WO2017209299A1 - 車両用の多芯ケーブル - Google Patents

車両用の多芯ケーブル Download PDF

Info

Publication number
WO2017209299A1
WO2017209299A1 PCT/JP2017/020711 JP2017020711W WO2017209299A1 WO 2017209299 A1 WO2017209299 A1 WO 2017209299A1 JP 2017020711 W JP2017020711 W JP 2017020711W WO 2017209299 A1 WO2017209299 A1 WO 2017209299A1
Authority
WO
WIPO (PCT)
Prior art keywords
twisted
conductor
wire
wires
power lines
Prior art date
Application number
PCT/JP2017/020711
Other languages
English (en)
French (fr)
Inventor
孝哉 小堀
裕之 大川
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to DE112017000062.9T priority Critical patent/DE112017000062T5/de
Priority to JP2017556253A priority patent/JP6819611B2/ja
Priority to US15/748,859 priority patent/US10538210B2/en
Priority to CN201780002694.4A priority patent/CN107851487B/zh
Publication of WO2017209299A1 publication Critical patent/WO2017209299A1/ja
Priority to US16/574,301 priority patent/US10661730B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/0207Wire harnesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up
    • H01B13/0207Details; Auxiliary devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/003Power cables including electrical control or communication wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up

Definitions

  • the present invention relates to a multicore cable for a vehicle.
  • This application claims priority based on Japanese Application No. 2016-111147 filed on Jun. 2, 2016, and incorporates all the descriptions described in the aforementioned Japanese application.
  • Patent Document 1 discloses a cable in which a cable for supplying electric power to an electric parking brake of a vehicle and a cable for connecting a wheel speed sensor to an ECU (Electric Control Unit) are integrated.
  • ECU Electronic Control Unit
  • a multi-core cable for a vehicle is provided.
  • Two power lines each including a first conductor and a first insulating layer covering the first conductor;
  • Two signal lines each including a second conductor thinner than the first conductor and a second insulating layer covering the second conductor;
  • Two electric wires each including a third conductor thinner than the first conductor and a third insulating layer covering the third conductor;
  • the two power lines are the same in size and material
  • the two signal lines have the same size and material, and are twisted together in pairs to form a twisted signal line.
  • the two electric wires have the same size and material, and are twisted together in pairs to form a twisted electric wire.
  • the two power lines, the twisted signal line, and the twisted electric wire are twisted together.
  • An object of the present disclosure is to provide a cable that has six or more wires and can be easily attached to a vehicle.
  • a cable that has six or more core wires and can be easily attached to a vehicle.
  • Multi-core cables for vehicles Two power lines each including a first conductor and a first insulating layer covering the first conductor; Two signal lines each including a second conductor thinner than the first conductor and a second insulating layer covering the second conductor; Two electric wires each including a third conductor thinner than the first conductor and a third insulating layer covering the third conductor; A jacket covering the two power lines, the two signal lines, and the two electric wires,
  • the two power lines are the same in size and material
  • the two signal lines have the same size and material, and are twisted together in pairs to form a twisted signal line.
  • the two electric wires have the same size and material, and are twisted together in pairs to form a twisted electric wire.
  • the two power lines, the twisted signal line, and the twisted electric wire are twisted together.
  • the multi-core cable for a vehicle having the above-described configuration two power lines, a twisted signal line, and a twisted electric wire can be routed at one time, and compared with the case where they are separately routed, the wiring man-hours are reduced. Few. Moreover, the space required for wiring is small compared with the case where two power lines, a twisted pair signal line, and a twisted pair of wires are wired separately.
  • the multi-core cable includes at least two power lines, one pair of twisted signal lines, and one pair of twisted electric wires.
  • the outer diameter of the power line may be not less than 75% and not more than 135% of the outer diameter of the twisted signal line.
  • the size of the two power lines and the twisted signal line are almost equal. Therefore, when these are twisted together, the shape of the cable including the jacket becomes a perfect circle. Because it is close, it has excellent water-stopping properties
  • the center of the two power lines, the center of the twisted signal line, and the center of the twisted electric wire are located at the vertices of a virtual quadrilateral,
  • the power lines may be provided at diagonal positions.
  • the shape in which the two power lines, the twisted signal line, and the twisted electric wire are twisted is stabilized, and the cross-sectional shape of the multi-core cable is easily made constant along the longitudinal direction. For this reason, when the multicore cable is bent, the force applied to the bending direction of the two power lines, the twisted signal line, and the twisted electric wire is balanced, the load applied to the power line is reduced, and the power line is not easily cut off.
  • the first conductor is composed of a plurality of conductor wires, and in a cross section orthogonal to the longitudinal direction of the power line, the sum S2 of the cross-sectional areas of the conductor wires is subtracted from the area S1 of the portion surrounded by the first insulating layer.
  • S3 / S1 is referred to as a clearance ratio.
  • the power line since the power line has a moderately large gap area, the power line has a pulling force of the moderately large first conductor and has excellent bending resistance. Yes.
  • the two power lines may be arranged with a gap between them, and the gap may be filled with fibers.
  • the bending resistance of the multicore cable can be improved.
  • a second conductor comprising a fourth conductor thinner than the first conductor and a fourth insulating layer covering the fourth conductor, the two wires having the same size and material being twisted together in pairs;
  • Two twisted wires A second conductor comprising a fifth conductor thinner than the first conductor and a fifth insulating layer covering the fifth conductor, the two wires having the same size and material being twisted together as a set;
  • Further including a triple twisted wire The two power lines, the paired twisted signal line, the paired twisted wire, the second paired twisted wire, and the third paired twisted wire may be integrally twisted and covered with the jacket.
  • the multi-core cable having the above-described configuration includes a second twisted wire and a third twisted wire in addition to the power line, the twisted signal wire, and the twisted wire. For this reason, these lines can be routed all at once, and the number of routing man-hours is smaller than when routing them separately. Moreover, the space required for wiring is small compared with the case where these lines are wired separately. Moreover, in the cross section orthogonal to the longitudinal direction of the multi-core cable, these lines are easily arranged in a balanced manner, and the outer shape of the cable including the jacket is likely to approach a circle. For this reason, it is hard to produce a clearance gap in the crimping
  • the multicore cable 1 is used, for example, to connect an electric control unit (ECU (Electric Control Unit)) mounted on a vehicle to an electric brake, an electric parking brake, a wheel speed sensor, and the like provided around the wheel. It is done.
  • the wheel is supported so as to be displaceable with respect to the vehicle body via a suspension device and a steering device.
  • the multi-core cable 1 of the present embodiment is used to connect an ECU fixed to a vehicle body and a component attached to a wheel supported to be displaceable on the vehicle body.
  • the multi-core cable 1 is required to be routed in a small space in the tire house in which the wheels are accommodated, is easy to bend so as not to interfere with the displacement of the wheels, and has high durability against repeated bending. Is required.
  • FIG. 1 is a cross-sectional view showing a multicore cable 1 according to a first embodiment of the present invention.
  • FIG. 1 shows a cross section orthogonal to the longitudinal direction of the multicore cable 1.
  • the multicore cable 1 has two power lines 10, two signal lines 21, two electric wires 31, and a jacket 40.
  • the outer diameter of the multicore cable 1 of the present embodiment can be 7 mm or more and 18 mm or less, preferably 7.5 mm or more and 13 mm or less.
  • Each of the two power lines 10 includes a first conductor 12 and a first insulating layer 13 covering the first conductor 12.
  • the two power lines 10 are the same in size and material.
  • the two power lines 10 can be used to connect an electric brake (including an electric parking brake) and the ECU.
  • the electric brake has a motor that drives a brake caliper.
  • one power line 10 can be used as a power supply line for supplying power to the motor, and the other power line 10 can be used as a ground line for the motor.
  • the first conductor 12 is configured by twisting a plurality of conductors.
  • the conductor is a wire made of copper or a copper alloy.
  • the conductor can be made of a material having predetermined conductivity and flexibility such as a copper wire or a copper alloy wire.
  • the cross-sectional area of the first conductor 12 can be 1.5 mm 2 or more and 3 mm 2 or less.
  • the first insulating layer 13 is made of a flame retardant polyolefin resin.
  • the first insulating layer 13 can be formed of, for example, a crosslinked polyethylene imparted with flame retardancy by blending a flame retardant.
  • Examples of the material constituting the first insulating layer 13 include flame-retardant polyolefin resins (EVA (ethylene vinyl acetate copolymer), EEA (ethylene ethyl acrylate copolymer), EMA (ethylene methyl acrylate copolymer), etc.) ), But may be formed of other materials such as a cross-linked fluororesin.
  • the outer diameter of the first insulating layer 13 can be 2 mm or greater and 4 mm or less.
  • Each of the two signal lines 21 includes a second conductor 22 that is thinner than the first conductor 12 and a second insulating layer 23 that covers the second conductor 22.
  • the two signal lines 21 to be twisted are the same in size and material.
  • the signal lines 21 are twisted in pairs and configured as a twisted signal line 20.
  • the twist pitch of the twisted signal wire 20 can be 10 times or more and 15 times or less of the twisted diameter of the twisted signal wire 20 (the outer diameter of the twisted signal wire 20).
  • the outer diameter of the twisted signal wire 20 can be set to be approximately the same as the outer diameter of the power line 10.
  • the outer diameter of the power line 10 is preferably 75% to 135% of the outer diameter of the twisted signal line 20. More preferably, the outer diameter of the power line 10 is not less than 90% and not more than 115% of the outer diameter of the twisted signal line 20.
  • the signal line 21 can be used to transmit a signal from the sensor or can be used to transmit a control signal from the ECU.
  • the two signal lines 21 can be used, for example, for ABS (Anti-locktiBrake System) wiring.
  • Each of the two signal lines 21 can be used, for example, as a line connecting a differential wheel speed sensor and a vehicle ECU.
  • the second conductor 22 may be configured by a single conductor as illustrated, or may be configured by twisting a plurality of conductors in the same manner as the power line 10.
  • the second conductor 22 may be made of the same material as that of the conductor constituting the first conductor 12, or a different material may be used.
  • the cross-sectional area of the second conductor 22 can be 0.13 mm 2 or more and 0.5 mm 2 or less.
  • the second insulating layer 23 may be made of the same material as the first insulating layer 13 or may be made of a different material.
