WO2017208926A1 - 金属酸化物触媒およびその製造方法ならびにその製造装置 - Google Patents
金属酸化物触媒およびその製造方法ならびにその製造装置 Download PDFInfo
- Publication number
- WO2017208926A1 WO2017208926A1 PCT/JP2017/019336 JP2017019336W WO2017208926A1 WO 2017208926 A1 WO2017208926 A1 WO 2017208926A1 JP 2017019336 W JP2017019336 W JP 2017019336W WO 2017208926 A1 WO2017208926 A1 WO 2017208926A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- containing liquid
- liquid
- catalyst
- metal oxide
- producing
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8876—Arsenic, antimony or bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/24—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/12—Alkadienes
- C07C11/16—Alkadienes with four carbon atoms
- C07C11/167—1, 3-Butadiene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/42—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
- C07C5/48—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00823—Mixing elements
- B01J2208/00831—Stationary elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/10—Constitutive chemical elements of heterogeneous catalysts of Group I (IA or IB) of the Periodic Table
- B01J2523/13—Potassium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/10—Constitutive chemical elements of heterogeneous catalysts of Group I (IA or IB) of the Periodic Table
- B01J2523/14—Rubidium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/20—Constitutive chemical elements of heterogeneous catalysts of Group II (IIA or IIB) of the Periodic Table
- B01J2523/22—Magnesium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/30—Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
- B01J2523/37—Lanthanides
- B01J2523/3712—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/40—Constitutive chemical elements of heterogeneous catalysts of Group IV (IVA or IVB) of the Periodic Table
- B01J2523/41—Silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/50—Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
- B01J2523/54—Bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/60—Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
- B01J2523/68—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/80—Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
- B01J2523/84—Metals of the iron group
- B01J2523/842—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/80—Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
- B01J2523/84—Metals of the iron group
- B01J2523/845—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/80—Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
- B01J2523/84—Metals of the iron group
- B01J2523/847—Nickel
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/85—Chromium, molybdenum or tungsten
- C07C2523/88—Molybdenum
- C07C2523/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
Definitions
- the present invention relates to a metal oxide catalyst, a production method thereof, and a production apparatus thereof.
- Patent Document 1 discloses a method for producing butadiene by filling a tablet-containing molybdenum-containing catalyst into a fixed bed reactor and supplying a raw material gas containing n-butene and oxygen.
- Patent Document 2 discloses that a catalyst powder particle in which a metal oxide such as Mo, Bi, Fe or the like is supported on a support such as silica is packed in a fluidized bed reactor, and a raw material gas containing n-butene and oxygen, A method for producing butadiene by contacting is disclosed.
- the fixed bed reaction method described in Patent Document 1 has an advantage that the reaction yield can be increased because the gas flow state is close to the extrusion flow, and is a reaction method widely used industrially.
- the fixed bed reaction method has a problem of low heat transfer and is not suitable for an exothermic reaction or an endothermic reaction that requires heat removal or heating.
- a reaction that generates intense heat such as the oxidative dehydrogenation reaction of n-butene
- the temperature rises rapidly, making it difficult to control and the reaction may run away.
- the catalyst is damaged by such a rapid temperature rise and deteriorates at an early stage.
- the catalyst particles flow vigorously in the reactor, so that (1) the heat transfer is high, and the reaction in the reactor is large even during the reaction involving a large exotherm or endotherm.
- the temperature can be kept almost uniform and excessive reaction progress can be suppressed.
- JP 2013-146655 A Japanese Patent No. 5371692
- Patent Document 1 requires a very complicated process in which a catalyst precursor is once prepared, dried and calcined, then pulverized, and a catalyst is prepared again.
- Patent Document 2 discloses a method for producing a catalyst, but even with this method, a catalyst having sufficiently high catalyst performance cannot be obtained.
- the present invention provides a MoBi-containing metal oxide catalyst for producing a conjugated diolefin from a monoolefin, a metal oxide catalyst having higher catalytic performance, a method for producing such a catalyst, and an apparatus for producing the same.
- the purpose is to provide.
- the conventional MoBi-containing metal oxide catalyst has a non-uniform composition ratio of Mo and Bi on the surface thereof. It was found that the catalyst performance was not exhibited. Furthermore, the MoBi-containing metal oxide catalyst is generally produced using a slurry-like MoBi-containing liquid obtained by mixing a Mo-containing liquid and a Bi-containing liquid. It has been found that the mixing method has a great influence on the uniformity of the composition ratio of Mo and Bi on the surface of the catalyst.
- Metal oxide catalyst is 0.3 or less.
- A is at least one element selected from the group consisting of Ni and Co
- B is at least one element selected from alkali metal elements
- C is composed of Mg, Ca, Sr, Ba, Zn and Mn.
- At least one element selected from the group D is at least one rare earth element, E is at least one element selected from the group consisting of Cr, In and Ga, and F is a group consisting of Si, Al, Ti and Zr At least one element selected from O, oxygen is oxygen, and p, q, a, b, c, d, e, f, and x are Bi, Fe, A, B, C, D, E for Mo12 atoms, respectively.
- [4] The metal oxide catalyst according to any one of [1] to [3], wherein the conjugated diolefin is 1,3-butadiene.
- [5] The metal oxide catalyst according to any one of [1] to [4], wherein the oxidative dehydrogenation reaction is performed by a fluidized bed reaction.
- [6] A method for producing a metal oxide catalyst for producing a conjugated diolefin by an oxidative dehydrogenation reaction of a monoolefin having 4 or more carbon atoms and molecular oxygen having a bulk composition represented by formula (1).
- a method for producing a metal oxide catalyst comprising: Mo 12 Bi p Fe q A a B b C c D d E e F f O x (1) (Wherein A is at least one element selected from the group consisting of Ni and Co, B is at least one element selected from alkali metal elements, and C is composed of Mg, Ca, Sr, Ba, Zn and Mn.
- At least one element selected from the group D is at least one rare earth element, E is at least one element selected from the group consisting of Cr, In and Ga, and F is a group consisting of Si, Al, Ti and Zr At least one element selected from O, oxygen is oxygen, and p, q, a, b, c, d, e, f, and x are Bi, Fe, A, B, C, D, E for Mo12 atoms, respectively.
- mass supply rates of the Mo-containing liquid and the Bi-containing liquid to the first flow path or the second flow path are set to mA (g / min) and mB (g / min) so that 60% by mass or more of the total amount of the total supply amounts MA (g) and MB (g) per batch of the Mo-containing liquid and the Bi-containing liquid satisfy the formula (3).
- the molar supply rates of the Mo-containing liquid and the Bi-containing liquid to the first channel or the second channel are set to m ⁇ (mol / min) and m ⁇ (mol, respectively). / Min), The Mo-containing liquid and the Bi-containing liquid are supplied so as to satisfy the formula (4).
- the method for producing a metal oxide catalyst according to [7] or [10]. (M ⁇ / m ⁇ ) / (p / 12) 0.8 to 1.2 (4) [12]
- At least one element selected from the group D is at least one rare earth element, E is at least one element selected from the group consisting of Cr, In and Ga, and F is a group consisting of Si, Al, Ti and Zr At least one element selected from O, oxygen is oxygen, and p, q, a, b, c, d, e, f, and x are Bi, Fe, A, B, C, D, E for Mo12 atoms, respectively.
- a MoBi metal oxide catalyst having excellent catalytic performance can be provided, and a method and a production apparatus for producing such a catalyst continuously and stably can be provided.
- the present embodiment a mode for carrying out the present invention (hereinafter also simply referred to as “the present embodiment”) will be described in detail.
- the present invention is not limited to the following embodiment, and can be implemented with various modifications within the scope of the gist.
- the metal oxide catalyst of the present embodiment (hereinafter also simply referred to as “catalyst”) promotes an oxidative dehydrogenation reaction that produces a conjugated diolefin from a monoolefin having 4 or more carbon atoms and molecular oxygen,
- the bulk composition that is, the ratio of each element constituting the entire catalyst is represented by the following formula (1). Whether or not the bulk composition of a certain MoBi-containing metal oxide catalyst satisfies the composition of the formula (1) is determined by a well-known elemental quantitative analysis method such as ICP emission spectroscopy, atomic absorption spectrometry, ICP mass spectrometry, X-ray fluorescence.
- the composition can be determined by an analysis method or the like, and in the examples, the composition determined by ICP emission spectroscopy was employed.
- At least one element selected from the group D is at least one rare earth element, E is at least one element selected from the group consisting of Cr, In and Ga, and F is a group consisting of Si, Al, Ti and Zr At least one element selected from O, oxygen is oxygen, and p, q, a, b, c, d, e, f, and x are Bi, Fe, A, B, C, D, E for Mo12 atoms, respectively.
- a in the above formula (1) is Ni or Ni and Co
- B is at least one element selected from the group consisting of K, Rb and Cs
- C is Mg
- D is Ce
- E is Cr
- F is Si.
- the composition represented by the formula (1) is preferably 0.15 ⁇ p ⁇ 3, 1.5 ⁇ q ⁇ 3.5, 1.7 ⁇ a ⁇ 9, 0.02 ⁇ b ⁇ 1, 0. .5 ⁇ c ⁇ 4.5, 0.02 ⁇ d ⁇ 1.0, 0 ⁇ e ⁇ 4.5, and 10 ⁇ f ⁇ 100.
- the constituent elements are those described above and the atomic ratio is within the above range, butadiene can be produced in a higher yield.
- F is Si and f is 20 ⁇ f ⁇ 100
- the metal oxide catalyst having the bulk composition represented by the formula (1) has a ratio of the Bi molar concentration to the Mo molar concentration on the catalyst particle surface, and the ratio of the Bi molar concentration to the Mo molar concentration in the catalyst bulk.
- the standard deviation of the value divided by is 0.3 or less.
- the Mo molar concentration and Bi molar concentration on the catalyst particle surface can be determined by SEM-EDX (Scanning Electron Microscopes-Energy Dispersive X-ray Spectroscopy) composition analysis.
- the Mo molar concentration and Bi molar concentration in the catalyst bulk can be determined by, for example, ICP emission spectroscopy.
- the said standard deviation can be calculated
- Standard deviation ⁇ ((S 1 ⁇ ) 2 + (S 2 ⁇ ) 2 +... + (S 100 ⁇ ) 2 ) / 100 [number] ⁇ 1/2 (2)
- (Bi / Mo) bulk is the ratio of the Bi molar concentration to the Mo molar concentration in the catalyst bulk, determined by ICP emission spectroscopy.
- Standard deviation is an indicator of variation.
- the smaller the standard deviation the smaller the variation from the average value. Therefore, the smaller the value of the formula (2), the more uniform the surface composition of the catalyst particles.
- the value of the formula (2) is preferably 0.2 or less, more preferably 0.15 or less, and further preferably 0.1 or less.
- the metal oxide catalyst having a uniform surface composition and a bulk composition represented by the formula (1) may be referred to as, for example, the production method of the present embodiment (hereinafter referred to as “first production method”). ).
- the first manufacturing method comprises (i) preparing a Mo-containing liquid containing at least Mo and a Bi-containing liquid containing at least Bi; and (ii) mixing the Mo-containing liquid and the Bi-containing liquid. Obtaining a MoBi-containing liquid, and (iii) drying the MoBi-containing liquid. After the step (iii), a firing step may be further included.
- a step of further mixing the MoBi-containing liquid can be provided.
- the process ((v) process) of storing a fixed amount of MoBi containing liquid can be provided between the (ii) process and the (iii) process.
- the MoBi-containing liquid prepared in the step may be continuously supplied to the (iii) step as it is, or may be supplied to the (iii) step after the (iv) step, or a part thereof Alternatively, the entire amount may be temporarily stored (step (v)) and then supplied to the step (iii).
- step (v) When the step is provided and the MoBi-containing liquid is temporarily stored, the total amount of the MoBi liquid prepared in the step (ii) or the total amount of the MoBi-containing liquid prepared by performing the step (iv) after the step (ii) Is preferably stored (batch processing method).
- the continuous supply method or the batch processing method is selected, but the continuous processing method is used when the catalyst is to be manufactured in a short time, and the batch processing is performed when the allowable range of the supply ratio is widened. It is preferable to select a method.
- Steps (i) and (ii) are steps for preparing a slurry containing a catalyst raw material. Specifically, (i) a Mo-containing liquid containing at least Mo (a liquid containing Mo raw material as a catalyst component, hereinafter also referred to as “A liquid”), and a Bi-containing liquid containing at least Bi ( A liquid containing Bi raw material to be a catalyst component, also referred to as “B liquid”), and (ii) a process of mixing both (hereinafter referred to as Mo-containing liquid and Bi-containing liquid). Is sometimes referred to as “two liquids”). By mixing the two liquids, a MoBi-containing liquid that is a slurry is formed.
- This MoBi-containing liquid is a precursor of a MoBi-containing metal oxide catalyst, and the present inventors have found that the conditions for producing this precursor greatly affect the uniformity of the surface composition of the catalyst particles to be produced. It was.
- the Mo-containing liquid and the Bi-containing liquid are continuously supplied to the first and second flow paths, respectively, and the first flow path and the second flow path are The catalyst particles having a highly uniform surface composition were realized by combining the Mo-containing liquid and the Bi-containing liquid downstream of the supply locations to prepare the MoBi-containing liquid.
- a salt soluble in water, nitric acid or the like is preferable, and for example, ammonium molybdate which is an ammonium salt can be mentioned.
- Bi Fe, Ni, Co, alkali metal (Li, Na, K, Rb, Cs, Fr), Mg, Ca, Sr, Ba, Zn, Mn, rare earth (Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), Cr, In, and Ga as well as the above are preferably salts soluble in water, nitric acid, etc.
- nitrates for example, nitrates, hydrochlorides, sulfates, organic acid salts and the like can be mentioned.
- nitrate is preferable from the viewpoint of being easily soluble in water, nitric acid and the like.
- gallium for example, bismuth nitrate, iron nitrate, nickel nitrate, cobalt nitrate, potassium nitrate, rubidium nitrate, magnesium nitrate, calcium nitrate, strontium nitrate
- SiO 2 is particularly preferred from the viewpoint that there are few acid sites that increase by-products during the reaction for producing butadiene.
- the raw material for SiO 2 include silica sol (also referred to as colloidal silica), powdered silica, and the like.
- Silica sol is particularly preferable because of easy handling. For example, Snowtex (manufactured by Nissan Chemical Industries), Nalco silica sol (manufactured by Nalco Japan) and the like.
- the average particle diameter of SiO 2 is preferably in the range of 5 to 100 nm, more preferably in the range of 10 to 50 nm.
- silica sols having different average particle diameters can be mixed and used.
- the atomic ratio of each element in the finally produced catalyst is basically the same as the atomic ratio of the catalyst raw material used at the time of catalyst production, excluding oxygen atoms.
- the Mo-containing liquid, Bi-containing liquid, and MoBi-containing liquid include It is also preferable to add an organic acid capable of forming a chelate with a metal element in addition to the catalyst raw material.
- an organic acid capable of forming a chelate with a metal element in addition to the catalyst raw material.
