phase vanadium dioxide film.
  • Step 1 The polymer precursor containing vanadium ions is dropped on a pre-cleaned Al 2 O 3 (10-10) substrate having a size of 10 mm ⁇ 10 mm, and the gel is glued using a homogenizer to uniformly spin the precursor. It was coated on an Al 2 O 3 (10-10) substrate at a speed of 6000 rpm/min for 40 s.
  • the Al 2 O 3 (10-10) substrate spin-coated with the precursor was placed in a quartz boat, and the quartz boat was pushed into the tube furnace.
  • Step 2 mixing a nitrogen-hydrogen mixed gas having a nitrogen gas and a hydrogen ratio of 98.5:1.5 with water vapor to generate a mixed gas of nitrogen, hydrogen and water vapor having a water vapor content of 5.5%, and introducing the mixed gas into the tube furnace
  • the flow rate is 200 ml/min.
  • the gas pipeline is insulated with a heat insulating material and a heating belt to maintain the temperature of the pipeline at about 50 ° C to prevent condensation of water vapor in the mixed gas.
  • Step 3 Sintering the substrate sample, specifically: heating from room temperature to 450 ° C, heating rate is 1 ° C / min, and then holding at this temperature for 2 hours, in order to make the vanadium ion precursor high
  • the molecules are fully decomposed to form vanadium ions into an amorphous vanadium oxide film; the temperature is raised from 450 ° C to 490 ° C, and then kept at this temperature for 2 hours, in order to crystallize the amorphous amorphous vanadium oxide film.
  • a vanadium dioxide film was formed; the temperature was lowered from 490 ° C to room temperature, and the temperature was lowered to 5 ° C / min. After the temperature was lowered to room temperature, the sample was taken out to obtain a vanadium dioxide film sample.
  • a change curve of the phase change resistance ⁇ R/R 100 of the vanadium dioxide sample sintered in a gas mixture of nitrogen and hydrogen having a water vapor content of 5.5% was plotted against the annealing temperature. It can be seen from Fig. 7 that the annealing temperature range of the vanadium dioxide film capable of growing ⁇ R/R 100 > 10000 is 34K, which indicates that ⁇ R/R 100 >10000 can be grown after introducing water vapor of 5.5% in the atmosphere. The annealing window of the vanadium dioxide film sample was further broadened.
  • Figure 8 is a graph showing the relationship between the optimum vanadium dioxide film resistance and temperature obtained by adding 5.5% water vapor to a tube furnace.
  • the abscissa is the temperature at which the sample is subjected to the performance test, and the ordinate is the resistance of the sample.
  • ⁇ R/R 100 185000, the resistance change during the phase change is very steep, indicating that the quality of the sample is close to the level of single crystal vanadium dioxide, and it can be seen that 5.5% is mixed in the nitrogen-hydrogen mixed gas.
  • the water vapor is used, the quality of the vanadium dioxide film can be greatly improved.
  • Figure 9 is a graph of the vanadium dioxide film in the X-ray diffraction 2? scan mode when 5.5% water vapor is added to the tube furnace. As can be seen from Fig. 9, except for the diffraction peaks of the substrates Al 2 O 3 (30-30) and VO 2 (-402), no other diffraction peaks were observed in the XRD pattern, indicating that the film sample is a pure phase M1. Phase vanadium dioxide film.
  • Figure 10 is a graph of the vanadium dioxide film in the X-ray diffraction Phi scan mode when 5.5% water vapor is added to the tube furnace. As can be seen from Fig. 10, the vanadium dioxide film is epitaxially grown on an Al 2 O 3 (10-10) substrate.
  • Step 1 The polymer precursor containing vanadium ions is dropped into a pre-cleaned three-foot diameter Al 2 O 3 (10-10) circular substrate, and the gel is used to make the precursor uniform.
  • a three foot Al 2 O 3 (10-10) circular substrate spin-coated with the precursor was placed in a quartz boat and the quartz boat was pushed into the tube furnace.
  • Step 2 Mixing a nitrogen-hydrogen mixed gas having a nitrogen gas and a hydrogen ratio of 98.5:1.5 with water vapor to produce a mixed gas of nitrogen gas, hydrogen gas and water vapor having a water vapor content of 3.1%, and introducing the mixed gas into the tube furnace.
  • the flow rate is 200 ml/min.
  • the gas pipeline is insulated with a heat insulating material and a heating belt to maintain the temperature of the pipeline at about 50 ° C to prevent condensation of water vapor in the mixed gas.
  • Step 3 Sintering the substrate sample, specifically: heating from room temperature to 450 ° C, heating rate is 1 ° C / min, and then holding at this temperature for 2 hours, in order to allow the polymer precursors bound with vanadium ions
  • the body is fully decomposed to form vanadium ions into an amorphous vanadium oxide film; the sample is annealed from 450 ° C to 502 ° C, and then kept at this temperature for 2 hours; from 502 ° C to room temperature, the cooling rate is 5 ° C /min, after dropping to room temperature, the sample was taken out to obtain a sample of vanadium dioxide film having a diameter of three feet.
  • Figure 11 is a distribution diagram showing the change in the phase change resistance of the vanadium dioxide thin film grown on a three inch sapphire substrate when 3.1% water vapor was added to the tube furnace. It can be seen from Fig. 11 that the three-inch vanadium dioxide film sample has a very good phase transition property of the metal member insulator, and the phase change resistance change of all the regions of the film is above 3 ⁇ 10 4 , indicating that the sample is of high quality.
  • Figure 12 is a graph showing the phase transition temperature Tc of a vanadium dioxide film grown on a three inch sapphire substrate when 3.1% water vapor is added to the tube furnace. As can be seen from Fig. 12, the three-inch vanadium dioxide film sample has a phase transition temperature Tc of 59.7 ° C and a deviation of 0.4 ° C, indicating that the sample has good uniformity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及薄膜制作技术。本发明解决了现有二氧化钒薄膜生长时+4价钒离子价态不稳定的问题,提供了一种二氧化钒薄膜生长方法,其技术方案可概括为:将预先旋涂有含V离子的前驱体的基片样品或预先生长了VOX薄膜的基片样品放入石英舟或刚玉舟内并推入管式炉或马弗炉中,其中,1<X<2.5,再将一定量的水蒸气与氮氢混合气体充分混合后通入管式炉或马弗炉中,然后设定管式炉或马弗炉的烧结程序,对得到的基片样品进行烧结处理,最终得到基片样品上生长的二氧化钒薄膜。本发明的有益效果是,提高二氧化钒薄膜的晶体质量和性能,适用于二氧化钒薄膜制作。

Description

二氧化钒薄膜生长方法 技术领域
本发明涉及薄膜制作技术,特别涉及二氧化钒薄膜制作的技术。
背景技术
二氧化钒是一种经典的强关联电子材料,它在340K左右会发生金属绝缘体相变,因此在晶体管、光学开关、传感器、执行器及智能窗口等领域具有潜在应用。二氧化钒优异的电学、光学性能,只能在纯相的二氧化钒中获得。由于钒元素有多种价态(包括0、+2、+3、+4及+5),钒氧化物的相种类众多,一般表示为VOX(1<X<2.5),价态容易改变,使得二氧化钒的生长窗口也非常窄,生长非常困难。二氧化钒薄膜生长过程中的其中一个困难是:二氧化钒薄膜+4价V离子价态不稳定,在高温生长过程中非常容易失氧变价,容易形成大量的氧空位影响其性能,使性能退化,氧空位积累到一定数量,还会使薄膜中析出V7O13相,使薄膜性能严重退化,要获得高质量的二氧化钒薄膜样品,使二氧化钒薄膜能够工业化应用,必须寻找一种方法能够在二氧化钒薄膜生长过程中稳定+4价V离子(钒离子)价态,防止二氧化钒薄膜的氧空位大量形成和积累,而目前并没有一种相对可行的方法。
发明内容
本发明的目的是要克服目前二氧化钒薄膜生长时+4价钒离子价态不稳定的问题,提供一种二氧化钒薄膜生长方法。
本发明解决其技术问题,采用的技术方案是,二氧化钒薄膜生长方法,其特征在于,包括以下步骤:
步骤1、将预先旋涂有含V离子的前驱体的基片样品或预先生长了VOX薄膜的基片样品放入石英舟或刚玉舟内并推入管式炉或马弗炉中,其中,1<X<2.5;
步骤2、将一定量的水蒸气与氮氢混合气体充分混合后通入管式炉或马弗炉中;
步骤3、设定管式炉或马弗炉的烧结程序,对得到的基片样品进行烧结处理,最终得到基片样品上生长的二氧化钒薄膜。
具体的,步骤1中,所述预先旋涂有含V离子的前驱体的基片样品的制作方法为:将含有钒离子的高分子前驱体或含有钒离子的溶胶凝胶(sol-gel)前驱体滴在预先清洗干净的基片中,使用匀胶机进行甩胶,使前驱体均匀旋涂在基片上。
进一步的,所述匀胶机的转速为1000-10000rmp/min,甩胶时间为10-60秒。
具体的,步骤1中,所述基片样品为Al2O3基片或TiO2基片或Si基片或SiO2基片或Ge基片或Fe3O4基片或La1-ySryMnO3基片或ITO基片或LaAlO3基片或SrTiO3基片或AlN基片或GaN基片或云母基片或石墨烯基片或MoS2基片或黑磷基片。
再进一步的,步骤1中,所述基片样品为表面生长有Al2O3薄膜或TiO2薄膜或Si薄膜或SiO2薄膜或Ge薄膜或Fe3O4薄膜或La1-ySryMnO3薄膜或ITO薄膜或LaAlO3薄膜或SrTiO3薄膜或AlN薄膜或GaN薄膜的各种基片。
具体的,步骤1中,所述预先生长了VOx薄膜的基片样品中,其生长方法为磁控溅射法或蒸镀法或脉冲激光沉积法或原子层沉积法。
再进一步的,步骤2中,所述氮氢混合气体中,氢气含量范围为0.001%-10%。
具体的,步骤2中,所述一定量的水蒸气与氮氢混合气体充分混合是指:在水蒸气与氮氢混合气体充分混合后得到的气体中,水蒸气的含量为0.01%-99%。
再进一步的,步骤2中,所述将一定量的水蒸气与氮氢混合气体充分混合后通入管式炉中时,所采用的气体管道使用保温材料和加热带缠绕保温。
具体的,步骤3中,所述烧结程序,针对预先旋涂有含V离子前驱体的基片样品,烧结程序可以设定为:以1-10℃/min的升温速度加热到450℃-550℃,并在该温度保温1-10小时,去除V离子前驱体中的有机物,形成非晶钒氧化物薄膜。然后以1-10℃/min的升温速度加热到退火温度,并在退火温度保温1-10小时,使形成非晶钒氧化物薄膜结晶生成二氧化钒薄膜;
针对预先生长了VOx薄膜的基片样品,烧结程序可以设定为:以1-10℃/min的升温速度加热到退火温度,并在退火温度保温1-10小时,使VOx薄膜结晶生成二氧化钒薄膜。
本发明的有益效果是,在本发明方案中,通过上述二氧化钒薄膜生长方法,在二氧化钒薄膜的生长气氛中加入水蒸气,水蒸气一定程度上能够防止氧空位大量形成和积累,达到稳定+4价V离子价态的目的,从而使二氧化钒薄膜的退火窗口得到展宽,同时提高二氧化钒薄膜的晶体质量和性能。
附图说明
图1是本发明中二氧化钒薄膜生长方法的流程图。
图2是本发明实施例中生长气氛中水蒸气含量为0%时,所生长的二氧化钒薄膜相变电阻变化倍数与退火温度之间的关系曲线示意图。
图3是本发明实施例中生长气氛中水蒸气含量为1.57%时,所生长的二氧化钒薄膜相变电阻变化倍数与退火温度之间的关系曲线示意图。
图4是本发明实施例中生长气氛中水蒸气含量为0%时,所生长的二氧化钒薄膜电阻与温度之间的关系曲线示意图。
图5是本发明实施例中生长气氛中水蒸气含量为1.57%时,所生长的二氧化钒薄膜电阻与温度之间的关系曲线示意图。
图6是本发明实施例中生长气氛中水蒸气含量为1.57%时,所生长的二氧化钒薄膜的X射线衍射2θ扫描图谱。
图7是本发明实施例中生长气氛中水蒸气含量为5.5%时,所生长的二氧化钒薄膜相变电阻变化倍数与退火温度之间的关系曲线。
图8是本发明实施例中生长气氛中水蒸气含量为5.5%时,所生长的二氧化钒薄膜电阻与温度之间的关系曲线。
图9是本发明实施例中生长气氛中水蒸气含量为5.5%时,所生长的二氧化钒薄膜的X射线衍射2θ扫描模式下的图谱。
图10是本发明实施例中生长气氛中水蒸气含量为5.5%时,所生长的二氧化钒薄膜的X射线衍射Phi扫描图谱。
图11是本发明实施例中生长气氛中水蒸气含量为3.1%时,在三英寸的蓝宝石基片上生长的二氧化钒薄膜相变电阻变化倍数在薄膜上的分布图。
图12是本发明实施例中生长气氛中水蒸气含量为3.1%时,在三英寸的蓝宝石基片上生长的二氧化钒薄膜相转变温度Tc在薄膜上的分布图。
具体实施方式
下面结合实施例及附图,详细描述本发明的技术方案。
本发明所述的二氧化钒薄膜生长方法,其流程图参见图1,具体步骤如下:
步骤1、将预先旋涂有含V离子的前驱体的基片样品或预先生长了VOX薄膜的基片样品放入石英舟或刚玉舟内并推入管式炉或马弗炉中,其中,1<X<2.5。
本步骤中,预先旋涂有含V离子的前驱体的基片样品的制作方法可以为:将含有V离子的高分子前驱体或含有钒离子的溶胶凝胶(sol-gel)前驱体滴在预先清洗干净的基片中,使用匀胶机进行甩胶,使溶液均匀旋涂在基片上,得到基片样品,其中,匀胶机的转速可以为1000-10000rmp/min,甩胶时间可以为10-60秒。而基片样品(包括预 先旋涂有含V离子溶液的基片样品及预先生长了VOX薄膜的基片样品中所采用的基片样品)可以为Al2O3基片或TiO2基片或Si基片或SiO2基片或Ge基片或Fe3O4基片或La1-ySryMnO3基片或ITO基片或LaAlO3基片或SrTiO3基片或AlN基片或GaN基片或云母基片或石墨烯基片或MoS2基片或黑磷基片,也可以为表面生长有Al2O3薄膜或TiO2薄膜或Si薄膜或SiO2薄膜或Ge薄膜或Fe3O4薄膜或La1-ySryMnO3薄膜或ITO薄膜或LaAlO3薄膜或SrTiO3薄膜或AlN薄膜或GaN薄膜的各种基片,再在其上旋涂含V离子的前驱体或预先生长VOx薄膜。而预先生长了VOx薄膜的基片样品中,其生长方法可以为磁控溅射法或蒸镀法或脉冲激光沉积法或原子层沉积法等现有的生长方法。
步骤2、将一定量的水蒸气与氮氢混合气体充分混合后通入管式炉或马弗炉中。
本步骤中,氮氢混合气体中,氢气含量范围为0.001%-10%,而一定量的水蒸气与氮氢混合气体充分混合是指:在水蒸气与氮氢混合气体充分混合后得到的气体中,水蒸气的含量可以为0.01-99%。将一定量的水蒸气与氮氢混合气体充分混合后通入管式炉中时,必然会采用到气体管道,而该采用的气体管道使用保温材料和加热带缠绕保温,优选为使管道温度维持在50℃左右,从而防止混合气体中的水蒸气冷凝。
步骤3、设定管式炉或马弗炉的烧结程序,对得到的基片样品进行烧结处理,最终得到基片样品上生长的二氧化钒薄膜。
本步骤中,所述烧结程序,针对预先旋涂有含V离子前驱体的基片样品,烧结程序可以设定为:以1-10℃/min的升温速度加热到450℃-550℃,并在该温度保温1-10小时,去除V离子溶液中的有机物,形成非晶钒氧化物薄膜。然后以1-10℃/min的升温速度加热到退火温度,并在退火温度保温1-10小时,使形成非晶钒氧化物薄膜结晶生成二氧化钒薄膜;
针对预先生长了VOx薄膜的基片样品,烧结程序可以设定为:以1-10℃/min的升温速度加热到退火温度,并在退火温度保温1-10小时,使VOx薄膜结晶生成二氧化钒薄膜。
实施例一
本例中采用的二氧化钒薄膜生长方法,具体步骤如下:
步骤1、将含有钒离子的高分子前驱体滴在预先清洗干净的尺寸为10mm×10mm的Al2O3(10-10)基片中,使用匀胶机进行甩胶,使前驱体均匀旋涂在Al2O3(10-10)基片上,甩胶转速为6000rmp/min,时间为40s。将旋涂有前驱体的Al2O3(10-10)基片放入石英舟中,将石英舟推入管式炉内。
步骤2、将氮气和氢气比例为98.5:1.5的氮氢混合气体与水蒸气混合,产生水蒸气 含量为1.57%的氮气、氢气和水蒸气的混合气体,将该混合气体通入管式炉中,流量控制为200ml/min。气体管道使用保温材料和加热带缠绕保温,使管道温度维持在50℃左右,防止混合气体中的水蒸气冷凝。
步骤3、对基片样品进行烧结处理,具体为:从室温升温到450℃,升温速率为1℃/min,然后在该温度下保温2小时,目的是让绑定了钒离子的高分子前驱体充分分解,使钒离子形成非晶态的钒氧化物薄膜;从450℃升温到退火温度486℃进行退火,在该温度下保温2小时,目的是让非晶态的钒氧化物薄膜结晶生成二氧化钒薄膜。从486℃降温到室温,降温速度为5℃/min,降到室温后取出样品,从而获得二氧化钒薄膜样品。
重复步骤1、步骤2和步骤3,分别在退火温度为488℃,490℃,492℃,494℃,496℃,498℃,500℃,502℃,504℃,506℃,508℃,510℃的条件下合成二氧化钒薄膜样品。
在管式炉中通入不含水蒸汽的、氮气和氢气比例为98.5:1.5的氮氢混合气体,重复重复步骤1和步骤3,分别在退火温度为480℃,482℃,484℃,486℃,488℃,490℃,492℃,494℃,496℃的条件下合成一组用于作为参照的二氧化钒薄膜样品。
如图,2所示,为在不含水蒸气的氮氢混合气体(氮气和氢气比例为98.5:1.5)中烧结的二氧化钒样品的相变电阻变化倍数△R/R100与退火温度的关系曲线示意图。图2中横坐标为样品的退火温度,纵坐标为样品相变前后电阻变化倍数△R/R100,其中△R=R0-R100,R0和R100分别为二氧化钒薄膜在0℃和100℃时的电阻。由图1可知,在不含水蒸气的氮气和氢气混合物气体中烧结的二氧化钒样品,能够使△R/R100>10000的退火温度范围小于6K。
如图3所示,为在水蒸气含量为1.57%的氮气和氢气混合物气体中烧结的二氧化钒样品的△R/R100与退火温度的关系曲线。由图3可知,能生长△R/R100>10000的二氧化钒薄膜的退火温度范围为12K,说明在氮氢混合气体中混入1.57%的水蒸气后,能生长△R/R100>10000的二氧化钒薄膜样品的退火窗口展宽了。
图4是在管式炉中加入0%的水蒸气时,所获得的最优的二氧化钒薄膜电阻温度之间的关系曲线。图4中横坐标为在性能测试时样品所处的温度,纵坐标为样品的电阻。该样品相变前后电阻变化△R/R100=56000。
图5是在管式炉中加入1.57%的水蒸气时,所获得的最优的二氧化钒薄膜电阻和温度之间的关系曲线。图5中横坐标为在性能测试时样品所处的温度,纵坐标为样品的电阻。△R/R100=85000,该薄膜样品的性能优于在不含水蒸气的气氛中退火的最优样品,说 明在氮氢混合气体中混入一定量的水蒸气能有效提高二氧化钒薄膜的质量。
图6是在管式炉中加入1.57%的水蒸气时,二氧化钒薄膜的X射线衍射2θ扫描模式下的图谱。图6中横坐标为2Theta,单位为度(degrees)。由图6可知,XRD图谱中除基片Al2O3(30-30)和VO2(-402)的衍射峰外,观察不到其它的衍射峰,说明该薄膜样品是一个纯相的M1相二氧化钒薄膜。
实施例二
本例中采用的二氧化钒薄膜生长方法,具体步骤如下:
步骤1、将含有钒离子的高分子前驱体滴在预先清洗干净的尺寸为10mm×10mm的Al2O3(10-10)基片中,使用匀胶机进行甩胶,使前驱体均匀旋涂在Al2O3(10-10)基片上,甩胶转速为6000rmp/min,时间为40s。将旋涂有前驱体的Al2O3(10-10)基片放入石英舟中,将石英舟推入管式炉内。
步骤2、将氮气和氢气比例为98.5:1.5的氮氢混合气体与水蒸气混合,产生水蒸气含量为5.5%的氮气、氢气和水蒸气的混合气体,将该混合气体通入管式炉中,流量为200ml/min。气体管道使用保温材料和加热带缠绕保温,使管道温度维持在50℃左右,防止混合气体中的水蒸气冷凝。
步骤3、对基片样品进行烧结处理,具体为:从室温升温到450℃,升温速率为1℃/min,然后在该温度下保温2小时,目的是让绑定了钒离子前驱体的高分子充分分解,使钒离子形成非晶态的钒氧化物薄膜;从450℃升温到490℃,然后在该温度下保温2小时,目的是让非晶态的非晶态的钒氧化物薄膜结晶生成二氧化钒薄膜;从490℃降温到室温,降温速度为5℃/min,降到室温后取出样品,从而获得二氧化钒薄膜样品。
重复步骤1、步骤2和步骤3,分别在退火温度为492℃,494℃,496℃,498℃,500℃,502℃,504℃,506℃,508℃,510℃,512℃,514℃,516℃,518℃,520℃,522℃,524℃,526℃,528℃,530℃,532℃,534℃的条件下合成二氧化钒薄膜样品。
如图7所示,为在水蒸气含量为5.5%的氮气和氢气混合物气体中烧结的二氧化钒样品的相变电阻变化倍数△R/R100与退火温度的关系曲线。由图7可知,能生长△R/R100>10000的二氧化钒薄膜的退火温度范围为34K,说明在气氛中引入含量为5.5%的水蒸气后,能生长△R/R100>10000的二氧化钒薄膜样品的退火窗口进一步展宽了。
图8是在管式炉中加入5.5%的水蒸气时,所获得的最优的二氧化钒薄膜电阻和温度之间的关系曲线。图8中横坐标为在性能测试时样品所处的温度,纵坐标为样品的电 阻。从图8中可以知道,△R/R100=185000,相变过程中电阻变化非常陡峭,说明该样品的质量已经接近单晶二氧化钒的水平,可见,在氮氢混合气体中混入5.5%的水蒸气时,能大幅度提高二氧化钒薄膜的质量。
图9是在管式炉中加入5.5%的水蒸气时,二氧化钒薄膜的X射线衍射2θ扫描模式下的图谱。由图9可知,XRD图谱中除基片Al2O3(30-30)和VO2(-402)的衍射峰外,观察不到其他的衍射峰,说明该薄膜样品是一个纯相的M1相二氧化钒薄膜。
图10是在管式炉中加入5.5%的水蒸气时,二氧化钒薄膜的X射线衍射Phi扫描模式下的图谱。由图10可知,该二氧化钒薄膜是外延生长在Al2O3(10-10)基片上的。
实施例三
本例中采用的二氧化钒薄膜生长方法,具体步骤如下:
步骤1、将含有钒离子的高分子前驱体滴在预先清洗干净的直径为三英尺的Al2O3(10-10)圆形基片中,使用匀胶机进行甩胶,使前驱体均匀旋涂在三英尺的Al2O3(10-10)圆形基片上,甩胶转速为6000rmp/min,时间为40s。将旋涂有前驱体的三英尺的Al2O3(10-10)圆形基片放入石英舟中,将石英舟推入管式炉内。
步骤2、将氮气和氢气比例为98.5:1.5的氮氢混合气体与水蒸气混合,产生水蒸气含量为3.1%的氮气、氢气和水蒸气的混合气体,将该混合气体通入管式炉中,流量为200ml/min。气体管道使用保温材料和加热带缠绕保温,使管道温度维持在50℃左右,防止混合气体中的水蒸气冷凝。
步骤3、对基片样品进行烧结处理,具体为:从室温升温到450℃,升温速率为1℃/min,然后在该温度下保温2小时,目的是让绑定了钒离子的高分子前驱体充分分解,使钒离子形成非晶态的钒氧化物薄膜;从450℃升温到502℃对样品进行退火,然后在该温度下保温2小时;从502℃降温到室温,降温速度为5℃/min,降到室温后取出样品,从而获得直径为三英尺的二氧化钒薄膜样品。
经实验发现采用上述步骤完全能够生成该三英寸的二氧化钒薄膜,由此可知本发明可用于生长大尺寸的二氧化钒薄膜样品。
图11是管式炉中加入3.1%的水蒸气时,在三英寸的蓝宝石基片上生长的二氧化钒薄膜相变电阻变化倍数的分布图。由图11可知,该三英寸的二氧化钒薄膜样品具有非常好的金属件绝缘体相变性能,薄膜所有的区域的相变电阻变化都在3×104以上,说明该样品质量很高。
图12是管式炉中加入3.1%的水蒸气时,在三英寸的蓝宝石基片上生长的二氧化钒薄膜相转变温度Tc的分布图。由图12可知,该三英寸的二氧化钒薄膜样品的相转变温度Tc为59.7℃,偏差为0.4℃,说明该样品均匀性好。

Claims (10)

  1. 二氧化钒薄膜生长方法,其特征在于,包括以下步骤:
    步骤1、将预先旋涂有含V离子的前驱体的基片样品或预先生长了VOX薄膜的基片样品放入石英舟或刚玉舟内并推入管式炉或马弗炉中,其中,1<X<2.5;
    步骤2、将一定量的水蒸气与氮氢混合气体充分混合后通入管式炉或马弗炉中;
    步骤3、设定管式炉或马弗炉的烧结程序,对得到的基片样品进行烧结处理,最终得到基片样品上生长的二氧化钒薄膜。
  2. 如权利要求1所述的二氧化钒薄膜生长方法,其特征在于,步骤1中,所述预先旋涂有含V离子的前驱体的基片样品的制作方法为:将含有V离子的高分子前驱体或含有钒离子的溶胶凝胶前驱体滴在预先清洗干净的基片中,使用匀胶机进行甩胶,使前驱体均匀旋涂在基片上。
  3. 如权利要求2所述的二氧化钒薄膜生长方法,其特征在于,所述匀胶机的转速为1000-10000rmp/min,甩胶时间为10-60秒。
  4. 如权利要求1所述的二氧化钒薄膜生长方法,其特征在于,步骤1中,所述基片样品为Al2O3基片或TiO2基片或Si基片或SiO2基片或Ge基片或Fe3O4基片或La1-ySryMnO3基片或ITO基片或LaAlO3基片或SrTiO3基片或AlN基片或GaN基片或云母基片或石墨烯基片或MoS2基片或黑磷基片。
  5. 如权利要求1所述的二氧化钒薄膜生长方法,其特征在于,步骤1中,所述基片样品为表面生长有Al2O3薄膜或TiO2薄膜或Si薄膜或SiO2薄膜或Ge薄膜或Fe3O4薄膜或La1-ySryMnO3薄膜或ITO薄膜或LaAlO3薄膜或SrTiO3薄膜或AlN薄膜或GaN薄膜的各种基片。
  6. 如权利要求1所述的二氧化钒薄膜生长方法,其特征在于,步骤1中,所述预先生长了VOx薄膜的基片样品中,其生长方法为磁控溅射法或蒸镀法或脉冲激光沉积法或原子层沉积法。
  7. 如权利要求1所述的二氧化钒薄膜生长方法,其特征在于,步骤2中,所述氮氢混合气体中,氢气含量范围为0.001%-10%。
  8. 如权利要求1所述的二氧化钒薄膜生长方法,其特征在于,步骤2中,所述一定量的水蒸气与氮氢混合气体充分混合是指:在水蒸气与氮氢混合气体充分混合后得到的气体中,水蒸气的含量为0.01-99%。
  9. 如权利要求1或2或3或4或5或6或7或8所述的二氧化钒薄膜生长方法,其特征在于,步骤2中,所述将一定量的水蒸气与氮氢混合气体充分混合后通入管式炉中时,所采用的气体管道使用保温材料和加热带缠绕保温。
  10. 如权利要求1或2或3或4或5或6或7或8所述的二氧化钒薄膜生长方法,其特征在于,步骤3中,所述烧结程序,针对预先旋涂有含V离子的前驱体的基片样品,烧结程序设定为:以1-10℃/min的升温速度加热到450℃-550℃,并在该温度保温1-10小时,去除V离子溶液中的有机物,形成非晶钒氧化物薄膜,然后以1-10℃/min的升温速度加热到退火温度,并在退火温度保温1-10小时,使形成非晶钒氧化物薄膜结晶生成二氧化钒薄膜;
    针对预先生长了VOx薄膜的基片样品,烧结程序设定为:以1-10℃/min的升温速度加热到退火温度,并在退火温度保温1-10小时,使VOx薄膜结晶生成二氧化钒薄膜。
PCT/CN2017/082368 2016-06-06 2017-04-28 二氧化钒薄膜生长方法 WO2017211144A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610395270.6 2016-06-06
CN201610395270.6A CN106012014A (zh) 2016-06-06 2016-06-06 二氧化钒薄膜生长方法

Publications (1)

Publication Number Publication Date
WO2017211144A1 true WO2017211144A1 (zh) 2017-12-14

Family

ID=57089637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082368 WO2017211144A1 (zh) 2016-06-06 2017-04-28 二氧化钒薄膜生长方法

Country Status (2)

Country Link
CN (1) CN106012014A (zh)
WO (1) WO2017211144A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114630244A (zh) * 2022-03-28 2022-06-14 歌尔微电子股份有限公司 传感器及可穿戴设备
CN115159860A (zh) * 2022-07-20 2022-10-11 贵州民族大学 在温和水溶液环境下制备H-SiO2-VO2(M)涂层的方法
CN115475745A (zh) * 2022-10-26 2022-12-16 鞍钢集团北京研究院有限公司 一种氧化钒稀土双掺杂铁氧体磁性复合薄膜浆料制备工艺及镀膜方法
CN117160534A (zh) * 2023-11-03 2023-12-05 烟台大学 一种杂多酸复合氧化物催化剂及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106012014A (zh) * 2016-06-06 2016-10-12 电子科技大学 二氧化钒薄膜生长方法
CN106637404B (zh) * 2016-12-06 2019-05-21 东华理工大学 一种利用管式炉生长大面积单晶二氧化钒薄膜的方法
CN109881157B (zh) * 2019-03-19 2020-12-22 南京航空航天大学 一种周期性调控二氧化钒薄膜相变性质的方法
CN110318021B (zh) * 2019-07-26 2020-08-25 中国科学技术大学 一种晶圆级二氧化钒薄膜的制备方法
TWI752501B (zh) * 2020-05-19 2022-01-11 國立陽明交通大學 經表面物理修飾的黑磷材料及其製備方法
CN114477092A (zh) * 2022-01-24 2022-05-13 南方科技大学 一种氢化氧化物的制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2615071A1 (en) * 2011-12-08 2013-07-17 Samsung Corning Precision Materials Co., Ltd. Thermochromic substrate and method of manufacturing the same
CN103556201A (zh) * 2013-10-25 2014-02-05 上海师范大学 一种二氧化钒片状薄膜材料及其制备方法
CN104030357A (zh) * 2014-06-27 2014-09-10 武汉工程大学 一种有机溶胶凝胶制备二氧化钒薄膜的方法
CN105369200A (zh) * 2015-10-13 2016-03-02 西安交通大学 一种多晶多孔vo2薄膜的制备方法
CN105543810A (zh) * 2015-12-30 2016-05-04 湖北大学 一种具有超亲水自清洁、智能控温功能的纳米vo2薄膜及其制备方法
CN105603382A (zh) * 2015-12-21 2016-05-25 深圳大学 一种增强二氧化钒薄膜相变性能的方法
CN106012014A (zh) * 2016-06-06 2016-10-12 电子科技大学 二氧化钒薄膜生长方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880060B (zh) * 2010-07-14 2013-12-18 中国科学技术大学 快速制备单斜相vo2的方法
CN105198231A (zh) * 2014-05-30 2015-12-30 武汉理工大学 一种二氧化钒薄膜的无机溶胶-凝胶制备方法
CN104060241B (zh) * 2014-07-09 2017-01-25 安徽建筑大学 一种高取向二氧化钒薄膜的液相制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2615071A1 (en) * 2011-12-08 2013-07-17 Samsung Corning Precision Materials Co., Ltd. Thermochromic substrate and method of manufacturing the same
CN103556201A (zh) * 2013-10-25 2014-02-05 上海师范大学 一种二氧化钒片状薄膜材料及其制备方法
CN104030357A (zh) * 2014-06-27 2014-09-10 武汉工程大学 一种有机溶胶凝胶制备二氧化钒薄膜的方法
CN105369200A (zh) * 2015-10-13 2016-03-02 西安交通大学 一种多晶多孔vo2薄膜的制备方法
CN105603382A (zh) * 2015-12-21 2016-05-25 深圳大学 一种增强二氧化钒薄膜相变性能的方法
CN105543810A (zh) * 2015-12-30 2016-05-04 湖北大学 一种具有超亲水自清洁、智能控温功能的纳米vo2薄膜及其制备方法
CN106012014A (zh) * 2016-06-06 2016-10-12 电子科技大学 二氧化钒薄膜生长方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114630244A (zh) * 2022-03-28 2022-06-14 歌尔微电子股份有限公司 传感器及可穿戴设备
CN114630244B (zh) * 2022-03-28 2024-04-19 歌尔微电子股份有限公司 传感器及可穿戴设备
CN115159860A (zh) * 2022-07-20 2022-10-11 贵州民族大学 在温和水溶液环境下制备H-SiO2-VO2(M)涂层的方法
CN115159860B (zh) * 2022-07-20 2023-07-18 贵州民族大学 在温和水溶液环境下制备H-SiO2-VO2(M)涂层的方法
CN115475745A (zh) * 2022-10-26 2022-12-16 鞍钢集团北京研究院有限公司 一种氧化钒稀土双掺杂铁氧体磁性复合薄膜浆料制备工艺及镀膜方法
CN115475745B (zh) * 2022-10-26 2023-10-20 鞍钢集团北京研究院有限公司 一种氧化钒稀土双掺杂铁氧体磁性复合薄膜浆料制备工艺及镀膜方法
CN117160534A (zh) * 2023-11-03 2023-12-05 烟台大学 一种杂多酸复合氧化物催化剂及其制备方法
CN117160534B (zh) * 2023-11-03 2023-12-29 烟台大学 一种杂多酸复合氧化物催化剂及其制备方法

Also Published As

Publication number Publication date
CN106012014A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
WO2017211144A1 (zh) 二氧化钒薄膜生长方法
CN104193316B (zh) 一种钇铁石榴石薄膜及其制备方法
US20040022960A1 (en) Method for preparing dielectric films at a low temperature
US20190040526A1 (en) Vanadium oxide films and methods of fabricating the same
CN108314019B (zh) 一种层数均匀的大面积高质量石墨烯薄膜的制备方法
Chandra et al. Structural and electrical properties of radio frequency magnetron sputtered tantalum oxide films: Influence of post-deposition annealing
Garnier et al. A comparison of different spray chemical vapour deposition methods for the production of undoped ZnO thin films
CN101211764A (zh) 一种铬掺杂二氧化钛室温铁磁薄膜的制备方法
JP2663471B2 (ja) 絶縁薄膜の製造方法
CN101599364B (zh) 一种c轴取向钡铁氧体薄膜的制备方法
Lee et al. Structural and X‐Ray Photoelectron Spectroscopy Study of Al‐Doped Zinc‐Oxide Thin Films
KR100734854B1 (ko) 바나듐이산화물 박막의 제조방법
Iljinas et al. Structural and ferroelectric properties of bismuth ferrite thin films deposited by direct current reactive magnetron sputtering
Wang et al. The influence of substrate temperature and annealing on phase formation and crystalline properties of bismuth titanate film by APMOCVD
CN115020210A (zh) 一种具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法及应用
CN110846716A (zh) 一种制备二维四氧化三铁单晶的方法
CN114380340A (zh) 无限层镍基超导体前驱物Nd1-xSrxNiO3的制备方法
CN110563048B (zh) 一种高分子辅助外延生长BiFeO3多铁性薄膜的方法
Vangelista et al. Atomic layer deposition of hexagonal ErFeO3 thin films on SiO2/Si
Zheng et al. Hybrid influences of defect dipole and intrinsic inducing field on orientation of PbTiO3 thin film deposited on Indium Tin Oxide/glass substrate
Lane et al. The metal–organic chemical vapor deposition of lanthanum nickelate electrodes for use in ferroelectric devices
CN113235159B (zh) 一种制备单晶镍铁氧体薄膜的方法
CN114108087B (zh) 一种正交相五氧化二钽单晶薄膜的制备方法
Hu et al. Photoluminescence of langasite thin films prepared from sol–gel process
Andrews et al. Optimized procedure for sol–gel production of La 2/3 Ca 1/3 MnO 3 thin films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17809584

Country of ref document: EP

Kind code of ref document: A1