WO2017211022A1 - 石墨烯-锦纶纳米复合纤维的制备方法 - Google Patents

石墨烯-锦纶纳米复合纤维的制备方法 Download PDF

Info

Publication number
WO2017211022A1
WO2017211022A1 PCT/CN2016/101533 CN2016101533W WO2017211022A1 WO 2017211022 A1 WO2017211022 A1 WO 2017211022A1 CN 2016101533 W CN2016101533 W CN 2016101533W WO 2017211022 A1 WO2017211022 A1 WO 2017211022A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
nylon
modified
modified graphene
preparing
Prior art date
Application number
PCT/CN2016/101533
Other languages
English (en)
French (fr)
Inventor
拜永孝
沙晓林
沙嫣
Original Assignee
南通强生石墨烯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通强生石墨烯科技有限公司 filed Critical 南通强生石墨烯科技有限公司
Priority to JP2018526990A priority Critical patent/JP6651014B2/ja
Priority to US15/763,442 priority patent/US10793974B2/en
Priority to EP16904471.6A priority patent/EP3342903B1/en
Publication of WO2017211022A1 publication Critical patent/WO2017211022A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/06Polyhydrazides; Polytriazoles; Polyamino-triazoles; Polyoxadiazoles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/04Melting filament-forming substances
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/90Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Definitions