- this organic acid For example, oxalic acid, tartaric acid, a citric acid, malic acid etc. are preferable, and this organic acid may be added to either Mo containing liquid and Bi containing liquid, and both It may be added.
- the organic acid to a raw material of Si, Al, Ti, Zr, for example, silica sol.
- the organic acid can be added as a powder as well as a solid or as an aqueous solution.
- an inorganic acid such as nitric acid, hydrochloric acid or sulfuric acid for the purpose of increasing the solubility of each metal salt of the catalyst raw material.
- Nitric acid is particularly preferred because it volatilizes during the calcination step described below and has little residue on the catalyst.
- ammonia water to the Mo-containing liquid in order to increase the solubility of Mo.
- a Mo-containing liquid and a Bi-containing liquid are prepared (step (i)).
- the Mo-containing liquid is preferably prepared by dissolving or dispersing the Mo raw material in an aqueous medium such as water. It is also preferable to add aqueous ammonia to this solution to increase the solubility of the Mo raw material.
- the Mo atom concentration in the Mo-containing liquid is preferably in the range of 0.1 to 30 wt%.
- a Bi-containing liquid is prepared separately from the Mo-containing liquid.
- the Bi-containing liquid is preferably prepared by dissolving or dispersing the Bi raw material in an aqueous medium such as water.
- the Bi-containing liquid is preferably acidic, and it is more preferable that the Bi-containing liquid contains nitric acid because the solubility of the Bi raw material is increased.
- the Bi atom concentration in the Bi-containing liquid is preferably in the range of 0.1 to 10 wt%.
- Raw materials other than Mo raw material and Bi raw material that is, raw materials such as Fe, Ni, Co, alkali metal, Mg, Ca, Sr, Ba, Zn, Mn, rare earth, Cr, In, Ga, Si, Al, Ti, Zr, etc. And in the range which does not produce a precipitate, you may add to any of the said Mo containing liquid and Bi containing liquid, and may add to both. Moreover, you may add to the MoBi containing liquid after mixing the said 2 liquid. It is preferable to add a raw material of a metal other than Mo to the Bi-containing liquid because it is difficult to cause a precipitate. In particular, a raw material of a metal other than Si, Al, Ti, Zr is added to the Bi-containing liquid. It is preferable to add.
- the prepared Mo-containing liquid and Bi-containing liquid are mixed (step (ii)).
- the Mo-containing liquid and the Bi-containing liquid are continuously supplied to the first and second flow paths, respectively, and the Mo-containing liquid and the Bi-containing liquid are respectively supplied to the first flow path and the second flow path.
- the Mo-containing liquid and the Bi-containing liquid are mixed by being merged downstream from the supply point.
- the supply of Mo-containing liquid and Bi-containing liquid to each flow path is such that the supply molar ratio of Mo and Bi is the atomic ratio of Mo and Bi in the composition formula (1) of the metal oxide catalyst to be manufactured, that is, p / 12.
- the feed molar ratio is preferably in the range of (p / 12) ⁇ 0.8 to (p / 12) ⁇ 1.2, for example.
- the Mo-containing liquid and the Bi-containing liquid are preferably supplied so as to satisfy the following formula (4).
- (M ⁇ / m ⁇ ) / (p / 12) 0.8 to 1.2 (4)
- the Bi-containing liquid with respect to the mass supply rate mA (g / min) to the first channel of the Mo-containing liquid The ratio of mass supply rate mB (g / min) (hereinafter also referred to as “supply ratio”) of the Bi-containing liquid per batch relative to the total supply amount MA (g) per batch of Mo-containing liquid It is preferable to supply so as to be 0.5 to 1.5 times the ratio of supply amount MB (g) (hereinafter also referred to as “mass ratio”).
- the Mo-containing liquid and the Bi-containing liquid are supplied so as to satisfy the following formula (3).
- (MB / mA) / (MB / MA) 0.5 to 1.5 (3)
- the uniformity of the composition on the particle surface of the metal oxide catalyst can be further improved.
- (MB / mA) / (MB / MA) is more preferably 0.8 to 1.2, and particularly preferably 1.0.
- the supply ratio (mB / mA) and mass ratio (MB / MA) will be described below with specific examples.
- the total amount (MA) including the amount is 100 parts by mass, and the Bi-containing liquid for one batch prepared in the step (i) is a necessary amount of Bi raw material (1/12 of the number of moles of Mo in the Mo-containing liquid).
- the total amount (MB) is 50 parts by mass.
- the mixing of the Mo-containing liquid and the Bi-containing liquid is performed by adding the other liquid to one liquid.
- the concentration of the component to be added is small immediately after the start of mixing, and gradually increases as mixing proceeds.
- the intended atomic ratio is achieved when all of the two liquids have been added, a significant imbalance tends to occur between the added component concentration and the added component concentration in the middle of the addition.
- the imbalance between the Bi and Mo concentrations in the mixed solution at the time of the slurry preparation is uniform in the surface composition of the metal oxide catalyst produced from the slurry thus prepared later. It was found that this was one of the causes of decreased sex.
- the first manufacturing method two liquids are simultaneously supplied to the joining portion, so that the component concentration imbalance in the mixed liquid is small.
- the catalyst composition produced by the atomic ratio of Mo and Bi in the mixed liquid is produced at any stage of the process of mixing the two.
- a slurry is formed in a state close to the atomic ratio.
- the step (i) and the step (ii) are performed for each batch, and the total amount of one batch of the MoBi-containing liquid obtained in the step (ii) is stored in the step (v) or ( iv)
- the supply ratio (mB / mA) is the mass ratio (MB / MA) as described above. 0.5 times to 1.5 times as large as).
- the partial supply of the Mo-containing liquid and the Bi-containing liquid may be outside the above range.
- the merging temperature when the two liquids are merged is preferably 5 ° C. to 98 ° C. 35 ° C to 98 ° C is more preferable, 35 ° C to 80 ° C is more preferable, and 35 ° C to 60 ° C is particularly preferable.
- the merging temperature refers to the liquid temperature at the portion where the two liquids merge and can be measured with a thermometer.
- step (Ii) When two liquids are mixed in step (ii) to form a MoBi-containing liquid (slurry), and then the MoBi-containing liquid is further mixed before the MoBi-containing liquid is dried (step (iv))
- the method of further mixing the produced MoBi-containing liquid is not limited, and examples thereof include passing through a static mixer or stirring using a stirrer.
- the stirring temperature is preferably about the same as the merging temperature at the time of merging the two liquids, specifically, 35 ° C. to 80 ° C. is preferable.
- the configuration of the apparatus used in the production of the metal oxide catalyst is not limited.
- the first channel for feeding the Mo-containing liquid the second channel for feeding the Bi-containing liquid.
- a merging portion where the first channel and the second channel merge there is no limitation on the means for supplying the Mo-containing liquid and Bi-containing liquid to the first and second flow paths, and it is preferable to use, for example, a quantitative supply device.
- a quantitative supply device By using a fixed-quantity supply apparatus, two liquids can be supplied at a more accurate ratio.
- the metering supply device is not particularly limited, but a metered liquid pump is preferable.
- the merging portion where the two liquids merge is not particularly limited as long as the two liquids can be merged.
- a Y-shaped or T-shaped tube may be used.
- the cross-sectional shape of the tube may be, for example, a circle (cylinder), and it is also preferable to provide a mechanism or an insert for promoting mixing of the MoBi-containing liquid.
- the angle at which the two liquids merge may be cocurrent, vertical, or opposed.
- a mixer for further mixing the MoBi-containing liquid generated downstream of the junction.
- An example of the mixer is a stirring tank having a stirrer. An example of such a device configuration is shown in FIG.
- each of the above-described devices and the like has a heat retaining and warming structure such as a warm water jacket that can be set to a desired temperature.
- a static mixer as shown in FIG. 2 (a pipe and a twisted plate fixed therein is a main member, and the fluid supplied into the pipe is a twisted surface. Are mixed by moving along the flow).
- An example of a static mixer is a static mixer (manufactured by Noritake Company Limited).
- a metal oxide catalyst having a bulk composition represented by formula (1) By drying the MoBi-containing liquid generated as described above (step (iii)), a metal oxide catalyst having a bulk composition represented by formula (1) can be formed.
- the MoBi-containing liquid preferably has a pH of 3 or less before drying. More preferably, it is 2 or less, More preferably, it is 1 or less.
- the pH can be adjusted by, for example, the amount of acidic solution added to the raw material. If pH is 3 or less, the increase in the viscosity of a MoBi containing liquid can be suppressed, and the supply of the MoBi containing liquid to the next process (iii) drying process can be performed stably.
- the slurry preparation process for forming the catalyst precursor can be performed in a liquid state, it can be said that it is extremely simple as compared with a method that requires drying, firing, pulverization operation and the like for forming the catalyst precursor.
- the drying method there is no limitation on the drying method, but it is preferable to obtain the dried particles by spray drying the MoBi-containing liquid.
- spray drying for example, when it is carried out industrially, it is preferable to use a spray dryer.
- the spray drying step first, the MoBi-containing liquid is atomized.
- the atomization method is not particularly limited, and examples thereof include a centrifugal method, a two-fluid nozzle method, and a high-pressure nozzle method. In particular, the centrifugal method is preferable from the viewpoint of not obstructing the nozzle.
- the hot air inlet temperature is preferably 100 to 400 ° C.
- the hot air outlet temperature is preferably 150 to 300 ° C.
- the spray device it is preferable to adjust the spray device so that the spray particle size is in a desired range according to the target catalyst particle size.
- the average particle diameter of the catalyst is preferably about 10 to 150 ⁇ m, and therefore the rotation speed of the atomizer (atomizer) is appropriately selected so that the average particle diameter is within this range. .
- the higher the atomizer speed the smaller the average particle size.
- a firing step of obtaining a metal oxide catalyst by firing the dried material (dry particles) obtained in the drying step is preferable to include a firing step of obtaining a metal oxide catalyst by firing the dried material (dry particles) obtained in the drying step.
- a baking method For example, stationary baking, fluidized baking, rotary furnace baking, etc. are mentioned. From the viewpoint of uniform firing, rotary furnace firing using a rotary kiln is preferred.
- the firing temperature is preferably 400 ° C to 800 ° C, more preferably 500 ° C to 750 ° C, and further preferably 550 to 700 ° C.
- the firing time is preferably 1 hr to 24 hr, and more preferably 2 hr to 8 hr. Conditions such as calcination temperature and calcination time are appropriately selected so that desired catalyst physical properties and reaction performance can be obtained. It is also preferable to perform the above baking after preliminary baking at 250 ° C. to 420 ° C.
- step and the step (v) are performed simultaneously (that is, the MoBi-containing liquid is stored under stirring).
- the process (v) The amount of storage in is preferably the total amount of the MoBi-containing liquid obtained in step (ii).
- the supply amount of the Mo-containing liquid and the Bo-containing liquid in the step (ii) fluctuates by temporarily storing the entire amount of the MoBi-containing liquid prepared in the step and then supplying it to the drying step ((iii) step).
- the atomic ratio of Mo and Bi in the MoBi-containing liquid supplied to the step (iii) can be made equal to the atomic ratio of both in the formula (1), and the composition of the obtained catalyst particles can be It can be made closer to the purpose.
- the storage container is not limited, and for example, a storage container having a stirring function can be used, and the step (v) and the step (iv) can be performed simultaneously.
- the metal oxide catalyst of the present embodiment it is preferable to use the production method (first production method) of the present embodiment because it does not depend on the scale of the production catalyst, but the metal oxidation of the present embodiment.
- the catalyst may be produced by a method other than the first production method. For example, as shown in Example 9 to be described later, in the preparation of the raw slurry, when a batch mixing of a Mo-containing liquid and a Bi-containing liquid in which the other liquid is introduced into one of the liquids is used. Even so, it is possible to produce a metal oxide catalyst of 50 kg or more in one batch and to make the time required for charging the liquid to be within 8 minutes, preferably within 4 minutes, so that the two liquids are uniform.
- the metal oxide catalyst of the present embodiment can be obtained (second production method). This is due to the synergistic effect of increasing the amount of Mo / Bi-containing liquid to be added, increasing the mass of the input liquid, increasing the collision energy with the liquid on the input side, and processing in a short time. It is believed that uniform mixing of the slurry is achieved.
- the metal oxide catalyst of the present embodiment generates a conjugated diolefin (for example, 1,3-butadiene) by an oxidative dehydrogenation reaction of a monoolefin (for example, n-butene) having 4 or more carbon atoms and molecular oxygen. It can be used when.
- the conjugated diolefin can be produced by a reaction in which a monoolefin is oxidatively dehydrogenated in the presence of a metal oxide catalyst.
- This reaction system may be a fluidized bed system or a fixed bed system. The reaction is preferably carried out in a fluidized bed system in that local heat accumulation due to reaction heat hardly occurs, the n-butene concentration in the raw material gas can be increased, and productivity can be increased.
- a monoolefin having 4 or more carbon atoms and molecular oxygen are used as raw materials.
- the monoolefin is an organic compound having only one carbon-carbon double bond in the molecule and usually having no functional group, and is a linear and / or branched hydrocarbon.
- the upper limit of the carbon number is not particularly limited, but 6 or less is preferable from the viewpoint of reactivity.
- Examples of monoolefins having 4 or more carbon atoms include n-butene (1-butene, 2-butene), 1-pentene, 2-pentene, isopentene (2-methyl-1-butene, 3-methyl-1-butene ), 1-hexene, 2-hexene, and 2,3-dimethylbutene.
- n-butene or isopentene is preferably used as the monoolefin from the viewpoint of versatility of the product.
- One kind of monoolefin may be used as a raw material, or two or more kinds of monoolefins may be used as a raw material.
- the monoolefin does not necessarily have to be highly pure, and any mixture or industrial grade can be used.
- n-butene a residual component after recovering butadiene from the C4 fraction by-produced by naphtha pyrolysis (raffinate 1), a residual component after further recovering isobutylene from this residual component (raffinate 2), n- Butene fraction obtained by butane dehydrogenation or oxidative dehydrogenation, or C4 fraction by-produced from the catalytic conversion reaction of ethylene obtained by ethane pyrolysis or biomass ethanol dehydration, obtained by ethylene dimerization n-butene or the like can be used.
- Biomass ethanol is ethanol obtained from plant resources, and specifically, ethanol obtained from fermentation of sugarcane, corn and the like, and ethanol obtained from wood resources such as waste wood, thinned wood, rice straw, and crops.
- the monoolefin may contain paraffin that is inert to the oxidative dehydrogenation reaction between the monoolefin and air. Examples of paraffin include methane, ethane, propane, butane, pentane, hexane, heptane, octane, and nonane. Also, after separating the target butadiene, isoprene, etc.
- the reaction product gas of the oxidative dehydrogenation reaction of monoolefin and air at least a part of the monoolefin such as unreacted butene, isopentene is supplied to the reactor. It is also possible to react with the monoolefin mixed again.
- the oxygen-containing gas may contain nitrogen, helium, water vapor, CO 2 , CO, and the like in addition to oxygen. Air is preferably used as the oxygen-containing gas.
- the monoolefin is preferably supplied to the reactor as a monoolefin-containing gas, and the monoolefin which is not a gas at a room temperature of about 5 ° C. to 35 ° C. is a gasifier having a heating unit such as steam or a heat transfer coil. It is preferable to use it for the reactor after gasification.
- the concentration of monoolefin supplied to the reactor is 2% to 30% by volume from the viewpoint of productivity of conjugated diolefin, and the concentration of monoolefin in the total raw material gas (total of monoolefin-containing gas and oxygen-containing gas). 3 volume% to 25 volume% is more preferable.
- the method for supplying the monoolefin-containing gas and the oxygen-containing gas is not limited, and both gases may be mixed in advance and then supplied to the reactor, or may be supplied separately to the reactor.
- the reaction temperature is preferably 300 ° C to 500 ° C, more preferably 300 ° C to 420 ° C.
- the reaction pressure is preferably ⁇ 0.1 MPa (gauge pressure) to 0.5 MPa (gauge pressure), more preferably normal pressure to 0.1 MPa (gauge pressure).
- the contact time between the catalyst defined by the following formula and the total raw material gas is preferably 0.5 (g ⁇ sec / cc) to 5.0 (g ⁇ sec / cc), 0.7 (G ⁇ sec / cc) to 3.5 (g ⁇ sec / cc) is more preferable.
- Contact time (g ⁇ sec / cc) W / F ⁇ 60 ⁇ 273.15 / (273.15 + T) ⁇ (P ⁇ 1000 + 1101.325) /101.325
- W is the catalyst filling amount (g)
- F is the total amount of raw material gas (cc / min)
- T is the reaction temperature (° C.)
- P is the reaction pressure (MPa (gauge pressure))
- the oxygen concentration in the product gas at the outlet of the reactor is preferably 0.02% by volume to 3% by volume, more preferably 0.2% by volume to 2% by volume, and 0.9% by volume to 1.5% by volume. Further preferred.
- the reactor in the case of a fluidized bed reaction, the reactor has a raw material gas disperser, an insert, and a cyclone as main components, and a metal oxide catalyst is contained inside the reactor.
- a bubble fluidized bed type reactor that is brought into contact with the raw material gas while flowing is exemplified.
- a multi-tube type fixed bed reactor having a large number of reaction tubes and an external heat medium circulating device and contacting a metal oxide catalyst formed by flowing a raw material gas upward or downward into the reaction tube. Is mentioned.
- n-butene conversion rate and butadiene yield used to show the reaction results are defined by the following equations.
- n-butene conversion (%) (Moles of reacted n-butene) / (moles of supplied n-butene) ⁇ 100
- Butadiene yield (%) (Number of moles of butadiene produced) / (number of moles of supplied n-butene) ⁇ 100
- the number of moles of reacted n-butene was calculated by subtracting the number of moles of unreacted n-butene remaining in the reaction product gas from the number of moles of supplied n-butene.
- the number of moles of butadiene and unreacted n-butene was analyzed by gas chromatography (manufactured by Shimadzu Corporation, model: GC2010 plus, detector: TCD, FID
- the bulk composition that is, the ratio of each element constituting the catalyst to molybdenum (including the Mo molar concentration and Bi molar concentration of the catalyst bulk) is calculated from the raw material charge mass.
- Example 1 [Production of catalyst 1]
- the metal oxide catalyst was charged into the raw material so that the composition was Mo 12 Bi 0.8 Fe 2.5 Ni 4.6 K 0.12 Rb 0.05 Mg 1.1 Ce 1.5 Si 45.9 O x
- the mass was adjusted and it manufactured as follows. 1032 g of ammonium molybdate tetrahydrate was dissolved in 1841 g of pure water.
- the silica sol comprising SiO 2 having an average particle diameter 12nm of 34 wt% in the liquid was added 3922g of pure water 523 g. Further, a solution in which 80 g of oxalic acid was dissolved in 533 g of pure water was added. The total amount was 7931 g (Mo-containing liquid.
- A1 liquid Bismuth nitrate pentahydrate 190 g, cerium nitrate hexahydrate 317 g, ferric nitrate nonahydrate 489 g, nickel nitrate hexahydrate 659 g, magnesium nitrate hexahydrate 139 g, potassium nitrate 5.
- 9 g and rubidium nitrate 3.6 g were dissolved in 16.6% by mass nitric acid solution 1041 g. The total amount was 2845 g (Bi-containing liquid, hereinafter referred to as “B1 liquid”).
- a container containing the A1 liquid is connected to one inlet 1 of an empty Y-shaped stainless steel cylindrical tube (inner diameter: 15 mm, length: 30 mm) (merging portion) via the A1 liquid fixed amount feeding pump (first Connected by a channel).
- the container containing the B1 liquid was connected to the other inlet 2 of the Y-tube by a pipe (second flow path) via the B1 liquid fixed amount feeding pump.
- the outlet of the Y-shaped tube was connected to a static mixer having a screw type interior (static mixer), and the outlet of the static mixer was connected to a slurry agitation tank having a stirrer by piping.
- a schematic diagram of the apparatus is shown in FIG.
- the A1 liquid held at 50 ° C. was flowed at 793 (g / min) using the A1 liquid metering pump, and the B1 liquid held at 50 ° C. was 285 (g / min) using the B1 liquid metering pump.
- the two liquids were brought into contact in the parallel direction (cocurrent flow) in the Y-tube and the static mixer. This operation was performed for 10 minutes to prepare a MoBi-containing liquid as a slurry.
- the joining temperature during that time was 50 ° C.
- the entire amount of this MoBi-containing liquid was stored in a slurry stirring tank provided downstream of the static mixer, and stirring was further continued at 50 ° C. for 1 hour after the end of the supply of the two liquids.
- This MoBi-containing liquid had a pH of 1 or less and was in a slurry state before spray drying.
- this MoBi-containing liquid was spray-dried using a spray dryer (Okawara Chemical Industries, model: OC-16) to obtain a dry powder.
- the hot air inlet temperature was 250 ° C.
- the hot air outlet temperature was 140 ° C.
- the obtained dry powder was subjected to 2 at 590 ° C. in an air atmosphere using a rotary kiln (manufactured by Nikkato, model: RK125140, firing tube inner diameter 80 mm, firing tube length: 1500 mm, number of weirs: 8, weir height: 10 mm).
- the catalyst was obtained by calcining for a time (Catalyst 1).
- the average particle diameter of the obtained catalyst 1 was 51 ⁇ m.
- the average particle size was measured using a particle size distribution meter.
- the average particle diameters of the catalysts 1 to 13 were 45 ⁇ m to 55 ⁇ m.
- the surface Mo concentration and Bi concentration of 100 particles of the catalyst 1 were measured by SEM-EDX, and the ratio (Bi / Mo) surf of the Bi molar concentration to the Mo molar concentration was obtained.
- Example 2 [Production of catalyst 2]
- the Mo-containing liquid (same as the A1 liquid. However, hereinafter referred to as “A2 liquid”) and the Bi-containing liquid (same as the B1 liquid. However, hereinafter “B2 liquid”.
- the total supply amount of the A2 liquid and the B2 liquid was the same as in Example 1. Therefore, the mass ratio in this case was 0.36, as in Example 1.
- a catalyst was obtained in the same manner as in Example 1 except that the supply ratio of the B2 liquid to the A2 liquid was varied between 0.8 and 1.2 times the mass ratio 0.36 (catalyst 2 ). All of A2 liquid and B2 liquid (100 mass%) were made to merge by the supply ratio of this range.
- the A2 liquid was simultaneously supplied to the Y-tube through the first flow path at a flow rate of 837 (g / min) and the B2 liquid was simultaneously supplied through the second flow path at a flow rate of 241 (g / min) for 3 minutes.
- the supply flow rates of the A2 liquid and the B2 liquid were changed, and the A2 liquid was simultaneously supplied at a flow rate of 792 (g / min) and the B2 liquid at a flow rate of 285 (g / min) for 4 minutes.
- the generated MoBi-containing liquid had a pH of 1 or less and was in a slurry state before spray drying.
- Butadiene was produced in the same manner as in Example 1 except that catalyst 2 was used instead of catalyst 1.
- the standard deviation of Catalyst 2 and the reaction results are shown in Table 1.
- Example 3 [Production of catalyst 3]
- the Mo-containing liquid (the same as the A1 liquid. However, hereinafter referred to as “A3 liquid”) and the Bi-containing liquid (the same as the B1 liquid. However, hereinafter “B3 liquid”.
- the total supply amount of the A3 liquid and the B3 liquid was the same as in Example 1. Therefore, the mass ratio in this case was 0.36, as in Example 1.
- a catalyst was obtained in the same manner as in Example 1 except that the supply ratio of the B3 liquid to the A3 liquid was varied between 0.5 times and 1.5 times the mass ratio 0.36 (catalyst 3). ). All of A3 liquid and B3 liquid (100 mass%) were made to contact with the supply ratio of this range.
- A3 solution was supplied to the Y-shaped tube at 913 (g / min) and B2 solution was supplied at 164 (g / min) at the same time for 3 minutes.
- the supply flow rates of the A3 liquid and the B3 liquid were changed, and the A3 liquid was simultaneously supplied at 792 (g / min) and the B3 liquid at 285 (g / min) for 5 minutes.
- a metal oxide catalyst was produced in the same manner as in Example 1, except that the steps after the storage of the MoBi-containing liquid were continuously performed at 600 times the scale of Example 1. Specifically, it was performed as follows.
- a Mo-containing liquid hereinafter referred to as “A4 liquid”
- B4 liquid a Bi-containing liquid
- A4 liquid held at 50 ° C. was flowed at a flow rate of 793 (g / min) using an A4 liquid metering pump
- the B4 liquid held at 50 ° C. was 285 (g / min) using a B4 liquid metering pump.
- the two liquids were brought into contact in the parallel direction (cocurrent flow) in the Y-tube and the static mixer.
- the spray drying and firing conditions were the same as in Example 1, except that the hot air inlet temperature of the spray dryer during spray drying was changed to 320 ° C, the hot air outlet temperature of 230 ° C, and the rotary kiln firing temperature of 600 ° C.
- the catalyst was collected 100 hours after the start of catalyst production, and this was used as catalyst 4.
- Butadiene was produced in the same manner as in Example 1 except that catalyst 4 was used instead of catalyst 1.
- the standard deviation of catalyst 4 and the reaction results are shown in Table 1.
- Example 5 [Production of catalyst 5] The catalyst was prepared in the same manner as in Example 1 except that the Mo-containing liquid and the Bi-containing liquid were mixed with the Y-shaped tube and the static mixer and then directly stored in the spray dryer without being stored in the slurry agitation tank. Obtained (catalyst 5). In addition, the confluence
- A6 liquid kept at 98 ° C. and B6 liquid kept at 98 ° C. are fed into a T-shaped stainless steel cylindrical tube (no insert, inner diameter 15 mm, length 300 mm) (confluence) using a metering pump. 1 and inlet 2 were respectively supplied, and the two liquids were vertically merged at an angle of 90 °.
- the produced MoBi-containing liquid was fed from a T-tube outlet to a slurry agitation tank. This operation was performed for 10 minutes. The supply ratio during this period was varied between 0.5 times and 1.4 times the above-mentioned mass ratio 0.63, and all of the A6 liquid and B6 liquid (100 mass%) were merged.
- the supply of the A6 liquid to the T-tube at a flow rate of 820 (g / min) and the B6 liquid at a flow rate of 256 (g / min) was simultaneously started through the pipe, and the supply was continued for 3 minutes.
- the supply flow rates of the A6 solution and the B6 solution were changed, and the A6 solution was supplied simultaneously at a flow rate of 656 (g / min) and the B6 solution at a flow rate of 413 (g / min) for 2 minutes.
- the reaction temperature was 360 ° C., and the reaction pressure was 0.05 MPa (gauge pressure).
- the 1-butene concentration and 2-butene concentration in the n-butene-containing gas are 8% by volume and 2% by volume, respectively, based on the total raw material gas, and the contact time is 0.8 to 2.0 (g ⁇ sec / cc).
- the oxygen concentration at the outlet of the reactor was 0.8 to 1.2% by volume. Table 1 shows the reaction results when reacted for 24 hours under these reaction conditions.
- Example 7 [Production of catalyst 7]
- the composition of the metal oxide catalyst is Mo 12 Bi 0.4 Fe 2.3 Ni 2.5 Co 2.5 Cr 0.02 Rb 0.08 K 0.06 Mg 1.6 Ce 1.2 Si 29.
- the raw material charge mass was adjusted so as to be 4 O x and manufactured as follows. 1288 g of ammonium molybdate tetrahydrate was dissolved in 2298 g of pure water. To this liquid, 2980 g of silica sol containing 34% by mass of SiO 2 having an average particle diameter of 12 nm, 133 g of silica sol containing 41% by mass of SiO 2 having an average particle diameter of 40 nm and 442 g of pure water were added.
- the two liquids were merged at opposite angles.
- the produced MoBi-containing liquid was fed from a T-tube outlet to a slurry agitation tank. This operation was performed for 10 minutes.
- the supply ratio during this period was varied between 0.5 and 1.5 times the above-mentioned mass ratio of 0.56, and all of the A7 liquid and B7 liquid (100 mass%) were merged.
- the supply of the A7 solution to the T-shaped tube at a flow rate of 716 (g / min) and the B7 solution at a flow rate of 401 (g / min) was started simultaneously through the pipe, and the supply was continued for 2 minutes.
- the supply flow rates of the A7 solution and the B7 solution were changed, and the A7 solution was supplied simultaneously at a flow rate of 771 (g / min) and the B7 solution at a flow rate of 346 (g / min) for 2 minutes.
- the supply flow rates of the A7 solution and the B7 solution were changed, and the A7 solution was supplied simultaneously at a flow rate of 872 (g / min) and the B7 solution at a flow rate of 244 (g / min) for 2 minutes.
- the supply flow rates of the A7 solution and the B7 solution were changed, and the A7 solution was supplied simultaneously at a flow rate of 668 (g / min) and the B7 solution at a flow rate of 449 (g / min) for 2 minutes.
- the merging temperature of the A7 liquid and the B7 liquid was 35 ° C.
- the produced MoBi-containing liquid was further stirred at 50 ° C. for 1 hour.
- Example 8 [Production of catalyst 8]
- the Mo-containing liquid (same as the A1 liquid. However, hereinafter referred to as “A8 liquid”) and the Bi-containing liquid (same as the B1 liquid. However, hereinafter, “B8 liquid”.
- the mass ratio in this case was 0.36 as in Example 1.
- the supply ratio of the B8 solution to the A8 solution is 0.5 to 1.5 times the mass ratio of 0.36. It went so that it might be in the range. The remaining 40% by mass was performed outside the range of 0.5 to 1.5 times. Otherwise in the same manner as in Example 1, a catalyst was obtained (Catalyst 8).
- the supply flow rates of the A8 liquid and the B8 liquid were changed, and the A8 liquid was supplied simultaneously at a flow rate of 973 (g / min) and the B8 liquid at a flow rate of 105 (g / min) for 2 minutes.
- the supply flow rates of the A8 liquid and the B8 liquid were changed, and the A8 liquid was simultaneously supplied at a flow rate of 700 (g / min) and the B8 liquid at a flow rate of 378 (g / min) for 2 minutes.
- the confluence temperature of the A8 liquid and the B8 liquid was 50 ° C.
- Example 9 [Production of catalyst 12] Except that each raw material of Example 1 is used 20 times, Mo-containing liquid having the mass 20 times that of Example 1 (same as A1 liquid. However, hereinafter referred to as “A12 liquid”). And a Bi-containing liquid having the mass 20 times that of Example 1 (the same as the B1 liquid, but hereinafter referred to as “B12 liquid”). While stirring, the A12 liquid maintained at 50 ° C. was charged with the B12 liquid maintained at 50 ° C. to prepare a MoBi-containing liquid. A metered liquid pump was used for charging. Specifically, 56.9 kg of B12 liquid was supplied at a flow rate of 22.8 (kg / min) to 158.6 kg of A12 liquid.
- Catalysts 1-5, 8-13 Mo 12 Bi 0.8 Fe 2.5 Ni 4.6 K 0.12 Rb 0.05 Mg 1.1 Ce 1.5 Si 45.9
- Catalyst 6 Mo 12 Bi 1.0 Fe 1.6 Ni 2.0 Co 3.0 Rb 0.21 Mg 1.3 Ce 2.0 Si 20.4
- Catalyst 7 Mo 12 Bi 0.4 Fe 2.3 Ni 2.5 Co 2.5 K 0.06 Rb 0.08 Mg 1.6 Ce 1.2 Cr 0.02 Si 29.4
- the metal oxide catalyst of the present invention can be used in a process for producing a conjugated diolefin from a monoolefin having 4 or more carbon atoms. Moreover, the manufacturing method and manufacturing apparatus of the metal oxide catalyst of this invention can be employ
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
例えば、特許文献1には、打錠成型したモリブデン含有触媒を固定床反応器に充填し、n-ブテンと酸素とを含む原料ガスを供給してブタジエンを製造する方法が開示されている。
また、特許文献2には、Mo、Bi、Fe等の金属酸化物をシリカ等の担体に担持した触媒粉体粒子を流動床反応器に充填し、n-ブテンと酸素とを含む原料ガスと接触させてブタジエンを製造する方法が開示されている。
これに対し、特許文献2に記載の流動床反応方式は、反応器内を触媒粒子が激しく流動することにより、(1)伝熱性が高く、大きな発熱や吸熱を伴う反応時も反応器内の温度をほぼ均一に保持し、過度の反応進行を抑制できる、(2)エネルギーの局所的な蓄積が抑制されるため、爆発範囲内の原料ガスを反応させることが可能であり、原料濃度を高めて生産性を向上させることができる、という利点がある。したがって、流動床反応方式は、大きな発熱反応であるn-ブテンの酸化脱水素反応に適した反応方式といえる。
さらに、その製造方法に関しても、従来技術には課題がある。例えば、特許文献1では、一旦触媒前駆体を調製し、乾燥・焼成後、これを粉砕して、再度触媒調製を行なうという非常に煩雑な工程を必要とする。また、特許文献2にも触媒の製造方法が開示されているが、この方法でも十分に高い触媒性能を有する触媒は得られない。
さらに、MoBi含有金属酸化物触媒は、一般に、Mo含有液とBi含有液とを混合して得られたスラリー状のMoBi含有液を用いて製造されるところ、このMo含有液とBi含有液の混合方法が該触媒の表面におけるMoとBiの組成比の均一性に大きな影響を与えていることを見出した。そして、前記スラリーの調製の際にMo含有液とBi含有液とを特定の方法で混合すれば触媒表面におけるMoとBiの組成比が均一なMoBi含有金属酸化物触媒を製造できることを見出し、本発明を完成させた。
[1]下記式(1)で表されるバルク組成を有する、炭素数4以上のモノオレフィンと分子状酸素の酸化脱水素反応によって共役ジオレフィンを製造するための金属酸化物触媒であって、触媒粒子表面におけるMoモル濃度に対するBiモル濃度の比率を、触媒バルクにおけるMoモル濃度に対するBiモル濃度の比率で除した値の標準偏差が、0.3以下である、共役ジオレフィンを製造するための金属酸化物触媒。
Mo12BipFeqAaBbCcDdEeFfOx (1)
(式中、AはNi及びCoなる群からから選ばれる少なくとも1種の元素、Bはアルカリ金属元素から選ばれる少なくとも1種の元素、CはMg、Ca、Sr、Ba、Zn及びMnからなる群から選ばれる少なくとも1種の元素、Dは少なくとも1種の希土類元素、EはCr、In及びGaなる群からから選ばれる少なくとも1種の元素、FはSi、Al、Ti及びZrからなる群から選ばれる少なくとも1種の元素、Oは酸素であり、p、q、a、b、c、d、e、f及びxはそれぞれMo12原子に対するBi、Fe、A、B、C、D、E、F及び酸素の原子数を表し、0.1≦p≦5、0.5≦q≦8、0≦a≦10、0.02≦b≦2、0≦c≦5、0≦d≦5、0≦e≦5、0≦f≦200であり、xは存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。)
[2]前記標準偏差が0.2以下でかつ、式(1)におけるpが0.15≦p≦3である、[1]に記載の金属酸化物触媒。
[3]前記モノオレフィンがn-ブテンである、[1]又は[2]に記載の金属酸化物触媒。
[4]前記共役ジオレフィンが1,3-ブタジエンである、[1]から[3]のいずれかに記載の金属酸化物触媒。
[5]前記酸化脱水素反応を流動層反応で行う、[1]から[4]のいずれかに記載の金属酸化物触媒。
[6]式(1)で表されるバルク組成を有する、炭素数4以上のモノオレフィンと分子状酸素の酸化脱水素反応によって共役ジオレフィンを製造するための金属酸化物触媒の製造方法であって、
(i)少なくともMoを含むMo含有液と、少なくともBiを含むBi含有液とを用意する工程、
(ii)前記Mo含有液を第一の流路に連続的に供給し、前記Bi含有液を第二の流路に連続的に供給し、かつ第一の流路と第二の流路とを前記Mo含有液及び前記Bi含有液それぞれの供給個所よりも下流で合流させることによって、前記Mo含有液と前記Bi含有液とを混合してMoBi含有液を得る工程、及び
(iii)前記MoBi含有液を乾燥させる工程、
を含む、金属酸化物触媒の製造方法。
Mo12BipFeqAaBbCcDdEeFfOx (1)
(式中、AはNi及びCoからなる群から選ばれる少なくとも1種の元素、Bはアルカリ金属元素から選ばれる少なくとも1種の元素、CはMg、Ca、Sr、Ba、Zn及びMnからなる群から選ばれる少なくとも1種の元素、Dは少なくとも1種の希土類元素、EはCr、In及びGaからなる群から選ばれる少なくとも1種の元素、FはSi、Al、Ti及びZrからなる群から選ばれる少なくとも1種の元素、Oは酸素であり、p、q、a、b、c、d、e、f及びxはそれぞれMo12原子に対するBi、Fe、A、B、C、D、E、F及び酸素の原子数を表し、0.1≦p≦5、0.5≦q≦8、0≦a≦10、0.02≦b≦2、0≦c≦5、0≦d≦5、0≦e≦5、0≦f≦200であり、xは存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。)
[7]前記(ii)工程と前記(iii)工程との間に、さらに、
(iv)前記MoBi含有液をさらに混合する工程
を有する、[6]に記載の金属酸化物触媒の製造方法。
[8]前記(ii)工程と前記(iii)工程との間に、さらに、
(v)前記MoBi含有液を貯留する工程
を有する、[6]又は[7]に記載の金属酸化物触媒の製造方法。
[9]前記(i)、(ii)及び(v)工程の一連の処理がバッチ処理方式で行われ、(ii)工程で得られたMoBi含有液の一バッチ分全量が(v)工程において貯留される、[8]に記載の金属触媒の製造方法であって、
前記(ii)工程において、前記Mo含有液及び前記Bi含有液の前記第一の流路又は前記第二の流路への質量供給速度を、各々、mA(g/min)及びmB(g/min)としたときに、前記Mo含有液及び前記Bi含有液の一バッチあたりの全供給量MA(g)及びMB(g)の合計量の60質量%以上が、式(3)を満たすように供給される、金属酸化物触媒の製造方法。
(mB/mA)/(MB/MA)=0.5~1.5 (3)
[10]前記MoBi含有液が、前記(iii)工程へ連続的に供される、[6]又は[7]に記載の金属酸化物触媒の製造方法。
[11]前記(ii)工程において、前記Mo含有液及び前記Bi含有液の前記第一の流路又は第二の流路へモル供給速度を、各々、mα(mol/min)及びmβ(mol/min)としたときに、
前記Mo含有液及び前記Bi含有液が、式(4)を満たすように供給される、
[6]、[7]又は[10]に記載の金属酸化物触媒の製造方法。
(mβ/mα)/(p/12)=0.8~1.2 (4)
[12]式(1)で表されるバルク組成を有する、炭素数4以上のモノオレフィンと分子状酸素の酸化脱水素反応によって共役ジオレフィンを製造するための金属酸化物触媒の製造装置であって、
少なくともMoを含むMo含有液を送液するための第一の流路、少なくともBiを含むBi含有液を送液するための第二の流路、及び、前記第一の流路と第二の流路が合流する合流部を含む、金属酸化物触媒の製造装置。
Mo12BipFeqAaBbCcDdEeFfOx (1)
(式中、AはNi及びCoからなる群から選ばれる少なくとも1種の元素、Bはアルカリ金属元素から選ばれる少なくとも1種の元素、CはMg、Ca、Sr、Ba、Zn及びMnからなる群から選ばれる少なくとも1種の元素、Dは少なくとも1種の希土類元素、EはCr、In及びGaからなる群から選ばれる少なくとも1種の元素、FはSi、Al、Ti及びZrからなる群から選ばれる少なくとも1種の元素、Oは酸素であり、p、q、a、b、c、d、e、f及びxはそれぞれMo12原子に対するBi、Fe、A、B、C、D、E、F及び酸素の原子数を表し、0.1≦p≦5、0.5≦q≦8、0≦a≦10、0.02≦b≦2、0≦c≦5、0≦d≦5、0≦e≦5、0≦f≦200であり、xは存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。)
[13]さらに、前記合流部の下流に位置する混合器を有する、[12]に記載の金属酸化物触媒の製造装置。
[14]前記混合器が静止型混合器である、[12]又は[13]に記載の金属酸化物触媒の製造装置。
本実施形態の金属酸化物触媒(以下、単に「触媒」ともいう)は、炭素数4以上のモノオレフィンと分子状酸素から共役ジオレフィンを生成する酸化脱水素反応を促進するものであり、そのバルク組成、すなわち触媒全体を構成する各元素の比率は、下記式(1)により表される。
あるMoBi含有金属酸化物触媒のバルク組成が式(1)の組成を満たすかどうかは、周知の元素定量分析方法、たとえばICP発光分光分析法、原子吸光分析法、ICP質量分析法、蛍光X線分析法等で求めることができ、実施例においてはICP発光分光分析法で求めた組成を採用した。
Mo12BipFeqAaBbCcDdEeFfOx (1)
(式中、AはNi及びCoからなる群から選ばれる少なくとも1種の元素、Bはアルカリ金属元素から選ばれる少なくとも1種の元素、CはMg、Ca、Sr、Ba、Zn及びMnからなる群から選ばれる少なくとも1種の元素、Dは少なくとも1種の希土類元素、EはCr、In及びGaからなる群から選ばれる少なくとも1種の元素、FはSi、Al、Ti及びZrからなる群から選ばれる少なくとも1種の元素、Oは酸素であり、p、q、a、b、c、d、e、f及びxはそれぞれMo12原子に対するBi、Fe、A、B、C、D、E、F及び酸素の原子比を表し、0.1≦p≦5、0.5≦q≦8、0≦a≦10、0.02≦b≦2、0≦c≦5、0≦d≦5、0≦e≦5、0≦f≦200であり、xは存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。)
式(1)で表されるバルク組成を有する金属酸化物触媒を用いることにより共役ジオレフィンを高収率で製造することができる。
構成元素が上述のものであって、それらの原子比率が上述の範囲内であると、ブタジエンをより一層高収率で製造することができる。
特に、FがSiであり、かつ、fが20≦f≦100である場合には、適度なブタジエン製造反応活性を有する為、より好ましい。適度な活性を有することにより、反応による発熱に起因する局部的な蓄熱を防止でき触媒寿命を延ばすことができる。20≦f≦50であることが更に好ましい。
ここで、触媒粒子表面におけるMoモル濃度及びBiモル濃度は、SEM-EDX(Scannning Electron Microscopes-Energy Dispersive X-ray Spectroscopy:走査型電子顕微鏡-エネルギー分散型X線分光法)組成分析により求めることができ、触媒バルクにおけるMoモル濃度及びBiモル濃度は、例えば、ICP発光分光分析法で求めることができる。
また、上記標準偏差は、以下の式(2)により求めることができる。
標準偏差={((S1-μ)2+(S2-μ)2+・・・+(S100-μ)2)/100[個数]}1/2 (2)
式(2)中、Sk(k=1~100)は、任意に選ばれた100個の触媒粒子中のk個目の触媒粒子の表面におけるMoモル濃度に対するBiモル濃度の比率(Bi/Mo)surfを、(Bi/Mo)bulkで除した値である。(Bi/Mo)bulkは、ICP発光分光分析法で求めた、触媒バルクにおけるMoモル濃度に対するBiモル濃度の比率である。μは100個のSk(k=1~100)の平均値(=(S1+S2・・・+S100)/100)である。
標準偏差はばらつきの指標である。標準偏差が小さい程、平均値からのばらつきは小さい。従って、式(2)の値が小さい程、触媒粒子の表面組成がより均一であることを意味する。
本発明によれば、炭素数4以上のモノオレフィンと分子状酸素の酸化脱水素反応により共役ジオレフィンを製造するにあたり、式(2)の値が0.3以下である触媒を用いることによって、高収率で共役ジオレフィンを製造することが可能である。式(2)の値は、0.2以下であることが好ましく、0.15以下であることがより好ましく、0.1以下であることがさらに好ましい。
上述の表面組成が均一で、かつ式(1)で表されるバルク組成を有する金属酸化物触媒は、例えば、本実施形態の製造方法(以下、「第一の製造方法」ということもある。)により製造することができる。
第一の製造方法は、(i)少なくともMoを含むMo含有液と、少なくともBiを含むBi含有液とを用意する工程と、(ii)該Mo含有液と該Bi含有液とを混合してMoBi含有液を得る工程とを含み、さらに、(iii)MoBi含有液を乾燥させる工程を含む。該(iii)工程の後に、さらに、焼成工程を含んでもよい。
また、(ii)工程と(iii)工程の間に、MoBi含有液を一定量貯留する工程((v)工程)を設けることができる。
(ii)工程で調製したMoBi含有液は、そのまま連続的に(iii)工程に供給してもよいし、(iv)工程を経た後に(iii)工程に供給してもよいし、その一部又は全量を一旦貯留((v)工程)してから(iii)工程に供給してもよい。
(v)工程を設け、MoBi含有液を一旦貯留する場合は、(ii)工程で調製したMoBi液の全量、又は(ii)工程の後に(iv)工程を行って調製したMoBi含有液の全量を貯留することが好ましい(バッチ処理方式)。バッチ処理方式の場合、(ii)工程においてMo含有液とBi含有液との供給比率にずれが生じた場合でも、(v)工程において原料の全量が混合されることになり、すなわち意図する触媒組成に均一化されたMoBi含有液を(iii)工程に送ることができる。
本実施形態において、連続供給方式とバッチ処理方式のいずれを選択するかは特に問わないが、短時間に触媒を製造したい場合は連続処理方式、供給比率のずれの許容幅を広げる場合はバッチ処理方式を選択することが好ましい。
(i)工程及び(ii)工程は、触媒原料を含むスラリーを調製する工程である。
具体的には、(i)少なくともMoを含有するMo含有液(触媒成分となるMoの原料を含む液であり、以下「A液」とも言う。)と、少なくともBiを含有するBi含有液(触媒成分となるBiの原料を含む液であり、「B液」とも言う。)とを用意する工程と、(ii)両者を混合する工程を含む(以下、Mo含有液とBi含有液のことを「2液」ということもある)。前記2液を混合することにより、スラリーであるMoBi含有液が形成される。
このMoBi含有液は、MoBi含有金属酸化物触媒の前駆体であり、この前駆体の生成条件が、製造する触媒粒子の表面組成の均一性に大きく影響することが本発明者らの研究により分かった。
本実施形態においては、(ii)工程において、Mo含有液及びBi含有液を、各々、第一及び第二の流路に連続的に供給し、第一の流路と第二の流路とをMo含有液及びBi含有液それぞれの供給個所よりも下流で合流させてMoBi含有液を調製することによって、表面組成の均一性の高い触媒粒子を製造することを実現した。
Moの原料としては、水、硝酸などに可溶な塩が好ましく、例えば、アンモニウム塩であるモリブデン酸アンモニウムが挙げられる。
Bi、Fe、Ni、Co、アルカリ金属(Li、Na、K、Rb、Cs、Fr)、Mg、Ca、Sr、Ba、Zn、Mn、希土類(Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)、Cr、In、Gaの原料としても、上記と同様に、水、硝酸などに可溶な塩が好ましく、例えば、硝酸塩、塩酸塩、硫酸塩、有機酸塩等が挙げられる。特に、水、硝酸などに溶け易い観点から、硝酸塩が好ましい。例えば、硝酸ビスマス、硝酸鉄、硝酸ニッケル、硝酸コバルト、硝酸カリウム、硝酸ルビジウム、硝酸マグネシウム、硝酸カルシウム、硝酸ストロンチウム、硝酸バリウム、硝酸亜鉛、硝酸マンガン、硝酸ランタン、硝酸セリウム、硝酸クロム、硝酸インジウム、硝酸ガリウム等が挙げられる。これらは一種を単独で用いても二種以上を併用してもよい。
Si、Al、Ti、Zrの原料としては、SiO2、Al2O3、TiO2、ZrO2等の酸化物が好ましい。ブタジエンを製造する反応の際に、副生物を増加させる酸点が少ないという観点から、SiO2が特に好ましい。SiO2の原料としては、シリカゾル(コロイダルシリカとも呼ばれる。)、粉末状シリカ等が挙げられる。取り扱いの容易さからシリカゾルが特に好ましい。例えば、スノーテックス(日産化学工業製)、Nalcoシリカゾル(ナルコジャパン製)等である。シリカゾルの場合、SiO2の平均粒子径は、5~100nmの範囲であることが好ましく、10~50nmの範囲であることがより好ましい。また、異なる平均粒子径を有するシリカゾルを混ぜて用いることもできる。
なお、最終的に製造された触媒における各元素の原子比率は、酸素原子を除いて、触媒製造時に用いた触媒原料の原子比率と基本的に変化はない。
また、触媒原料の各金属塩の溶解性を増す目的で、硝酸、塩酸、硫酸等の無機酸を添加することも好ましい。後述する焼成工程時に揮発し触媒への残留が少ないことから、硝酸が特に好ましい。
さらに、Mo含有液にはMoの溶解性を増すためにアンモニア水を添加することも好ましい。
Mo含有液は、上記Moの原料を水等の水性媒体に溶解又は分散させて調製することが好ましい。この液にアンモニア水を加え、Mo原料の溶解度を増すことも好ましい。Mo含有液におけるMo原子濃度は0.1~30wt%の範囲内であることが好ましい。
Mo含有液とは別にBi含有液を調製する。Bi含有液は、上記Biの原料を水等の水性媒体に溶解又は分散させて調製することが好ましい。Bi含有液は酸性であることが好ましく、Bi含有液が硝酸を含むと、Biの原料の溶解度を増すためより好ましい。Bi含有液におけるBi原子濃度は0.1~10wt%の範囲内であることが好ましい。
すなわち、(ii)工程において、Mo含有液及びBi含有液の第一の流路又は第二の流路へのモル供給速度(ただし、各々、Moのモル供給速度、Biのモル供給速度)を、各々、mα(mol/min)及びmβ(mol/min)としたときに、Mo含有液及びBi含有液が、以下の式(4)を満たすように供給されることが好ましい。
(mβ/mα)/(p/12)=0.8~1.2 (4)
すなわち、Mo含有液及びBi含有液が、以下の式(3)を満たすように供給されることが好ましい。
(mB/mA)/(MB/MA)=0.5~1.5 (3)
供給比率が質量比率の0.5倍~1.5倍の範囲であると、金属酸化物触媒の粒子表面の組成の均一性をより高めることができる。(mB/mA)/(MB/MA)は、0.8~1.2がより好ましく、1.0が特に好ましい。
製造する触媒の組成を、式(1)においてp=1であるもの(Mo12原子に対してBi1原子)とし、(i)工程で準備する一バッチ分のMo含有液は、Moの原料を必要量含みその全量(MA)が100質量部であり、(i)工程で準備する一バッチ分のBi含有液はBiの原料を必要量(Mo含有液中のMoのモル数の1/12)含み、その全量(MB)が50質量部とする。
この2液を、単位時間当たりの質量供給量(質量供給速度)(g/min)の比率で表して、Mo含有液:Bi含有液=100:50で供給すると、質量比率、供給比率は、各々、次の通りである。
質量比率(MB/MA)
=50/100=0.5
供給比率(mB/mA)
=50/100=0.5
したがって、その場合が、供給比率が質量比率の1.0倍であることに相当する。
同様に、Mo含有液:Bi含有液=100:25(質量供給速度比)で供給する場合が、供給比率が質量比率(0.5)の0.5倍であることに相当する。Mo含有液:Bi含有液=100:75(質量供給速度比)で供給する場合が(供給比率=75/100=0.75)、供給比率が質量比率(0.5)の1.5倍であることに相当する。
特に好ましい実施形態である、供給比率が質量比率の1.0倍である場合、(ii)工程においては、Mo含有液の一バッチ分全供給量に対するBi含有液の一バッチ分全供給量の比率と同じ比率で2液を供給し、合流させることになり、それは、すなわち、MoとBiの供給モル比率が、製造する触媒の組成式(1)におけるMoとBiのモル比率、すなわちp/12、と一致することになる。
それに対して、第一の製造方法では、2液が合流部に同時に供給されるため、混合液中の成分濃度のアンバランスが小さい。
特に、Mo含有液とBi含有液とを特定の比率の範囲内で供給する場合には、両者を混合する工程のどの段階においても、混合液中のMoとBiの原子比率が製造する触媒組成の原子比率に近い状態でスラリーを形成することになる。このような状態でスラリーを調製することによって、最終的に製造された触媒粒子の表面におけるMoとBiの組成比をより均一にすることができる。
具体的には、Mo含有液とBi含有液の一バッチあたりの全供給量の合計量の60質量%以上を、供給比率が質量比率の0.5倍~1.5倍となるように供給することが好ましく、80質量%以上を0.5倍~1.5倍となるように供給することがさらに好ましく、100質量%を(すなわち、(ii)工程の全工程に亘って)0.5倍~1.5倍となるように供給することが特に好ましい。
このことを、上述の、Mo12原子分の原料を含むMo含有液100質量部と、Bi1原子分の原料を含むBi含有液50質量部の例で説明する。この場合、Mo含有液とBi含有液の全供給量の合計量は150質量部であり、その60質量%以上とは90質量部以上に相当する。
すなわち、供給比率が質量比率の0.5倍~1.5倍となるように、2液の全供給量の合計量の60質量%以上を供給するとは、単位時間当たりの供給量(質量供給速度)の比率で表して、Mo含有液:Bi含有液=100:25~100:75の範囲内で2液の合計の90質量部以上を接触させることに相当する。
撹拌温度は、2液を合流させる際の合流温度と同程度とすることが好ましく、具体的には35℃~80℃が好ましい。
第一及び第二の流路へのMo含有液及びBi含有液の供給手段に限定はなく、例えば、定量供給装置を使用することが好ましい。定量供給装置を使用することにより、より正確な比率で2液を供給することができる。該定量供給装置としては、特に限定されないが定量送液ポンプが好ましい。
2液が合流する合流部としては、2液の合流ができれば特に限定されないが、例えばY字状またはT字状等形状の、管でもよい。該管の断面形状は例えば円形(円筒)であってもよく、また内部にMoBi含有液の混合を促す機構や内挿物を設けることも好ましい。2液を合流させる角度は並流であっても、垂直であっても、対向であってもよい。
また混合器の別の例としては、図2に示すような静止型混合器(配管とその中に固定されたねじられた板とを主要部材とし、配管内に供給された流体は、ねじれ面に沿って流れ進んで行くことで混合される)が挙げられる。静止型混合器の一例としては、スタティックミキサー(ノリタケカンパニーリミテド製)等がある。
MoBi含有液は乾燥前においてpHが3以下であることが好ましい。より好ましくは2以下であり、さらに好ましくは1以下である。pHの調節は、例えば、原料に加える酸性溶液の添加量によって調節できる。pHが3以下であればMoBi含有液の粘度の増加を抑制でき、次工程の(iii)乾燥工程へのMoBi含有液の供給が安定的に行える。
噴霧乾燥工程においては、まず、MoBi含有液を噴霧化する。この噴霧化の方法としては、特に限定されないが、例えば、遠心方式、二流体ノズル方式、及び高圧ノズル方式等が挙げられる。特にノズルの閉塞等を伴わない観点から遠心方式が好ましい。
噴霧化されたMoBi含有液の液滴の乾燥方法に限定はないが、例えば、スプレードライヤー内の熱風によって乾燥されることが好ましい。その際、熱風入口温度は100℃~400℃、熱風出口温度は150℃~300℃とすることが好ましい。
なお、噴霧化の際には、噴霧粒子径が目的とする触媒の粒径に応じた所望の範囲となるよう、噴霧装置を調整することが好ましい。例えば、触媒を流動床反応に用いる場合には、触媒の平均粒子径は10~150μm程度が好ましいため、この範囲の平均粒子径になるように噴霧化装置(アトマイザー)の回転数を適宜選択する。一般にアトマイザー回転数が高いほど、平均粒子径は小さくなる。
また、(i)、(ii)及び(v)工程又は(i)、(ii)、(iv)及び(v)工程の一連の処理がバッチ処理方式で行われる場合には、(v)工程における貯留量は、(ii)工程で得られたMoBi含有液の全量とすることが好ましい。(ii)工程で調製されるMoBi含有液の全量をいったん貯留してから乾燥工程((iii)工程)に供給することにより、(ii)工程においてMo含有液及びBo含有液の供給量が変動する場合においても、(iii)工程に供給されるMoBi含有液中のMoとBiの原子数比を式(1)における両者の原子数比と等しくすることができ、得られる触媒粒子の組成をより目的に近いものとすることができる。
貯留容器に限定はなく、例えば、貯留容器として撹拌機能を有するものを用い、(v)工程と(iv)工程を同時に行うこともできる。
例えば後述する実施例9にて示すように、原料スラリー調製において、攪拌混合槽を使い、どちらか一方の液に他方の液を投入するMo含有液とBi含有液とのバッチ混合を採用する場合であっても、1バッチで50kg以上の金属酸化物触媒を製造するようにすると共に、投入する液の投入に掛かる時間を8分以内、好ましくは4分以内とすることで、2液の均一混合を促進し、本実施形態の金属酸化物触媒を得ることができる(第二の製造方法)。
これは、投入するMo/Bi含有液の量を大きくすることで、投入液の質量を増し、投入される側の液との衝突エネルギーが大きくなることと短時間に処理することの相乗効果によりスラリーの均一混合が達成されると考えられる。
本実施形態の金属酸化物触媒は、炭素数が4以上のモノオレフィン(例えば、n-ブテテン)と分子状酸素の酸化脱水素反応によって共役ジオレフィン(例えば、1,3-ブタジエン)を生成する際に利用することができる。
共役ジオレフィンは、金属酸化物触媒の存在下、モノオレフィンを酸化脱水素する反応により製造することができ、この反応方式は、流動床方式であっても固定床方式であってもよい。反応熱による局所的な蓄熱が起こり難く、原料ガス中のn-ブテン濃度を高めることができ、生産性を高めることができるという点で、反応は流動床方式で行うことが好ましい。
モノオレフィンは、炭素-炭素二重結合を分子内に一つのみ有するもので、通常は官能基を有しない有機化合物であって、直鎖及び/又は分岐鎖の炭化水素である。炭素数の上限は特に限定されないが、反応性の観点で6以下が好ましい。炭素数4以上のモノオレフィンの例としては、n-ブテン(1-ブテン、2-ブテン)、1-ペンテン、2-ペンテン、イソペンテン(2-メチル-1-ブテン、3-メチル-1-ブテン)、1-ヘキセン、2-ヘキセン、2,3-ジメチルブテンが挙げられる。上記した中でも、生成物の汎用性の観点から、n-ブテン又はイソペンテンをモノオレフィンとして用いることが好ましい。一種のモノオレフィンを原料としてもよいし、二種以上のモノオレフィンを原料としてもよい。
モノオレフィンは必ずしも高純度である必要はなく、任意の混合物や、工業グレードを使用することができる。例えばn-ブテンの場合、ナフサ熱分解で副生するC4留分からブタジエンを回収した後の残留成分(ラフィネート1)やこの残留成分から更にイソブチレンを回収した後の残留成分(ラフィネート2)、n-ブタンの脱水素反応もしくは酸化脱水素反応により得られるブテン留分、又はエタン熱分解やバイオマスエタノールの脱水反応により得られるエチレンの接触転化反応から副生するC4留分、エチレンの二量化によって得られるn-ブテンなどを使用することができる。バイオマスエタノールとは、植物資源から得られるエタノールであり、具体的にはサトウキビやトウモロコシ等の発酵により得られるエタノールや廃材、間伐材、稲わら、農作物等の木質資源から得られるエタノールが挙げられる。
モノオレフィンには、モノオレフィンと空気の酸化脱水素反応に不活性なパラフィンが含まれていてもよい。パラフィンの例として、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナンなどを挙げることができる。また、モノオレフィンと空気の酸化脱水素反応の反応生成ガスから目的物であるブタジエン、イソプレンなどを分離した後、未反応のブテン、イソペンテンなどのモノオレフィンの少なくとも一部を、反応器に供給されるモノオレフィンに混合して再度反応させることもできる。
また、モノオレフィンは、モノオレフィン含有ガスとして反応器へ供給することが好ましく、5℃~35℃程度の常温下で気体でないモノオレフィンは、スチームや伝熱コイルなどの加熱部を有するガス化装置を用いてガス化した後、反応器に供することが好ましい。
反応器に供給するモノオレフィンの濃度は、共役ジオレフィンの生産性の観点から、全原料ガス(モノオレフィン含有ガスと酸素含有ガスの合計)中のモノオレフィン濃度は、2体積%~30体積%が好ましく、3体積%~25体積%がより好ましい。
モノオレフィン含有ガスと酸素含有ガスの供給方法に限定はなく、予め両ガスを混合した後、反応器に供給してもよいし、別々に反応器に供給してもよい。
反応温度は300℃~500℃が好ましく、300℃~420℃がより好ましい。
反応圧力は-0.1MPa(ゲージ圧力)~0.5MPa(ゲージ圧力)が好ましく、常圧~0.1MPa(ゲージ圧力)がより好ましい。
共役ジオレフィンの製造において、次式で定義する触媒と全原料ガスとの接触時間は、0.5(g・sec/cc)~5.0(g・sec/cc)が好ましく、0.7(g・sec/cc)~3.5(g・sec/cc)がより好ましい。
接触時間(g・sec/cc)
=W/F×60×273.15/(273.15+T)×(P×1000+101.325)/101.325
〔式中、Wは触媒充填量(g)、Fは全原料ガス量(cc/min)、Tは反応温度(℃)、Pは反応圧力(MPa(ゲージ圧力))〕。
反応器出口での生成ガス中の酸素濃度は、0.02体積%~3体積%が好ましく、0.2体積%~2体積%がより好ましく、0.9体積%~1.5体積%がさらに好ましい。
実施例及び比較例において、反応成績(触媒性能)を示すために用いたn-ブテン転化率及びブタジエン収率は次式で定義される。
n-ブテン転化率(%)
=(反応したn-ブテンのモル数)/(供給したn-ブテンのモル数)×100
ブタジエン収率(%)
=(生成したブタジエンのモル数)/(供給したn-ブテンのモル数)×100
なお、反応したn-ブテンのモル数は、供給したn-ブテンのモル数から反応生成ガス中に残存する未反応n-ブテンのモル数を差し引くことにより算出し、また、反応生成ガス中のブタジエンや未反応n-ブテンのモル数はガスクロマトグラフィー(島津製作所製、型式:GC2010プラス、検出器:TCD、FID)によって分析した。
実施例及び比較例における金属酸化物触媒の粒子表面の組成の均一性の評価は次のようにして行い、粒子表面組成の標準偏差として表した。
SEM-EDX(Scanning Electron Microscopes-Energy Dispersive X-ray Spectroscopy:エネルギー分散型X線分光法)組成分析装置(SEM…日立製作所製、型式:SU-70、EDX…堀場製作所製、型式:EMAX・X-max)の試料台に、触媒粉末(焼成粉末)を少量採取し、無作為に選択した粒子画像における真円相当径(面積が等しい真円の直径)が、粒度分布計(日機装製、型式:Microtrac MT300)で決定される平均粒子径±10μm(ここでは、40μm以上60μm以下)である触媒粒子100個について、それぞれの粒子表面の10μm×10μmの面範囲のMoモル濃度とBiモル濃度とを測定し(倍率1500倍、加速電圧20kV)、触媒粒子表面のMo濃度に対するBi濃度の比率(Bi/Mo)surfを求めた。
次に、同じ触媒粉末から20mgを量り取り、これを210℃の熱王水で溶解し、さらに超純水で測定範囲に薄め、ICP発光分光分析(セイコーインスツル株式会社製、SPS3500DD)で、各構成原子の濃度を測定し、そのバルク組成を算出すると共に、触媒バルクのMo濃度に対するBi濃度の比率(Bi/Mo)bulkを求めた。なお、後述の触媒1~13おいては、バルク組成、すなわち触媒を構成する各元素のモリブデンに対する比率(触媒バルクのMoモル濃度及びBiモル濃度を含む)は、いずれも、原料仕込質量から計算される理論値と一致していた(Mo12基準で表記したモル組成において、上位2桁まで仕込質量比と同一であった)。
この(Bi/Mo)bulkで前述の100個それぞれの粒子の(Bi/Mo)surfを除した値をSk(k=1~100)とし、100個のSkの平均値μを算出し、式(2)から標準偏差を求めた。
標準偏差={((S1-μ)2+(S2-μ)2+・・・+(S100-μ)2)/100[個数]}1/2 (2)
[触媒1の製造]
金属酸化物触媒を、その組成がMo12Bi0.8Fe2.5Ni4.6K0.12Rb0.05Mg1.1Ce1.5Si45.9Oxとなるよう原料仕込質量を調整し、次のようにして製造した。
モリブデン酸アンモニウム・4水和物1032gを純水1841gに溶解した。この液に34質量%の平均粒子径12nmのSiO2を含むシリカゾルを3922gと純水523gを加えた。さらに純水533gにシュウ酸80gを溶解した液を加えた。その全量は7931gであった(Mo含有液。以降、「A1液」と称す)。
硝酸ビスマス・5水和物190g、硝酸セリウム・6水和物317g、硝酸第二鉄・9水和物489g、硝酸ニッケル・6水和物659g、硝酸マグネシウム・6水和物139g、硝酸カリウム5.9g、硝酸ルビジウム3.6gを、16.6質量%の硝酸液1041gに溶解した。その全量は2845gであった(Bi含有液。以降、「B1液」と称す)。
上記Y字管に、50℃に保持したA1液をA1液定量ポンプを用いて793(g/min)の流量、50℃に保持したB1液をB1液定量ポンプを用いて285(g/min)の流量で同時に供給し、Y字管と静止型混合器内において2液を並行方向(並流)に接触させた。この操作を10分間行い、スラリーであるMoBi含有液を調製した。この間のA1液[Mo含有液]に対するB1液[Bi含有液]の供給比率は285(g/min)/793(g/min)=0.36であり、Mo含有液全量に対するBi含有液全量の質量比率2845(g)/7931(g)=0.36の1.0倍であった。この供給比率でA1液とB1液の全部(100質量%)を合流させた。その間の合流温度は50℃であった。
このMoBi含有液を、静止型混合器の下流に設けたスラリー攪拌槽に全量貯留し、2液の供給終了から更に50℃で1時間攪拌を続けた。このMoBi含有液は噴霧乾燥前においてpHが1以下であり、スラリー状であった。
次いで、スプレードライヤー(大川原化工機製、型式:OC-16)を用いてこのMoBi含有液を噴霧乾燥し、乾燥粉末を得た。なお、熱風入口温度は250℃、熱風出口温度140℃とした。
得られた乾燥粉末をロータリーキルン(ニッカトー製、型式:RK125140、焼成管内径80mm、焼成管長さ:1500mm、堰数:8枚、堰高さ:10mm)を用いて、空気雰囲気下に590℃で2時間焼成し触媒を得た(触媒1)。
次に、この触媒1の粒子100個の表面Mo濃度とBi濃度をSEM-EDXで測定し、Moモル濃度に対するBiモル濃度の比率(Bi/Mo)surfを求めた。また、上記で求めた触媒バルク組成より、(Bi/Mo)bulkを求め、(Bi/Mo)bulkで100個の粒子それぞれの(Bi/Mo)surfを除した値S1・・・S100を求めた。そして、それらの平均値(S1・・・S100の平均値)μを求め、式(2)を用いて標準偏差を求めた。結果を表1に示す。
触媒1の27gを、内径25.4mmのパイレックス(登録商標)ガラス製流動床反応管に充填した。この反応管に、n-ブテン含有ガスとして1-ブテンを、分子状酸素含有ガスとして酸素と窒素とを、1対8~1対11の流量比で流しブタジエン製造反応を行った。反応温度は360℃、反応圧力は0.05MPa(ゲージ圧)であった。1-ブテン濃度は全原料ガスを基準として10体積%、触媒1と原料ガスとの接触時間は0.8~1.0(g・sec/cc)であった。反応器出口の酸素濃度は0.8~1.2体積%であった。この反応条件で24時間反応した時の反応成績(1-ブテン転化率とブタジエン収率)を表1に示す。
[触媒2の製造]
実施例1と同様にして、Mo含有液(A1液と同じもの。ただし、以降、「A2液」と称す。)とBi含有液(B1液と同じもの。ただし、以降、「B2液」と称す。)を調製した。A2液、B2液の供給全量は実施例1と同様とし、したがって、この場合の質量比率は、実施例1と同様に0.36であった。
A2液に対するB2液の供給比率を、上記の質量比率0.36の0.8倍から1.2倍の間で変動させた以外は、実施例1と同様にして触媒を得た(触媒2)。この範囲の供給比率でA2液とB2液の全部(100質量%)を合流させた。
具体的には次のように行った。上記Y字管にA2液を第一の流路を通じて837(g/min)の流量、B2液を第二の流路を通じて241(g/min)の流量で3分間同時に供給した。この供給比率は、241(g/min)/837(g/min)=0.29であり、上記の質量比率0.36の0.8倍であった。
次に、A2液、B2液の供給流量を変更し、A2液を792(g/min)の流量、B2液を285(g/min)の流量で4分間同時に供給した。このときの供給比率は、285(g/min)/792(g/min)=0.36であり、上記の質量比率0.36の1.0倍であった。
さらに、A2液、B2液の供給流量を変更し、A2液を753(g/min)の流量、B2液を325(g/min)の流量で3分間同時に供給した。このときの供給比率は、325(g/min)/753(g/min)=0.43であり、上記の質量比率0.36の1.2倍であった。
なお、いずれの段階においても、A2液とB2液の合流温度は50℃であった。生成したMoBi含有液は噴霧乾燥前においてpHが1以下であり、スラリー状であった。
[触媒2を用いたブタジエンの製造(流動床反応)]
触媒1の代わりに触媒2を用いた以外は実施例1と同様にしてブタジエンを製造した。
触媒2の標準偏差及び反応成績を表1に示す。
[触媒3の製造]
実施例1と同様にして、Mo含有液(A1液と同じもの。ただし、以降、「A3液」と称す。)とBi含有液(B1液と同じもの。ただし、以降、「B3液」と称す。)を調製した。A3液、B3液の供給全量は実施例1と同様とし、したがって、この場合の質量比率は、実施例1と同様に0.36であった。
A3液に対するB3液の供給比率を、上記の質量比率0.36の0.5倍から1.5倍の間で変動させた以外は、実施例1と同様にして触媒を得た(触媒3)。この範囲の供給比率でA3液とB3液の全部(100質量%)を接触させた。
具体的には次のように行った。上記Y字管にA3液を913(g/min)、B2液を164(g/min)で3分間同時に供給した。この供給比率は、164(g/min)/913(g/min)=0.18であり、上記の質量比率0.36の0.5倍であった。
次にA3液、B3液の供給流量を変更し、A3液を792(g/min)、B3液を285(g/min)で5分間同時に供給した。この供給比率は、285(g/min)/792(g/min)=0.36であり、上記の質量比率0.36の1.0倍であった。
さらに、A3液、B3液の供給流量を変更し、A3液を700(g/min)、B3液を378(g/min)で2分間同時に供給した。この供給比率は、378(g/min)/700(g/min)=0.54であり、上記の質量比率0.36の1.5倍であった。 なお、いずれの段階においても、A3液とB3液の合流温度は50℃であった。生成したMoBi含有液は噴霧乾燥前においてpHが1以下であり、液状であった。
[触媒3を用いたブタジエンの製造(流動床反応)]
触媒1の代わりに触媒3を用いた以外は実施例1と同様にしてブタジエンを製造した。
触媒3の標準偏差及び反応成績を表1に示す。
[触媒4の製造]
実施例1のスケールの600倍で、MoBi含有液の貯留以降の工程を連続して行った以外は実施例1と同様にして金属酸化物触媒を製造した。
具体的には次にように行った。実施例1の10倍のスケールで、Mo含有液(以降、「A4液」と称す。)とBi含有液(以降、「B4液」と称す。)を調製した。上記Y字管に、50℃に保持したA4液をA4液定量ポンプを用いて793(g/min)の流量、50℃に保持したB4液をB4液定量ポンプを用いて285(g/min)の流量で同時に供給し、Y字管と静止型混合器内において2液を並行方向(並流)に接触させた。このときのモル供給速度は、
Moについては7×10320(g)/1235.85(g/mol)×793(g/min)/79310(g)=0.58(mol/min)、
Biについては1900(g)/485.07(g/mol)×285(g/min)/28450(g)=0.039(mol/min)
であり、Mo原子に対するBi原子の供給モル比率は0.039(mol/min)/0.58(mol/min)=0.067であった。これは、組成式中のモル比率0.8/12=0.067の1.0倍である。
なお、A4液とB4液の合流温度は50℃であった。
以上のMoBi含有液の調製を、間隔をあけずに60回繰り返して行い、生成したMoBi含有液を、順次、静止型混合器出口側の下流に設けたスラリー攪拌槽(液温50℃、300rpm)に貯留し、貯留開始から1時間後にMoBi含有液を連続的にスプレードライヤーに送液し、噴霧した。このスラリーは噴霧乾燥前においてpHが1以下であり、スラリー状であった。
噴霧乾燥と焼成の条件については、噴霧乾燥時のスプレードライヤーの熱風入口温度を320℃、熱風出口温度230℃、ロータリーキルンの焼成温度を600℃に変更した以外は、実施例1と同様にした。触媒製造開始から100時間後の触媒を採取し、これを触媒4とした。
[触媒4を用いたブタジエンの製造(流動床反応)]
触媒1の代わりに触媒4を用いた以外は実施例1と同様にしてブタジエンを製造した。
触媒4の標準偏差及び反応成績を表1に示す。
[触媒5の製造]
Mo含有液とBi含有液とを上記Y字管および静止型混合器で混合した後、スラリー攪拌槽にいったん貯留せずスプレードライヤーに直接送液した以外は、実施例1と同様にして触媒を得た(触媒5)。なお、合流温度は50℃であった。生成したMoBi含有液は噴霧乾燥前においてpHが1以下であり、スラリー状であった。
[触媒5を用いたブタジエンの製造(流動床反応)]
触媒1の代わりに触媒5を用いた以外は実施例1と同様にしてブタジエンを製造した。
触媒5の標準偏差及び反応成績を表1に示す。
[触媒6の製造]
金属酸化物触媒を、その組成がMo12Bi1.0Fe1.6Ni2.0Co3.0Rb0.21Mg1.3Ce2.0Si20.4Oxとなるよう原料仕込質量を調整し、次のようにして製造した。
モリブデン酸アンモニウム・4水和物1391gを純水2484gに溶解した。この液に34質量%の平均粒子径12nmのSiO2を含むシリカゾルを2353gと純水314gを加えた。さらに硝酸ルビジウム20gを加えた。その全量は6562gであった(Mo含有液。以降、「A6液」と称す)。
硝酸ビスマス・5水和物320g、硝酸セリウム・6水和物570g、硝酸第二鉄・9水和物422g、硝酸ニッケル・6水和物386g、硝酸コバルト・6水和物581g、硝酸マグネシウム・6水和物221gを、16.6質量%の硝酸液600gに溶解した。さらに純水1034gを加えた。その全量は4134gであった(Bi含有液。以降、「B6液」と称す)。
この場合の質量比率は、4134(g)/6562(g)=0.63であった。
上記T字管に、A6液を820(g/min)の流量、B6液を256(g/min)の流量で配管を通じて同時に供給を開始し、3分間供給を続けた。このときの供給比率は、256(g/min)/820(g/min)=0.31であり、上記の質量比率0.63の0.5倍であった。
次に、A6液、B6液の供給流量を変更し、A6液を656(g/min)の流量、B6液を413(g/min)の流量で2分間同時に供給した。このときの供給比率は、413(g/min)/656(g/min)=0.63であり、上記の質量比率0.63の1.0倍であった。
さらに、A6液、B6液の供給流量を変更し、A6液を558(g/min)の流量、B6液を508(g/min)の流量で5分間同時に供給した。このときの供給比率は、508(g/min)/558(g/min)=0.91であり、上記の質量比率0.63の1.4倍であった。
なお、いずれの段階においてもA6液とB6液の合流温度は98℃であった。T字管で生成したMoBi含有液を更にスラリー撹拌槽で98℃において10分間攪拌を行った。
触媒6をリング状に打錠成型機を用いて成型した(高さ4mm、外径5mm、内径2mm)。このリング状成型触媒の圧壊硬度を木屋式硬度計を用いて常法により測定した。圧壊硬度は5.2kgであり工業的使用にも十分耐え得る硬度を有していた。その成型触媒25gを、内径25.4mmのパイレックス(登録商標)ガラス製固定床反応管に充填した。この反応管に1-ブテン、酸素、窒素から成る原料ガスを流し、ブタジエン製造反応を行った。反応温度は360℃、反応圧力は0.05MPa(ゲージ圧)であった。n-ブテン含有ガス中の1-ブテン濃度及び2-ブテン濃度は、全原料ガスを基準として、各々、8体積%及び2体積%、接触時間は0.8~2.0(g・sec/cc)であった。反応器出口の酸素濃度は0.8~1.2体積%であった。この反応条件で24時間反応した時の反応成績を表1に示す。
[触媒7の製造]
金属酸化物触媒を、その組成がMo12Bi0.4Fe2.3Ni2.5Co2.5Cr0.02Rb0.08K0.06Mg1.6Ce1.2Si29.4Oxとなるよう原料仕込質量を調整し、次のようにして製造した。
モリブデン酸アンモニウム・4水和物1288gを純水2298gに溶解した。この液に34質量%の平均粒子径12nmのSiO2を含むシリカゾルを2980gと41質量%の平均粒子径40nmのSiO2を含むシリカゾルを133gと純水442gを加えた。さらに硝酸ルビジウム7gと硝酸カリウム4gを加えた。その全量は7152gであった(Mo含有液。以降、「A7液」と称す)。
硝酸ビスマス・5水和物118g、硝酸セリウム・6水和物316g、硝酸第二鉄・9水和物562g、硝酸ニッケル・6水和物447g、硝酸コバルト・6水和物448g、硝酸マグネシウム・6水和物252g、硝酸クロム・9水和物4gを、16.6質量%の硝酸液1061gに溶解した。さらに純水800gを加えた。その全量は4008gであった(Bi含有液。以降、「B7液」と称す)。
この場合の質量比率は、4008(g)/7152(g)=0.56であった。
上記T字管に、A7液を716(g/min)の流量、B7液を401(g/min)の流量で配管を通じて同時に供給を開始し、2分間供給を続けた。このときの供給比率は、401(g/min)/716(g/min)=0.56であり、上記の質量比率0.56の1.0倍であった。
次に、A7液、B7液の供給流量を変更し、A7液を771(g/min)の流量、B7液を346(g/min)の流量で2分間同時に供給した。このときの供給比率は、346(g/min)/771(g/min)=0.45であり、上記の質量比率0.56の0.80倍であった。
さらに、A7液、B7液の供給流量を変更し、A7液を607(g/min)の流量、B7液を510(g/min)の流量で2分間同時に供給した。このときの供給比率は、510(g/min)/607(g/min)=0.84であり、上記の質量比率0.56の1.5倍であった。
続いて、A7液、B7液の供給流量を変更し、A7液を872(g/min)の流量、B7液を244(g/min)の流量で2分間同時に供給した。このときの供給比率は、244(g/min)/872(g/min)=0.28であり、上記の質量比率0.56の0.5倍であった。
最後に、A7液、B7液の供給流量を変更し、A7液を668(g/min)の流量、B7液を449(g/min)の流量で2分間同時に供給した。この供給比率は、449(g/min)/668(g/min)=0.67であり、上記の質量比率0.56の1.2倍であった。
なお、いずれの段階においても、A7液とB7液の合流温度は35℃であった。生成したMoBi含有液を更に50℃において1時間攪拌を行った。
[触媒7を用いたブタジエンの製造(流動床反応)]
さらに、触媒1の代わりに触媒7を用いた以外は実施例1と同様にしてブタジエンを製造した。反応成績を表1に示す。
[触媒8の製造]
実施例1と同様にして、Mo含有液(A1液と同じもの。ただし、以降、「A8液」と称す。)とBi含有液(B1液と同じもの。ただし、以降、「B8液」と称す。)を調製した。この場合の質量比率は、実施例1と同様に0.36であった。
A8液に対するB8液の供給比率を、Mo含有液とBi含有液の全供給量の合計の60質量%に当たる量については、上記の質量比率0.36の0.5倍から1.5倍の範囲内となるように行った。残りの40質量%については0.5倍から1.5倍の範囲外となるように行った。それ以外は実施例1と同様にして触媒を得た(触媒8)。
上記Y字管に、A8液を913(g/min)の流量、B8液を165(g/min)の流量で配管を通じて同時に供給を開始し、2分間供給を続けた。このときの供給比率は、165(g/min)/913(g/min)=0.18であり、上記の質量比率0.36の0.5倍であった。
次に、A8液、B8液の供給流量を変更し、A8液を627(g/min)の流量、B8液を451(g/min)の流量で2分間同時に供給した。このときの供給比率は、451(g/min)/627(g/min)=0.72であり、上記の質量比率0.36の2.0倍であった。
さらに、A8液、B8液の供給流量を変更し、A8液を793(g/min)の流量、B8液を285(g/min)の流量で2分間同時に供給した。このときの供給比率は、285(g/min)/793(g/min)=0.36であり、上記の質量比率0.36の1.0倍であった。
続いて、A8液、B8液の供給流量を変更し、A8液を973(g/min)の流量、B8液を105(g/min)の流量で2分間同時に供給した。このときの供給比率は、105(g/min)/973(g/min)=0.11であり、上記の質量比率0.36の0.3倍であった。
最後に、A8液、B8液の供給流量を変更し、A8液を700(g/min)の流量、B8液を378(g/min)の流量で2分間同時に供給した。このときの供給比率は、378(g/min)/700(g/min)=0.54であり、上記の質量比率0.36の1.5倍であった。
なお、いずれの段階においてもA8液とB8液の合流温度は50℃であった。
触媒8の標準偏差を表1に示す。
[触媒8を用いたブタジエンの製造(流動床反応)]
さらに、触媒1の代わりに触媒8を用いた以外は実施例1と同様にしてブタジエンを製造した。反応成績を表1に示す。
[触媒9の製造]
実施例1と同様にしてMo含有液(A1液と同じもの。ただし、以降、「A9液」と称す。)とBi含有液(B1液と同じもの。ただし、以降、「B9液」と称す。)を調製した。
50℃に保持したA9液に、攪拌を行いながら、50℃に保持したB9液を投入しMoBi含有液を調製した。投入には定量送液ポンプを用いた。
具体的には、7931gのA9液全量に、2845gのB9液を285(g/min)の流量で供給した。生成したMoBi含有液をさらに50℃で1時間攪拌した。このMoBi含有液は噴霧乾燥前においてpHが1以下であり、スラリー状であった。
以降は実施例1と同様にして触媒を得た(触媒9)。
触媒9の標準偏差を表1に示す。
[触媒9を用いたブタジエンの製造(流動床反応)]
さらに、触媒1の代わりに触媒9を用いた以外は実施例1と同様にしてブタジエンを製造した。ブタジエンの製造における反応成績を表1に示す。
[触媒10の製造]
実施例1と同様にしてMo含有液(A1液と同じもの。ただし、以降、「A10液」と称す。)とBi含有液(B1液と同じもの。ただし、以降、「B10液」と称す。)を調製した。
50℃に保持したB10液に、攪拌を行いながら、50℃に保持したA10液を投入しMoBi含有液を調製した。投入には定量送液ポンプを用いた。
具体的には、2845gのB10液全量に、7931gのA10液を793(g/min)の流量で供給した。生成したMoBi含有液をさらに50℃で1時間攪拌した。このMoBi含有液は噴霧乾燥前においてpHが1以下であり、スラリー状であった。
以降は実施例1と同様にして、触媒を得た(触媒10)。触媒10の標準偏差を表1に示す。
[触媒10を用いたブタジエンの製造(流動床反応)]
さらに、触媒1の代わりに触媒10用いた以外は実施例1と同様にしてブタジエンを製造した。反応成績を表1に示す。
[触媒11の製造]
実施例1と同様にしてMo含有液(A1液と同じもの。ただし、以降、「A11液」と称す。)とBi含有液(B1液と同じもの。ただし、以降、「B11液」と称す。)を調製した。
50℃に保持したA11液に、攪拌を行いながら、50℃に保持したB11液を投入しMoBi含有液を調製した。投入には定量送液ポンプを用いた。
具体的には、7931gのB11液全量に、2845gのA11液を1138(g/min)の流量で供給した。生成したMoBi含有液をさらに50℃で1時間攪拌した。このMoBi含有液は噴霧乾燥前においてpHが1以下であり、スラリー状であった。
以降は実施例1と同様にして、触媒を得た(触媒11)。触媒11の標準偏差を表1に示す。
[触媒11を用いたブタジエンの製造(流動床反応)]
さらに、触媒1の代わりに触媒11用いた以外は実施例1と同様にしてブタジエンを製造した。反応成績を表1に示す。
[触媒12の製造]
実施例1の各々の原料を20倍使用する以外は実施例1と同様にして実施例1の20倍の質量のMo含有液(A1液と同じもの。ただし、以降、「A12液」と称す。)と実施例1の20倍の質量のBi含有液(B1液と同じもの。ただし、以降、「B12液」と称す。)を調製した。
50℃に保持したA12液に、攪拌を行いながら、50℃に保持したB12液を投入しMoBi含有液を調製した。投入には定量送液ポンプを用いた。
具体的には、158.6kgのA12液全量に、56.9kgのB12液を22.8(kg/min)の流量で供給した。生成したMoBi含有液をさらに50℃で1時間攪拌した。このMoBi含有液は噴霧乾燥前においてpHが1以下であり、スラリー状であった。以降は実施例1と同様にして触媒を得た(触媒12)。触媒12の標準偏差を表1に示す。
[触媒12を用いたブタジエンの製造(流動床反応)]
さらに、触媒1の代わりに触媒12用いた以外は実施例1と同様にしてブタジエンを製造した。反応成績を表1に示す。
[触媒13の製造]
実施例9と同様にしてMo含有液(A12液と同じもの。ただし、以降、「A13液」と称す。)とBi含有液(B12液と同じもの。ただし、以降、「B13液」と称す。)を調製した。
50℃に保持したA13液に、攪拌を行いながら、50℃に保持したB13液を投入しMoBi含有液を調製した。投入には定量送液ポンプを用いた。
具体的には、158.6kgのA13液全量に、56.9kgのB13液を5.69(kg/min)の流量で供給した。生成したMoBi含有液をさらに50℃で1時間攪拌した。このMoBi含有液は噴霧乾燥前においてpHが1以下であり、スラリー状であった。以降は実施例1と同様にして触媒を得た(触媒13)。触媒13の標準偏差を表1に示す。
[触媒13を用いたブタジエンの製造(流動床反応)]
さらに、触媒1の代わりに触媒12用いた以外は実施例1と同様にしてブタジエンを製造した。反応成績を表1に示す。
また、本発明の金属酸化物触媒の製造方法及び製造装置は、MoBi含有金属酸化物触媒の製造に好適に採用することができる。
Claims (14)
- 下記式(1)で表されるバルク組成を有する、炭素数4以上のモノオレフィンと分子状酸素の酸化脱水素反応によって共役ジオレフィンを製造するための金属酸化物触媒であって、
触媒粒子表面におけるMoモル濃度に対するBiモル濃度の比率を、触媒バルクのMoモル濃度に対するBiモル濃度の比率で除した値の標準偏差が、0.3以下である、共役ジオレフィンを製造するための金属酸化物触媒。
Mo12BipFeqAaBbCcDdEeFfOx (1)
(式中、AはNi及びCoなる群からから選ばれる少なくとも1種の元素、Bはアルカリ金属元素から選ばれる少なくとも1種の元素、CはMg、Ca、Sr、Ba、Zn及びMnからなる群から選ばれる少なくとも1種の元素、Dは少なくとも1種の希土類元素、EはCr、In及びGaなる群からから選ばれる少なくとも1種の元素、FはSi、Al、Ti及びZrからなる群から選ばれる少なくとも1種の元素、Oは酸素であり、p、q、a、b、c、d、e、f及びxはそれぞれMo12原子に対するBi、Fe、A、B、C、D、E、F及び酸素の原子数を表し、0.1≦p≦5、0.5≦q≦8、0≦a≦10、0.02≦b≦2、0≦c≦5、0≦d≦5、0≦e≦5、0≦f≦200であり、xは存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。) - 前記標準偏差が0.2以下でかつ、式(1)におけるpが0.15≦p≦3である、請求項1に記載の金属酸化物触媒。
- 請求項1又は2に記載の金属酸化物触媒を用いて、炭素数4以上のモノオレフィンと分子状酸素の酸化脱水素反応により共役ジオレフィンを製造する方法。
- 前記モノオレフィンがn-ブテンであり、前記共役ジオレフィンが1,3-ブタジエンである、請求項3に記載の共役ジオレフィンを製造する方法。
- 前記酸化脱水素反応を流動層反応で行う、請求項3又は4に記載の共役ジオレフィンを製造する方法。
- 下記式(1)で表されるバルク組成を有する、炭素数4以上のモノオレフィンと分子状酸素の酸化脱水素反応によって共役ジオレフィンを製造するための金属酸化物触媒の製造方法であって、
(i)少なくともMoを含むMo含有液と、少なくともBiを含むBi含有液とを用意する工程、
(ii)前記Mo含有液を第一の流路に連続的に供給し、前記Bi含有液を第二の流路に連続的に供給し、かつ第一の流路と第二の流路とを前記Mo含有液及び前記Bi含有液それぞれの供給個所よりも下流で合流させることによって、前記Mo含有液と前記Bi含有液とを混合してMoBi含有液を得る工程、及び
(iii)前記MoBi含有液を乾燥させる工程、
を含む、金属酸化物触媒の製造方法。
Mo12BipFeqAaBbCcDdEeFfOx (1)
(式中、AはNi及びCoからなる群から選ばれる少なくとも1種の元素、Bはアルカリ金属元素から選ばれる少なくとも1種の元素、CはMg、Ca、Sr、Ba、Zn及びMnからなる群から選ばれる少なくとも1種の元素、Dは少なくとも1種の希土類元素、EはCr、In及びGaからなる群から選ばれる少なくとも1種の元素、FはSi、Al、Ti及びZrからなる群から選ばれる少なくとも1種の元素、Oは酸素であり、p、q、a、b、c、d、e、f及びxはそれぞれMo12原子に対するBi、Fe、A、B、C、D、E、F及び酸素の原子数を表し、0.1≦p≦5、0.5≦q≦8、0≦a≦10、0.02≦b≦2、0≦c≦5、0≦d≦5、0≦e≦5、0≦f≦200であり、xは存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。) - 前記(ii)工程と前記(iii)工程との間に、さらに、
(iv)前記MoBi含有液をさらに混合する工程
を有する、請求項6に記載の金属酸化物触媒の製造方法。 - 前記(ii)工程と前記(iii)工程との間に、さらに、
(v)前記MoBi含有液を貯留する工程
を有する、請求項6又は7に記載の金属酸化物触媒の製造方法。 - 前記(i)、(ii)及び(v)工程の一連の処理がバッチ処理方式で行われ、(ii)工程で得られたMoBi含有液の一バッチ分全量が(v)工程において貯留される、請求項8に記載の金属触媒の製造方法であって、
前記(ii)工程において、前記Mo含有液及び前記Bi含有液の前記第一の流路又は前記第二の流路への質量供給速度を、各々、mA(g/min)及びmB(g/min)としたときに、前記Mo含有液及び前記Bi含有液の一バッチあたりの全供給量MA(g)及びMB(g)の合計量の60質量%以上が、式(3)を満たすように供給される、金属酸化物触媒の製造方法。
(mB/mA)/(MB/MA)=0.5~1.5 (3) - 前記MoBi含有液が、前記(iii)工程へ連続的に供される、請求項6又は7に記載の金属酸化物触媒の製造方法。
- 前記(ii)工程において、前記Mo含有液及び前記Bi含有液の前記第一の流路又は第二の流路へモル供給速度を、各々、mα(mol/min)及びmβ(mol/min)としたときに、
前記Mo含有液及び前記Bi含有液が、式(4)を満たすように供給される、
請求項6、7、又は10に記載の金属酸化物触媒の製造方法。
(mβ/mα)/(p/12)=0.8~1.2 (4) - 式(1)で表されるバルク組成を有する、炭素数4以上のモノオレフィンと分子状酸素の酸化脱水素反応によって共役ジオレフィンを製造するための金属酸化物触媒の製造装置であって、
少なくともMoを含むMo含有液を送液するための第一の流路、少なくともBiを含むBi含有液を送液するための第二の流路、及び、前記第一の流路と第二の流路が合流する合流部を含む、金属酸化物触媒の製造装置。
Mo12BipFeqAaBbCcDdEeFfOx (1)
(式中、AはNi及びCoからなる群から選ばれる少なくとも1種の元素、Bはアルカリ金属元素から選ばれる少なくとも1種の元素、CはMg、Ca、Sr、Ba、Zn及びMnからなる群から選ばれる少なくとも1種の元素、Dは少なくとも1種の希土類元素、EはCr、In及びGaからなる群から選ばれる少なくとも1種の元素、FはSi、Al、Ti及びZrからなる群から選ばれる少なくとも1種の元素、Oは酸素であり、p、q、a、b、c、d、e、f及びxはそれぞれMo12原子に対するBi、Fe、A、B、C、D、E、F及び酸素の原子数を表し、0.1≦p≦5、0.5≦q≦8、0≦a≦10、0.02≦b≦2、0≦c≦5、0≦d≦5、0≦e≦5、0≦f≦200であり、xは存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。) - さらに、前記合流部の下流に位置する混合器を有する、請求項12に記載の金属酸化物触媒の製造装置。
- 前記混合器が静止型混合器である、請求項12又は13に記載の金属酸化物触媒の製造装置。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187028828A KR102244344B1 (ko) | 2016-05-30 | 2017-05-24 | 금속 산화물 촉매와 그의 제조 방법 및 그의 제조 장치 |
CN201780033218.9A CN109310996A (zh) | 2016-05-30 | 2017-05-24 | 金属氧化物催化剂及其制造方法以及其制造装置 |
DE112017002724.1T DE112017002724T5 (de) | 2016-05-30 | 2017-05-24 | Metalloxidkatalysator, Verfahren zu seiner Herstellung und Vorrichtung zu seiner Herstellung |
JP2018520835A JP6664474B2 (ja) | 2016-05-30 | 2017-05-24 | 金属酸化物触媒およびその製造方法ならびにその製造装置 |
US16/094,779 US11406969B2 (en) | 2016-05-30 | 2017-05-24 | Metal oxide catalyst, method for producing same, and apparatus for producing same |
SG11201809653VA SG11201809653VA (en) | 2016-05-30 | 2017-05-24 | Metal oxide catalyst, method for producing same, and apparatus for producing same |
MYPI2018704051A MY189256A (en) | 2016-05-30 | 2017-05-24 | Metal oxide catalyst, method for producing same, and apparatus for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-107339 | 2016-05-30 | ||
JP2016107339 | 2016-05-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017208926A1 true WO2017208926A1 (ja) | 2017-12-07 |
Family
ID=60478710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/019336 WO2017208926A1 (ja) | 2016-05-30 | 2017-05-24 | 金属酸化物触媒およびその製造方法ならびにその製造装置 |
Country Status (10)
Country | Link |
---|---|
US (1) | US11406969B2 (ja) |
JP (1) | JP6664474B2 (ja) |
KR (1) | KR102244344B1 (ja) |
CN (1) | CN109310996A (ja) |
DE (1) | DE112017002724T5 (ja) |
MY (1) | MY189256A (ja) |
SA (1) | SA518400516B1 (ja) |
SG (1) | SG11201809653VA (ja) |
TW (1) | TWI635902B (ja) |
WO (1) | WO2017208926A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022202893A1 (ja) * | 2021-03-24 | 2022-09-29 | 三菱ケミカル株式会社 | 触媒、触媒の製造方法、並びにα,β-不飽和アルデヒド、α,β-不飽和カルボン酸、及びα,β-不飽和カルボン酸エステルの製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111744497B (zh) * | 2019-03-28 | 2023-07-07 | 中国石油化工股份有限公司 | 一种氨氧化催化剂颗粒、其制造方法及其应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04182450A (ja) * | 1990-11-14 | 1992-06-30 | Mitsui Toatsu Chem Inc | メタクリル酸の製造方法 |
JP2004231509A (ja) * | 2003-01-29 | 2004-08-19 | Basf Ag | 多金属酸化物組成物の製造方法、飽和および/または不飽和炭化水素の不均一接触部分気相酸化法および/またはアンモ酸化法および多金属酸化物組成物 |
WO2013002029A1 (ja) * | 2011-06-28 | 2013-01-03 | 旭化成ケミカルズ株式会社 | 酸化物触媒 |
JP5371692B2 (ja) * | 2008-10-24 | 2013-12-18 | 旭化成ケミカルズ株式会社 | 共役ジオレフィンの製造方法 |
EP3023148A1 (en) * | 2014-06-10 | 2016-05-25 | LG Chem, Ltd. | Method for manufacturing multi-component composite metal oxide catalyst |
JP2017056398A (ja) * | 2015-09-15 | 2017-03-23 | 旭化成株式会社 | 金属酸化物触媒、その製造方法、及びブタジエンの製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5858366B2 (ja) | 1976-12-09 | 1983-12-24 | 東ソー株式会社 | 陽イオン交換膜の製法 |
US20040147393A1 (en) | 2003-01-29 | 2004-07-29 | Basf Akiengesellschaft | Preparation of a multimetal oxide composition |
DE102010021792B4 (de) | 2010-05-27 | 2022-03-31 | Clariant Produkte (Deutschland) Gmbh | Katalysatoren und Verfahren zu deren Herstellung |
JP5895546B2 (ja) | 2012-01-17 | 2016-03-30 | 三菱化学株式会社 | 複合酸化物触媒及び共役ジエンの製造方法 |
US20140200380A1 (en) * | 2013-01-15 | 2014-07-17 | Basf Se | Process for Preparing 1,3-Butadiene from N-Butenes by Oxidative Dehydrogenation |
-
2017
- 2017-05-24 WO PCT/JP2017/019336 patent/WO2017208926A1/ja active Application Filing
- 2017-05-24 DE DE112017002724.1T patent/DE112017002724T5/de active Pending
- 2017-05-24 CN CN201780033218.9A patent/CN109310996A/zh active Pending
- 2017-05-24 JP JP2018520835A patent/JP6664474B2/ja active Active
- 2017-05-24 US US16/094,779 patent/US11406969B2/en active Active
- 2017-05-24 KR KR1020187028828A patent/KR102244344B1/ko active IP Right Grant
- 2017-05-24 MY MYPI2018704051A patent/MY189256A/en unknown
- 2017-05-24 SG SG11201809653VA patent/SG11201809653VA/en unknown
- 2017-05-26 TW TW106117711A patent/TWI635902B/zh active
-
2018
- 2018-11-26 SA SA518400516A patent/SA518400516B1/ar unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04182450A (ja) * | 1990-11-14 | 1992-06-30 | Mitsui Toatsu Chem Inc | メタクリル酸の製造方法 |
JP2004231509A (ja) * | 2003-01-29 | 2004-08-19 | Basf Ag | 多金属酸化物組成物の製造方法、飽和および/または不飽和炭化水素の不均一接触部分気相酸化法および/またはアンモ酸化法および多金属酸化物組成物 |
JP5371692B2 (ja) * | 2008-10-24 | 2013-12-18 | 旭化成ケミカルズ株式会社 | 共役ジオレフィンの製造方法 |
WO2013002029A1 (ja) * | 2011-06-28 | 2013-01-03 | 旭化成ケミカルズ株式会社 | 酸化物触媒 |
EP3023148A1 (en) * | 2014-06-10 | 2016-05-25 | LG Chem, Ltd. | Method for manufacturing multi-component composite metal oxide catalyst |
JP2017056398A (ja) * | 2015-09-15 | 2017-03-23 | 旭化成株式会社 | 金属酸化物触媒、その製造方法、及びブタジエンの製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022202893A1 (ja) * | 2021-03-24 | 2022-09-29 | 三菱ケミカル株式会社 | 触媒、触媒の製造方法、並びにα,β-不飽和アルデヒド、α,β-不飽和カルボン酸、及びα,β-不飽和カルボン酸エステルの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20190118166A1 (en) | 2019-04-25 |
DE112017002724T5 (de) | 2019-02-21 |
SA518400516B1 (ar) | 2022-06-19 |
CN109310996A (zh) | 2019-02-05 |
US11406969B2 (en) | 2022-08-09 |
TW201808448A (zh) | 2018-03-16 |
MY189256A (en) | 2022-01-31 |
JP6664474B2 (ja) | 2020-03-13 |
SG11201809653VA (en) | 2018-11-29 |
KR102244344B1 (ko) | 2021-04-27 |
TWI635902B (zh) | 2018-09-21 |
JPWO2017208926A1 (ja) | 2019-02-28 |
KR20180118213A (ko) | 2018-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5371692B2 (ja) | 共役ジオレフィンの製造方法 | |
US10328418B1 (en) | Method for producing catalyst and method for producing acrylonitrile | |
TW201420185A (zh) | 氧化物催化劑及其製造方法、以及不飽和醛、二烯烴及不飽和腈之製造方法 | |
JP6729871B2 (ja) | 酸化的脱水素化反応用触媒、その製造方法及びそれを用いた酸化的脱水素化方法 | |
JP5895546B2 (ja) | 複合酸化物触媒及び共役ジエンの製造方法 | |
JP2013169482A (ja) | アクリロニトリル製造用触媒、該アクリロニトリル製造用触媒の製造方法および該アクリロニトリル製造用触媒を用いたアクリロニトリルの製造方法 | |
WO2017217343A1 (ja) | アンモ酸化用触媒の製造方法、及びアクリロニトリルの製造方法 | |
CN105209168A (zh) | 不饱和醛和/或不饱和羧酸制造用催化剂、其制造方法以及不饱和醛和/或不饱和羧酸的制造方法 | |
TW201630660A (zh) | 改良的混合金屬氧化物氨氧化催化劑 | |
JP6229201B2 (ja) | 複合金属酸化物触媒及び共役ジエンの製造方法 | |
TWI764938B (zh) | 伴隨選擇性副產物氰化氫之生產的氨氧化催化劑 | |
WO2017208926A1 (ja) | 金属酸化物触媒およびその製造方法ならびにその製造装置 | |
JP6914114B2 (ja) | 金属酸化物触媒及びその製造方法ならびにそれを用いたアクリロニトリルの製造方法 | |
JP6467115B2 (ja) | 触媒の製造方法、及びアクリロニトリルの製造方法 | |
JP2012067047A (ja) | ブタジエンを製造する方法 | |
JP6574654B2 (ja) | 金属酸化物触媒、その製造方法、及びブタジエンの製造方法 | |
JPWO2019198401A1 (ja) | 触媒、触媒の製造方法、アクリロニトリルの製造方法 | |
US11452978B2 (en) | Catalytic oxidation method and method for producing conjugated diene | |
CN107405611A (zh) | 共轭二烯烃制造用催化剂及其制造方法 | |
JPWO2007119607A1 (ja) | メタクロレイン及び/又はメタクリル酸の製造法 | |
JP6443074B2 (ja) | 複合金属酸化物触媒及び共役ジエンの製造方法 | |
EP3395442A1 (en) | Catalyst preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018520835 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20187028828 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17806483 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17806483 Country of ref document: EP Kind code of ref document: A1 |