  • the outer diameter of the second insulating layer 23 can be set to 1.0 mm or more and 2.2 mm or less.
  • Each of the two electric wires 31 includes a third conductor 32 that is thinner than the first conductor 12 and a third insulating layer 33 that covers the third conductor 32.
  • the two electric wires 31 are twisted together as a set and are configured as a paired electric wire 30.
  • the two electric wires 31 to be twisted are the same in size and material.
  • the electric wire 31 may be the same in size and material as the signal line 21.
  • the twisted pair wire 30 is preferably twisted in the same direction as the twisted pair signal wire 20.
  • the twisted wire 30 preferably has the same twist pitch as the twisted signal wire 20. As shown in FIG. 1, when these wires 10, 21, 31 are twisted so that the two power lines 10 are sandwiched between the signal line 21 and the electric wire 31, the force of twisting each of the wires 10, 21, 31 is obtained. Balance is good.
  • the outer diameter of the twisted pair wire 30 can be approximately the same as the outer diameter of the twisted signal wire 20.
  • the outer diameter of the twisted pair wire 30 can be made substantially the same as the outer diameter of the power line 10.
  • the outer diameter of the power line 10 is preferably 75% or more and 135% or less of the outer diameter of the twisted electric wire 30.
  • the outer diameter of the power line 10 is more preferably 90% to 115% of the outer diameter of the twisted pair wire 30.
  • the electric wire 31 can be used for transmitting a signal from the sensor, can be used for transmitting a control signal from the ECU, and can also be used as a power supply line for supplying electric power to the electronic device. .
  • the electric wire 31 can be used as, for example, a power supply line, a control line, or a sensor wire used in a damper control system that changes the hydraulic characteristics of the suspension. Or the electric wire 31 can be used for wiring of a vehicle-mounted network, for example.
  • the third conductor 32 may be composed of a single conductor as shown, or may be composed of a plurality of conductors twisted in the same manner as the power line 10.
  • the third conductor 32 may be made of the same material as the conductors constituting the first conductor 12 and the second conductor 22 or may be made of a different material.
  • the cross-sectional area of the third conductor 32 can be 0.13 mm 2 or more and 0.5 mm 2 or less.
  • the third insulating layer 33 can be made of the same material as that of the second insulating layer 23 or a different material.
  • the outer diameter of the third insulating layer 33 can be set to 1.0 mm or more and 2.2 mm or less.
  • the jacket 40 covers all the lines including the two power lines 10, the two signal lines 21, and the two electric wires 31. Two power lines 10, one pair of twisted signal lines 20, and one pair of twisted electric wires 30 are twisted together. The jacket 40 covers the two power lines 10, the single twisted signal line 20, and the single twisted electric wire 30 that are twisted together.
  • the outer jacket 40 includes an inner outer jacket 41 and an outer outer jacket 42 positioned outside the inner outer jacket 41.
  • the inner jacket 41 maintains the twisted shape of all the wires including the two power lines 10, the two signal wires 21, and the two electric wires 31.
  • the inner jacket 41 is formed by extrusion coating on the outer periphery of the two power lines 10, the two signal lines 21, and the two electric wires 31.
  • the inner jacket 41 may be made of the same material as the outer jacket 42 or may be made of a resin different from the outer jacket 42.
  • the inner jacket 41 is formed of, for example, a polyolefin resin such as polyethylene or ethylene vinyl acetate copolymer (EVA), a polyurethane elastomer, a polyester elastomer, or a composition formed by mixing at least two of these. Can do.
  • the outer jacket 42 or the inner jacket 41 may be a crosslinked resin.
  • the outer jacket 42 is provided to protect all lines including the two power lines 10, the two signal lines 21, and the two electric wires 31 from the outside.
  • the outer jacket 42 is formed by extrusion coating on the outer periphery of the inner jacket 41.
  • the outer jacket 42 can be composed of a crosslinked / non-crosslinked thermoplastic polyurethane (TPU) having excellent wear resistance.
  • TPU thermoplastic polyurethane
  • the outer jacket 42 is preferably made of a crosslinked thermoplastic polyurethane.
  • the outer diameter of the jacket 40 can be 7.5 mm or more and 11 mm or less.
  • twist direction, twist pitch The two power lines 10, the twisted signal line 20, and the twisted electric wire 30 are integrally twisted together.
  • the total twist diameter of these wires twisted together can be 5.5 mm or more and 9 mm or less.
  • the overall twist pitch of the two power lines 10, the twisted pair signal lines 20, and the twisted pair wires 30 is 12 times or more and 24 times the total twist diameter of the two power lines 10, the twisted signal lines 20, and the twisted pair wires 30. It can be as follows. When the twist pitch is less than 12 times the twist diameter, the multi-core cable 1 is easily disconnected when twisted. Moreover, when the twist pitch is larger than 24 times the twist diameter, the power line 10 is easily cut when the multi-core cable 1 is bent.
  • the ratio with respect to the whole twist diameter of the whole twist pitch of the two power lines 10, the pair twist signal line 20, and the pair twist electric wire 30 is with respect to the twist diameter of the pair twist signal wire 20 of the twist pitch of the pair twist signal wire 20. It is preferable that the ratio is larger.
  • the overall twist direction is preferably opposite to the twist direction of the twisted signal wire 20 and the twisted electric wire 30.
  • the multicore cable 1 may have an interposition 50.
  • the interposition 50 is provided inside the outer jacket 40.
  • the interposition 50 can be composed of fibers such as suf yarn and nylon yarn.
  • the interposition 50 may be composed of tensile strength fibers.
  • the interposition 50 is provided in a gap formed by the two power lines 10.
  • the interposition 50 is between the power line 10 and the signal line 21, between the power line 10 and the electric wire 31, between the two signal lines 21, and between the two electric wires 31. May be provided.
  • the interposition 50 may be constituted by a suf yarn having a buffering action or a nylon yarn.
  • the multi-core cable 1 may have a holding winding 51.
  • the restraining winding 51 covers the two power lines 10, one paired twisted signal line 20, and one paired twisted electric wire 30.
  • the restraining winding 51 stably maintains the twisted shape of these wires.
  • the holding winding 51 is provided inside the outer jacket 40.
  • the hold-down roll 51 a paper tape, a nonwoven fabric, or a resin tape such as polyester can be used as the hold-down roll 51.
  • the restraining winding 51 may be spirally wound around the two power lines 10, one pair of twisted signal lines 20, and one pair of twisted electric wires 30, or may be vertically attached.
  • the winding direction may be Z winding or S winding.
  • the winding direction may be wound in the same direction as the twisted direction of the twisted signal wire 20 or the twisted electric wire 30, or may be wound in the opposite direction.
  • the winding direction of the restraining winding 51 is opposite to the twisting direction of the twisted signal wire 20 and the twisting electric wire 30, the surface of the restraining winding 51 is less likely to be uneven, and the outer diameter shape of the multicore cable 1 is likely to be stable. Therefore, it is preferable.
  • suppressing volume 51 also has the function as the outer cover 40 which has a buffering action and raises flexibility, and has the protection function from the outside, when the holding volume 51 is provided, the interposition 50 or The layer of the jacket 40 can be made thin. By providing the restraining winding 51 in this way, it is possible to provide the multi-core cable 1 that is easier to bend and has excellent wear resistance.
  • the resin jacket 40 is provided by extrusion coating, the resin enters between the two power lines 10 and it is difficult to separate the two power lines 10 at the end of the multicore cable 1. There is. Therefore, by providing the holding winding 51, it is possible to prevent the resin from entering between the two power lines 10 and to easily take out the two power lines 10 at the terminal.
  • the multicore cable 1 may have a shield layer 52 that suppresses noise radiated to the outside.
  • the shield layer 52 can be configured by winding a metal tape around the power line 10, the twisted signal line 20, and the twisted electric wire 30.
  • the shield layer 52 can also be configured by winding a large number of fine metal wires spirally around these wires.
  • the shield layer 52 can also be configured by braiding metal fine wires.
  • the shield layer 52 can be suppressed and provided outside the winding 51 and inside the jacket 40.
  • the two power lines 10, the twisted signal line 20, and the twisted electric wire 30 can be routed at a time, compared with the case where they are routed separately. And there are few wiring man-hours.
  • the two power lines 10, the twisted signal line 20, and the twisted electric wire 30 are combined as a single multi-core cable 1, the two power lines 10, the twisted signal line 20, The space required for the wiring is small compared to the case where the paired electric wires 30 are wired separately.
  • the multi-core cable 1 includes at least two power lines 10, one pair of twisted signal lines 20, and one pair of twisted electric wires 30. For this reason, in the cross section orthogonal to the longitudinal direction of the multicore cable 1, these lines are easily arranged in a balanced manner, and the outer shape of the cable including the jacket 40 is likely to approach a circle. For this reason, it is hard to produce a clearance gap in the crimping
  • the outer diameter of the power line 10 is preferably 75% or more and 135% or less of the outer diameter of the twisted signal line 20. More preferably, the outer diameter of the power line 10 is not less than 90% and not more than 115% of the outer diameter of the twisted signal line 20.
  • the outer diameter of the power line 10 is the outer diameter of the first insulating layer 13.
  • the outer diameter of the twisted signal wire 20 is the diameter of a virtual circumscribed circle that circumscribes the pair of signal wires 21, and is twice the diameter of the signal wire 21.
  • the sizes of the two power lines 10 and the twisted signal line 20 are substantially the same, so that the twisted shape can be easily maintained, and the diameter of the multi-core cable 1 can be maintained. Are easily aligned along the longitudinal direction.
  • the cross-sectional shape after twisting is a circle. Close to what is inscribed.
  • the cross-sectional shape of the jacket 40 a shape close to a perfect circle, and it is hard to produce a clearance gap between the jacket 40 and the water-stop member, and water-stopping is further increased. Further, it is more preferable that the sizes of the twisted pair signal line 20 and the twisted pair electric wire 30 are substantially the same.
  • the center C1 of the two power lines 10, the center C2 of the twisted signal line 20, and the center C3 of the twisted electric wire 30 are virtual quadrangles.
  • the two power lines 10 are provided at diagonal positions of the square.
  • the shape obtained by twisting the two power lines 10, the twisted signal line 20, and the twisted electric wire 30 is stable, and the cross-sectional shape of the multicore cable 1 is along the longitudinal direction. Easy to keep constant. Further, when the multi-core cable 1 is bent a plurality of times, the load is concentrated on the thickest line and the thickest line tends to be cut earlier than other lines.
  • the power line 10 since the power line 10 is thicker than the signal line 21 and the electric wire 31, the power line 10 tends to be cut before the signal line 21 and the electric wire 31.
  • the force applied in the bending direction of the power line 10, the twisted signal line 20, and the twisted cable 30 is balanced, and the load on the thickest power line 10 is reduced. 10 becomes difficult to cut.
  • the virtual quadrangle is preferably a square. The twisted shape is more stable and the load is less likely to concentrate on the power line 10 when the multi-core cable 1 is bent.
  • the sum S2 of the sectional area of the conductor strands is subtracted from the area S1 of the portion surrounded by the first insulating layer 13 in the section orthogonal to the longitudinal direction of the power line 10.
  • the gap area S3 is less than 5%, a large bending stress is likely to be locally applied to the first conductor 12 when the multicore cable 1 is bent, and the bending resistance may be reduced. If the gap area S3 is larger than 20%, the power line 10 may move freely during the end processing of the multicore cable 1, and the processing may be difficult.
  • the gap area S3 is obtained by binarizing the density of the photograph of the cross-section of the multi-core cable 1 between the conductor portion and the gap portion, specifying the conductor wire portion of the first conductor 12 from the conductor portion, and the first insulating layer.
  • 13 can be obtained by image processing in which the area of the conductor wire portion is subtracted from the area of the portion surrounded by 13. For example, the image is converted into two gradations using software such as “Paint shop pro” (product of Corel). The threshold value is adjusted by visual confirmation so that the conductor boundary is correctly distinguished, and binarized by a histogram.
  • the conductor strand portion of the first conductor 12 is visually identified, and the area S1 of the portion surrounded by the first insulating layer 13, the sum S2 of the cross-sectional areas of the conductor strands of the first conductor 12, and the gap area S3 are determined. Can be sought.
  • FIG. 2 is a cross-sectional view of the multi-core cable 101 for a vehicle according to the second embodiment of the present invention.
  • the multi-core cable 1 having the two power lines 10, the two signal lines 21, and the two electric wires 31 has been described in the first embodiment described above, the present invention is not limited to this.
  • the multicore cable 101 may have four electric wires 61 and 71 in addition to the two power lines 10, the two signal lines 21, and the two electric wires 31. .
  • the multi-core cable 101 includes a pair of twisted wires 30 including two power lines 10, a pair of twisted signal wires 20 including two signal wires 21, and two wires 31. And one second pair twisted electric wire 60 composed of two electric wires 61 and one third pair twisted electric wire 70 composed of two electric wires 71. These two power lines 10, one pair twisted signal line 20, one pair twisted electric wire 30, one second pair twisted electric wire 60, one third pair twisted electric wire 70, Are twisted together and covered with a jacket 40.
  • the second pair twisted electric wire 60 is configured by twisting two electric wires 61 in pairs.
  • Each of the two electric wires 61 includes a fourth conductor 62 that is thinner than the first conductor 12 and a fourth insulating layer 63 that covers the fourth conductor 62. These two electric wires 61 are the same in size and material.
  • the third pair of twisted electric wires 70 is configured by twisting two electric wires 71 in a pair.
  • Each of these two electric wires 71 includes a fifth conductor 72 that is thinner than the first conductor 12 and a fifth insulating layer 73 that covers the fifth conductor 72.
  • These two electric wires 71 are the same in size and material.
  • the second twisted pair wire 60 and the third twisted pair wire 70 can be made of the same material and size as the twisted pair signal wire 20.
  • the power line 10, the twisted signal line 20, and the twisted electric wire 30 are the same as described in the first embodiment.
  • the second pair twisted electric wire 60 and the third pair twisted electric wire 70 can be used, for example, as a wire connected to various sensors or devices to transmit electric power or a signal or an in-vehicle network wiring. As shown in FIG. 2, it is not necessary to provide a restraining roll or a shield layer. When the restraining winding or the shield layer is provided, the power line 10, the twisted signal line 20, the twisted wire 30, the second twisted wire 60, and the third twisted wire, similarly to the multicore cable 1 shown in FIG. 70 is integrally twisted and a winding or shield layer is provided, and a jacket 40 can be placed thereon.
  • the two power lines 10 are arranged with a gap in the cross section orthogonal to the longitudinal direction of the multicore cable 101, and the gap is filled with the interposition 50. Since the thick power lines 10 are not in direct contact with each other, the power lines 10 are not easily cut even when bent multiple times.
  • the power line 10 in the cross section perpendicular to the length direction of the multi-core cable 101, the power line 10, the twisted signal line 20, the twisted electric wire 30, the second twisted electric wire 60, and the third twisted pair
  • Each center of the electric wire 70 is preferably arranged on the circumference of a single circle.
  • the power lines 10 are arranged at point-symmetrical positions in that the lines 20, 30, 60, 70 are arranged in a balanced manner. If the power lines 10 are arranged next to each other, when the power lines 10 are connected to the motor, the other lines 20, 30, 60, and 70 do not cross each other and are easy to connect.
  • the conductor of the power line is a conductor in which 72 wires of 0.08 mm in diameter are twisted together and twisted together, and the cross-sectional area is 2.5 mm 2 .
  • This first conductor is covered with a crosslinked flame-retardant polyethylene (first insulating layer) so as to have an outer diameter of 3.0 mm.
  • the conductor (second conductor) of the counter-twisted signal line is formed by twisting 16 copper alloy wires having a diameter of 0.08 mm and twisting three twisted wires, and has a cross-sectional area of 0.25 mm 2 .
  • the second conductor is coated with a crosslinked flame-retardant polyethylene (second insulating layer) to have an outer diameter of 1.4 mm.
  • the twisted signal line is obtained by twisting two signal lines. This twisted pair signal wire is used for ABS.
  • the third conductor and the fourth conductor have the same configuration as the second conductor.
  • the electric wire including the third conductor and the electric wire including the fourth conductor have the same configuration as the signal wire, and the twisted pair wire and the second twisted wire in which they are twisted have the same configuration as the twisted signal wire. These twisted pair wires and second twisted wires are used for the in-vehicle network.
  • the fifth conductor is formed by twisting together seven 15 alloyed copper alloy wires having a diameter of 0.08 mm, and has a cross-sectional area of 0.5 mm 2 .
  • This fifth conductor is covered with a cross-linked flame retardant polyethylene (fifth insulating layer), and two wires having an outer diameter of 1.7 mm are twisted to form a third pair twisted wire.
  • This third twisted pair wire is used for a damper control system.
  • a multi-core cable for a vehicle has two power lines, a twisted signal wire, a twisted wire, a second twisted wire, and a third twisted wire wrapped with thin paper (resisting winding made of polyester).
  • the inner casing (outer diameter 10.8 mm) made of crosslinked polyethylene is provided, and the outer side is covered with the outer casing (outer diameter 12.0 mm) made of crosslinked flame-retardant polyurethane.
  • the multicore cable according to the embodiment is used to connect the ECU to an electric parking brake, an ABS wheel speed sensor, an in-vehicle network device, and a damper control system device.
  • the multicore cable according to the embodiment requires less space for wiring. Moreover, since the multicore cable which concerns on an Example has each line put together, wiring work is easy. In particular, the cable group according to the comparative example needs to protect the power line, the twisted signal line, and the twisted electric wire, respectively. For this reason, a jacket is required to protect each of the power line, the twisted signal line, and the twisted electric wire. Since each wire is covered with a jacket, the total diameter of the group of cables according to the comparative example is considerably larger than the diameter of the multicore cable according to the embodiment.
  • the bending resistance of the multicore cable was evaluated according to the repeated bending test specified in ISO 14572: 2011 (E) 5.9.
  • the multicore cable was repeatedly subjected to bending so as to be ⁇ 90 ° to + 90 °.
  • the amount of decrease in the resistance value from the initial resistance value of the power line after bending 100,000 times was 5% or more, it was determined that the power line was disconnected.
  • the case where the amount of decrease in the resistance value of the power line from the initial resistance value was less than 5% was regarded as acceptable.
  • the multicore cable which concerns on the said Example was less than 5% of reduction
  • U-shaped bending test Car standard JASO C467-97 established by the Japan Automobile Technical Association 7.16 Evaluation was performed according to the sensor harness bending test. In this U-shaped bending test, bending was performed repeatedly on the multicore cable so as to change from straight to U-shaped. After bending 300,000 times at -30 °, it was then bent 700,000 times at room temperature. After the test, the case where there was no abnormality in appearance such as cracks and cracks and the amount of decrease in the resistance value from the initial resistance value of the power line was less than 5% was regarded as acceptable.
  • the multi-core cable according to the above example has no appearance abnormality after bending 300,000 times at ⁇ 30 ° and then 700,000 times at room temperature, and the decrease in the resistance value of the power line is less than 5%. Yes, it passed.
  • the 6-core multi-core cable of the first embodiment including the same power line, twisted signal line, and twisted wire as the power line, twisted signal wire, and twisted wire produced in the above example, 1.
  • Conductor gap ratio S3 / S1 2.
  • the twist pitch ratios of the power line, the twisted signal line and the twisted electric wire with respect to the entire twisted outer diameter were varied, 100,000 times of repeated bending tests and 1,000,000 times of repeated bending Test, U-bend test and appearance shape were evaluated.
  • the results are shown in Table 2.
  • the center of the two power lines, the center of the twisted signal line, and the center of the twisted cable are located at the vertices of a virtual rectangle, and the two power lines are located at diagonal positions. Is provided.
  • Example 2 in which the repeated bending test of 1,000,000 times fails is considered to be caused by the fact that the gap ratio S3 / S1 of the conductor is too small.
  • Example 12 in which the 1,000,000 times repeated bending test is rejected is considered to be caused by the fact that the power line is too thick for the twisted signal wire or the twisted wire.
  • Example 14 in which the repeated bending test of 1 million times was rejected, it is considered that the twist pitch of the power line, the twisted signal line, and the twisted electric wire with respect to the entire twisted outer diameter is too large.
  • Example 7 in which the roundness is not constant in the length direction is considered to be caused by the power line being too thin with respect to the twisted pair signal wire or the twisted pair wire.
  • Example 12 where the roundness is not constant in the length direction, it is considered that the power line is too thick for the twisted signal line or the twisted electric wire.
  • Example 13 where the roundness is not constant in the length direction, it is considered that the twist direction of the twisted signal wire and the twisted wire is the same as the overall twist direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Conductors (AREA)
  • Communication Cables (AREA)

Abstract

車両用の多芯ケーブルは、2本の電力線と、2本の信号線と、2本の電線と、外被と、を備える。2本の電力線は、大きさおよび材料が同じである。2本の信号線は、大きさおよび材料が同じであり、2本一組で撚り合わされて対撚信号線として構成されている。2本の電線は、大きさおよび材料が同じであり、2本一組で撚り合わされて対撚電線として構成されている。2本の電力線、対撚信号線および対撚電線が一体に撚り合わされている。

Description

車両用の多芯ケーブル
 本発明は、車両用の多芯ケーブルに関する。
 本出願は、2016年6月2日出願の日本出願2016-111147号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1は、車両の電動パーキングブレーキに電力を供給するケーブルと、車輪速センサをECU(Electric Control Unit)に接続するケーブルを一体化したケーブルを開示している。
日本国特開2014-220043号公報
 本開示の一態様に係る車両用の多芯ケーブルは、
 第一導体と、前記第一導体を覆う第一絶縁層と、をそれぞれ含む2本の電力線と、
 前記第一導体より細い第二導体と、前記第二導体を覆う第二絶縁層と、をそれぞれ含む、2本の信号線と、
 前記第一導体より細い第三導体と、前記第三導体を覆う第三絶縁層と、をそれぞれ含む、2本の電線と、
 2本の前記電力線、2本の前記信号線および2本の前記電線を覆う外被と、を備え、
 2本の前記電力線は大きさおよび材料が同じであり、
 2本の前記信号線は、大きさおよび材料が同じであり、2本一組で撚り合わされて対撚信号線として構成されており、
 2本の前記電線は、大きさおよび材料が同じであり、2本一組で撚り合わされて対撚電線として構成されており、
 2本の前記電力線、前記対撚信号線および前記対撚電線が一体に撚り合わされている。
本発明の第一実施形態に係る車両用の多芯ケーブルを示す断面図である。 本発明の第二実施形態に係る車両用の多芯ケーブルを示す断面図である。
[本開示が解決しようとする課題]
 本開示は、6芯以上の線を有し車両への取付が容易なケーブルを提供することを目的とする。
[本開示の効果]
 本開示によれば、6芯以上の線を有し車両への取付が容易なケーブルが提供される。
<本発明の実施形態の概要>
 最初に本発明の実施形態の概要を説明する。
(1)車両用の多芯ケーブルは、
 第一導体と、前記第一導体を覆う第一絶縁層と、をそれぞれ含む2本の電力線と、
 前記第一導体より細い第二導体と、前記第二導体を覆う第二絶縁層と、をそれぞれ含む、2本の信号線と、
 前記第一導体より細い第三導体と、前記第三導体を覆う第三絶縁層と、をそれぞれ含む、2本の電線と、
 2本の前記電力線、2本の前記信号線および2本の前記電線を覆う外被と、を備え、
 2本の前記電力線は大きさおよび材料が同じであり、
 2本の前記信号線は、大きさおよび材料が同じであり、2本一組で撚り合わされて対撚信号線として構成されており、
 2本の前記電線は、大きさおよび材料が同じであり、2本一組で撚り合わされて対撚電線として構成されており、
 2本の前記電力線、前記対撚信号線および前記対撚電線が一体に撚り合わされている。
 上記構成の車両用の多芯ケーブルによれば、2本の電力線と、対撚信号線と、対撚電線とを一度に配索でき、別々に配索する場合と比べて、配索工数が少ない。また、2本の電力線と、対撚信号線と、対撚電線とを別々に配索する場合に比べて、配索に要するスペースが小さい。
 また、多芯ケーブルは、少なくとも、2本の電力線と、1本の対撚信号線と、1本の対撚電線と、を含んでいる。このため、多芯ケーブルの長手方向に直交する断面において、これらの線がバランスよく配置されやすく、外被を含むケーブル外形が円形に近づきやすい。このため、外被と止水部材との圧着部で隙間が生じにくく、止水性に優れている。
 これらの理由により、6芯以上の線を有し車両への取付が容易なケーブルが提供される。
(2)また、上記(1)の多芯ケーブルにおいて、
 前記電力線の外径は、前記対撚信号線の外径の75%以上135%以下であってもよい。
 上記構成の多芯ケーブルによれば、2本の電力線と、対撚り信号線との大きさがほぼ同等であるため、これらを撚り合わせた場合に、外被を含むケーブル形状が真円形状に近くなるため、止水性に優れている。
(3)また、上記(1)または(2)の多芯ケーブルにおいて、
 前記多芯ケーブルの長手方向に直交する断面において、2本の前記電力線の中心と前記対撚信号線の中心と前記対撚電線の中心は仮想的な四角形の頂点に位置しており、2本の前記電力線は対角の位置に設けられていてもよい。
 上記構成の多芯ケーブルによれば、2本の電力線と対撚信号線と対撚電線とを撚り合わせた形状が安定し、多芯ケーブルの断面形状を長手方向に沿って一定にしやすい。このため、多芯ケーブルを曲げたときに、2本の電力線と対撚信号線と対撚電線の曲げ方向にかかる力がバランスされて、電力線にかかる負荷が軽減され、電力線が切れにくくなる。
(4)また、上記(1)~(3)のいずれかの多芯ケーブルにおいて、
 前記第一導体が複数本の導体素線からなり、前記電力線の長手方向に直交する断面において、前記第一絶縁層で囲まれる部分の面積S1から前記導体素線の断面積の総和S2を減じた隙間面積S3(=S1-S2)が、前記外被で囲まれる部分の面積S1の5%以上20%以下であってもよい。以下、S3/S1を隙間率という。
 上記構成の多芯ケーブルによれば、電力線は、適度な大きさの隙間面積を有しているため、適度な大きさの第一導体の引き抜き力を有し、かつ、耐屈曲性に優れている。
(5)また、上記(1)~(4)のいずれかの多芯ケーブルにおいて、
 2本の前記電力線が隙間を空けて配置され、その隙間が繊維で埋められていてもよい。
 上記構成の多芯ケーブルによれば、多芯ケーブルの耐屈曲性を高められる。
(6)また、上記(1)~(5)のいずれかの多芯ケーブルにおいて、
 前記第一導体より細い第四導体と、前記第四導体を覆う第四絶縁層と、をそれぞれ含み、大きさおよび材料が同じである2本の電線が2本一組で撚り合わされてなる第二対撚電線と、
 前記第一導体より細い第五導体と、前記第五導体を覆う第五絶縁層と、をそれぞれ含み、大きさおよび材料が同じである2本の電線が2本一組で撚り合わされてなる第三対撚電線とをさらに含み、
 2本の前記電力線、前記対撚信号線、前記対撚電線、前記第二対撚電線および前記第三対撚電線が一体に撚り合わされて前記外被で覆われていてもよい。
 上記構成の多芯ケーブルは、電力線、対撚信号線、対撚電線に加えて、第二対撚電線と第三対撚電線を有している。このため、これらの線を一度に配索でき、別々に配索する場合と比べて、配索工数が少ない。また、これらの線を別々に配索する場合に比べて、配索に要するスペースが小さい。
 また、多芯ケーブルの長手方向に直交する断面において、これらの線がバランスよく配置されやすく、外被を含むケーブル外形が円形に近づきやすい。このため、外被と止水部材との圧着部で隙間が生じにくく、止水性に優れている。
<本発明の実施形態の詳細>
 以下、本発明に係る多芯ケーブルの実施形態の一例について、図面を参照して詳細に説明する。
 なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
<第1の実施形態>
 多芯ケーブル1は、例えば、車両に搭載された電気制御部(ECU(Electric Control Unit))と、車輪の周囲に設けられた電動ブレーキや電動パーキングブレーキや車輪速センサなどを接続するために用いられる。車輪は、懸架装置や操舵装置を介して、車体に対して変位可能に支持されている。本実施形態の多芯ケーブル1は、車体に固定されたECUと、車体に変位可能に支持された車輪に取り付けられる部品とを接続するために用いられる。
 多芯ケーブル1には、車輪が収容されるタイヤハウスの中の小さい空間に配索することが求められ、車輪の変位を妨げないように曲げやすいことや、繰り返し作用する曲げに対する高い耐久性などが求められる。
 図1は、本発明の第1実施形態に係る多芯ケーブル1を示す断面図である。図1は、多芯ケーブル1の長手方向に直交する断面を示している。図1に示すように、多芯ケーブル1は、2本の電力線10と、2本の信号線21と、2本の電線31と、外被40とを有している。本実施形態の多芯ケーブル1の外径は、7mm以上18mm以下、好ましくは、7.5mm以上13mm以下とすることができる。
(電力線)
 2本の電力線10はそれぞれ、第一導体12と、第一導体12を覆う第一絶縁層13と、をそれぞれ含んでいる。2本の電力線10は互いに大きさおよび材料が同じである。
 2本の電力線10は、電動ブレーキ(電動パーキングブレーキを含む)とECUとを接続するために用いることができる。電動ブレーキは、ブレーキキャリパーを駆動するモータを有している。例えば、一方の電力線10はこのモータへ電力を供給する給電線として用い、他方の電力線10は該モータのアース線として用いることができる。
 第一導体12は、複数本の導体が撚り合わされて構成されている。導体は、銅または銅合金から構成された線である。導体は、銅線や銅合金線のような所定の導電性と柔軟性を有する材料で構成することができる。第一導体12の断面積は、1.5mm以上3mm以下とすることができる。
 第一絶縁層13は、難燃性のポリオレフィン系樹脂で形成されている。第一絶縁層13は、例えば、難燃剤が配合されることで難燃性が付与された架橋ポリエチレンで形成することができる。第一絶縁層13を構成する材料としては、難燃性のポリオレフィン系樹脂(EVA(エチレンビニルアセテート共重合体)、EEA(エチレンエチルアクリレート共重合体)、EMA(エチレンメチルアクリレート共重合体)など)に限られず、架橋フッ素系樹脂等の他の材料で形成しても良い。第一絶縁層13の外径は、2mm以上4mm以下とすることができる。
(信号線)
 2本の信号線21はそれぞれ、第一導体12より細い第二導体22と、第二導体22を覆う第二絶縁層23と、を含んでいる。撚り合わされる2本の信号線21は、互いに大きさおよび材料が同じである。信号線21は2本一組で撚り合わされて対撚信号線20として構成されている。対撚信号線20の撚りピッチは、対撚信号線20の撚り径(対撚信号線20の外径)の10倍以上15倍以下とすることができる。
 対撚信号線20の外径は、電力線10の外径とほぼ同じ大きさとすることができる。電力線10の外径は、対撚信号線20の外径の75%以上135%以下であることが好ましい。電力線10の外径は、対撚信号線20の外径の90%以上115%以下であることがさらに好ましい。
 信号線21は、センサからの信号を伝送するために用いることもできるし、ECUからの制御信号を伝送するために用いることもできる。2本の信号線21は、例えばABS(Anti-lock Brake System)の配線に用いることができる。2本の信号線21はそれぞれ、例えば、差動式の車輪速センサと車両のECUとを接続する線として用いることができる。
 第二導体22は、図示したように1本の導体から構成してもよいし、電力線10と同様に複数本の導体を撚り合わせて構成してもよい。第二導体22は、第一導体12を構成する導体と同じ材料で構成してもよいし、異なる材料を用いてもよい。第二導体22の断面積は、0.13mm以上0.5mm以下とすることができる。
 第二絶縁層23は、第一絶縁層13と同じ材料を用いることができるし、異なる材料を用いてもよい。第二絶縁層23の外径は、1.0mm以上2.2mm以下とすることができる。
(電線)
 2本の電線31はそれぞれ、第一導体12より細い第三導体32と、第三導体32を覆う第三絶縁層33と、をそれぞれ含んでいる。2本の電線31は、2本一組で撚り合わされて対撚電線30として構成されている。撚り合わされる2本の電線31は、大きさおよび材料が同じである。電線31は、大きさおよび材料が信号線21と同じであってもよい。対撚電線30は、対撚信号線20と同じ方向に撚られていることが好ましい。対撚電線30は、対撚信号線20と撚りピッチが等しいことが好ましい。なお、図1に示すように、信号線21と電線31で2本の電力線10を挟むように、これらの線10,21,31を撚り合わせると、各線10,21,31が撚られる力のバランスがよい。
 対撚電線30の外径は、対撚信号線20の外径とほぼ同じ大きさとすることができる。対撚電線30の外径は、電力線10の外径とほぼ同じ大きさとすることができる。電力線10の外径は、対撚電線30の外径の75%以上135%以下であることが好ましい。電力線10の外径は、対撚電線30の外径の90%以上115%以下であることがさらに好ましい。
 電線31は、センサからの信号を伝送するために用いることもできるし、ECUからの制御信号を伝送するために用いることもできるし、電子機器へ電力を供給する給電線としても用いることができる。電線31は、例えば、サスペンションの油圧特性を変更するダンパー制御システムに用いる給電線や制御線、センサワイヤとして用いることができる。あるいは、電線31は、例えば、車載ネットワークの配線に用いることができる。
 第三導体32は、図示したように1本の導体から構成してもよいし、電力線10と同様に複数本の導体を撚り合わせて構成してもよい。第三導体32は、第一導体12や第二導体22を構成する導体と同じ材料で構成してもよいし、異なる材料を用いてもよい。第三導体32の断面積は、0.13mm以上0.5mm以下とすることができる。
 第三絶縁層33は、第二絶縁層23と同じ材料を用いることができるし、異なる材料を用いてもよい。第三絶縁層33の外径は、1.0mm以上2.2mm以下とすることができる。
(外被)
 外被40は、2本の電力線10と、2本の信号線21と、2本の電線31と、を含む全ての線を覆っている。2本の電力線10、1本の対撚信号線20および1本の対撚電線30が一体に撚り合わされている。外被40は、一体に撚り合わされた状態の2本の電力線10、1本の対撚信号線20および1本の対撚電線30を覆っている。
 外被40は、内側外被41と、内側外被41よりも外側に位置する外側外被42を有している。
 内側外被41は、2本の電力線10と、2本の信号線21と、2本の電線31と、を含む全ての線の撚られた形状を維持する。内側外被41は、2本の電力線10と、2本の信号線21と、2本の電線31の外周に押出被覆されて形成される。内側外被41は、外側外被42と同じ材料で構成してもよいし、外側外被42と異なる樹脂で構成してもよい。内側外被41は、例えば、ポリエチレンやエチレン酢酸ビニル共重合体(EVA)等のポリオレフィン系樹脂、ポリウレタンエラストマー、ポリエステルエラストマー、またはこれらの少なくとも2種を混合して形成される組成物で形成することができる。外側外被42または内側外被41は、架橋された樹脂であってもよい。
 外側外被42は、2本の電力線10と、2本の信号線21と、2本の電線31と、を含む全ての線を外部から保護するために設けられる。外側外被42は、内側外被41の外周に押出被覆されて形成される。外側外被42は、耐摩耗性に優れた架橋/非架橋熱可塑性ポリウレタン(TPU)で構成することができる。耐熱性に優れることから、外側外被42は架橋熱可塑性ポリウレタンで構成することが好ましい。
 外被40の外径は、7.5mm以上11mm以下とすることができる。
(撚り方向、撚りピッチ)
 2本の電力線10、対撚信号線20、対撚電線30は、一体に撚り合わされている。一体に撚り合わされたこれらの線の全体の撚り径は、5.5mm以上9mm以下とすることができる。
 2本の電力線10、対撚信号線20、対撚電線30の全体の撚りピッチは、2本の電力線10、対撚信号線20、対撚電線30の全体の撚り径の12倍以上24倍以下とすることができる。撚りピッチが撚り径の12倍未満では、多芯ケーブル1を捻った時に断線し易い。また、撚りピッチが撚り径の24倍より大きいと、多芯ケーブル1を屈曲させた時に、電力線10が切れ易い。
 なお、2本の電力線10、対撚信号線20、対撚電線30の全体の撚りピッチの全体の撚り径に対する比率は、対撚信号線20の撚りピッチの対撚信号線20の撚り径に対する比率より大きいことが好ましい。全体の撚り方向は、対撚信号線20および対撚電線30の撚り方向と逆方向であることが好ましい。
(介在)
 多芯ケーブル1は、介在50を有していてもよい。介在50は、外被40の内側に設けられている。介在50は、スフ糸やナイロン糸などの繊維で構成することができる。介在50は、抗張力繊維で構成してもよい。
 介在50は、2本の電力線10によって形成される隙間に設けられる。介在50は、2本の電力線10の間の隙間の他に、電力線10と信号線21の間、電力線10と電線31の間、2本の信号線21の間、2本の電線31の間に設けてもよい。
 例えば、多芯ケーブル1の断面形状を真円に近い形状にしやすくするために、外被40の内側に介在50を設けることが好ましい。あるいは、多芯ケーブル1の屈曲性を高めるために、緩衝作用を有するスフ糸やナイロン糸で介在50を構成してもよい。
(抑え巻)
 多芯ケーブル1は、抑え巻51を有していてもよい。抑え巻51は、2本の電力線10、1本の対撚信号線20および1本の対撚電線30を覆っている。抑え巻51は、これらの線の撚り合わされた形状を安定的に維持する。抑え巻51は、外被40の内側に設けられている。
 抑え巻51として、例えば、紙テープや不織布、ポリエステルなどの樹脂製のテープを用いることができる。また、抑え巻51は、2本の電力線10、1本の対撚信号線20および1本の対撚電線30に螺旋状に巻き付けてもよいし、縦添えであっても良い。また、巻き方向は、Z巻きでもS巻きでも良い。また巻き方向は、対撚信号線20や対撚電線30の対撚り方向と同じ方向に巻いてもよいし、反対方向に巻いてもよい。抑え巻51の巻き方向と対撚信号線20および対撚電線30の対撚り方向とを反対にすると、抑え巻51の表面に凹凸が生じにくく、多芯ケーブル1の外径形状が安定し易いので好ましい。
 なお、抑え巻51が、緩衝作用を有し屈曲性を高める介在50や、外部からの保護機能を奏する外被40としての機能も有することから、抑え巻51を設けた場合には介在50や外被40の層を薄く構成できる。このように抑え巻51を設けることにより、さらに曲げやすくかつ耐摩耗性に優れた多芯ケーブル1を提供できる。
 また、押出被覆で樹脂製の外被40を設ける場合には、該樹脂が2本の電力線10の間に入り込んでしまい、多芯ケーブル1の端末において2本の電力線10を分離しにくくなる場合がある。そこで、抑え巻51を設けることにより、該樹脂の2本の電力線10の間への侵入を防止し、端末で2本の電力線10を取り出しやすくすることができる。
(シールド層)
 多芯ケーブル1は、外部に放射されるノイズを抑制するシールド層52を有していてもよい。シールド層52は、金属テープを電力線10、対撚信号線20、対撚電線30に巻き付けることにより構成できる。シールド層52は、多数本の金属細線をこれらの線に螺旋状に巻き付けることによっても構成できる。あるいは、シールド層52は、金属細線を編組することによっても構成できる。シールド層52を抑え巻51の外かつ外被40の内側に設けることができる。
(効果)
 本実施形態に係る車両用の多芯ケーブル1によれば、2本の電力線10と、対撚信号線20と、対撚電線30とを一度に配索でき、別々に配索する場合と比べて、配索工数が少ない。また、2本の電力線10と、対撚信号線20と、対撚電線30とが単一の多芯ケーブル1としてまとめられているので、2本の電力線10と、対撚信号線20と、対撚電線30とを別々に配索する場合に比べて、配索に要するスペースが小さい。
 また、多芯ケーブル1は、少なくとも、2本の電力線10と、1本の対撚信号線20と、1本の対撚電線30と、を含んでいる。このため、多芯ケーブル1の長手方向に直交する断面において、これらの線がバランスよく配置されやすく、外被40を含むケーブル外形が円形に近づきやすい。このため、外被40と止水部材との圧着部で隙間が生じにくく、止水性に優れている。なお、上記構成とは異なり、外被40の断面形状が真円から歪んでいる場合や、外被40の表面に撚り波が生じていると、外被40と止水部材間で隙間が生じて止水が完全でなくなり易い。
 上記構成の多芯ケーブル1において、電力線10の外径は、対撚信号線20の外径の75%以上135%以下であることが好ましい。電力線10の外径は、対撚信号線20の外径の90%以上115%以下であることがさらに好ましい。なお、電力線10の外径とは、第一絶縁層13の外径である。対撚信号線20の外径とは、一対の信号線21が外接する仮想外接円の直径のことであり、信号線21の径の2倍である。
 本実施形態に係る多芯ケーブル1によれば、2本の電力線10と、対撚信号線20との大きさがほぼ一致するため、撚り合わせた形状を維持しやすく、多芯ケーブル1の直径を長手方向に沿って揃えやすい。
 また、多芯ケーブル1の長手方向に直交する断面において、2本の電力線10と対撚信号線20とが一定の位置関係を保って配置されるため、撚り合わせた後の断面形状が円に内接するものに近くなる。このため、外被40の断面形状を真円に近い形状としやすく、外被40と止水部材間で隙間が生じにくく、さらに止水性が高まっている。
 また、対撚信号線20と対撚電線30との大きさがほぼ一致することがさらに好ましい。
 図1に示すように、多芯ケーブル1の長手方向に直交する断面において、2本の電力線10の中心C1と対撚信号線20の中心C2と対撚電線30の中心C3は仮想的な四角形の頂点に位置しており、2本の電力線10は該四角形の対角の位置に設けられている。
 本実施形態に係る多芯ケーブル1によれば、2本の電力線10と対撚信号線20と対撚電線30を撚り合わせた形状が安定し、多芯ケーブル1の断面形状を長手方向に沿って一定にしやすい。
 また、多芯ケーブル1を複数回曲げると、最も太い線に負荷が集中して最も太い線が他の線よりも先に切れる傾向がある。本実施形態に係る多芯ケーブル1においては、電力線10が信号線21や電線31に比べて太いため、電力線10が信号線21や電線31よりも先に切れる傾向がある。しかし、上記構成に係る多芯ケーブル1によれば、電力線10と対撚信号線20と対撚電線30の曲げ方向にかかる力がバランスされて、最も太い電力線10にかかる負荷が軽減され、電力線10が切れにくくなる。
 なお、仮想的な四角形は正方形であることが好ましい。撚り合わせた形状がより安定しやすく、かつ、多芯ケーブル1を曲げた時に負荷が電力線10に集中しにくい。
 第一導体12が複数本の導体素線からなる場合、電力線10の長手方向に直交する断面において、第一絶縁層13で囲まれる部分の面積S1から導体素線の断面積の総和S2を減じた隙間面積S3(=S1-S2)が、第一絶縁層13で囲まれる部分の面積S1の5%以上20%以下であることが好ましい。
 隙間面積S3が5%未満では、多芯ケーブル1の屈曲時に、第一導体12に大きな曲げ応力が局所的に加わりやすくなり、耐屈曲性が低下するおそれがある。隙間面積S3が20%より大きいと、多芯ケーブル1の端末加工時に電力線10が自由に動き過ぎてしまい、加工が難しくなるおそれがある。
 なお、隙間面積S3は、多芯ケーブル1の断面の写真の濃淡を導体部分と隙間部分とで二値化し、導体部分から第一導体12の導体素線の部分を特定し、第一絶縁層13で囲まれる部分の面積から導体素線部分の面積を減じる画像処理により求めることができる。例えば、「Paint shop pro」(Corel社製品)等のソフトウェアにより画像の2階調化を行う。導体境界が正しく区別されるように目視確認で閾値を調整し、ヒストグラムで二値化する。第一導体12の導体素線部分を目視で特定し、第一絶縁層13で囲まれる部分の面積S1と、第一導体12の導体素線の断面積の総和S2と、隙間面積S3とを求めることができる。
<第二実施形態>
 図2は、本発明の第二実施形態に係る車両用の多芯ケーブル101の断面図である。
 上述した第一実施形態において2本の電力線10、2本の信号線21、2本の電線31を有する多芯ケーブル1を説明したが、本発明はこれに限られない。例えば、図2に示すように、多芯ケーブル101は、2本の電力線10、2本の信号線21、2本の電線31の他に、4本の電線61,71を有してもよい。
 本実施形態に係る多芯ケーブル101は、2本の電力線10と、2本の信号線21からなる1本の対撚信号線20と、2本の電線31からなる1本の対撚電線30と、2本の電線61からなる1本の第二対撚電線60と、2本の電線71からなる1本の第三対撚電線70と、を有している。これら、2本の電力線10と、1本の対撚信号線20と、1本の対撚電線30と、1本の第二対撚電線60と、1本の第三対撚電線70と、は、一体に撚り合わされて外被40で覆われている。
 第二対撚電線60は2本の電線61が2本一組で撚り合わされて構成されている。これら2本の電線61はそれぞれ、第一導体12より細い第四導体62と、第四導体62を覆う第四絶縁層63と、を含んでいる。これら2本の電線61は、互いに大きさおよび材料が同じである。
 第三対撚電線70は2本の電線71が2本一組で撚り合わされて構成されている。これら2本の電線71はそれぞれ、第一導体12より細い第五導体72と、第五導体72を覆う第五絶縁層73と、を含んでいる。これら2本の電線71は、互いに大きさおよび材料が同じである。
 第二対撚電線60、第三対撚電線70は対撚信号線20と同様の材料、大きさとすることができる。
 電力線10、対撚信号線20、対撚電線30は、第一実施形態で説明したのと同様である。第二対撚電線60と第三対撚電線70は、例えば、各種センサや機器に接続されて電力や信号を伝送する線や車載ネットワークの配線に用いることができる。
 図2に示したように、抑え巻やシールド層は設けなくてもよい。抑え巻やシールド層を設ける場合は、図1に示した多芯ケーブル1と同様に、電力線10、対撚信号線20、対撚電線30、第二対撚電線60、および第三対撚電線70を一体的に撚り合わせた上に抑え巻やシールド層を設け、その上に外被40を被せることができる。
 図2に示したように、多芯ケーブル101の長手方向に直交する断面において、2本の電力線10が隙間を空けて配置され、該隙間が介在50で埋められていることが好ましい。太い電力線10同士が直接接触しないので、複数回折り曲げても電力線10が切れにくくなる。
 また、図2に示したように、多芯ケーブル101の長さ方向に垂直な断面において、電力線10、対撚信号線20、対撚電線30、第二対撚電線60、および第三対撚電線70の各中心が単一の円の円周上に配置されることが好ましい。この断面において、電力線10が点対称の位置に配置されることが各線20,30,60,70をバランス良く配置する点でさらに好ましい。電力線10を隣合わせて配置すると、電力線10をモータに接続する時に他の線20,30,60,70が交差せず、接続し易い。
<実施例>
 次に、下記の表1のように構成した10芯の車両用の多芯ケーブル(実施例)について説明する。
 電力線の導体(第一導体)は、直径0.08mmの銅合金線を72本撚り合わせた線を7本まとめて撚り合わせされたものであり、断面積が2.5mmである。この第一導体は、3.0mmの外径となるように架橋難燃ポリエチレン(第一絶縁層)で被覆される。この電力線2本を電動パーキングブレーキ用とする。
 対撚信号線の導体(第二導体)は、直径0.08mmの銅合金線が16本撚り合わされ撚線が3本撚り合わされたものであり、断面積が0.25mmである。信号線は、この第二導体が架橋難燃ポリエチレン(第二絶縁層)で被覆され外径1.4mmとされたものである。対撚信号線は、2本の信号線が撚り合わされたものである。この対撚信号線をABS用とする。
 第三導体および第四導体は第二導体と同じ構成である。第三導体を含む電線および第四導体を含む電線は上記信号線と同じ構成であり、それらが撚り合わされた対撚電線および第二対撚電線は上記対撚信号線と同じ構成である。これらの対撚電線と第二対撚電線を車載ネットワーク用とする。
 第五導体は、直径0.08mmの銅合金線が15本撚り合わせた線が7本まとめて撚り合わされたものであり、断面積が0.5mmである。この第五導体が架橋難燃ポリエチレン(第五絶縁層)で被覆されて1.7mmの外径である電線が2本撚り合わされたものが第三対撚電線である。この第三対撚電線をダンパー制御システム用とする。
 車両用の多芯ケーブルは、2本の電力線、対撚信号線、対撚電線、第二対撚電線、第三対撚電線が薄紙(ポリエステル製の抑え巻)が巻かれて、その外側に、架橋ポリエチレン製の内側外被(外径10.8mm)が設けられ、その外側が架橋難燃ポリウレタン製の外側外被(外径12.0mm)で覆われたものである。実施例に係る多芯ケーブルは、ECUと、電動パーキングブレーキ、ABS用の車輪速センサ、車載ネットワーク機器、ダンパー制御システムの機器との接続に使用される。
(比較例)
 電動パーキングブレーキ用の2本の電力線、ABS用の対撚信号線、車載ネットワーク用の対撚電線と第二対撚電線、ダンパー制御システム用の第三対撚電線を、撚り合わせずにそれぞれに外被を付けてケーブル化して6本のケーブルとする。比較例のケーブル群において、電力線が電動パーキングブレーキとECUとに接続され、対撚信号線が車輪速センサとECUとに接続され、対撚電線と第二対撚電線が車載機器とECUとに接続され、第三対撚電線がダンパー制御機器とECUとに接続される。
(実施例と比較例の比較)
 実施例に係る多芯ケーブルと比較例に係るケーブル群を使ってそれぞれECUと各種機器等を接続した場合とを比べると、実施例に係る多芯ケーブルは配線に要する空間が小さい。また、実施例に係る多芯ケーブルは、各々の線がまとめられているため、配線作業が容易である。
 特に、比較例に係るケーブル群は、電力線、対撚信号線、対撚電線をそれぞれ保護する必要が生じる。このため、電力線、対撚信号線、対撚電線のそれぞれを保護するために外被が必要になる。それぞれの線に外被が被覆されているため、比較例に係るケーブル群をまとめた合計径は実施例に係る多芯ケーブルの径に比べてかなり大きくなる。
(繰り返し曲げ試験)
 ISO 14572:2011(E)5.9に規定される繰り返し曲げ試験に従って多芯ケーブルの耐屈曲性を評価した。この繰り返し曲げ試験においては、多芯ケーブルに-90°から+90°となるような曲げを繰り返し作用させた。10万回曲げた後の電力線の初期抵抗値からの抵抗値の減少量が5%以上であった場合は、電力線が切れたものと判断した。初期抵抗値からの電力線の抵抗値の減少量が5%未満であった場合を合格とした。
 上記実施例に係る多芯ケーブルは、10万回曲げた後の電力線の抵抗値の減少量が5%未満であり、合格であった。
(U字曲げ試験)
 公益社団法人 日本自動車技術会の定める自動車規格JASO C467-97 7.16 センサーハーネス屈曲試験に従って評価した。このU字曲げ試験においては、多芯ケーブルに直線状からU字状になるような曲げを繰り返し作用させた。-30°で30万回曲げた後、続いて、常温で70万回曲げた。試験後に、割れやヒビなどの外観の異常がなく、かつ、電力線の初期抵抗値からの抵抗値の減少量が5%未満であった場合を合格とした。
 上記実施例に係る多芯ケーブルは、-30°で30万回曲げた後常温で70万回曲げた後も、外観の異常がなく、かつ、電力線の抵抗値の減少量が5%未満であり、合格であった。
Figure JPOXMLDOC01-appb-T000001
 上記実施例で作製した電力線、対撚信号線、対撚電線とそれぞれ同じ電力線、対撚信号線、対撚り電線含む第1の実施形態の6芯の多芯ケーブルについて、
1.導体の隙間率S3/S1、
2.対撚信号線の外径に対する電力線の外径の倍率、
3.対撚信号線および対撚電線の撚り方向に対する全体の撚り方向の向きの正逆、
4.全体の撚り外径に対する電力線、対撚信号線および対撚電線の撚りピッチの倍率
 を異ならせた実施例2~14の多芯ケーブルについて、10万回の繰り返し曲げ試験、100万回の繰り返し曲げ試験、U字曲げ試験および外観形状を評価した。その結果を表2に示す。各例の多芯ケーブルにおいて、2本の電力線の中心と対撚信号線の中心と対撚電線の中心は仮想的な四角形の頂点に位置しており、2本の電力線は対角の位置に設けられている。
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、いずれの実施例においても、10万回の繰り返し曲げ試験およびU字曲げ試験は合格であった。
 100万回の繰り返し曲げ試験が不合格である実施例2は、導体の隙間率S3/S1が小さすぎることが原因と考えられる。
 100万回の繰り返し曲げ試験が不合格である実施例12は、対撚信号線または対撚電線に対して電力線が太すぎることが原因と考えられる。
 100万回の繰り返し曲げ試験が不合格である実施例14は、全体の撚り外径に対する電力線、対撚信号線および対撚電線の撚りピッチが大きすぎることが原因と考えられる。
 真円度が長さ方向に一定にならない実施例7は、対撚信号線または対撚電線に対して電力線が細すぎることが原因と考えられる。
 真円度が長さ方向に一定にならない実施例12は、対撚信号線または対撚電線に対して電力線が太すぎることが原因と考えられる。
 真円度が長さ方向に一定にならない実施例13は、対撚信号線および対撚電線の撚り方向と全体の撚り方向が同じであることが原因と考えられる。
 なお、実施例2~14の多芯ケーブルにおいて、100万回曲げた後でも、電力線以外の信号線などの線は切断が確認されなかった。
1,101 多芯ケーブル
10 電力線
12 第一導体
13 第一絶縁層
20 対撚信号線
21 信号線
22 第二導体
23 第二絶縁層
30 対撚電線
31 電線
32 第三導体
33 第三絶縁層
40 外被
41 内側外被
42 外側外被
50 介在
51 抑え巻
52 シールド層
60 第二対撚電線
61 電線
62 第四導体
63 第四絶縁層
70 第三対撚電線
71 電線
72 第五導体
73 第五絶縁層

Claims (6)

  1.  第一導体と、前記第一導体を覆う第一絶縁層と、をそれぞれ含む2本の電力線と、
     前記第一導体より細い第二導体と、前記第二導体を覆う第二絶縁層と、をそれぞれ含む、2本の信号線と、
     前記第一導体より細い第三導体と、前記第三導体を覆う第三絶縁層と、をそれぞれ含む、2本の電線と、
     2本の前記電力線、2本の前記信号線および2本の前記電線を覆う外被と、を備え、
     2本の前記電力線は大きさおよび材料が同じであり、
     2本の前記信号線は、大きさおよび材料が同じであり、2本一組で撚り合わされて対撚信号線として構成されており、
     2本の前記電線は、大きさおよび材料が同じであり、2本一組で撚り合わされて対撚電線として構成されており、
     2本の前記電力線、前記対撚信号線および前記対撚電線が一体に撚り合わされている、車両用の多芯ケーブル。
  2.  前記電力線の外径は、前記対撚信号線の外径の75%以上135%以下である、請求項1に記載の多芯ケーブル。
  3.  前記多芯ケーブルの長手方向に直交する断面において、2本の前記電力線の中心と前記対撚信号線の中心と前記対撚電線の中心は仮想的な四角形の頂点に位置しており、2本の前記電力線は対角の位置に設けられている、請求項1または請求項2に記載の多芯ケーブル。
  4.  前記第一導体が複数本の導体素線からなり、前記電力線の長手方向に直交する断面において、前記第一絶縁層で囲まれる部分の面積S1から前記導体素線の断面積の総和S2を減じた隙間面積S3(=S1-S2)が、前記第一絶縁層で囲まれる部分の面積S1の5%以上20%以下である、請求項1から請求項3のいずれか一項に記載の多芯ケーブル。
  5.  2本の前記電力線が隙間を空けて配置され、その隙間が繊維で埋められている請求項1から請求項4のいずれか一項に記載の多芯ケーブル。
  6.  前記第一導体より細い第四導体と、前記第四導体を覆う第四絶縁層と、をそれぞれ含み、大きさおよび材料が同じである2本の電線が2本一組で撚り合わされてなる第二対撚電線と、
     前記第一導体より細い第五導体と、前記第五導体を覆う第五絶縁層と、をそれぞれ含み、大きさおよび材料が同じである2本の電線が2本一組で撚り合わされてなる第三対撚電線とをさらに含み、
     2本の前記電力線、前記対撚信号線、前記対撚電線、前記第二対撚電線および前記第三対撚電線が一体に撚り合わされて前記外被で覆われている、請求項1から請求項5のいずれか一項に記載の多芯ケーブル。
PCT/JP2017/020711 2016-06-02 2017-06-02 車両用の多芯ケーブル WO2017209299A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112017000062.9T DE112017000062T5 (de) 2016-06-02 2017-06-02 Mehradriges Kabel für ein Fahrzeug
JP2017556253A JP6819611B2 (ja) 2016-06-02 2017-06-02 車両用の多芯ケーブル
US15/748,859 US10538210B2 (en) 2016-06-02 2017-06-02 Multi-core cable for vehicle
CN201780002694.4A CN107851487B (zh) 2016-06-02 2017-06-02 车辆用的多芯线缆
US16/574,301 US10661730B2 (en) 2016-06-02 2019-09-18 Multi-core cable for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016111147 2016-06-02
JP2016-111147 2016-06-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/748,859 A-371-Of-International US10538210B2 (en) 2016-06-02 2017-06-02 Multi-core cable for vehicle
US16/574,301 Continuation US10661730B2 (en) 2016-06-02 2019-09-18 Multi-core cable for vehicle

Publications (1)

Publication Number Publication Date
WO2017209299A1 true WO2017209299A1 (ja) 2017-12-07

Family

ID=60478722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020711 WO2017209299A1 (ja) 2016-06-02 2017-06-02 車両用の多芯ケーブル

Country Status (5)

Country Link
US (2) US10538210B2 (ja)
JP (1) JP6819611B2 (ja)
CN (1) CN107851487B (ja)
DE (1) DE112017000062T5 (ja)
WO (1) WO2017209299A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019125489A (ja) * 2018-01-17 2019-07-25 日立金属株式会社 電線及びケーブル
KR20210028299A (ko) * 2019-09-03 2021-03-12 한국전력공사 복합쉬스층을 포함하는 전력케이블
US11121557B2 (en) * 2018-04-06 2021-09-14 Aurora Flight Sciences Corporation Power distribution system for aircraft
JP2021192380A (ja) * 2018-11-22 2021-12-16 日立金属株式会社 複合ケーブル
JP2022066527A (ja) * 2018-02-13 2022-04-28 日立金属株式会社 複合ケーブル及びワイヤハーネス

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658472B (zh) * 2017-04-28 2019-05-01 吳政雄 複合導電體結合之電導體及其製造方法
US11338746B2 (en) * 2018-04-16 2022-05-24 Sumitomo Wiring Systems, Ltd. Automobile architecture
CN109017626B (zh) * 2018-09-30 2024-01-30 合肥一通电子技术有限公司 一种车载局部网络系统
JP6747483B2 (ja) * 2018-10-09 2020-08-26 住友電装株式会社 配線部材
WO2020116295A1 (ja) * 2018-12-07 2020-06-11 住友電装株式会社 複合ケーブル
JP7192455B2 (ja) * 2018-12-07 2022-12-20 日立金属株式会社 複合ケーブル及び複合ハーネス
WO2020208392A1 (en) * 2019-04-12 2020-10-15 Leoni Kabel Gmbh Epb and wss cable with interference damping
JP6955530B2 (ja) * 2019-05-20 2021-10-27 矢崎総業株式会社 耐屈曲通信ケーブル及びワイヤハーネス
US11823817B2 (en) * 2020-02-04 2023-11-21 Structured Home Wiring Direct, LLC Composite hybrid cables and methods of manufacturing and installing the same
CN115966332A (zh) * 2022-09-05 2023-04-14 广东粤缆电线电缆有限公司 一种电动汽车充电电缆及其制备工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351322A (ja) * 2005-06-15 2006-12-28 Hitachi Cable Ltd ケーブル
JP2011001566A (ja) * 2009-06-16 2011-01-06 Autonetworks Technologies Ltd 電線導体および自動車用電線
JP2013122825A (ja) * 2011-12-09 2013-06-20 Sumitomo Electric Ind Ltd アクティブケーブル
WO2014135615A1 (en) * 2013-03-07 2014-09-12 Huber+Suhner Ag Sealed conductor cable
JP2015072787A (ja) * 2013-10-02 2015-04-16 住友電気工業株式会社 多芯ケーブル

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122012A (ja) * 1985-11-22 1987-06-03 積水化学工業株式会社 ケ−ブル
CN203192475U (zh) * 2013-01-25 2013-09-11 中国电子科技集团公司第二十三研究所 电动汽车用高压电缆
JP5737323B2 (ja) 2013-05-01 2015-06-17 住友電気工業株式会社 電気絶縁ケーブル
JP6219263B2 (ja) * 2014-12-22 2017-10-25 日立金属株式会社 車両用複合ケーブル及び車両用複合ハーネス
JP6667190B2 (ja) * 2015-10-14 2020-03-18 住友電装株式会社 自動車用複合ケーブル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351322A (ja) * 2005-06-15 2006-12-28 Hitachi Cable Ltd ケーブル
JP2011001566A (ja) * 2009-06-16 2011-01-06 Autonetworks Technologies Ltd 電線導体および自動車用電線
JP2013122825A (ja) * 2011-12-09 2013-06-20 Sumitomo Electric Ind Ltd アクティブケーブル
WO2014135615A1 (en) * 2013-03-07 2014-09-12 Huber+Suhner Ag Sealed conductor cable
JP2015072787A (ja) * 2013-10-02 2015-04-16 住友電気工業株式会社 多芯ケーブル

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019125489A (ja) * 2018-01-17 2019-07-25 日立金属株式会社 電線及びケーブル
JP7370130B2 (ja) 2018-01-17 2023-10-27 株式会社プロテリアル 電線及びケーブル
JP2022066527A (ja) * 2018-02-13 2022-04-28 日立金属株式会社 複合ケーブル及びワイヤハーネス
JP7219876B2 (ja) 2018-02-13 2023-02-09 株式会社プロテリアル 複合ケーブル及びワイヤハーネス
US11121557B2 (en) * 2018-04-06 2021-09-14 Aurora Flight Sciences Corporation Power distribution system for aircraft
JP2021192380A (ja) * 2018-11-22 2021-12-16 日立金属株式会社 複合ケーブル
JP7188517B2 (ja) 2018-11-22 2022-12-13 日立金属株式会社 複合ケーブル
KR20210028299A (ko) * 2019-09-03 2021-03-12 한국전력공사 복합쉬스층을 포함하는 전력케이블
KR102584633B1 (ko) 2019-09-03 2023-10-10 한국전력공사 복합쉬스층을 포함하는 전력케이블

Also Published As

Publication number Publication date
US20190077341A1 (en) 2019-03-14
US20200010032A1 (en) 2020-01-09
DE112017000062T5 (de) 2018-03-15
CN107851487A (zh) 2018-03-27
US10538210B2 (en) 2020-01-21
JP6819611B2 (ja) 2021-01-27
JPWO2017209299A1 (ja) 2019-03-28
CN107851487B (zh) 2021-01-29
US10661730B2 (en) 2020-05-26

Similar Documents

Publication Publication Date Title
WO2017209299A1 (ja) 車両用の多芯ケーブル
WO2017209298A1 (ja) 車両用の多芯フラットケーブル
JP6617650B2 (ja) 被覆電線および車両用の多芯ケーブル
US10102944B2 (en) Coated electric wire and multi-core cable for vehicles
WO2017065064A1 (ja) 自動車用複合ケーブル
JP2009140612A (ja) ワイヤハーネスおよび該ワイヤハーネスの形成方法
CN110070958A (zh) 被覆电线及多芯电缆
US20220115164A1 (en) Multicore cable
JP2018022633A (ja) 車両用の多芯ケーブル
JP6791340B2 (ja) 被覆電線および車両用の多芯ケーブル
JP2018137243A (ja) 自動車用複合ケーブル
JP6721078B2 (ja) 車両用の被覆電線及び多芯ケーブル
WO2023157190A1 (ja) ケーブル
JP6962436B2 (ja) 多芯ケーブル
JP7207371B2 (ja) 多芯ケーブル
WO2021111634A1 (ja) 多芯ケーブル
JP7036289B1 (ja) 多芯ケーブル

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017556253

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112017000062

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806849

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806849

Country of ref document: EP

Kind code of ref document: A1