  • the invention relates to the field of fiber materials, and relates to a method for preparing graphene-nylon (graphene-PA) nano-composite fibers.
  • Graphene is a two-dimensional nanomaterial.
  • Its areal density is 0.77 mg/m 2 , which means that a regular hexagonal carbon ring in graphene is taken as a structural unit, since only 1/1 of each carbon atom is used. 3 belongs to this hexagon, so the number of carbon atoms in one structural unit is 2. Hexagon area of 0.052nm 2. From this, the areal density of graphene was calculated to be 0.77 mg/m 2 .
  • the carrier density n 1012 cm -2
  • the mobility ⁇ is 2 ⁇ 105 cm 2 V -1 s -1
  • the sheet resistance of the graphene is calculated to be about 31 ⁇ /sq. This indicates that the graphene hammock having an area of 1 m 2 has a resistance of only 31 ⁇ .
  • the strength limit (tensile strength) of graphene was 42 N/m. If the ordinary steel has the same thickness (about 0.335 nm) as graphene, the two-dimensional strength limit can be estimated to be 0.084 to 0.40 N/m. It can be seen that the strength of the ideal graphene is about 100 times that of ordinary steel.
  • the graphene layer with an area of 1 m 2 can withstand a mass of 4 kg.
  • Thermal conductivity of graphene is about 5000 Wm -1 K -1 , which is more than 10 times that of copper at room temperature (401 Wm -1 K -1 ). Therefore, in the preparation of nanocomposites, two-dimensional sheet-like and very high mechanical properties of graphene will be the best choice for the reinforcing phase; its reinforcing effect is not only comparable to clay, montmorillonite and other reinforcing phases, but also clay, Mongolian The effect that can not be achieved by soil removal.
  • the object of the present invention is to overcome the poor compatibility between the above graphene and the nanocomposite fiber matrix material, resulting in stone Moenol is a defect in the performance of the nanocomposite fiber material of the reinforcing phase, and a method for preparing the graphene-nylon nanocomposite fiber is provided.
  • the method is based on the industrial production of existing nylon filaments to prepare high-performance graphene-nylon nano-composite fibers. Compared with the existing industrial methods, the method has the advantages of simple process and low cost, and can effectively improve production efficiency and productivity.
  • modified modified graphene Since the modified modified graphene has very good compatibility with the matrix, it can be well dispersed in the matrix, so that the graphene reinforcing phase and the matrix material are uniformly compounded, thereby greatly improving the graphene-nylon nanometer.
  • the properties of composite fiber materials Since the modified modified graphene has very good compatibility with the matrix, it can be well dispersed in the matrix, so that the graphene reinforcing phase and the matrix material are uniformly compounded, thereby greatly improving the graphene-nylon nanometer.
  • the present invention relates to a method for preparing a graphene-nylon nanocomposite fiber, the method comprising the steps of:
  • nylon chips are mixed with graphene or modified graphene, and extruded and granulated to obtain graphene-nylon masterbatch;
  • the graphene-nylon mother particle is melt-spun to obtain the graphene-nylon nano composite fiber
  • the graphene is a common term, and is a general term for all graphenes that have not been modified, for example, including graphene oxide, mechanical ball-milling stripped graphene, three-roll mill mechanical stripping graphene, CVD growth graphene, carbon dioxide supercritical Expanded exfoliated graphene or the like, and also includes graphene without any treatment.
  • the nylon used comprises nylon 6 (PA6) and nylon 66 (PA66).
  • the graphene is graphene oxide or graphene (here, graphene refers to graphene without any treatment);
  • the modified graphene is specifically selected from a coupling agent modified graphene oxide, a cation One or more of surfactant-modified graphene oxide, brominated alkane-modified graphene, amino compound-modified graphene, and polyvinyl alcohol-modified graphene oxide.
  • the brominated alkane-modified graphene is selected from the group consisting of brominated dodecane-modified graphene oxide, hexadecyl bromide-modified graphene oxide, and brominated octadecane-modified graphene oxide. Or several.
  • the amino compound-modified graphene is selected from the group consisting of a lactam-modified graphene, a bis-aminopolyethylene glycol-modified graphene oxide, a polydiallyldimethylammonium chloride (PDDA)-modified graphene, Polyetherimide (PEI) modified graphene, polyetheramine modified graphene, cetyltrimethylammonium bromide modified graphene, N,N-dimethylacetamide modified graphene, One or more of polyethyleneimine modified graphene oxide, N-(2-acetamido)-iminodiacetic acid modified graphene.
  • PDDA polydiallyldimethylammonium chloride
  • PEI Polyetherimide
  • polyetheramine modified graphene polyetheramine modified graphene
  • cetyltrimethylammonium bromide modified graphene N,N-dimethylacetamide modified graphene
  • the type of graphene in the modified graphene is selected from the group consisting of high temperature thermally expanded reduced graphene oxide, reduced graphene oxide obtained by low temperature thermal expansion, electrochemical stripped graphene, modified electrochemical stripped graphene, mechanical ball mill Stripped graphene, three-roll mill mechanical stripping graphene, CVD growth graphene, carbon dioxide supercritical expansion stripping graphene, chemically oxidized stripped graphene oxide, graphene prepared by Hummers method, Modified Hummers One or more of the graphenes prepared by the method.
  • the mass ratio of the nylon chips to graphene or modified graphene is 1:0.01%-15%.
  • step S1 the nylon chips and the graphene or the modified graphene are separately dried and then mixed; the nylon chips are dried until the water content is controlled to be 60 ppm or less. More preferably, it is controlled to 30 ppm or less.
  • the mixing is intermittent mixing in a high-speed mixer, and the mixing speed is 5000 to 15000 rad/min, and the mixing time is 1 to 30 minutes.
  • intermittent mixing is adopted; in addition, high-speed mixing causes a sharp rise in temperature, and in order to prevent the explosion hazard, the control speed is 5000 to 15000 rad/min.
  • step S2 the graphene-nylon master batch is dried and then melt-spun.
  • the graphene-nylon master batch is dried at a temperature of 50 to 220 ° C for 4 to 40 hours, and the graphene-nylon masterbatch has a water content of 100 ppm or less after drying. More preferably, it is 60 ppm or less.
  • the principle of the present invention is that graphene is a two-dimensional honeycomb crystal composed of carbon atoms, and has unparalleled mechanical properties and electrical and thermal conductivity functions. It is the thinnest and strongest material known at present. In the process of preparing graphene-nylon nanocomposites, a key issue is to solve the compatibility between the two.
  • the dispersibility of graphene in the preparation of graphene-PA nanocomposite fibers and its binding force with the polymer matrix are interrelated, that is, only by achieving uniform dispersion of graphene, graphene and Firmly linked and tightly bonded to the PA matrix.
  • the amino group is contained in the PA matrix.
  • the surface modification and modification of the graphene (especially the functional modification of the amino compound) can greatly improve the dispersion of graphene in the PA matrix material, so that the graphene and the PA matrix are tight.
  • the combination of the two molecules creates a stable interaction between the two molecules, which greatly enhances the graphene-PA nanocomplex
  • the mechanical properties such as the strength of the fiber material.
  • the present invention has the following beneficial effects:
  • the surface modification and modification of graphene by the invention enables the graphene and the PA matrix to be tightly bonded together, and a stable interaction between the two molecules is generated, thereby greatly improving the graphene-PA nanocomposite material.
  • the graphene-PA nanocomposite prepared by the invention has a breaking strength increased by more than 50%; in addition, the high conductivity, thermal conductivity and barrier properties of graphene will also impart graphene- PA nanocomposite fiber has antistatic, heat resistant, flame retardant, antibacterial and other functional properties;
  • the method for preparing the graphene-PA composite masterbatch by the melt method of the invention is carried out in a twin-screw extruder, so the preparation of the composite masterbatch is very simple and easy, and no additional equipment is required, and the production cost is low. Suitable for industrial continuous production, improving efficiency and productivity.
  • the method of melt blending using the method does not require the use of a solvent, and does not generate environmentally harmful waste during the preparation process, and is an environmentally friendly production method;
  • the invention prepares FDY composite fiber by one-step drawing of a melt spinning machine, and the process converts the conventional two-step process for manufacturing the fully drawn yarn into a process route for producing FDY full-drawn yarn in one step, which is not only greatly
  • the production process is shortened, the capital investment cost is reduced, and the product quality, production efficiency and package volume are greatly improved.
  • the POY wire can be directly produced by the spinning machine during melting, and then subjected to the bombing. And deformation treatment, to prepare a variety of protective articles, apparel products and other fields of products that are conducive to human life production;
  • PA slices do not need to be improved by other complicated means (such as viscosity), but simply combined with the reinforcing phase (especially amino compound modified graphene) can make the performance of the prepared composite fiber
  • the invention has the advantages of large improvement, simple and high efficiency; and the production of the nano composite fiber by the invention can be produced without modifying and upgrading the existing equipment for producing nylon fiber, which can be described as seamless docking, easy industrialization and large-scale preparation, and service. For all human beings, to improve the quality of life and make a great contribution to the progress of centuries.
  • FIG. 1 is a schematic view showing a process flow for preparing a graphene-PA masterbatch
  • FIG. 2 is a schematic view showing a process flow for preparing a graphene-nylon nano composite fiber.
  • the embodiment relates to a method for preparing graphene-nylon nano composite fiber, and the specific operation steps are as follows:
  • the nylon (PA) (which may be PA6 or PA66, the same below, the following PA6 is taken as an example) is sliced and modified with graphene, cooled to room temperature, mixed at high speed, and then PA6 slice is added to the double
  • the screw extruder feeder opens the main machine and the feeder.
  • the twin screw starts to discharge the pure material
  • the modified graphene is added to the feeder, and different types and contents of graphite are prepared by the action of the twin screw.
  • the olefin-PA6 nanocomposite was fed into a granulator and discharged at the discharge port to prepare a graphene-PA6 masterbatch.
  • the temperature parameters of one zone, two zones, three zones, four zones, five zones and six zones of the twin-screw extruder are: 220 ° C, 225 ° C, 230 ° C, 235 ° C, 230 ° C, 225 ° C.
  • the above high speed mixing has a rotational speed of 15,000 rad/min and a mixing time of 5 min.
  • the mass ratio of the modified graphene to the PA6 slice was 1%:1, and the modified graphene was a caprolactam-modified electrochemically exfoliated graphene.
  • the modification method of caprolactam-modified graphene includes: (1) ultrasonically stripping graphene at a certain temperature with nitric acid as a solvent for 4 hours, washing the residual acid, and drying; (2) then optimizing the proportion of the lactam and the step The product of one is added to DMF, ultrasonicized for one hour, then a certain amount of aminoacetic acid is added, nitrogen gas is introduced, the reaction is stirred at 180 ° C for 1 hour, and the reaction is carried out at 250 ° C for a period of time; (3) the obtained product is washed, Drying at 35 ° C for 12 hours prepares the desired modified graphene.
  • the ratio of caprolactam to graphene is from 5:1 to 1:10;
  • Nylon chips should not contain too much moisture, undried slices, moisture content less than 0.1%; need to remove moisture from the nylon chips to avoid known and unknown effects in the spinning process, thus avoiding the reduction of graphene -PA6 nanocomposite properties. Therefore, before the preparation of the composite fiber, the nylon slice should be dried. After drying, the water content of the slice is controlled to be 60 ppm or less, preferably 30 ppm or less. In this embodiment, the PA6 slice is dried to a water content of 30 ppm.
  • the graphene-PA masterbatch is dried and then sent to a feeding bin, passed through a screw extruder into a spinning box, spun through a spinning assembly, and then passed through a slow cooling device.
  • the side blowing device side is blow-cooled and formed, and the oil is bundled, and the graphene-PA6 composite fiber is formed by three-stretching and winding winding of the first roller, the second roller, and the opposite roller.
  • the slow cooling humidity is 80%
  • the side blowing air speed is 1.8m/s
  • the oiling parameter is: 15rad/min
  • the pairing roller to the counter roller Three speed range: 300 ⁇ 2100m / min.
  • the graphene-PA masterbatch was dried at a temperature of 70 to 150 ° C for 30 hours, and the graphene-PA masterbatch had a water content of 30 ppm after drying.
  • the embodiment relates to a method for preparing a graphene-nylon nano composite fiber, and the specific operation steps are basically the same as those in the first embodiment, except that:
  • the high speed mixing speed was 14000 rad/min and the mixing time was 5 min.
  • the mass ratio of the modified graphene to the PA6 slice is 1%:1, and the modified graphene is a 1:1 growth of CVD growth graphene and polyether with a mass ratio of 1:1 polydiallyldimethylammonium chloride a mixture of amine modified high temperature thermally expanded reduced graphene oxide;
  • the modification method of polydiallyldimethylammonium chloride modified graphene includes: (1) CVD growth graphene is irradiated with nitric acid as a solvent at a certain temperature for 5 hours, and then the residual acid is washed away; (2) Then adding polydiallyldimethylammonium chloride, the ratio of polydiallyldimethylammonium chloride to graphene is 1:1 to 1:20; (3) the solution is bathed at 50 ° C The mixture was heated and stirred for two hours; that is, the desired modified graphene was prepared.
  • the modification method of the polyetheramine-modified graphene includes: (1) pretreating the reduced graphene oxide which is thermally expanded at a high temperature by nitric acid pretreatment, then washing away the residual acid, and then dispersing a certain amount of dimethylacetamide (DMAc). (2) Add the polyetheramine to the three-necked flask, and then add the solution in the first step to the three-necked flask in the step (2), pass nitrogen protection, and magnetically stir the reaction at a certain temperature. 24 hours; the ratio of polyetheramine to graphene oxide was 2:1.
  • DMAc dimethylacetamide
  • the PA6 sections were dried to a water content of 60 ppm.
  • the temperature of the graphene-PA masterbatch drying treatment was 60 to 150 ° C for 28 hours, and the water content of the graphene-PA masterbatch after drying was less than 60 ppm.
  • the embodiment relates to a method for preparing a graphene-nylon nano composite fiber, and the specific operation steps are basically the same as those in the first embodiment, except that:
  • the high speed mixing speed was 15000 rad/min and the mixing time was 5 min.
  • the mass ratio of the modified graphene to the PA6 slice is 1%:1, and the modified graphene is a CTAB having a mass ratio of 1:2.
  • the modification method of CTAB modified graphene includes: (1) ultrasonically oxidizing graphene to uniformly disperse in deionized water; (2) then adding CTAB; the ratio of CTAB to graphene oxide is 2:1; (3) The solution was stirred and heated in a water bath at 50 ° C for two hours. That is, the desired modified graphene is prepared.
  • the modification method of polyetherimide (PEI) modified graphene includes: (1) ultrasonic dispersion of graphene oxide in deionized water; (2) uniform dispersion of PEI ultrasonic; ratio of PEI to graphene oxide is 2:1 to 1:20; (3) Mixing the two and adding a certain amount of EDC, sonicating for 60 min, and then continuing to add a certain amount of EDC to catalyze the stirring reaction; (4) centrifugally washing to obtain a product.
  • PEI polyetherimide
  • the PA6 sections were dried to a water content of 40 ppm.
  • the temperature at which the graphene-PA masterbatch was dried was 70 to 180 ° C for 25 hours, and the moisture content of the graphene-PA masterbatch after drying was 40 ppm.
  • the embodiment relates to a method for preparing a graphene-nylon nano composite fiber, and the specific operation steps are basically the same as those in the first embodiment, except that:
  • the high speed mixing speed is 12000 rad/min and the mixing time is 10 min.
  • the mass ratio of the modified graphene to the PA6 slice was 1%:1, and the modified graphene was brominated dodecane-modified graphene oxide.
  • the modification method of the brominated dodecane-modified graphene comprises: (1) adding a certain proportion of graphene oxide and potassium carbonate to anhydrous dimethylformamide, adding a certain amount of deionized water, and ultrasonicating for 30 min; Then, the reaction is stirred at a certain temperature for 12 hours and is purged with nitrogen; (3) an optimized ratio of bromododecane is added and reacted at a certain temperature for 48 hours; (4) bromosodecane and graphene oxide The ratio of use is from 3:1 to 1:20; that is, the desired modified graphene is prepared.
  • the PA6 sections were dried to a water content of 20 ppm.
  • the graphene-PA masterbatch was dried at a temperature of 70 to 150 ° C for 28 hours, and the graphene-PA masterbatch had a water content of 20 ppm after drying.
  • the embodiment relates to a method for preparing a graphene-nylon nano composite fiber, and the specific operation steps are basically the same as the embodiment. 1, the difference is:
  • the high speed mixing speed was 15000 rad/min and the mixing time was 5 min.
  • the mass ratio of the modified graphene to the PA6 slice was 0.01:1, and the modified graphene was a silane coupling agent-modified graphene oxide.
  • the modification method of the silane coupling agent-modified graphene oxide comprises: adding graphene oxide to a container containing ethanol and ultrasonically dispersing; then adding a silane coupling agent, the ratio of the silane coupling agent to the graphene oxide is 4 : 1; further adding a certain amount of acetic acid catalysis, reacting at a certain temperature for 12 hours and condensing and refluxing.
  • the PA6 sections were dried to a water content of 25 ppm.
  • the graphene-PA masterbatch was dried at a temperature of 70 to 140 ° C for 26 hours, and the graphene-PA masterbatch had a water content of 25 ppm after drying.
  • the embodiment relates to a method for preparing a graphene-nylon nano composite fiber, and the specific operation steps are basically the same as those in the first embodiment, except that:
  • the mass ratio of the modified graphene to the PA6 slice was 0.01%:1, and the modified graphene was a polyetherimide (PEI)-modified graphene oxide.
  • PEI polyetherimide
  • the embodiment relates to a method for preparing a graphene-nylon nano composite fiber, and the specific operation steps are basically the same as those in the first embodiment, except that:
  • the mass ratio of the modified graphene to the PA6 slice is 10%:1, and the modified graphene is a polyetheramine-modified high-temperature thermally expanded reduced graphene.
  • the present comparative example relates to a method for preparing graphene-nylon nano-composite fibers.
  • the specific operation steps are basically the same as those in the first embodiment, except that instead of using modified graphene, electrochemically stripped graphene is directly used.
  • Example 2 5.5 18%
  • Example 3 4.99 18%
  • Example 4 3.73 51%
  • Example 5 4.39 25%
  • Example 6 5.3 15%
  • Example 7 5.1 15%
  • Example 8 3.6 20 ⁇ 4%
  • the present invention provides a method for preparing a graphene-nylon (PA) nanocomposite fiber material, and the graphene mentioned in the present invention is prepared by the hummers method and other types of graphene.
  • the method comprises the steps of preparing a graphene-PA nanocomposite masterbatch and a nylon melt spinning (FDY spinning one-step method) in a twin-screw extruder.
  • the method of the present invention does not require a more complicated process of increasing the properties (such as viscosity) of the nylon chips, but the strength of the composite material can be improved by compounding the graphene with the matrix material by a clever method.
  • the method is simple and easy to perform, and can be seamlessly integrated with the existing industrial production of nylon melt spinning, and the high-performance graphene-PA nano composite material can be prepared without modifying or upgrading the existing equipment;
  • the method requires very little graphene to prepare nanocomposites, which can save a lot of cost and achieve high-volume production with good feasibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Artificial Filaments (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种石墨烯-锦纶纳米复合纤维的制备方法,该方法包括如下步骤:锦纶切片与石墨烯或改性石墨烯混合、挤出造粒,制得石墨烯-锦纶母粒;将所述石墨烯-锦纶母粒干燥处理后进行熔融纺丝,制得所述石墨烯-锦纶纳米复合纤维。与现有的工业锦纶复合纤维相比,该方法工业简单,成本低,可有效提高生产效率及产能;修饰改性后的石墨烯与基体有非常好的相容性,能够在基体中均匀地分散,使得石墨烯增强相与锦纶基体材料完美地复合,从而大大的提高了石墨烯-锦纶复合纤维的性能。

Description

石墨烯-锦纶纳米复合纤维的制备方法 技术领域
本发明涉及纤维材料领域,涉及一种石墨烯-锦纶(石墨烯-PA)纳米复合纤维的制备方法。
背景技术
石墨烯是一种二维纳米材料,(1)其面密度为0.77mg/m2,也就是说取石墨烯中的一个正六边形碳环作为结构单元,由于每个碳原子仅有1/3属于这个六边形,因此一个结构单元中的碳原子数为2。六边形的面积为0.052nm2。由此可计算出石墨烯的面密度为0.77mg/m2。(2)电导率:二维材料的电导率可由公式σ=enμ计算得出。当载流子密度n=1012cm-2时,迁移率μ为2×105cm2V-1s-1,计算可得石墨烯的面电阻约为31Ω/sq。这表明面积为1m2的石墨烯吊床的电阻仅为31Ω。(3)强度:石墨烯的强度极限(抗拉强度)为42N/m。如果普通用钢具有同石墨烯一样的厚度(约0.335nm),则可推算出其二维强度极限为0.084~0.40N/m。由此可知,理想石墨烯的强度约为普通钢的100倍。面积为1m2的石墨烯层片可承受4kg的质量。(4)热导率:石墨烯的热导率实验值约为5000Wm-1K-1,是室温下铜的热导率(401Wm-1K-1)的10倍多。因此,在制备纳米复合材料时,二维片状且力学性能非常高的石墨烯将是增强相的不二选择;其增强效果不但可比于粘土、蒙脱土等增强相,而且有粘土、蒙脱土所达不到的效果。
然而,由于石墨烯自身结构的影响,其表面能很高,导致其容易发生形变:石墨烯片的卷曲、层叠以及团聚等等一系列问题。如果石墨烯与纳米复合纤维基体材料相容性差,将使得石墨烯在纳米复合纤维基体材料中分散不均匀,使得石墨烯片层卷曲或形成团聚,从而使得复合材料在应用中形成应力集中点,极大的削弱以石墨烯为增强相的纳米复合纤维材料的性能。此外,如果石墨烯与纳米复合纤维基体材料相容性差,石墨烯与基体材料结合欠紧密,将不能起到良好的传递和分散载荷的作用,表现在复合材料中石墨烯与纳米复合纤维基体材料在受力的过程中产生滑动而使得复合材料的力学性能降低和失效。
发明内容
本发明的目的在于克服上述石墨烯与纳米复合纤维基体材料相容性差导致以石 墨烯为增强相的纳米复合纤维材料的性能较低的缺陷,提供一种石墨烯-锦纶纳米复合纤维的制备方法。该方法以现有锦纶长丝的工业生产为基础制备出高性能石墨烯-锦纶纳米复合纤维,与现有的工业方法相比,该方法工艺简单,成本低,可有效提高生产效率及产能。由于修饰改性后的石墨烯与基体有非常好的相容性,因此能够在基体中很好的分散,使得石墨烯增强相与基体材料均匀地复合,从而大大的提高了石墨烯-锦纶纳米复合纤维材料的性能。
本发明的目的是通过以下技术方案来实现的:
第一方面,本发明涉及一种石墨烯-锦纶纳米复合纤维的制备方法,所述方法包括如下步骤:
S1、锦纶切片与石墨烯或改性石墨烯混合、挤出造粒,制得石墨烯-锦纶母粒;
S2、所述石墨烯-锦纶母粒经熔融纺丝,制得所述石墨烯-锦纶纳米复合纤维;
所述的石墨烯为通俗用语,为未经改性处理的所有石墨烯的统称,例如包括氧化石墨烯、机械球磨剥离石墨烯、三辊研磨机械剥离石墨烯、CVD生长石墨烯、二氧化碳超临界膨胀剥离石墨烯等,以及还包括未经任何处理的石墨烯。
优选的,所用锦纶包括锦纶6(PA6)、锦纶66(PA66)。
优选的,所述石墨烯为氧化石墨烯或石墨烯(此处的石墨烯是指未经任何处理的石墨烯);所述改性石墨烯具体选自偶联剂改性氧化石墨烯、阳离子表面活性剂改性氧化石墨烯、溴代烷烃改性石墨烯、氨基化合物改性石墨烯、聚乙烯醇改性氧化石墨烯中的一种或几种。
优选的,所述溴代烷烃改性石墨烯选自溴代十二烷改性氧化石墨烯、溴代十六烷改性氧化石墨烯、溴代十八烷改性氧化石墨烯中的一种或几种。
优选的,所述氨基化合物改性石墨烯选自己内酰胺改性石墨烯、双氨基聚乙二醇改性氧化石墨烯、聚二烯丙基二甲基氯化铵(PDDA)改性石墨烯、聚醚酰亚胺(PEI)改性石墨烯、聚醚胺改性石墨烯、十六烷基三甲基溴化铵改性石墨烯、N,N-二甲基乙酰胺改性石墨烯、聚乙烯亚胺改性氧化石墨烯、N-(2-乙酰氨基)-亚氨基二醋酸改性石墨烯、中的一种或几种。
优选的,所述改性石墨烯中石墨烯的类型选自高温热膨胀的还原氧化石墨烯、低温热膨胀所得的还原氧化石墨烯、电化学剥离石墨烯、改性的电化学剥离石墨烯、机械球磨剥离石墨烯、三辊研磨机械剥离石墨烯、CVD生长石墨烯、二氧化碳超临界膨胀剥离石墨烯、化学氧化剥离的氧化石墨烯、Hummers法制备的石墨烯、Modified Hummers 法制备的石墨烯中的一种或几种。
优选的,步骤S1中,所述锦纶切片与石墨烯或改性石墨烯的质量比为1∶0.01%~15%。
优选的,步骤S1中,锦纶切片与石墨烯或改性石墨烯分别干燥处理后再进行混合;所述锦纶切片干燥至含水量控制在60ppm以下。更优选控制在30ppm以下。
优选的,步骤S1中,所述混合是在高速混合机中进行的间歇式混合,混合对应的转速为5000~15000rad/min,混合时间为1~30分钟。混合中为避免温度升高的影响,采取间歇式混合;此外,高速混合会导致温度急剧升高,为防止爆炸危险,控制转速为5000~15000rad/min。
优选的,步骤S2中,石墨烯-锦纶母粒干燥处理后再进行熔融纺丝。
优选的,所述石墨烯-锦纶母粒干燥处理的温度为50~220℃,时间为4~40小时,干燥处理后石墨烯-锦纶母粒的含水量在100ppm以下。更优选60ppm以下。
本发明的原理在于:石墨烯作为一种由碳原子构成的二维蜂窝状晶体,具有无与伦比的力学性能和导电、导热等功能性,它是目前已知的最薄、强度最高的材料。在制备石墨烯-锦纶纳米复合材料的过程中,一个关键问题就是解决二者的相容性。由于石墨烯自身结构的影响,其表面能很高,导致其容易发生形变:石墨烯片的卷曲、层叠以及团聚等等一系列问题,这使得石墨烯在PA中分散十分不均匀,从而极大的影响石墨烯-PA纳米复合材料的性能,因此只有很好的解决了石墨烯与基体PA的相容性问题,才能充分发挥石墨烯二维增强、低添加量的优势,并保证复合纤维材料结构性质的均匀一致,才能彻底的提高石墨烯-PA纳米复合材料的性能。如果这二者之间的相容性问题没有解决,将直接导致石墨烯在基体中不能很好的分散、石墨烯片层卷曲或形成团聚,从而使得复合材料在应用中形成应力集中点,大大削弱石墨烯-PA纳米复合材料的性能。在制备出的石墨烯纳米复合材料中,石墨烯以增强相的形式存在,因此石墨烯必须与基体材料紧密的结合,才能够起到传递和分散载荷的作用,避免了复合材料中石墨烯与PA基体在受力的过程中产生滑动而使得材料的力学性能降低和失效。在一定程度上,在石墨烯-PA纳米复合纤维制备中石墨烯的分散性及其与聚合物基体间的结合力是相互关联的,即只有实现了石墨烯的均匀分散,才能保证石墨烯与PA基体的牢固链接和紧密结合。在PA基体中含有氨基,本发明通过对石墨烯进行表面改性和修饰(尤其是氨基化合物功能化改性),可大大改善石墨烯在PA基体材料中的分散,使得石墨烯与PA基体紧密的结合在一起,二者分子之间产生稳定的相互作用,从而大大提高了石墨烯-PA纳米复 合纤维材料的强度等力学性能。
与现有技术相比,本发明具有如下有益效果:
1、本发明通过对石墨烯进行表面改性和修饰,使得石墨烯与PA基体紧密的结合在一起,二者分子之间产生稳定的相互作用,从而大大的提高了石墨烯-PA纳米复合材料的性能;
2、与目前工业普通锦纶纤维丝相比,本发明所制备的石墨烯-PA纳米复合材料的断裂强度提高了50%以上;此外石墨烯的高导电、导热、阻隔性能也将赋予石墨烯-PA纳米复合纤维具备抗静电、耐热、阻燃、抗菌等功能特性;
3、本发明的熔融法制备石墨烯-PA复合材料母粒切片是在双螺杆挤出机中进行的,因此复合母粒切片的制备非常简单易行,而且不需要增加其他设备,生产成本低,适合工业化连续生产,提高效率和产能。此外,使用本方法进行熔融共混不需要使用溶剂,在制备过程中不产生对环境有害的废弃物,是环境友好型生产方法;
4、本发明通过熔融纺丝机一步拉伸制备出FDY复合纤维,该工艺将常规的两步法制造全拉伸丝的工艺路线转变成一步生产出FDY全拉伸丝的工艺路线,不仅大大地缩短了生产流程、降低了基建投资成本,而且在产品质量、生产效率和卷装量方面都有很大的提高;此外还可以通过熔融时纺丝机直接生产出POY丝,然后经过加弹和变形处理,制备出有利于人类生活生产的各种防护用品,服饰品以及其他领域的产品;
5、PA切片不需要经过其他复杂的手段对其性能(如粘度)进行提升,只是简单的与增强相(尤其是氨基化合物改性石墨烯)进行复合就能使得所制备出的复合纤维的性能有较大的提高,简单高效;而且采用本发明进行生产纳米复合材料纤维,不需要对现有生产锦纶纤维的设备进行改造和升级即可生产,可谓无缝对接,易于工业化大规模制备,服务于全人类,提高生活质量,为人类的进步做出巨大贡献。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为石墨烯-PA母粒的制备工艺流程示意图;
图2为石墨烯-锦纶纳米复合纤维制备工艺流程示意图。
具体实施方式
下面结合实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人 员来说,在不脱离本发明构思的前提下,还可以做出若干调整和改进。这些都属于本发明的保护范围。
实施例1
本实施例涉及石墨烯-锦纶纳米复合纤维的制备方法,具体操作步骤如下:
1、石墨烯-PA母粒的制备。
如图1所示,将锦纶(PA)(可以是PA6或PA66,下同,以下以PA6为例)切片与改性石墨烯干燥,冷却至常温,经高速混合,再把PA6切片加入到双螺杆挤出机喂料机,开启主机以及喂料机,当双螺杆开始排出纯料时,将改性石墨烯加入到喂料机中,通过双螺杆的作用,制备出不同类型、含量的石墨烯-PA6纳米复合材料,大约2min后,将条状复合料送入造粒机,在出料口接料,制得石墨烯-PA6母粒。
其中,双螺杆挤出机的一区、二区、三区、四区、五区、六区的温度参数分别为:220℃、225℃、230℃、235℃、230℃、225℃。
上述高速混合的转速为15000rad/min,混合时间为5min。
改性石墨烯与PA6切片的质量比为1%∶1,该改性石墨烯为己内酰胺改性的电化学剥离石墨烯。
己内酰胺改性石墨烯的改性方法包括:(1)将电化学剥离石墨烯在一定温度下以硝酸为溶剂超声4小时,洗涤残酸,干燥;(2)然后优化比例的几内酰胺以及步骤一的产物加入到DMF中,超声一小时,随后加入一定量的氨基乙酸,通入氮气,在180℃下搅拌反应1小时,250℃下反应一段时间;(3)将所得的产物洗涤,在35℃干燥12小时,即制备出所需改性石墨烯。己内酰胺与石墨烯的用量比为5∶1~1∶10;
锦纶切片中,不能含有太多的水分,未经干燥的切片,含水率小于0.1%;需要除去锦纶切片中的水分以避免在纺丝过程中产生已知和未知的影响,从而避免降低石墨烯-PA6纳米复合材料的性能。因此在制备复合纤维之前,应先对锦纶切片进行干燥处理,一般干燥后,切片的含水量控制在60ppm以下,最好在30ppm以下,本实施例中PA6切片干燥至含水量为30ppm。
2、FDY纺丝拉伸一步法熔融纺丝制备石墨烯-PA复合纤维。
如图2所示,将石墨烯-PA母粒进行干燥处理后,送入加料仓,通过螺杆挤出机进入纺丝箱体,经纺丝组件进行纺丝,然后经过缓冷装置后,经侧吹风装置侧吹风冷却成型、集束上油,经对辊一、对辊二、对辊三拉伸和卷绕络筒制成石墨烯-PA6复合纤维。
其中,缓冷湿度80%,侧吹风风速1.8m/s,上油参数:15rad/min;对辊一至对辊 三转速区间:300~2100m/min。
石墨烯-PA母粒干燥处理的温度为70~150℃,时间为30小时,干燥后石墨烯-PA母粒的含水量为30ppm。
实施例2
本实施例涉及石墨烯-锦纶纳米复合纤维的制备方法,具体操作步骤基本同实施例1,所不同之处在于:
1、石墨烯-PA母粒的制备中,
高速混合的转速为14000rad/min,混合时间为5min。
改性石墨烯与PA6切片的质量比为1%∶1,该改性石墨烯为质量比为1∶1的聚二烯丙基二甲基氯化铵改性的CVD生长石墨烯与聚醚胺改性的高温热膨胀的还原氧化石墨烯的混合物;
聚二烯丙基二甲基氯化铵改性石墨烯的改性方法包括:(1)将CVD生长石墨烯在一定温度下以硝酸为溶剂超声5小时,后洗去残酸;(2)然后加入聚二烯丙基二甲基氯化铵,聚二烯丙基二甲基氯化铵与石墨烯的用量比为1∶1~1∶20;(3)将溶液在50℃下水浴加热搅拌两小时;即制备出所需改性石墨烯。
聚醚胺改性石墨烯的改性方法包括:(1)将高温热膨胀的还原氧化石墨烯先经硝酸预处理,然后洗去残酸,继而分散在一定量的二甲基乙酰胺(DMAc)中并超声至分散均匀;(2)将聚醚胺加入到三口烧瓶中,再将步骤一中的溶液加入步骤(2)中的三口烧瓶中,通入氮气保护,在一定温度下磁力搅拌反应24小时;聚醚胺与氧化石墨烯的用量比为2∶1。
PA6切片干燥至含水量为60ppm。
2、石墨烯-PA复合纤维制备中,
石墨烯-PA母粒干燥处理的温度为60~150℃,时间为28小时,干燥后石墨烯-PA母粒的含水量为小于60ppm。
实施例3
本实施例涉及石墨烯-锦纶纳米复合纤维的制备方法,具体操作步骤基本同实施例1,所不同之处在于:
1、石墨烯-PA母粒的制备中,
高速混合的转速为15000rad/min,混合时间为5min。
改性石墨烯与PA6切片的质量比为1%∶1,该改性石墨烯为质量比为1∶2的CTAB 改性氧化石墨烯、聚醚酰亚胺(PEI)改性氧化石墨烯的混合物。
CTAB改性石墨烯的改性方法包括:(1)将氧化石墨烯超声至均匀分散在去离子水中;(2)然后加入CTAB;CTAB与氧化石墨烯的用量比为2∶1;(3)将溶液在50℃下水浴加热搅拌两小时。即制备出所需改性石墨烯。
聚醚酰亚胺(PEI)改性石墨烯的改性方法包括:(1)将氧化石墨烯超声分散在去离子水中;(2)将PEI超声分散均匀;PEI与氧化石墨烯的用量比为2∶1~1∶20;(3)将二者混合并加入一定量的EDC,超声60min,然后继续加入一定量的EDC催化搅拌反应;(4)离心洗涤得到产物。
PA6切片干燥至含水量为40ppm。
2、石墨烯-PA复合纤维制备中,
石墨烯-PA母粒干燥处理的温度为70~180℃,时间为25小时,干燥后石墨烯-PA母粒的含水量为40ppm。
实施例4
本实施例涉及石墨烯-锦纶纳米复合纤维的制备方法,具体操作步骤基本同实施例1,所不同之处在于:
1、石墨烯-PA母粒的制备中,
高速混合的转速为12000rad/min,混合时间为10min。
改性石墨烯与PA6切片的质量比为1%∶1,该改性石墨烯为溴代十二烷改性的氧化石墨烯。
溴代十二烷改性石墨烯的改性方法包括:(1)将优化比例的氧化石墨烯以及碳酸钾加入无水二甲基甲酰胺中加入一定量的去离子水,超声30min;(2)然后在一定温度下搅拌反应12小时,并通入氮气保护;(3)加入优化比例的溴代十二烷,在一定温度下反应48小时;(4)溴代十二烷与氧化石墨烯的用量比为3∶1~1∶20;即制备出所需改性石墨烯。
PA6切片干燥至含水量为20ppm。
2、石墨烯-PA复合纤维制备中,
石墨烯-PA母粒干燥处理的温度为70~150℃,时间为28小时,干燥后石墨烯-PA母粒的含水量为20ppm。
实施例5
本实施例涉及石墨烯-锦纶纳米复合纤维的制备方法,具体操作步骤基本同实施例 1,所不同之处在于:
1、石墨烯-PA母粒的制备中,
高速混合的转速为15000rad/min,混合时间为5min。
改性石墨烯与PA6切片的质量比为0.01∶1,该改性石墨烯为硅烷偶联剂改性氧化石墨烯。
硅烷偶联剂改性氧化石墨烯的改性方法包括:将氧化石墨烯加入到含乙醇的容器中,超声分散;然后加入硅烷偶联剂,硅烷偶联剂与氧化石墨烯的用量比为4∶1;再加入一定量的乙酸催化,在一定温度下反应12小时并冷凝回流。
PA6切片干燥至含水量为25ppm。
2、石墨烯-PA复合纤维制备中,
石墨烯-PA母粒干燥处理的温度为70~140℃,时间为26小时,干燥后石墨烯-PA母粒的含水量为25ppm。
实施例6
本实施例涉及石墨烯-锦纶纳米复合纤维的制备方法,具体操作步骤基本同实施例1,所不同之处在于:
石墨烯-PA母粒的制备中,改性石墨烯与PA6切片的质量比为0.01%∶1,该改性石墨烯为聚醚酰亚胺(PEI)改性氧化石墨烯。
实施例7
本实施例涉及石墨烯-锦纶纳米复合纤维的制备方法,具体操作步骤基本同实施例1,所不同之处在于:
石墨烯-PA母粒的制备中,改性石墨烯与PA6切片的质量比为10%∶1,该改性石墨烯为聚醚胺改性的高温热膨胀的还原石墨烯。
实施例8
本对比例涉及石墨烯-锦纶纳米复合纤维的制备方法,具体操作步骤基本同实施例1,所不同之处在于:未采用改性石墨烯,而是直接选用电化学剥离的石墨烯。
对以上实施例和对比例制得的纤维产品进行机械性能测试,测试方法按照国标:锦纶6弹力丝-FZ/T54007-2009进行测试;结果如下表1所示:
表1
  断裂强度(cN/dtex) 断裂伸长率
实施例1 6.5 20%
实施例2 5.5 18%
实施例3 4.99 18%
实施例4 3.73 51%
实施例5 4.39 25%
实施例6 5.3 15%
实施例7 5.1 15%
实施例8 3.6 20±4%
综上所述,本发明提供了一种制备石墨烯-锦纶(PA)纳米复合纤维材料的制备方法,本发明中所提到的石墨烯是以hummers法制备以及其他种类石墨烯,所提到的方法为双螺杆挤出机制备石墨烯-PA纳米复合材料母粒以及锦纶熔融纺丝(FDY纺丝拉伸一步法)。本发明的方法不需要对锦纶切片进行更复杂的增加其性能(如粘度)工艺,只是通过一种巧妙的方法使石墨烯与基体材料进行复合,即可提高此复合材料的强度,本发明的方法简单易行,并且可与现有的锦纶熔融纺丝工业化生产无缝对接,不需要对现有设备进行改造或者升级即可制备出高性能的石墨烯-PA纳米复合材料;此外,本发明方法制备纳米复合材料所需要的石墨烯用量非常少,可大量节约成本,实现大批量生产,可行性好。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (10)

  1. 一种石墨烯-锦纶纳米复合纤维的制备方法,其特征在于,所述方法包括如下步骤:
    S1、锦纶切片与石墨烯或改性石墨烯混合、挤出造粒,制得石墨烯-锦纶母粒;
    S2、所述石墨烯-锦纶母粒经熔融纺丝,制得所述石墨烯-锦纶纳米复合纤维。
  2. 根据权利要求1所述的石墨烯-锦纶纳米复合纤维的制备方法,其特征在于,所用锦纶包括锦纶6、锦纶66。
  3. 根据权利要求1所述的石墨烯-锦纶纳米复合纤维的制备方法,其特征在于,所述石墨烯为氧化石墨烯或石墨烯;所述改性石墨烯选自偶联剂改性氧化石墨烯、阳离子表面活性剂改性氧化石墨烯、溴代烷烃改性石墨烯、氨基化合物改性石墨烯、聚乙烯吡咯烷酮以及聚乙烯醇改性石墨烯中的一种或几种。
  4. 根据权利要求3所述的石墨烯-锦纶纳米复合纤维的制备方法,其特征在于,所述溴代烷烃改性石墨烯选自溴代十二烷改性氧化石墨烯、溴代十六烷改性氧化石墨烯、溴代十八烷改性氧化石墨烯中的一种或几种。
  5. 根据权利要求3所述的石墨烯-锦纶纳米复合纤维的制备方法,其特征在于,所述氨基化合物改性石墨烯选自己内酰胺改性石墨烯、双氨基聚乙二醇改性氧化石墨烯、聚二烯丙基二甲基氯化铵改性石墨烯、聚醚酰亚胺改性石墨烯、聚醚胺改性石墨烯、十六烷基三甲基溴化铵改性石墨烯、N,N-二甲基乙酰胺改性石墨烯、N-(2-乙酰氨基)-亚氨基二醋酸改性石墨烯、聚乙烯亚胺改性氧化石墨烯、N,N-二甲氨基-2-氯丙烷盐酸盐改性石墨烯中的一种或几种。
  6. 根据权利要求1所述的石墨烯-锦纶纳米复合纤维的制备方法,其特征在于,所述改性石墨烯中石墨烯的类型选自高温热膨胀的还原氧化石墨烯、低温热膨胀所得的还原氧化石墨烯、电化学剥离石墨烯、改性的电化学剥离石墨烯、机械球磨剥离石墨烯、三辊研磨机械剥离石墨烯、CVD生长石墨烯、二氧化碳超临界膨胀剥离石墨烯、化学氧化剥离的氧化石墨烯、Hummers法制备的石墨烯、Modified Hummers法制备的石墨烯中的一种或几种。
  7. 根据权利要求1所述的石墨烯-锦纶纳米复合纤维的制备方法,其特征在于,步骤S1中,所述锦纶切片与石墨烯或改性石墨烯的质量比为1:0.01%~15%。
  8. 根据权利要求1所述的石墨烯-锦纶纳米复合纤维的制备方法,其特征在于,步 骤S1中,锦纶切片与石墨烯或改性石墨烯分别干燥处理后再进行混合;所述锦纶切片干燥至含水量控制在60ppm以下。
  9. 根据权利要求1所述的石墨烯-锦纶纳米复合纤维的制备方法,其特征在于,步骤S1中,所述混合是在高速混合机中进行的间歇式混合,混合对应的转速为5000~15000rad/min,混合时间为1~30分钟。
  10. 根据权利要求1所述的石墨烯-锦纶纳米复合纤维的制备方法,其特征在于,步骤S2中,石墨烯-锦纶母粒干燥处理后再进行熔融纺丝;所述石墨烯-锦纶母粒干燥处理的温度为50~220℃,时间为4~40小时,干燥处理后石墨烯-锦纶母粒的含水量在100ppm以下。
PCT/CN2016/101533 2016-06-08 2016-10-09 石墨烯-锦纶纳米复合纤维的制备方法 WO2017211022A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018526990A JP6651014B2 (ja) 2016-06-08 2016-10-09 グラフェン−ナイロンナノ複合繊維の製造方法
US15/763,442 US10793974B2 (en) 2016-06-08 2016-10-09 Method for preparing graphene-polyamide nanocomposite fiber
EP16904471.6A EP3342903B1 (en) 2016-06-08 2016-10-09 Preparation method for graphene-polyamide nano-composite fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610405168.X 2016-06-08
CN201610405168.XA CN105862158A (zh) 2016-06-08 2016-06-08 石墨烯-锦纶纳米复合纤维的制备方法

Publications (1)

Publication Number Publication Date
WO2017211022A1 true WO2017211022A1 (zh) 2017-12-14

Family

ID=56676399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101533 WO2017211022A1 (zh) 2016-06-08 2016-10-09 石墨烯-锦纶纳米复合纤维的制备方法

Country Status (5)

Country Link
US (1) US10793974B2 (zh)
EP (1) EP3342903B1 (zh)
JP (1) JP6651014B2 (zh)
CN (1) CN105862158A (zh)
WO (1) WO2017211022A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151920A (zh) * 2021-04-29 2021-07-23 任国峰 一种石墨烯复合功能性屏蔽纤维及其制备方法
JP2021130818A (ja) * 2017-02-07 2021-09-09 ゴールデン レデイ カンパニー ソチエタ ペル アチオーニ 抗菌性を有する繊維物品の製造のための変性ポリアミドの使用

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105862158A (zh) * 2016-06-08 2016-08-17 上海史墨希新材料科技有限公司 石墨烯-锦纶纳米复合纤维的制备方法
CN106637441B (zh) * 2016-08-31 2019-02-01 浙江金旗新材料科技有限公司 一种抗菌耐磨型锦纶6预取向丝
CN106676666B (zh) * 2016-08-31 2019-01-04 浙江金旗新材料科技有限公司 一种防静电锦纶弹力丝
CN107034568A (zh) * 2016-11-17 2017-08-11 无锡市长安曙光手套厂 一种防辐射纤维织物
CN106884218B (zh) * 2017-01-11 2019-06-11 刘逸新 一种石墨烯-锦纶复合材料纤维及其制备方法
CN106995946A (zh) * 2017-02-23 2017-08-01 南通强生石墨烯科技有限公司 石墨烯‑氨纶复合纤维的制备方法
JP6743296B2 (ja) * 2017-03-07 2020-08-19 ハンヂョウ ガオシー テクノロジー カンパニー リミテッドHangzhou Gaoxi Technology Co., Ltd. グラフェン/ナイロン6繊維、織物および製造方法
CN107149815A (zh) * 2017-04-14 2017-09-12 南通强生石墨烯科技有限公司 一种抗菌过滤芯
CN106995945A (zh) * 2017-05-11 2017-08-01 广州江鼎电子科技有限公司 一种延展性好的石墨烯导电纱线的制作方法
KR102618130B1 (ko) * 2017-05-16 2023-12-27 코넬 유니버시티 그래핀계 섬유, 얀, 복합체, 및 이들의 제조방법
CN107313126B (zh) * 2017-06-30 2019-12-17 福建锦江科技有限公司 一种通过高速纺丝生产石墨烯改性锦纶6纤维的方法
CN107475800B (zh) * 2017-08-22 2020-05-05 杨子中 一种石墨烯-稀土-锦纶纳米复合纤维及其制备方法和应用
CN108411470B (zh) * 2017-11-22 2020-06-26 南通强生石墨烯科技有限公司 一种石墨烯双功能针织面料
CN107974740B (zh) * 2017-12-18 2019-07-26 义乌华鼎锦纶股份有限公司 一种添加石墨烯的麻灰纱锦纶
CN108048929B (zh) * 2017-12-29 2020-04-03 福建华彩新材料有限公司 一种尼龙6纤维及其制备方法
CN108047709B (zh) * 2017-12-29 2020-04-07 福建华彩新材料有限公司 一种石墨烯抗菌母粒、纤维及其制备方法
CN108411400A (zh) * 2018-03-10 2018-08-17 南京华脉医疗器械股份有限公司 石墨烯纤维及其制备方法
CN108914242A (zh) * 2018-04-11 2018-11-30 杭州牛墨科技有限公司 一种耐高温抗熔滴的石墨烯纤维材料及其制备方法
CN108842213A (zh) * 2018-04-16 2018-11-20 常熟涤纶有限公司 一种石墨烯复合导电锦纶纤维的制备工艺
CN109912291B (zh) * 2018-11-27 2021-10-08 劳富文 石墨烯聚酯纤维土耕种植土及其制作方法
TWI668341B (zh) * 2018-11-30 2019-08-11 萬核應用材料有限公司 Adhesive wire drawing process
CN109680354A (zh) * 2018-12-24 2019-04-26 摩登大道时尚集团股份有限公司 一种石墨烯/聚乙二醇抗静电尼龙纤维的制备方法
CN109762305B (zh) * 2019-01-22 2021-09-10 宁波石墨烯创新中心有限公司 一种石墨烯母粒及其制备方法
CN109897227B (zh) * 2019-02-21 2021-06-25 四川大学 一种聚醚胺改性氧化石墨烯及其环氧纳米复合材料
CN110453302A (zh) * 2019-04-19 2019-11-15 陕西金瑞烯科技发展有限公司 一种石墨烯锦纶纤维的制备方法
CN110144100B (zh) * 2019-05-05 2021-08-17 陈让珠 硅油石墨烯塑料拉丝制作方法
US11292171B2 (en) * 2019-09-04 2022-04-05 Winn Applied Material Inc. Thread drawing processes
CN110499554A (zh) * 2019-09-23 2019-11-26 济南圣泉集团股份有限公司 一种羽绒复合材料及其制备方法和应用
CN110713709A (zh) * 2019-09-26 2020-01-21 江阴市强力化纤有限公司 一种阻燃锦纶6切片的生产方法
CN110699772B (zh) * 2019-11-21 2022-03-18 秦皇岛中科瀚祺科技有限公司 一种石墨烯/尼龙纤维复合材料及其制备方法与应用
CN111100308B (zh) * 2019-12-23 2022-09-13 浙江恒逸石化研究院有限公司 一种石墨烯抗静电涤锦并列复合弹性纤维的制备方法
CN111172608B (zh) * 2020-02-17 2022-02-25 西安工程大学 一种导热凉感、吸湿排汗聚酰胺纤维材料及其制备方法
US11311922B2 (en) * 2020-02-18 2022-04-26 Winn Applied Material Inc. Wire drawing process of light storage wire
CN111636117B (zh) * 2020-06-16 2022-09-02 广东石油化工学院 一种强韧聚氨酯纳米复合纤维的制备方法
CN111764153B (zh) * 2020-07-09 2023-05-23 江苏省特种设备安全监督检验研究院 一种采用电子束辐照技术提升石墨烯改性织物纤维或石墨烯改性织物性能的方法
CN112342636B (zh) * 2020-11-04 2023-06-13 四川省纺织科学研究院 一种石墨烯金属有机框架复合改性聚丙烯熔喷材料的制备方法
KR102544097B1 (ko) * 2021-06-11 2023-06-16 주식회사 네오엔프라 그래핀이 함유된 폴리아미드용 마스터 배치 조성물 및 그 조성물이 함유된 그래핀 폴리아미드 원사
CN113737511A (zh) * 2021-08-24 2021-12-03 南通强生石墨烯科技有限公司 一种石墨烯高抗切割特种纤维及其制备方法
CN113737310A (zh) * 2021-08-26 2021-12-03 南通强生石墨烯科技有限公司 一种石墨烯聚酰亚胺复合纤维及其制备方法
TWI789132B (zh) * 2021-11-24 2023-01-01 鄭國彬 活性黏土纖維及其織物與製造方法
CN115262029B (zh) * 2022-07-20 2024-01-26 江苏江山红化纤有限责任公司 石墨烯聚酰胺长丝及其纺丝方法
CN115449916A (zh) * 2022-08-22 2022-12-09 江苏江山红化纤有限责任公司 石墨烯改性的聚酰胺6复合纤维材料及其制备方法
US20240124761A1 (en) * 2022-10-12 2024-04-18 Saudi Arabian Oil Company Graphene based material for corrosion inhibition
CN115821420A (zh) * 2022-11-24 2023-03-21 江苏江山红化纤有限责任公司 一种石墨烯改性聚酰胺6复合纤维及其制备方法
CN116925375B (zh) * 2023-07-18 2024-03-26 东莞市普万光电散热科技有限公司 一种氧化石墨烯接枝改性聚酰胺复合材料、面料及其制备方法
CN117604676B (zh) * 2023-11-30 2024-09-10 江苏欣鑫纺织科技有限公司 一种抗拉锦纶纤维及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104817746A (zh) * 2014-02-05 2015-08-05 安炬科技股份有限公司 石墨烯复合纤维及其制备方法
CN105200547A (zh) * 2015-10-19 2015-12-30 沙嫣 一种石墨烯-涤纶纳米复合纤维的制备方法
CN105463612A (zh) * 2015-12-17 2016-04-06 中国科学院重庆绿色智能技术研究院 一种石墨烯量子点增强聚酰胺纤维及其制备方法
CN105586658A (zh) * 2016-03-04 2016-05-18 济南圣泉集团股份有限公司 一种改性锦纶纤维、制备方法及用途
CN105862158A (zh) * 2016-06-08 2016-08-17 上海史墨希新材料科技有限公司 石墨烯-锦纶纳米复合纤维的制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9827432D0 (en) * 1998-12-11 1999-02-03 Borealis As Method
JP2004115979A (ja) * 2002-09-30 2004-04-15 Toray Ind Inc カーボンナノチューブ含有ポリアミド繊維
JP5207351B2 (ja) * 2007-03-23 2013-06-12 独立行政法人産業技術総合研究所 溶融混練物、樹脂成形物及びその製造方法
CA2794482A1 (en) * 2010-03-26 2011-09-29 University Of Hawaii Nanomaterial-reinforced resins and related materials
KR101785140B1 (ko) * 2011-03-23 2017-10-12 세키스이가가쿠 고교가부시키가이샤 산화 박편화 흑연 유도체, 그의 수지 복합 재료 및 그의 수지 복합 재료의 제조 방법
GB201121125D0 (en) * 2011-12-08 2012-01-18 Dow Corning Treatment of carbon based filler
CN102534858B (zh) * 2012-01-09 2014-05-28 东华大学 一种石墨烯/聚酰亚胺复合纤维的制备方法
GB201201649D0 (en) * 2012-01-31 2012-03-14 Univ Manchester Graphene polymer composite
WO2014144139A1 (en) * 2013-03-15 2014-09-18 Xolve, Inc. Polymer-graphene nanocomposites
KR20150140823A (ko) * 2013-04-12 2015-12-16 제네럴 일렉트릭 컴퍼니 그래핀을 포함하는 멤브레인
CN103215689B (zh) * 2013-05-09 2015-02-18 苏州大学 一种石墨烯改性尼龙6纤维的制备方法
CN104404646A (zh) * 2014-12-06 2015-03-11 湖南科技大学 一种石墨烯接枝聚酰胺6纳米复合纤维的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104817746A (zh) * 2014-02-05 2015-08-05 安炬科技股份有限公司 石墨烯复合纤维及其制备方法
CN105200547A (zh) * 2015-10-19 2015-12-30 沙嫣 一种石墨烯-涤纶纳米复合纤维的制备方法
CN105463612A (zh) * 2015-12-17 2016-04-06 中国科学院重庆绿色智能技术研究院 一种石墨烯量子点增强聚酰胺纤维及其制备方法
CN105586658A (zh) * 2016-03-04 2016-05-18 济南圣泉集团股份有限公司 一种改性锦纶纤维、制备方法及用途
CN105862158A (zh) * 2016-06-08 2016-08-17 上海史墨希新材料科技有限公司 石墨烯-锦纶纳米复合纤维的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3342903A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021130818A (ja) * 2017-02-07 2021-09-09 ゴールデン レデイ カンパニー ソチエタ ペル アチオーニ 抗菌性を有する繊維物品の製造のための変性ポリアミドの使用
JP2022180353A (ja) * 2017-02-07 2022-12-06 ゴールデン レデイ カンパニー ソチエタ ペル アチオーニ 抗菌性を有する繊維物品の製造のための変性ポリアミドの使用
CN113151920A (zh) * 2021-04-29 2021-07-23 任国峰 一种石墨烯复合功能性屏蔽纤维及其制备方法

Also Published As

Publication number Publication date
EP3342903A1 (en) 2018-07-04
EP3342903B1 (en) 2020-09-09
CN105862158A (zh) 2016-08-17
JP2018523030A (ja) 2018-08-16
JP6651014B2 (ja) 2020-02-19
US20190048491A1 (en) 2019-02-14
EP3342903A4 (en) 2018-07-11
US10793974B2 (en) 2020-10-06

Similar Documents

Publication Publication Date Title
WO2017211022A1 (zh) 石墨烯-锦纶纳米复合纤维的制备方法
WO2017066937A1 (zh) 一种石墨烯-涤纶纳米复合纤维的制备方法
EP3626758B1 (en) Graphene composite material and preparation method therefor
CN105837024B (zh) 一种连续玄武岩纤维的制备方法
CN107513162A (zh) 一种石墨烯/尼龙6纳米复合材料的制备方法
CN106012093B (zh) 一种复合导电纤维的制备方法
Dai et al. Mechanical properties of carbon nanotubes-polymer composites
WO2011016535A1 (ja) 導電性ポリアミド樹脂組成物
CN111663199A (zh) 一种石墨烯改性pet混纺纤维的制备方法
JP2013007124A (ja) ポリアミドイミド被覆ピッチ系黒鉛化短繊維
CN107698754B (zh) 一种氧化石墨烯改性聚酰胺-6的制备方法
Sierra-Ávila et al. Synthesis and Thermomechanical Characterization of Nylon 6/Cu Nanocomposites Produced by an Ultrasound‐Assisted Extrusion Method
CN110229473B (zh) 一种pet纳米复合材料及其制备方法
CN109295525A (zh) 一种聚酰亚胺纤维长丝的制备方法
KR101637632B1 (ko) 나일론 복합체 및 이의 제조방법
CN111560662B (zh) 一种改性石墨烯ptt抗静电复合弹性纤维的制备方法
CN112976741A (zh) 一种bopp防静电拉伸薄膜
Gao et al. Fabrication of super-strength PA66/graphene nanocomposite fibers reinforced with small lateral-sized graphene and graphene oxide nanosheets
CN110229484B (zh) 一种pla纳米复合材料及其制备方法
JP4240948B2 (ja) ポリアミド樹脂組成物の製造方法
Sahoo et al. Effect of carbon nanotubes and processing methods on the properties of carbon nanotube/polypropylene composites
CN112111805B (zh) 一种增强型pet扁丝的制备方法
CN112920495A (zh) 解拉链碳纳米管增强的高密度聚乙烯杂化材料及其制备方法
CN107326474B (zh) 一种帘子线用石墨烯涤纶复合纤维及其制备方法
Gao et al. Effect of solid-state shear milling process on mechanical properties of PA66/graphene nanocomposite fibers

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018526990

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016904471

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE