CN115020210A - 一种具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法及应用 - Google Patents

一种具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法及应用 Download PDF

Info

Publication number
CN115020210A
CN115020210A CN202210760544.2A CN202210760544A CN115020210A CN 115020210 A CN115020210 A CN 115020210A CN 202210760544 A CN202210760544 A CN 202210760544A CN 115020210 A CN115020210 A CN 115020210A
Authority
CN
China
Prior art keywords
cerium
substrate
film
heating
hafnium zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210760544.2A
Other languages
English (en)
Inventor
肖永光
刘思维
达香华
杨丽莎
唐明华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN202210760544.2A priority Critical patent/CN115020210A/zh
Publication of CN115020210A publication Critical patent/CN115020210A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02194Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing more than one metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明提供了一种具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法及应用。首先使用有机铪源、有机锆源、铈盐为原料,通过多次加热搅拌,制备出澄清透明的铈掺杂铪锆氧前驱体溶液。最后再按照实验设计要求把前驱体溶液涂覆在清洗好的铂基片上,进行干燥、预热以及快速热退火处理得到表面致密均匀的Ce:Hf0.5Zr0.5O2铁电薄膜。本发明可以实现对膜的厚度以及掺杂元素含量的灵活调控,显著地提高了薄膜的剩余极化强度。

Description

一种具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方 法及应用
技术领域
本发明涉及铁电薄膜材料的制备,具体涉及一种具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法及应用。
背景技术
氧化铪基铁电材料因其具有较高的介电常数,在微电子领域已经广泛取代了SiO2作为CMOS晶体管栅介质,它与目前基于钙钛矿的铁电材料相比较,显示出完全可扩展性和互补金属氧化物半导体的可集成性,打破制约铁电存储器的发展瓶颈,未来将在非易失性铁电存储器等集成铁电器件领域具有广阔的发展空间。氧化铪不仅具有良好的铁电性,它还具有良好的压电性,热释电性和兼容性。通过近几年的研究表明Si,Zr,Y,La,Sr,Ce等杂质离子的掺杂引入将诱导出较好的铁电性,其中Zr离子的掺杂浓度范围是最大的,形成Hf1-xZrxO2薄膜,由于ZrO2与HfO2其晶体结构相似,可在离子取代中形成固溶体系,这有助于诱导高对称相的形成。使用一些特殊工艺制备的铪锆氧铁电薄膜在纳米尺度薄膜上表现出了较强的铁电性。对此,人们在制备HfO2薄膜时通常都会为了获得更大的高剩余极化强度而掺杂一些元素,同时也会通过调整预热,退火等过程中的参数而获得理想的膜厚以及更多比例的铁电相。
目前制备铪锆氧薄膜的方法主要是原子沉积法(ALD),脉冲激光沉积(PLD)方法。在本发明中使用的是化学溶液沉积法提供了以低成本制造各种应用的廉价器件的机会。此外,广泛的掺杂剂可以用于CSD沉积的薄膜,易于掺杂元素的比较研究。我们在HfO2-ZrO2固溶体系中掺杂铈元素制备薄膜,其主要也是利用化学反应在基片表面生成薄膜,操作过程简单,成本低且环保,原材料易获得,相比较于传统的HfO2薄膜制备工艺具有很大的优化,并显著地提高了薄膜的剩余极化值。
发明内容
本发明的目的是针对现有制备技术的不足,提供一种操作简单,成本低且环保,可大批量生产的具有高剩余极化强度的铈掺铪锆氧铁电薄膜的制备方法及应用。
本发明制备的铈掺杂铪锆氧铁电薄膜首先是通过以铪源,锆源为原料,加入到乙酸溶液中,并加入乙酰丙酮溶液稳定溶液化学性质和调节pH值,然后以铈盐为掺杂剂,经过多次加热搅拌获得无可见大颗粒的透明溶液。将制备好的透明溶液涂覆在清洗好的铂基片上,再经干燥、热处理、退火后得到固体状的铈掺杂铪锆氧铁电薄膜,最后在膜表面镀上电极,制备出金属-Ce:HZO-金属(MIM)结构电容器。
本发明通过铈元素的掺杂,使得铪锆氧基铁电薄膜实现了正交相的稳定生成,改善了薄膜最初始的本征和外电场下诱发较低的铁电性能,同时薄膜厚度能够实现调控。
本发明提供的一种具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法,包括以下步骤:
(1)将称取好的有机铪源、锆源加入到乙酸溶液中加热搅拌至完全溶解,然后向其加入乙酰丙酮溶液,调节pH值和稳定溶液的化学性质,得到HfO2-ZrO2体系的前驱体溶液;再向前驱体溶液中加入掺杂剂铈源加热搅拌20-40分钟,静置36-40小时,得到无可见颗粒的澄清透明的铈掺杂铪锆氧溶液;
(2)基片的清洗:将切好的基片先使用去离子水超声清洗3-6min,再无水乙醇超声清洗8-12min,继续去离子水超声清洗3-6min,然后再用丙酮超声清洗8-12min,再用大量的去离子水冲洗、浸泡、然后干燥,然后再将干燥的基片进行基片表面的预处理,等离子清洗3-6min,以增加基片表面与前驱体溶液的湿润性;
(3)涂覆和干燥:将步骤(1)涂覆在步骤(2)所得清洗好的基片上,每涂一层都要将基片放置在烘板上烘烤结晶,再将烘烤后的基片进行表面预处理,减少其湿润角,增加膜的浸润性,根据需要的薄膜厚度重复上述操作;
(4)将步骤(3)获得的薄膜置于充满保护气氛的退火炉中进行预热处理,然后进行退火处理,等待退火炉冷至室温取出基片,得到铈掺杂铪锆氧的铁电薄膜。
(5)将步骤(4)所得铈掺杂铪锆氧铁电薄膜镀上电极。
进一步地,所述的有机铪源为乙酰丙酮铪(C20H28HfO8),锆源为乙酰丙酮锆(C20H28ZrO8),所述的铈源为硝酸铈Ce(NO3)3
进一步地,步骤(1)中,铪、锆的物质的量之比为1:1;乙酰丙酮溶液调节pH至3-5;乙酰丙酮溶液同时还起到稳定化学性质的作用,因此,乙酰丙酮的加入非常重要,因为前驱体溶液化学性质的稳定以及酸碱度对薄膜成形的质量起着至关重要的作用。
进一步地,铈掺杂铪锆氧中,铈的摩尔百分比为5-9%,记为5-9mol%,且不包括端点值,更优选为6-8mol%,最优选为7mol%。
进一步地,步骤(1)中,加热搅拌的温度为50-60℃,搅拌速率为50-70r/min。
进一步地,步骤(1)中,所述的铪锆氧前驱体溶液浓度是可控的,前驱体溶液浓度为0.1-0.2mol/L,较低的酸性前驱体溶液浓度可以获得轻薄致密的薄膜。
进一步地,所述基片为Pt(111)/TiN/SiO2/Si(100)基片;在每一步超声清洗完之后都要用大量的去离子水冲洗以去除表面污渍,避免污渍附着在基片表面;同时等离子清洗加强清洗效果。
进一步地,步骤(3)中,涂覆的方式为旋涂;旋涂设置的参数为低速500rpm*16s,高速3000rpm*16s,涂覆的次数可根据需求的膜厚来控制,控制铈掺杂铪锆氧铁电薄膜的厚度为小于40nm。
进一步地,步骤(4)中,所述保护气氛为氮气;退火工艺具体为:先从室温缓慢加热到180℃,保持3min,再以10℃/s的升温速率加热到300℃,保持3min,之后再以10℃/s的升温速率加热到400℃,保持5min,最后以40℃/s的升温速率加热到800℃,保温150s,然后等冷却到室温可取出。
进一步地,步骤(5)中,所述电极为Pt电极,在退火处理好后的干燥薄膜上沉积电极。
将上述制备好的铈掺杂铪锆氧铁电薄膜集成到电容器中,便于对其进行铁电性能的分析测试以及电学性能的测试,电容器结构为MIM结构。
本发明通过化学溶液法制备出了铈掺杂铪锆氧前驱体溶液,并在后续制备过程中控制掺杂元素的含量以及前驱体溶液的酸碱度,优化退火工艺,得到稳定存在的混合相(单斜相,正交相),此方法制备的铈掺杂铪锆氧铁电薄膜具有膜面均匀、剩余极化值大、漏电流低等优点,并且本发明具有操作简便,周期短,可重复性高,成本低等优点。
与现有技术相比,本发明具有如下有益效果:
(1)本发明通过控制各源的量以及前驱体溶液的酸碱度,涂覆次数,退火工艺来实现制备的薄膜具有较大剩余极化值。
(2)本发明制备的铈掺掺铪锆氧薄膜致密均匀具有较小的漏电流。
(3)本发明操作过程简单明了,也无要求严格的制备环境,同时也不需要先进昂贵的设备仪器,复制性高,可用于批量生产。
附图说明
图1是实施例1中铈掺杂浓度为7mol%,薄膜厚度为34nm,样品的GIXRD图。
图2是实施例1中铈掺杂浓度为7mol%,薄膜厚度为34nm,样品的电滞回线图。
图3是实施例1中铈掺杂浓度为7mol%,薄膜厚度为34nm,样品的漏电流图。
具体实施方式
为了让本发明的流程以及目的更加清楚明了,我们将进行更加详细的步骤说明。
实施例1
(1)一种铈掺杂铪锆氧铁电薄膜的制备方法,包括如下步骤:先称取0.1343g的乙酰丙酮铪以及0.1139g的乙酰丙酮锆,加入4mL的乙酸溶液,放置在加热搅拌机上,设置温度为55℃,便于铪源、锆源的溶解,搅拌速率为60r/min,完全溶解后加入适量的乙酰丙酮溶液,调节pH值在3-5范围内及稳定溶液化学性质,制备好HfO2-ZrO2体系的前驱体溶液。再称取0.0129g的硝酸铈加入HfO2-ZrO2体系的前驱体溶液中(铈掺杂摩尔百分比为7mol%),在搅拌机上搅拌30分钟,搅拌速率为60r/min,然后静置沉积48小时,配制成浓度为0.1-0.15mol/L的铈掺杂铪锆氧溶液;
(2)制备过程中采用Pt(111)/TiN/SiO2/Si(100)基片;先使用去离子水超声清洗5min,再用无水乙醇超声清洗10min,继续用去离子水超声清洗5min,然后再用丙酮超声清洗10min,之后再用大量的去离子水冲洗、浸泡、然后干燥,等离子处理5min,减小基片表面与溶液的接触角,增强薄膜与基片的粘度,在每一步超声清洗完之后都要用大量的去离子水冲洗以去除表面污渍,避免污渍附着在基片表面。
(3)涂覆过程中取用旋涂工艺;将溶液涂覆在基片表面,随后置于烤胶机中180℃加热3min,350℃加热5min,重复上述操作,旋涂2层,得到膜厚为34nm的铈掺杂铪锆氧薄膜;
(4)将步骤(3)中镀好膜的基片置于退火炉中进行退火,保护气氛为氮气,设置工艺参数为:先从室温缓慢加热到180℃,保持3min,再以10℃/s的升温速率加热到300℃,保持3min,之后再以10℃/s的升温速率加热到400℃,保持5min,最后以40℃/s的升温速率加热到800℃,保温150s,然后等冷却到室温可取出。
(5)在(4)中所得到的膜上镀电极,沉积金属为铂,得到MIM结构的电容器。最后进行铁电性能的测试。测得样品主要是正交相,其剩余极化值在:16.23~20.01μC/cm2。样品的GIXRD图谱、电滞回线以及漏电流如图1、图2和图3所示。
实施例2
配制铈掺杂摩尔百分比为5mol%的铈掺杂铪锆氧前驱体溶液,其余工艺步骤及工艺条件与实施例1相同,得到金属-Ce:HZO薄膜-金属型电容器,利用铁电分析仪和半导体测试仪测试电容器的铁电性能。测得该样品为单斜相和正交相的混合相,剩余极化值范围:10.25~15.70μC/cm2
实施例3
配制铈掺杂摩尔百分比为9mol%的铈掺杂铪锆氧前驱体溶液,其余工艺步骤及工艺条件与实施例1相同,得到金属-Ce:HZO薄膜-金属型电容器,利用铁电分析仪和半导体测试仪测试电容器的铁电性能。测得该样品为单斜相和正交相的混合相,剩余极化值范围:8.25~10.70μC/cm2
在以上实施例中,不同铈掺杂浓度的铪锆氧薄膜均表现出铁电性,其中铈掺杂摩尔百分比为7mol%时,电滞回线窗口最大、最优,由其测试出的GIXRD图谱分析得是以正交相为主的薄膜;当铈掺杂摩尔百分比为5mol%时,由其测试出的GIXRD图谱分析得单斜相和正交相组合而成;当铈掺杂摩尔百分比为9mol%时,由其测试出的GIXRD图谱分析得是单斜相、正交相和立方相的混合相。

Claims (10)

1.一种具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法,其特征在于,包括以下步骤:
(1)将称取好的有机铪源、锆源加入到乙酸溶液中加热搅拌至完全溶解,然后向其加入乙酰丙酮溶液,调节pH值和稳定溶液的化学性质,得到HfO2-ZrO2体系的前驱体溶液;再向前驱体溶液中加入掺杂剂铈源加热搅拌20-40分钟,静置36-60小时,得到无可见颗粒的澄清透明的铈掺杂铪锆氧溶液;
(2)基片的清洗:将切好的基片先使用去离子水超声清洗3-6min,再无水乙醇超声清洗8-12min,继续去离子水超声清洗3-6min,然后再用丙酮超声清洗8-12min,再用大量的去离子水冲洗、浸泡、然后干燥,再将干燥后的基片进行表面预处理,等离子清洗3-6min,以增加基片表面与前驱体溶液的湿润性;
(3)涂覆和干燥:将步骤(1)所得铈掺杂铪锆氧溶液涂覆在步骤(2)所得清洗好的基片上,每涂一层都要将基片放置在烘板上烘烤结晶,再将烘烤后的基片进行表面预处理,减少其湿润角,增加膜的浸润性,根据需要的薄膜厚度重复上述操作;
(4)将步骤(3)获得的薄膜置于充满保护气氛的退火炉中进行预热处理,然后进行退火处理,等待退火炉冷至室温取出基片,得到铈掺杂铪锆氧的铁电薄膜。
(5)将步骤(4)所得铈掺杂铪锆氧铁电薄膜镀上电极。
2.根据权利要求1所述的具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法,其特征在于,所述的有机铪源为乙酰丙酮铪,锆源为乙酰丙酮锆,所述的铈源为硝酸铈。
3.根据权利要求1所述的具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法,其特征在于,步骤(1)中,铪、锆的物质的量之比为1:1;乙酰丙酮溶液调节pH至3-5。
4.根据权利要求1所述的具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法,其特征在于,铈掺杂铪锆氧中,铈的摩尔百分比为5-9%,记为5-9mol%,且不包括端点值。
5.根据权利要求1所述的具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法,其特征在于,步骤(1)中,加热搅拌的温度为50-60℃,搅拌速率为50-70r/min。
6.根据权利要求1所述的具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法,其特征在于,所述基片为Pt(111)/TiN/SiO2/Si(100)基片。
7.根据权利要求1所述的具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法,其特征在于,步骤(3)中,涂覆的方式为旋涂;旋涂设置的参数为低速500rpm*16s,高速3000rpm*16s,涂覆的次数根据需求的膜厚来控制,控制铈掺杂铪锆氧铁电薄膜的厚度为小于40nm。
8.根据权利要求1所述的具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法,其特征在于,步骤(4)中,所述保护气氛为氮气;退火工艺具体为:先从室温缓慢加热到180℃,保持3min,再以10℃/s的升温速率加热到300℃,保持3min,之后再以10℃/s的升温速率加热到400℃,保持5min,最后以40℃/s的升温速率加热到800℃,保温150s,然后等冷却到室温可取出。
9.根据权利要求1所述的具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法,其特征在于,步骤(5)中,所述电极为Pt电极,在退火处理好后的干燥薄膜上沉积电极。
10.权利要求1至9任一项所述的制备方法得到的铈掺杂铪锆氧铁电薄膜在电容器中的应用。
CN202210760544.2A 2022-06-29 2022-06-29 一种具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法及应用 Pending CN115020210A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210760544.2A CN115020210A (zh) 2022-06-29 2022-06-29 一种具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210760544.2A CN115020210A (zh) 2022-06-29 2022-06-29 一种具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法及应用

Publications (1)

Publication Number Publication Date
CN115020210A true CN115020210A (zh) 2022-09-06

Family

ID=83078221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210760544.2A Pending CN115020210A (zh) 2022-06-29 2022-06-29 一种具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法及应用

Country Status (1)

Country Link
CN (1) CN115020210A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988470A (zh) * 2022-05-26 2022-09-02 湘潭大学 一种氧化铪基铁电薄膜、电容结构、晶体管及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988470A (zh) * 2022-05-26 2022-09-02 湘潭大学 一种氧化铪基铁电薄膜、电容结构、晶体管及制备方法
CN114988470B (zh) * 2022-05-26 2024-04-05 湘潭大学 一种氧化铪基铁电薄膜、电容结构、晶体管及制备方法

Similar Documents

Publication Publication Date Title
US5690727A (en) Thin films of ABO3 with excess B-site modifiers and method of fabricating integrated circuits with same
US5614018A (en) Integrated circuit capacitors and process for making the same
US5116643A (en) Method for preparing PLZT, PZT and PLT sol-gels and fabricating ferroelectric thin films
KR100269025B1 (ko) 층진 초격자 물질의 제조를 위한공정
JP6887770B2 (ja) Pzt強誘電体膜の形成方法
US5723361A (en) Thin films of ABO3 with excess A-site and B-site modifiers and method of fabricating integrated circuits with same
CN110648902A (zh) 一种镧掺杂的二氧化铪铁电薄膜的制备方法及应用
CN115020210A (zh) 一种具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法及应用
CN111029244A (zh) 一种铈掺杂的氧化铪基铁电薄膜及电容结构制备方法
Shahid et al. Effect of Sr-doping on ferroelectric and dielectric properties of sol-gel synthesized BaTiO3 thin films
CN1103328C (zh) 钛酸锶钡薄膜材料的制备方法
Shi et al. Development of ferroelectric Pb (ZrxTi1− x) O3 thin films by metallo-organic decomposition process and rapid thermal annealing
CN105568265B (zh) 高掺杂BaTiO3:Fe多铁薄膜材料及其制备方法
KR100252744B1 (ko) 과잉의 A사이트와 B사이트 개질제(modifier)를 가진 ABO₃의 박막 및 그 박막을 가진 집적회로의 제조방법
Kwok et al. Modified sol-gel process for preparation of lead zjrconate titanate thin films
Dong et al. Preparation and characterization of crystalline Ba0. 5Sr0. 5TiO3 thin films on FTO transparent electrodes
JP2002261093A (ja) ゾル−ゲル工程を利用した強誘電体薄膜の製造方法
KR100234000B1 (ko) 피제트티 박막 및 그 제조방법
CN104072131B (zh) 铁电薄膜形成用组合物的制造方法及其用途
CN100457292C (zh) 一种性能优化的Ba(Zr,Ti)O3铁电薄膜及其制备方法
Kumar et al. Structure, ferroelectric and gas sensing properties of sol–gel derived (Ba, Sr)(Ti, Zr) O3 thin films
GONG et al. Effects of annealing temperature on microstructure and ferroelectric properties of Bi0. 5 (Na0. 85K0. 15) 0.5 TiO3 thin films
RU2511636C2 (ru) Золь-гель способ формирования сегнетоэлектрической стронций -висмут-тантал-оксидной пленки
JPH04184808A (ja) 強誘電体薄膜の製造方法
KR101138239B1 (ko) 고압전 계수 박막의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination