WO2017208761A1 - 電極触媒、その製造方法および当該電極触媒を用いた電極触媒層 - Google Patents

電極触媒、その製造方法および当該電極触媒を用いた電極触媒層 Download PDF

Info

Publication number
WO2017208761A1
WO2017208761A1 PCT/JP2017/017744 JP2017017744W WO2017208761A1 WO 2017208761 A1 WO2017208761 A1 WO 2017208761A1 JP 2017017744 W JP2017017744 W JP 2017017744W WO 2017208761 A1 WO2017208761 A1 WO 2017208761A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
electrode catalyst
metal particles
spacer
electrode
Prior art date
Application number
PCT/JP2017/017744
Other languages
English (en)
French (fr)
Inventor
大間 敦史
一樹 在原
佳久 古谷
井上 秀男
健仁 西川
Original Assignee
日産自動車株式会社
石福金属興業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, 石福金属興業株式会社 filed Critical 日産自動車株式会社
Priority to CA3026335A priority Critical patent/CA3026335C/en
Priority to JP2018520753A priority patent/JP6721679B2/ja
Priority to KR1020187034972A priority patent/KR102103098B1/ko
Priority to US16/306,208 priority patent/US10411268B2/en
Priority to CN201780034314.5A priority patent/CN109314249B/zh
Priority to EP17806319.4A priority patent/EP3467921B1/en
Publication of WO2017208761A1 publication Critical patent/WO2017208761A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode catalyst, a production method thereof, and an electrode catalyst layer using the electrode catalyst.
  • Japanese Patent Application Laid-Open No. 2008-181696 discloses a fuel cell catalyst in which metal oxide fine particles and platinum-based metal catalyst fine particles are supported on a carbon support.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an electrode catalyst capable of improving the catalytic activity.
  • the present inventors have conducted intensive research to solve the above problems. As a result, it has been found that the above problems can be solved by an electrode catalyst in which catalyst metal particles having a specific average diameter ratio and a spacer are co-supported on a catalyst carrier, and the present invention has been completed.
  • the electrode catalyst according to the present invention comprises catalyst metal particles and spacers supported on a catalyst carrier, and the ratio (d sp / d cat ) of the average diameter (d sp ) of the spacers to the average diameter (d cat ) of the catalyst metal particles. ) Is 3.5 or more and 10 or less.
  • the spacer suppresses or prevents the catalyst metal particles from being completely covered by the electrolyte. Therefore, the poisoning effect received by the catalytic metal particles is mitigated, and the catalytic activity (particularly, the oxygen reduction reaction (ORR) activity and / or the ORR specific activity) is improved.
  • JP-A-2008-181696 discloses that the catalyst has high catalytic activity (paragraph “0014”). However, the catalyst still has insufficient catalytic activity.
  • a platinum-based metal catalyst fine particle (catalyst metal particle) is supported to produce a catalyst. Since the catalyst metal particles interact strongly with the metal oxide fine particles, in the case of this production method, most of the catalyst metal particles are not directly supported on the carbon support, but on the metal oxide fine particles supported on the carbon support. Supported. As a result, the catalyst metal particles are localized at the protrusions of the catalyst.
  • the electrode catalyst according to the present invention exhibits high catalytic activity (particularly oxygen reduction reaction (ORR) activity and / or ORR specific activity) even when a catalyst layer is formed by mixing with an electrolyte.
  • ORR oxygen reduction reaction
  • the present inventors have found that an electrode catalyst can be effectively used by forming a three-phase interface (reaction site) with a reaction gas (particularly oxygen), catalyst metal particles, and water. From this, the present inventors considered that when an electrode catalyst was mixed with an electrolyte to form a catalyst layer, the electrolyte caused a poisoning action on the catalyst metal particles and reduced the catalytic activity. That is, it was considered that the apparent ORR activity (ORR specific activity) was improved as the coverage of the catalyst metal particles by the electrolyte was lower.
  • “poisoning action” means that the interaction between the electrolyte and the catalyst metal particles is strong, so that the chance that the reaction gas (especially oxygen) contacts the surface of the catalyst metal particles is reduced.
  • the present inventors have intensively studied the design of an electrode catalyst for the purpose of reducing the coverage of the catalyst metal particles by the electrolyte, that is, reducing the poisoning effect received by the catalyst metal particles.
  • the catalyst metal particle coating (poisoning action) by the electrolyte can be reduced by controlling the catalyst metal particles and spacers supported on the catalyst carrier to a specific average diameter ratio.
  • reaction gas especially oxygen
  • catalyst metal particles promotes the formation of a three-phase interface of the reaction gas (especially oxygen), the catalyst metal particles and water, and the catalyst activity (especially the ORR ratio) Activity).
  • said mechanism is estimation and this invention is not limited by the said estimation.
  • the electrode catalyst of the present invention can improve the catalytic activity (especially the ORR specific activity).
  • X to Y indicating a range includes X and Y, and means “X or more and Y or less”.
  • maximum diameter of a particle refers to the maximum length among the distances between any two points on the particle outline. Unless otherwise specified, operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
  • the electrode catalyst according to the present invention comprises catalyst metal particles and spacers supported on a catalyst carrier, and the ratio (d sp / d cat ) of the average diameter (d sp ) of the spacers to the average diameter (d cat ) of the catalyst metal particles. ) Is 3.5 or more and 10 or less.
  • d sp / d cat is less than 3.5, the difference in size between the catalyst metal particles and the spacer is small, so that the effect of suppressing and preventing the coating of the catalyst metal particles by the electrolyte of the spacer is poor, and a sufficient catalyst Cannot show activity.
  • d sp / d cat exceeds 10
  • the spacer is hardly supported in an empty space on the catalyst carrier, the supporting rate of the spacer is lowered.
  • the effect of the spacer suppressing or preventing the coating of the catalytic metal with the electrolyte is poor, and sufficient catalytic activity cannot be exhibited.
  • d sp / d cat is preferably 3.7 or more and 6.0 or less, and more preferably 3.7 or more and 5.9 or less. If it is in such a range, when an electrode catalyst layer is formed using an electrode catalyst and an electrolyte, the coating of the catalyst metal particle surface by the electrolyte is better suppressed by the effect of the spacer. Therefore, the electrode catalyst formed by supporting the catalytic metal particles and the spacer in such a range can further improve the catalytic activity (especially the ORR specific activity).
  • the catalytic metal particles and the spacer are substantially present on the surface of the catalyst carrier.
  • the catalyst metal particles and the spacer are substantially present on the surface of the catalyst support means that substantially all of the catalyst metal particles and the spacer are present on the surface of the catalyst support.
  • the number of catalyst metal particles supported on the catalyst carrier via a spacer is 30% or less, preferably less than 20%, based on the total number of catalyst metal particles.
  • the “catalyst metal particles supported on the catalyst support via the spacer” are catalyst metal particles supported on the surface of the spacer in a state of being in contact with only the spacer without contacting with the catalyst support. Specifically, it refers to the catalytic metal particle 22 'in FIG.
  • the number of catalyst metal particles supported on the catalyst carrier via the spacer is less than 20% with respect to the total number of catalyst metal particles. More preferably, the number of catalyst metal particles supported on the catalyst support via a spacer is 15% or less, 10% or less, 9%, based on the total number of catalyst metal particles supported on the catalyst support. %, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, or 1% or less, and the smaller the value, the more preferable (lower limit: 0%) . Within such a range, the catalytic metal particles are hardly present in the protruding portion of the electrode catalyst.
  • the ratio of the number of catalyst metal particles supported on the catalyst support via a spacer to the total number of catalyst metal particles supported on the catalyst support is a value measured by the following method. To do.
  • the numerical value can be treated as equivalent to weight% or volume%. That is, in this case, the amount of the catalyst metal particles supported on the catalyst support via the spacer is less than 20% by weight, 15% by weight with respect to the total amount of the catalyst metal particles supported on the catalyst support. % Or less, 10% or less, 9% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less or 1% % Is preferable, and the smaller the value, the more preferable (lower limit: 0% by weight).
  • the “catalyst metal particles supported on the catalyst carrier” means not only the catalyst metal particles supported on the outer surface of the catalyst carrier, but also the catalyst metal supported on the pore surface in the catalyst carrier. Also includes particles.
  • FIG. 1 is a schematic cross-sectional view showing an electrode catalyst according to an embodiment of the present invention.
  • the electrode catalyst 20 according to the present embodiment has a configuration in which catalyst metal particles 22, 22 ′ and a spacer 23 larger than the catalyst metal particles are supported on the surface of the catalyst carrier 21.
  • the catalyst metal particles 22 are directly supported on the surface of the catalyst support 21 and are not substantially supported via the spacers 23 supported on the catalyst support 21. That is, the catalyst metal particles 22 and the spacer 23 are substantially present on the surface of the catalyst carrier 21.
  • the spacer 23 is preferably present in the vicinity of the catalyst metal particles 22 on the surface of the catalyst carrier 21.
  • “exists in the vicinity” means to exist adjacent to each other or adjacent to each other with a gap.
  • catalyst metal particles that are not coated with an electrolyte are also referred to as “uncoated catalyst metal particles”.
  • FIG. 2 is a diagram (enlarged view of a portion surrounded by line A in FIG. 1) showing the relationship between the catalyst metal particles and the spacer present in the vicinity of the catalyst metal particles in the electrode catalyst of FIG.
  • the spacer 23 present in the vicinity of the catalyst metal particle 22 has an outer peripheral region 24 located outside the particle diameter of the catalyst metal particle 22.
  • the radius of the circle 26 circumscribing the catalytic metal particles 22 and d 1, and d 2 the radius of the circle 27 circumscribing the spacer 23, when defined, respectively, d 1 ⁇ it is d 2.
  • the protruding spacer acts as a steric hindrance, and the viscous electrolyte (for example, a polymer electrolyte) may come into contact with catalytic metal particles existing in the vicinity of the spacer. I can't or I can only touch part of it. Therefore, a void as shown below is easily formed between the catalyst metal particles and the electrolyte, and the surface area of the uncoated catalyst metal particles can be increased.
  • the “spacer present closest to the catalyst metal particle” means the center of the catalyst metal particle and the center of the spacer when the catalyst metal particle is observed using an observation means such as a scanning electron microscope (SEM). Refers to the spacer with the shortest distance.
  • SEM scanning electron microscope
  • FIG. 3 is a schematic cross-sectional view showing a state where an electrode catalyst according to an embodiment of the present invention is coated with an electrolyte.
  • FIG. 4 is an enlarged view of the interface between the electrode catalyst and the electrolyte in FIG. 3 (enlarged view of the portion surrounded by line B in FIG. 3).
  • a spacer 23 larger than the catalyst metal particles is present in the vicinity of the catalyst metal particles 22. Therefore, even if the electrode catalyst 20 is covered with the electrolyte 28, the surface of the catalyst metal particle 22 is not completely covered with the electrolyte 28 due to the spacer acting as a steric hindrance. As a result, as shown in FIG.
  • the “average spacer diameter (d sp )” represents the average height of the spacers supported on the catalyst support.
  • d sp the radius of the circle 27 circumscribing the spacer 23 and d 2
  • d sp is it is from d 2 by subtracting the d 3 value (d 2 -d 3).
  • d sp denotes the average primary particle size
  • observation means such as a scanning electron microscope (SEM) and transmission electron microscopy (TEM), observed in several to several tens of visual field
  • SEM scanning electron microscope
  • TEM transmission electron microscopy
  • the value calculated as the average value of the particle diameter of the particles to be used shall be adopted.
  • d sp denotes the diameter (diameter), to adopt a value calculated by the same manner SEM and TEM.
  • the average diameter (d sp ) of the spacer is not particularly limited as long as the ratio (d sp / d cat ) to the average diameter (d cat ) of the catalyst metal particles is in a range satisfying 3.5 or more and 10 or less.
  • the average diameter (d sp ) of the spacer is preferably 5 nm to 40 nm, more preferably 10 nm to 30 nm, and even more preferably 12 nm to 20 nm. Within such a range, the spacer can be supported on the catalyst carrier with high dispersion and can function as a spacer.
  • the length of the fiber when the spacer is in the form of a fiber (fibrous) is not particularly limited, but considering the dispersibility on the catalyst carrier, it is about 1 to 50 ⁇ m, preferably 5 to 20 ⁇ m.
  • the amount of supported spacer is not particularly limited, but considering the dispersibility on the catalyst support, etc., when the weight of the electrode catalyst is 100% by weight, preferably 0.5% by weight to 30% by weight More preferably, it is 1 wt% or more and 20 wt% or less, and even more preferably 1.5 wt% or more and 12 wt% or less.
  • the supported amount of the spacer can be examined by a conventionally known method such as inductively coupled plasma emission spectrometry (ICP atomic emission spectrometry), inductively coupled plasma mass spectrometry (ICP mass spectrometry), or fluorescent X-ray analysis (XRF). .
  • the ratio (d sp / d sup ) of the average diameter (d sp ) of the spacer to the average diameter (d sup ) of the catalyst support is not particularly limited, but is preferably 0.01 or more and 0.1 or less, more preferably It is 0.02 or more and 0.08 or less, and more preferably 0.03 or more and 0.06 or less. Within such a range, the spacer is supported in a highly dispersed manner on the catalyst carrier, and the function as the spacer is exhibited well.
  • the material of the spacer may be any of an inorganic compound, an organic compound, and an organic-inorganic hybrid compound, but is preferably an inorganic compound from the viewpoint of stability (low reactivity).
  • the inorganic compound include, but are not limited to, oxides and nitrides of metals such as silicon, aluminum, titanium, zirconium, cerium, and tin.
  • the spacer is more preferably a metal oxide. It is particularly preferable that the spacer includes at least one selected from the group consisting of SiO 2 , Al 2 O 3 and TiO 2 .
  • either a synthetic product or a commercial product may be used.
  • Snowtex registered trademark
  • OS registered trademark
  • O unreacted trademark
  • OS registered trademark
  • OXS XS
  • O-40 C
  • N S
  • S 20L
  • OL above, manufactured by Nissan Chemical Industries, Ltd.
  • SiO 2 product numbers 633238, 633246, 791334, Al 2 O 3 : product numbers 718475, 634131, 55143, 790915, 790923
  • TiO 2 product numbers 718467, 798525, 798509, 798495 (above, manufactured by Aldrich).
  • the spacers described above may be used alone or in combination of two or more.
  • the catalyst carrier functions as a carrier for supporting catalyst metal particles and a spacer, which will be described later, and an electron conduction path involved in the transfer of electrons between the catalyst particles and other members.
  • the catalyst support only needs to have a specific surface area for supporting the catalyst metal particles in a desired dispersed state, and may be either a carbon support or a non-carbon support.
  • the “carbon carrier” refers to a carrier containing a carbon atom as a main component.
  • “Substantially consists of carbon atoms” means that 2 to 3% by weight or less of impurities can be mixed.
  • the non-carbon carrier refers to a material not corresponding to the definition of the above carbon carrier, and examples thereof include metal oxides.
  • the carbon support include acetylene black, ketjen black, thermal black, oil furnace black, channel black, lamp black, graphitized carbon, and the like. More specifically, Vulcan (registered trademark) XC-72R, Vulcan (registered trademark) P, Black Pearls (registered trademark) 880, Black Pearls (registered trademark) 1100, Black Pearls (registered trademark) 1300, Black Pearls (registered) Trademark) 2000, Regal (registered trademark) 400 (above, manufactured by Cabot Japan Co., Ltd.), Ketjen Black (registered trademark) EC300J, Ketjen Black (registered trademark) EC600JD (above, manufactured by Lion Specialty Chemicals Co., Ltd.), # 3150, # 3250 (made by Mitsubishi Chemical Corporation), Denka Black (registered trademark) (made by Denka Corporation), and the like.
  • Vulcan (registered trademark) XC-72R Vulcan (registered trademark) P
  • the shape of the catalyst carrier can have any shape such as a particle shape, a plate shape, a column shape, a tubular shape, and an indefinite shape.
  • the size of the catalyst carrier is not particularly limited. From the viewpoint of controlling the ease of loading, the catalyst utilization rate, and the thickness of the electrode catalyst layer within an appropriate range, the average diameter (d sup ) of the catalyst carrier is preferably 100 to 2000 nm, preferably 200 to 1000 nm. More preferably, it is more preferably 300 to 500 nm.
  • the average primary particle size is preferably 5 to 30 nm, and more preferably 10 to 20 nm.
  • the average primary particle diameter a value measured by SEM or TEM is adopted.
  • Catalyst carrier average diameter (d sup ) is the crystallite diameter determined from the half-value width of the diffraction peak of the catalyst carrier in X-ray diffraction (XRD), or the particle size of the catalyst carrier determined by a transmission electron microscope (TEM). It can be measured as the average diameter.
  • the “average diameter of catalyst support (d sup )” is defined as the number of samples of the catalyst support determined from transmission electron micrographs for a statistically significant number (eg, at least 200, preferably at least 300) of samples It is the average value of the maximum diameter.
  • the BET specific surface area of the catalyst carrier may be a specific surface area sufficient to carry the catalyst metal particles and the spacer in a highly dispersed manner, but is preferably 10 to 5000 m 2 / g, more preferably 50 to 2000 m 2 / g. Even more preferably, it is 100 to 1000 m 2 / g, and particularly preferably 300 to 800 m 2 / g. With such a specific surface area, sufficient catalyst metal particles can be supported on the catalyst carrier, and high catalytic activity can be exhibited.
  • the “BET specific surface area (m 2 / g carrier)” of the carrier is measured by a nitrogen adsorption method. Specifically, about 0.04 to 0.07 g of catalyst powder is precisely weighed and sealed in a sample tube. This sample tube is preliminarily dried at 90 ° C. for several hours in a vacuum dryer to obtain a measurement sample. For weighing, an electronic balance (AW220) manufactured by Shimadzu Corporation is used. In the case of a coated sheet, a net weight of about 0.03 to 0.04 g of the coated layer obtained by subtracting the Teflon (registered trademark) (base material) weight of the same area from the total weight of the coated sheet is used as the sample weight. .
  • the BET specific surface area is measured under the following measurement conditions.
  • a BET specific surface area is calculated from the slope and intercept by creating a BET plot from a relative pressure (P / P 0 ) range of about 0.00 to 0.45.
  • the catalytic metal particles have a function of catalyzing an electrochemical reaction.
  • the catalytic metal particles those containing at least platinum are preferably used in order to improve catalytic activity, poisoning resistance to carbon monoxide, heat resistance and the like. That is, the catalytic metal particles are platinum or contain metal components other than platinum and platinum.
  • the metal component other than platinum is not particularly limited and can be used in the same manner as a known catalyst component.
  • ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, copper, silver, chromium examples thereof include metals such as cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and zinc.
  • One or more metal components other than platinum may be used.
  • the transition metal atom refers to a Group 3 element to a Group 12 element, and the type of the transition metal atom is not particularly limited. From the viewpoint of catalytic activity, the transition metal atom is preferably selected from the group consisting of vanadium, chromium, manganese, iron, cobalt, copper, zinc and zirconium.
  • the composition of the alloy depends on the type of metal to be alloyed.
  • the content of platinum is preferably 30 to 90 atomic%, and the content of the metal alloyed with platinum is preferably 10 to 70 atomic%.
  • an alloy is a general term for a metal element having one or more metal elements or non-metal elements added and having metallic properties.
  • the alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal. There is what is formed, and any may be sufficient.
  • the shape of the catalyst metal particles is not particularly limited, and may be spherical, plate-like, needle-like, columnar, rectangular, polyhedral, or the like.
  • the “average crystallite diameter” is calculated from the spectrum around 41 ° derived from XRD Pt (111) using the Scherrer equation.
  • the particle size may be represented by an average particle size, but the average particle size is substantially equivalent to the average crystallite size representing the size of the catalyst metal particles. For this reason, it is preferable that the average particle diameter of a catalyst metal particle is also the said range.
  • the “average particle diameter” is an average value of particle diameters of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). is there.
  • the supported amount (support rate) of the catalyst metal particles is not particularly limited, but is preferably 2% by weight or more and 60% by weight when the weight of the electrode catalyst precursor (total weight of the catalyst support and the catalyst metal particles) is 100% by weight. % Or less. Such a range is preferable because aggregation of the catalyst metal particles can be suppressed and an increase in the thickness of the electrode catalyst layer can be suppressed. More preferably, they are 5 weight% or more and 50 weight% or less, More preferably, they are 10 weight% or more and 40 weight% or less, Especially preferably, they are 20 weight% or more and 30 weight% or less. Within such a range, the balance between the dispersibility of the catalytic metal particles on the catalyst support and the catalytic activity can be appropriately controlled.
  • the supported amount of the catalyst metal particles is preferably larger than the supported amount of the spacer.
  • the ratio of the supported amount of catalyst metal particles to the supported amount of spacer is preferably 1.1 times or more and 50 times or less, more preferably 1. It is 5 times or more and 20 times or less, and more preferably 2.0 times or more and 15 times or less. With such a mixing ratio of the catalyst metal particles and the spacer, the catalyst metal particles and the spacer are sufficiently close to each other on the catalyst carrier.
  • the spacer acts sufficiently as a steric hindrance, and more effectively suppresses / prevents the electrolyte from contacting the catalytic metal particles present in the vicinity of the spacer. Therefore, voids are more efficiently formed between the catalyst metal particles and the electrolyte, and the surface area of the uncoated catalyst metal particles can be further increased.
  • liquid phase reduction method examples include a method in which catalyst metal particles are deposited on the surface of the catalyst carrier and then heat-treated. Specifically, for example, a method in which a catalyst carrier is immersed in a catalyst metal particle precursor solution for reduction and then heat treatment is performed.
  • platinum chloride hexachloroplatinic acid hexahydrate
  • palladium chloride rhodium chloride
  • ruthenium chloride cobalt chloride and other nitrates
  • palladium nitrate rhodium nitrate
  • iridium nitrate iridium nitrate
  • palladium sulfate sulfuric acid
  • Preferred examples include sulfates such as rhodium, acetates such as rhodium acetate, and ammine compounds such as dinitrodiammineplatinum nitrate and dinitrodiammine palladium.
  • the solvent used for the preparation of the catalyst metal precursor solution is not particularly limited as long as it can dissolve the catalyst metal precursor, and is appropriately selected depending on the type of the catalyst metal precursor used. Specifically, water, an acid, an alkali, an organic solvent, etc. are mentioned.
  • the concentration of the catalyst metal precursor in the catalyst metal precursor solution is not particularly limited, but is preferably 0.1 wt% or more and 50 wt% or less, more preferably 0.5 wt% or more in terms of metal. 20% by weight or less.
  • the reducing agent examples include hydrogen, hydrazine, sodium borohydride, sodium thiosulfate, citric acid, sodium citrate, L-ascorbic acid, sodium borohydride, formaldehyde, methanol, ethanol, ethylene, carbon monoxide and the like. . Note that a gaseous substance at room temperature such as hydrogen can be supplied by bubbling.
  • the amount of the reducing agent is not particularly limited as long as the catalyst metal precursor can be reduced to the catalyst metal, and known amounts can be similarly applied.
  • the heat treatment temperature is preferably 300 to 1200 ° C., more preferably 500 to 1150 ° C., still more preferably 700 to 1000 ° C., and particularly preferably 900 to 1000 ° C. .
  • the heat treatment time is preferably 0.02 to 3 hours, more preferably 0.1 to 2 hours, and even more preferably 0.2 to 1.5 hours.
  • the heat treatment step is preferably performed in an atmosphere containing hydrogen gas, more preferably in a hydrogen atmosphere.
  • Step 2 Supporting spacer on electrode catalyst precursor
  • the method for supporting the spacer on the electrode catalyst precursor is not particularly limited, and a conventionally known method can be used.
  • methods such as an adsorption method, an impregnation method, a liquid phase reduction support method, an evaporation to dryness method, a spray pyrolysis method, and a sputtering method can be used.
  • the means for dispersing the electrode catalyst precursor and the spacer is not particularly limited, and suitable dispersing means such as a homogenizer, an ultrasonic dispersion device, a magnetic stirrer, or the like may be appropriately combined.
  • the electrode catalyst precursor and the spacer may be dispersed in the liquid medium at a time, for example, the spacer is first dispersed, and then the electrode catalyst precursor is dispersed in two portions. Also good.
  • the mixing temperature is preferably 20 to 50 ° C.
  • the mixing time is preferably 0.5 to 24 hours.
  • the drying temperature is preferably 20 to 80 ° C., more preferably 40 to 60 ° C.
  • the drying time is preferably 0.5 to 24 hours.
  • the electrode catalyst can be obtained by dispersing the electrode catalyst precursor and the spacer in the liquid medium and carrying them by adsorption, followed by filtration and drying.
  • the present invention also provides an electrode catalyst layer containing the above electrode catalyst.
  • the electrode catalyst layer according to the present invention preferably contains an electrolyte in addition to the above electrode catalyst.
  • the electrolyte used for the electrode catalyst layer is not particularly limited, but is preferably a polymer (polymer electrolyte) from the viewpoint of difficulty in coating the electrode catalyst.
  • the polymer electrolyte is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • Polymer electrolytes are roughly classified into fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes depending on the type of ion exchange resin that is a constituent material.
  • Examples of the ion exchange resin constituting the fluorine-based polymer electrolyte include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
  • Perfluorocarbon sulfonic acid polymer perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride-per Examples thereof include fluorocarbon sulfonic acid polymers. From the viewpoint of excellent heat resistance, chemical stability, durability, and mechanical strength, these fluorine-based polymer electrolytes are preferably used, and particularly preferably fluorine-based polymer electrolytes composed of perfluorocarbon sulfonic acid polymers. Is used.
  • hydrocarbon polymer electrolytes include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, sulfone.
  • S-PES polyether ether ketone
  • S-PEEK Polyether ether ketone
  • S-PPP sulfonated polyphenylene
  • These hydrocarbon polymer electrolytes are preferably used from the viewpoint of production such that the raw material is inexpensive, the production process is simple, and the selectivity of the material is high.
  • the ion exchange resin mentioned above only 1 type may be used independently and 2 or more types may be used together. Moreover, it is not restricted only to the material mentioned above, Other materials may be used.
  • the electrolyte contained in the electrode catalyst layer of the present invention may contain a non-polymer as long as the effects of the present invention are not impaired.
  • the non-polymer is a low molecular weight compound having a weight average molecular weight (Mw) of 10,000 or less, for example, a raw material (for example, a monomer) or an intermediate product (for example, an oligomer) of a polymer electrolyte such as Nafion (registered trademark). Etc., but is not limited to this.
  • the production method of the electrode catalyst layer is not particularly limited, and can be obtained, for example, by preparing a catalyst ink by mixing an electrode catalyst, an electrolyte, a solvent and other additives as necessary, and applying and drying the catalyst ink. .
  • the amount of the electrolyte in the catalyst ink is not particularly limited, but is preferably 0.1 part by weight or more and 2 parts by weight or less, and 0.2 part by weight or more and 1 part by weight or less with respect to 1 part by weight of the electrode catalyst. More preferably, it is 0.3 parts by weight or more and 0.5 parts by weight or less.
  • the solvent used for the preparation of the catalyst ink is not particularly limited as long as it can uniformly disperse or dissolve the electrode catalyst and the electrolyte and can be removed after coating.
  • n-hexanol, cyclohexanol, C1-C6 lower alcohols such as methanol, ethanol, n-propanol (n-propyl alcohol), isopropanol, n-butanol, sec-butanol, isobutanol, and tert-butanol, propylene glycol, benzene, toluene, xylene Etc.
  • butyl alcohol acetate, dimethyl ether, ethylene glycol, and the like can be given. These may be used alone or in the form of a mixture of two or more.
  • the solid content concentration of the catalyst ink is not particularly limited, but is preferably 0.1 to 10 mg / mL, more preferably 0.2 to 5 mg / mL, and even more preferably 0.3 to 2 mg / mL. Yes, particularly preferably 0.5 to 1 mg / mL.
  • additives such as a water repellent, a dispersant, a thickener, and a pore-forming agent may be mixed as necessary.
  • the amount added is preferably 5 to 20% by weight based on the total amount of the catalyst ink.
  • the electrode catalyst layer is formed by applying the catalyst ink as described above on the target substrate.
  • the formation conditions of the electrode catalyst layer are not particularly limited, and can be used in the same manner as known methods or with appropriate modifications.
  • the catalyst ink is applied onto the target substrate so that the thickness after drying becomes a desired thickness, and drying is performed in a vacuum dryer or under reduced pressure.
  • the drying temperature is not particularly limited, but is 25 to 150 ° C, more preferably 25 to 100 ° C, and still more preferably 25 to 50 ° C.
  • the drying time is not particularly limited, but is 1 to 24 hours, more preferably 5 to 24 hours, and still more preferably 12 to 24 hours.
  • the electrode catalyst according to the present invention is excellent not only in catalytic activity but also in durability. For this reason, the electrode catalyst according to the present invention can be suitably applied to fuel cell applications that require higher performance than household and mobile power sources. That is, the membrane electrode assembly and the fuel cell having the electrode catalyst according to the present invention in the catalyst layer are excellent in power generation performance.
  • a membrane electrode assembly (MEA) provided with the catalyst layer containing the electrode catalyst which concerns on this invention, and a fuel cell are demonstrated.
  • the electrode catalyst according to the present invention can be suitably used for a membrane electrode assembly (MEA). That is, the present invention also provides a membrane electrode assembly (MEA) including the electrode catalyst of the present invention, particularly a fuel cell membrane electrode assembly (MEA). Such a membrane electrode assembly (MEA) can exhibit high power generation performance (particularly weight specific activity) and durability.
  • the membrane electrode assembly (MEA) including the electrode catalyst of the present invention can be applied in the same configuration except that the electrode catalyst (catalyst) according to the present invention is used instead of the conventional electrode catalyst.
  • the preferable form of MEA of this invention is demonstrated below, this invention is not limited to the following form.
  • the MEA is composed of an electrolyte membrane, an anode catalyst layer and an anode gas diffusion layer, a cathode catalyst layer and a cathode gas diffusion layer which are sequentially formed on both surfaces of the electrolyte membrane.
  • the electrode catalyst according to the present invention is used for at least one of the cathode catalyst layer and the anode catalyst layer.
  • the electrolyte membrane is composed of, for example, a solid polymer electrolyte membrane.
  • the solid polymer electrolyte membrane has a function of selectively allowing protons generated in the anode catalyst layer during operation of a fuel cell (such as PEFC) to permeate the cathode catalyst layer along the film thickness direction.
  • the solid polymer electrolyte membrane also has a function as a partition for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
  • the electrolyte material constituting the solid polymer electrolyte membrane is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • the above-mentioned fluorine-based polymer electrolyte or hydrocarbon-based polymer electrolyte can be used. In this case, it is not always necessary to use the same polymer electrolyte used for the catalyst layer.
  • the thickness of the electrolyte membrane may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited.
  • the thickness of the electrolyte membrane is usually about 5 to 300 ⁇ m. When the thickness of the electrolyte membrane is within such a range, the balance of strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
  • the catalyst layer is a layer where the battery reaction actually proceeds. Specifically, the oxidation reaction of hydrogen proceeds in the anode catalyst layer, and the reduction reaction of oxygen proceeds in the cathode catalyst layer.
  • the electrode catalyst of the present invention may be present in either the cathode catalyst layer or the anode catalyst layer. Considering the necessity of improving the oxygen reduction activity, it is preferable that the electrode catalyst of the present invention is used at least for the cathode catalyst layer.
  • the catalyst layer according to the above embodiment may be used as an anode catalyst layer, or may be used as both a cathode catalyst layer and an anode catalyst layer, and is not particularly limited.
  • the catalyst layer includes the electrode catalyst and the electrolyte according to the present invention.
  • the electrolyte is preferably an ion conductive polymer electrolyte. Since the polymer electrolyte plays a role of transmitting protons generated around the catalyst active material on the fuel electrode side, it is also called a proton conductive polymer. As the polymer electrolyte, those enumerated in the above [electrolyte] section can be used.
  • the catalyst layer of this embodiment contains a polymer electrolyte having a small EW.
  • the catalyst layer of this embodiment preferably has an EW of 1500 g / eq.
  • the following polymer electrolyte is contained, More preferably, it is 1200 g / eq.
  • the following polymer electrolyte is included, and particularly preferably 1000 g / eq.
  • the following polymer electrolytes are included.
  • EW Equivalent Weight
  • the equivalent weight is the dry weight of the ion exchange membrane per equivalent of ion exchange groups, and is expressed in units of “g / eq.”.
  • the catalyst layer includes two or more types of polymer electrolytes having different EWs in the power generation surface.
  • the polymer electrolyte having the lowest EW among the polymer electrolytes has a relative humidity of 90% or less of the gas in the flow path. It is preferable to use in the region. By adopting such a material arrangement, the resistance value becomes small regardless of the current density region, and the battery performance can be improved.
  • the EW of the polymer electrolyte used in the region where the relative humidity of the gas in the flow channel is 90% or less, that is, the polymer electrolyte having the lowest EW is 900 g / eq. The following is desirable. Thereby, the above-mentioned effect becomes more reliable and remarkable.
  • the polymer electrolyte having the lowest EW is within 3/5 from the gas supply port of at least one of the fuel gas and the oxidant gas with respect to the channel length. It is desirable to use it in the range area.
  • the film thickness (dry film thickness) of the catalyst layer is preferably 0.05 to 30 ⁇ m, more preferably 1 to 20 ⁇ m, still more preferably 2 to 15 ⁇ m.
  • the above applies to both the cathode catalyst layer and the anode catalyst layer.
  • the cathode catalyst layer and the anode catalyst layer may be the same or different.
  • the gas diffusion layer (anode gas diffusion layer, cathode gas diffusion layer) promotes diffusion of gas (fuel gas or oxidant gas) supplied through the gas flow path of the separator to the catalyst layer, and electronic conduction. It has a function as a path.
  • the material constituting the base material of the gas diffusion layer is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • a sheet-like material having conductivity and porosity such as a carbon woven fabric, a paper-like paper body, a felt, and a non-woven fabric can be used.
  • the thickness of the substrate may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 ⁇ m. If the thickness of the substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be appropriately controlled.
  • the gas diffusion layer preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding.
  • the water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, polypropylene, and polyethylene.
  • the gas diffusion layer has a carbon particle layer (microporous layer; MPL, not shown) made of an aggregate of carbon particles containing a water repellent agent on the catalyst layer side of the substrate. You may have.
  • MPL microporous layer
  • the carbon particles contained in the carbon particle layer are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Among them, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area.
  • the average particle diameter of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, it becomes possible to improve contact property with a catalyst layer.
  • Examples of the water repellent used for the carbon particle layer include the same water repellents as described above.
  • fluorine-based polymer materials can be preferably used because of excellent water repellency, corrosion resistance during electrode reaction, and the like.
  • the mixing ratio of the carbon particles to the water repellent in the carbon particle layer is about 90:10 to 40:60 (carbon particles: water repellent) by weight in consideration of the balance between water repellency and electronic conductivity. It is good.
  • a method for producing a membrane electrode assembly is not particularly limited, and a conventionally known method can be used. For example, a method of joining a gas diffusion layer to a catalyst layer transferred or applied to an electrolyte membrane by hot pressing and drying it, or a microporous layer side of the gas diffusion layer (when a microporous layer is not included)
  • GDE gas diffusion electrodes
  • two gas diffusion electrodes are prepared by applying a catalyst layer on one side of a base material layer in advance and drying, and then bonding the gas diffusion electrodes to both sides of a solid polymer electrolyte membrane by hot pressing.
  • Application and bonding conditions such as hot pressing can be adjusted as appropriate according to the type of polymer electrolyte (perfluorosulfonic acid type or hydrocarbon type) in the solid polymer electrolyte membrane or catalyst layer. Good.
  • the fuel cell includes a pair of a membrane electrode assembly (MEA), an anode side separator having a fuel gas flow path through which fuel gas flows, and a cathode side separator having an oxidant gas flow path through which oxidant gas flows. And a separator.
  • MEA membrane electrode assembly
  • anode side separator having a fuel gas flow path through which fuel gas flows
  • a cathode side separator having an oxidant gas flow path through which oxidant gas flows.
  • a separator a separator.
  • the fuel cell of the present invention is excellent in durability and can exhibit high power generation performance.
  • MEA membrane electrode assembly
  • FIG. 5 is a schematic diagram showing a basic configuration of a polymer electrolyte fuel cell (PEFC) 1 according to an embodiment of the present invention.
  • the PEFC 1 first includes a solid polymer electrolyte membrane 2 and a pair of catalyst layers (an anode catalyst layer 3a and a cathode catalyst layer 3c) that sandwich the membrane.
  • the laminate of the solid polymer electrolyte membrane 2 and the catalyst layers (3a, 3c) is further sandwiched between a pair of gas diffusion layers (GDL) (anode gas diffusion layer 4a and cathode gas diffusion layer 4c).
  • GDL gas diffusion layers
  • the polymer electrolyte membrane 2, the pair of catalyst layers (3a, 3c), and the pair of gas diffusion layers (4a, 4c) constitute a membrane electrode assembly (MEA) 10 in a stacked state.
  • MEA membrane electrode assembly
  • the MEA 10 is further sandwiched between a pair of separators (anode separator 5a and cathode separator 5c).
  • the separators (5 a, 5 c) are illustrated so as to be located at both ends of the illustrated MEA 10.
  • the separator is generally used as a separator for an adjacent PEFC (not shown).
  • the MEAs are sequentially stacked via the separator to form a stack.
  • a gas seal portion is disposed between the separator (5a, 5c) and the solid polymer electrolyte membrane 2, or between the PEFC 1 and another adjacent PEFC.
  • the separators (5a, 5c) are obtained, for example, by forming a concavo-convex shape as shown in FIG. 5 by subjecting a thin plate having a thickness of 0.5 mm or less to a press treatment.
  • the convex part seen from the MEA side of the separator (5a, 5c) is in contact with the MEA 10. Thereby, the electrical connection with MEA10 is ensured.
  • a recess (space between the separator and the MEA generated due to the concavo-convex shape of the separator) viewed from the MEA side of the separator (5a, 5c) is a gas for circulating gas during operation of the PEFC 1 Functions as a flow path.
  • the separators (5a, 5c) are formed in an uneven shape.
  • the separator is not limited to such a concavo-convex shape, and may be any form such as a flat plate shape and a partially concavo-convex shape as long as the functions of the gas flow path and the refrigerant flow path can be exhibited. Also good.
  • the separator has a function of electrically connecting each cell in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack.
  • the separator also functions as a partition that separates the fuel gas, the oxidant gas, and the coolant from each other.
  • each of the separators is preferably provided with a gas flow path and a cooling flow path.
  • a material constituting the separator conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation.
  • the thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
  • the manufacturing method of the fuel cell is not particularly limited, and conventionally known knowledge can be appropriately referred to in the field of the fuel cell.
  • a fuel cell stack having a structure in which a plurality of membrane electrode assemblies (MEAs) are stacked and connected in series via a separator may be formed so that the fuel cell can exhibit a desired voltage.
  • the shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
  • PEFC and membrane electrode assembly use a catalyst layer having excellent power generation performance and durability. Therefore, the PEFC and membrane electrode assembly (MEA) are excellent in power generation performance and durability.
  • the PEFC of this embodiment and the fuel cell stack using the same can be mounted on a vehicle as a driving power source, for example.
  • the fuel cell as described above exhibits excellent power generation performance.
  • the type of the fuel cell is not particularly limited.
  • the solid polymer fuel cell has been described as an example.
  • an alkaline fuel cell and a direct methanol fuel cell are used.
  • a micro fuel cell in addition to the above, an alkaline fuel cell and a direct methanol fuel cell are used. And a micro fuel cell.
  • a polymer electrolyte fuel cell (PEFC) is preferable because it is small and can achieve high density and high output.
  • the fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited.
  • the fuel used when operating the fuel cell is not particularly limited.
  • hydrogen, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, secondary butanol, tertiary butanol, dimethyl ether, diethyl ether, ethylene glycol, diethylene glycol and the like can be used.
  • hydrogen and methanol are preferably used in that high output is possible.
  • the application application of the fuel cell is not particularly limited, but it is preferably applied to a vehicle.
  • the membrane electrode assembly including the electrode catalyst of the present invention is excellent in power generation performance and durability, and can be downsized. For this reason, the fuel cell of this invention is especially advantageous when this fuel cell is applied to a vehicle from the point of in-vehicle property.
  • an electrode catalyst precursor for 1 hour in a hydrogen atmosphere to obtain an electrode catalyst precursor.
  • the physical properties of platinum were as follows: average crystallite diameter of 3.4 nm, loading ratio (relative to the weight of the electrocatalyst precursor) 25.6% by weight, specific surface area 83 m 2 / g .
  • Synthesis Example 2 The electrode catalyst precursor obtained in Synthesis Example 1 was supported with SiO 2 particles as a spacer to produce an electrode catalyst 1. Specifically, 3.8 mg of SiO 2 particles having an average primary particle diameter of 5 nm (Snowtex (registered trademark) OXS, manufactured by Nissan Chemical Industries, Ltd.) were dispersed in 25 mL of n-hexanol using a homogenizer, and obtained in Synthesis Example 1. 15 mg of an electrode catalyst precursor was added and stirred at 25 ° C. for 4 hours. After filtering this, it dried at 60 degreeC for 4 hours, and the electrode catalyst 1 was obtained.
  • SiO 2 particles having an average primary particle diameter of 5 nm Snowtex (registered trademark) OXS, manufactured by Nissan Chemical Industries, Ltd.
  • 15 mg of an electrode catalyst precursor was added and stirred at 25 ° C. for 4 hours. After filtering this, it dried at 60 degreeC for 4 hours, and the electrode catalyst 1 was obtained.
  • the SiO 2 loading was 5.4% by weight, and the ratio of the average diameter (d sp ) of the SiO 2 particles to the average diameter (d cat ) of the platinum particles was 1.5.
  • the result of having observed the surface of the electrode catalyst 1 with the scanning electron microscope (SEM) is shown in FIG.
  • 31 is a catalyst carrier
  • 32 is SiO 2 particles
  • 33 is platinum particles directly supported on the catalyst carrier
  • 34 is platinum particles supported on the catalyst carrier via SiO 2 particles
  • the number of platinum particles supported on the catalyst support via the SiO 2 particles was 2 for any 100 of the platinum particles supported on the catalyst support. That is, the number of platinum particles supported on the catalyst support via the SiO 2 particles was 2% with respect to the total number of platinum particles supported on the catalyst support.
  • the electrode catalyst precursor obtained in Synthesis Example 1 was supported with Al 2 O 3 particles as a spacer to prepare an electrode catalyst. Specifically, 1 mg of Al 2 O 3 particles having an average primary particle diameter of 13 nm (manufactured by Aldrich, product number 718475) was dispersed in 25 mL of n-hexanol, and 15 mg of the electrode catalyst precursor obtained in Synthesis Example 1 was added, Stir at 25 ° C. for 4 hours. This was filtered and dried to obtain an electrode catalyst 3. In the electrode catalyst 3, the Al 2 O 3 loading ratio was 1.8% by weight, and the ratio of the average diameter (d sp ) of the Al 2 O 3 particles to the average diameter (d cat ) of the platinum particles was 3.8. It was. Further, as a result of SEM observation, the number of platinum particles supported on the catalyst support via SiO 2 particles was 5% or less with respect to the total number of platinum particles supported on the catalyst support.
  • the electrode catalyst precursor obtained in Synthesis Example 1 was supported with TiO 2 particles as a spacer to prepare an electrode catalyst. Specifically, 1 mg of TiO 2 particles having an average primary particle diameter of 15 nm (manufactured by Aldrich, product number 718467) are dispersed in 25 mL of n-hexanol, and 15 mg of the electrode catalyst precursor obtained in Synthesis Example 1 is added at 25 ° C. For 4 hours. This was filtered and dried to obtain an electrode catalyst 4. In the electrode catalyst 4, the TiO 2 loading was 7.9% by weight, and the ratio of the average diameter (d sp ) of the TiO 2 particles to the average diameter (d cat ) of the platinum particles was 4.4. Further, as a result of SEM observation, the number of platinum particles supported on the catalyst support via SiO 2 particles was 5% or less with respect to the total number of platinum particles supported on the catalyst support.
  • the electrode catalyst precursor obtained in Synthesis Example 1 was supported with Al 2 O 3 nanofibers as a spacer to prepare an electrode catalyst. Specifically, 1 mg of Al 2 O 3 nanofiber (Aldrich, product number: 790915) having a diameter of 20 nm and a length of 10 ⁇ m was dispersed in 25 mL of n-hexanol, and 15 mg of the electrode catalyst precursor obtained in Synthesis Example 1 was dispersed. Added and stirred at 25 ° C. for 4 hours. This was filtered and dried to obtain an electrode catalyst 5.
  • Al 2 O 3 nanofiber Aldrich, product number: 790915
  • the Al 2 O 3 loading ratio is 6.2% by weight, and the ratio of the average diameter (d sp ) of the Al 2 O 3 nanofibers to the average diameter (d cat ) of the platinum particles is 5.9. there were. Further, as a result of SEM observation, the number of platinum particles supported on the catalyst support via SiO 2 particles was 5% or less with respect to the total number of platinum particles supported on the catalyst support.
  • Comparative Example 2 For Comparative Example 1, an RDE apparatus was prepared in the same manner as Comparative Example 1, except that the electrode catalyst precursor was changed to 13.97 mg of electrode catalyst 1 prepared in Synthesis Example 2 (amount of electrode catalyst precursor of 13.25 mg). did.
  • Example 1 For Comparative Example 1, an RDE device was prepared in the same manner as Comparative Example 1, except that the electrode catalyst precursor was changed to 14.75 mg of electrode catalyst 2 prepared in Synthesis Example 3 (amount of electrode catalyst precursor 13.25 mg). did.
  • Example 2 For Comparative Example 1, an RDE device was prepared in the same manner as Comparative Example 1, except that the electrode catalyst precursor was changed to 13.49 mg of electrode catalyst 3 prepared in Synthesis Example 4 (amount of electrode catalyst precursor of 13.25 mg). did.
  • Example 3 For Comparative Example 1, an RDE device was prepared in the same manner as Comparative Example 1, except that the electrode catalyst precursor was changed to 14.30 mg of electrode catalyst 4 prepared in Synthesis Example 5 (amount of electrode catalyst precursor of 13.25 mg). did.
  • Example 4 For Comparative Example 1, an RDE apparatus was prepared in the same manner as Comparative Example 1, except that the electrode catalyst precursor was changed to 14.07 mg of electrode catalyst 5 prepared in Synthesis Example 6 (amount of electrode catalyst precursor of 13.25 mg). did.
  • the ORR activity (A / g_Pt) of the RDE device was calculated, and the ORR specific activity ( ⁇ A / cm 2 _Pt) obtained by dividing the ORR activity by the electrochemically effective surface area was calculated.
  • RDE having the electrode catalyst according to the present invention in the electrode catalyst layer is excellent in catalyst activity (ORR specific activity). From the result, it is surmised that the electrode catalyst of the present invention can achieve high catalytic activity by improving the arrival efficiency of the reaction gas (O 2 ) to the catalyst metal particle surface due to the effect of the spacer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本発明は、触媒活性(酸素還元反応(ORR)比活性)が向上した電極触媒を提供することを目的とする。 本発明は、触媒担体上に触媒金属粒子およびスペーサーを担持してなり、前記触媒金属粒子の平均径(dcat)に対する前記スペーサーの平均径(dsp)の比(dsp/dcat)が3.5以上10以下である、電極触媒である。

Description

電極触媒、その製造方法および当該電極触媒を用いた電極触媒層
 本発明は、電極触媒、その製造方法および当該電極触媒を用いた電極触媒層に関する。
 プロトン伝導性固体高分子膜を用いた固体高分子形燃料電池は、例えば、固体酸化物形燃料電池や溶融炭酸塩形燃料電池など、他のタイプの燃料電池と比較して低温で作動する。このため、固体高分子形燃料電池は、定置用電源や、自動車などの移動体用動力源として期待されており、その実用も開始されている。
 このような固体高分子形燃料電池には、一般的に、Pt(白金)やPt合金に代表される高価な金属触媒が用いられており、このような燃料電池の高価格要因となっている。このため、貴金属触媒の使用量を低減して、燃料電池の低コスト化が可能な技術の開発が求められている。
 特開2008-181696号公報では、炭素担体に金属酸化物微粒子と白金系金属触媒微粒子とが担持された燃料電池用触媒が開示されている。
 しかしながら、特開2008-181696号公報に記載されている触媒は、依然として十分な触媒活性を発揮することができない。
 したがって、本発明は、上記事情を鑑みてなされたものであり、触媒活性を向上できる電極触媒を提供することを目的とする。
 本発明者らは、上記の問題を解決すべく、鋭意研究を行った。その結果、触媒担体上に特定の平均径比を有する触媒金属粒子およびスペーサーを共担持させた電極触媒により、上記課題を解決できることを見出し、本発明を完成させるに至った。
本発明の一実施形態に係る電極触媒を表す概略断面図である。 図1の電極触媒における、触媒金属粒子および該触媒金属粒子の最も近傍に存在するスペーサーの関係性を詳細に示す図である。 本発明の一実施形態に係る電極触媒が電解質で被覆された状態を表す概略断面図である。 図3について電極触媒と電解質との界面を拡大した図である。 本発明の一実施形態に係る電極触媒を含む固体高分子形燃料電池の基本構成を示す概略断面図である。 本発明の一実施形態に係る電極触媒のSEM画像である。
 本発明に係る電極触媒は、触媒担体上に触媒金属粒子およびスペーサーを担持してなり、触媒金属粒子の平均径(dcat)に対するスペーサーの平均径(dsp)の比(dsp/dcat)が3.5以上10以下である。本発明に係る電極触媒を電解質と混合して触媒層を形成した際、電解質によって触媒金属粒子が完全に被覆されるのをスペーサーが抑制または防止する。ゆえに、触媒金属粒子が受ける被毒作用が緩和され、触媒活性(特に、酸素還元反応(ORR)活性および/またはORR比活性)が向上する。
 特開2008-181696号公報において開示されている触媒は、高い触媒活性を有することが記載されている(段落「0014」)。しかし、上記触媒は依然として触媒活性が十分とはいえなかった。特開2008-181696号公報では、炭素担体に金属酸化物微粒子を担持した後に、白金系金属触媒微粒子(触媒金属粒子)を担持して、触媒を製造している。触媒金属粒子は金属酸化物微粒子と強く相互作用するため、この製造方法の場合において、触媒金属粒子の多くは、炭素担体上に直接担持されず、炭素担体に担持された金属酸化物微粒子上に担持される。その結果、触媒金属粒子は触媒の突出部に局在することとなる。このため、当該触媒を電解質と混合して触媒層を形成した場合、大部分の触媒金属粒子は電解質によって被覆される。ゆえに、反応ガス(特に酸素)が触媒金属粒子表面に接触する機会が減少し(触媒金属粒子が受ける被毒作用が増加し)、触媒金属粒子が有する触媒活性が損なわれてしまう。
 これに対して、本発明に係る電極触媒は、電解質と混合して触媒層を形成しても、高い触媒活性(特に、酸素還元反応(ORR)活性および/またはORR比活性)を発揮することができる。本発明者らは、反応ガス(特に酸素)、触媒金属粒子および水により三相界面(反応サイト)を形成することで、電極触媒を有効に利用できることを見出した。このことから、本発明者らは、電極触媒を電解質と混合して触媒層を形成した際、電解質が触媒金属粒子に対して被毒作用をもたらして触媒活性を低下させると考えた。すなわち、電解質による触媒金属粒子の被覆率が低いほど、見かけのORR活性(ORR比活性)は向上すると考えた。ここで、「被毒作用」とは、電解質と触媒金属粒子との相互作用が強いために、反応ガス(特に酸素)が触媒金属粒子の表面に接触する機会が減少することをいう。上記知見に基づいて、本発明者らは、電解質による触媒金属粒子の被覆率の低減、すなわち触媒金属粒子が受ける被毒作用の低減を目的として、電極触媒の設計について鋭意検討を行った。その結果、触媒担体上に担持する触媒金属粒子およびスペーサーを特定の平均径比に制御することによって、電解質による触媒金属粒子の被覆(被毒作用)を低減できることを見出した。詳細には、本発明に係る電極触媒は、触媒金属粒子(図1中の「22」)と上記触媒金属粒子より大きなスペーサー(図1中の「23」)とが触媒担体表面上に共存し、スペーサーは触媒金属粒子よりも粒子径外方に位置する外周領域(図2中の「24」)を有する。かような構成を有する電極触媒を電解質と混合すると、電解質(特に、高分子電解質)は粘性を有するため、図4に示すように、電解質、スペーサー、触媒金属粒子および触媒担体の間には空隙(図4中の「29」)が形成される。触媒金属粒子表面のうち、当該空隙と接する部分については、電解質と接触しない。電解質と非接触である触媒金属粒子は、電解質による被毒作用を受けにくい、または受けない。これにより、反応ガス(特に酸素)が触媒金属粒子表面に接触する機会が増加し、反応ガス(特に酸素)、触媒金属粒子および水の三相界面の形成が促進され、触媒活性(特にORR比活性)が向上する。なお、上記メカニズムは推定であり、本発明は上記推定によって限定されない。
 ゆえに、本発明の電極触媒は、触媒活性(特にORR比活性)を向上できる。
 以下、本発明に係る電極触媒の実施形態およびこれを使用した電極触媒層について説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 また、本明細書において、範囲を示す「X~Y」は、XおよびYを含み、「X以上Y以下」を意味する。また、本明細書において、粒子の「最大径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の長さを指す。また、特記しない限り、操作および物性などの測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。
 <電極触媒>
 本発明に係る電極触媒は、触媒担体上に触媒金属粒子およびスペーサーを担持してなり、触媒金属粒子の平均径(dcat)に対するスペーサーの平均径(dsp)の比(dsp/dcat)が3.5以上10以下である。dsp/dcatが3.5未満の場合、触媒金属粒子とスペーサーとの間のサイズの差異が小さいため、スペーサーの電解質による触媒金属粒子の被覆を抑制・防止する効果が乏しく、十分な触媒活性を発揮できない。一方、dsp/dcatが10を超える場合、スペーサーが触媒担体上の空いているスペースに担持されにくいため、スペーサーの担持率が低下する。そのため、スペーサーが電解質による触媒金属の被覆を抑制・防止する効果が乏しく、十分な触媒活性を発揮できない。dsp/dcatは、好ましくは3.7以上6.0以下であり、さらにより好ましくは3.7以上5.9以下である。かような範囲にあれば、電極触媒と電解質とを用いて電極触媒層を形成した場合、スペーサーの効果によって、電解質による触媒金属粒子表面の被覆がより良好に抑制される。ゆえに、かような範囲で触媒金属粒子およびスペーサーを担持してなる電極触媒は、触媒活性(特にORR比活性)をより向上できる。
 本発明の電極触媒において、触媒金属粒子およびスペーサーは、実質的に触媒担体の表面上に存在する。ここで、「触媒金属粒子およびスペーサーは、実質的に触媒担体の表面上に存在する」とは、実質的にすべての触媒金属粒子およびスペーサーが触媒担体の表面上に存在することをいう。具体的には、触媒担体上にスペーサーを介して担持される触媒金属粒子の個数が、触媒金属粒子の全個数に対して、30%以下、好ましくは20%未満であることをいう。なお、「触媒担体上にスペーサーを介して担持される触媒金属粒子」は、触媒担体とは接触せず、スペーサーとのみ接触した状態でスペーサーの表面に担持される触媒金属粒子である。具体的には、図1中の触媒金属粒子22’を指す。すなわち、本発明の好ましい実施形態によると、触媒担体上にスペーサーを介して担持されている触媒金属粒子の個数が、触媒金属粒子の全個数に対して、20%未満である。より好ましくは、触媒担体上にスペーサーを介して担持されている触媒金属粒子の個数は、触媒担体上に担持されている触媒金属粒子の全個数に対して、15%以下、10%以下、9%以下、8%以下、7%以下、6%以下、5%以下、4%以下、3%以下、2%以下または1%以下であり、当該数値が小さいほど好ましい(下限値:0%)。かような範囲であれば、触媒金属粒子が電極触媒の突出部にほとんど存在しない。このため、電極触媒と電解質とを混合した際、電解質、スペーサーおよび触媒担体の間に形成される空隙中に存在する触媒金属粒子数をより増加できる。ゆえに、電解質によって被覆される触媒金属粒子の表面積をより有効に低減できる。その結果、反応ガス(特に酸素)が触媒金属粒子表面に接触する機会が増加し、反応ガス(特に酸素)、触媒金属粒子および水による三相界面の形成が促進され、触媒活性が向上する。ここで、上記触媒担体上に担持されている触媒金属粒子の全個数に対する、触媒担体上にスペーサーを介して担持されている触媒金属粒子の個数の割合は、下記方法によって測定された値を採用する。
 [触媒担体上に担持されている触媒金属粒子の全個数に対する触媒担体上にスペーサーを介して担持されている触媒金属粒子の個数の割合の算出方法]
 電極触媒0.01gを、日本電子株式会社製の走査型電子顕微鏡(SEM)(100万倍)下にて観察する。250nm×250nmの視野において、触媒担体上に担持されている触媒金属粒子数を計測し、これを触媒担体上に担持されている触媒金属粒子の全個数(X個)とする。また、上記と同じ視野において、触媒担体上にスペーサーを介して担持されている触媒金属粒子を計測し、これを触媒担体上にスペーサーを介して担持されている触媒金属粒子の個数(Y個)とする。これらの値に基づいて、触媒担体上に担持されている触媒金属粒子の全個数に対する触媒担体上にスペーサーを介して担持されている触媒金属粒子の個数の割合(%)[=(Y/X)×100]を求める。なお、上記の測定条件は適宜変更されてもよい。また、上記方法は一例であり、上記方法以外の方法を用いて当該割合を算出した場合においても、実質的に同等の割合が算出される。
 また、触媒金属粒子のサイズのばらつきを無視できる(例えば、粒子径の標準偏差が±30%以下である)場合、当該数値は、重量%あるいは体積%と同等として扱うことができる。すなわち、この場合において、触媒担体上にスペーサーを介して担持されている触媒金属粒子の量は、触媒担体上に担持されている触媒金属粒子の全体量に対して、20重量%未満、15重量%以下、10重量%以下、9重量%以下、8重量%以下、7重量%以下、6重量%以下、5重量%以下、4重量%以下、3重量%以下、2重量%以下または1重量%以下であることが好ましく、数値が小さいほど好ましい(下限値:0重量%)。なお、「触媒担体上に担持されている触媒金属粒子」とは、触媒担体の外表面上に担持されている触媒金属粒子だけでなく、触媒担体内の孔表面上に担持されている触媒金属粒子も含む。
 図1は、本発明の一実施形態に係る電極触媒を表す断面概略図である。本実施形態に係る電極触媒20は、触媒担体21の表面上に、触媒金属粒子22、22’および当該触媒金属粒子より大きなスペーサー23が担持されてなる構成を有する。触媒金属粒子22は、触媒担体21の表面上に直接担持されており、触媒担体21の上に担持されたスペーサー23を介して実質的に担持されていない。すなわち、触媒金属粒子22およびスペーサー23は、実質的に触媒担体21の表面上に存在する。また、スペーサー23は、触媒担体21の表面上において、触媒金属粒子22の近傍に存在することが好ましい。ここで、「近傍に存在する」とは、隣接するように、あるいは、隙間を隔てて隣り合うように存在することをいう。これにより、電解質、スペーサーおよび触媒担体の間に形成される空隙中に存在する触媒金属粒子数をより増加させ、電解質によって被覆されない触媒金属粒子の表面積をより有効に増加することができる。以下、「電解質によって被覆されない触媒金属粒子」を「非被覆触媒金属粒子」とも称する。
 図2は、図1の電極触媒において、触媒金属粒子および当該触媒金属粒子の最も近傍に存在するスペーサーの関係性を示す図(図1の線Aで囲まれた部分の拡大図)である。図2において、触媒金属粒子22の最も近傍に存在するスペーサー23は、当該触媒金属粒子22の粒子径外方に位置する外周領域24を有する。言い換えれば、触媒担体の中心25を基準として、触媒金属粒子22に外接する円26の半径をdと、スペーサー23に外接する円27の半径をdと、それぞれ定義したとき、d<dである。かかる構成を有する電極触媒を電解質と混合した際、突出しているスペーサーが立体障害として作用し、粘性を有する電解質(例えば、高分子電解質)はスペーサーの近傍に存在する触媒金属粒子に接触することができない、または一部のみしか接触することができない。ゆえに、触媒金属粒子と電解質との間には、下記に示すような空隙が形成されやすくなり、非被覆触媒金属粒子の表面積を増加できる。ここで、「触媒金属粒子の最も近傍に存在するスペーサー」とは、走査型電子顕微鏡(SEM)などの観察手段を用いて触媒金属粒子を観察した際、当該触媒金属粒子の中心とスペーサーの中心との距離が最短であるスペーサーを指す。
 図3は、本発明の一実施形態に係る電極触媒が、電解質で被覆された状態を表す断面概略図である。また、図4は、図3について電極触媒と電解質との界面を拡大した図(図3の線Bで囲まれた部分の拡大図)である。電極触媒の触媒担体21の表面上には、触媒金属粒子22の近傍に該触媒金属粒子より大きなスペーサー23が存在する。ゆえに、電極触媒20が電解質28で覆われたとしても、スペーサーが立体障害として作用することにより、触媒金属粒子22の表面は電解質28によって完全に被覆されない。その結果、図4に示すように、触媒担体21、触媒金属粒子22、スペーサー23および電解質28の間には空隙29が形成される。すなわち、触媒金属粒子22の表面の空隙29と接する部分については、電解質28と接触しない。このように電解質と非接触である触媒金属粒子は、電解質による被毒作用を受けにくいまたは受けない。これにより、酸素が触媒金属粒子表面に接触する機会が増加し、反応ガス(特に酸素)、触媒金属粒子および水による三相界面の形成が促進され、触媒活性(ORR比活性)が向上する。
 以下、本発明に係る電極触媒の各構成成分について説明する。
 [スペーサー]
 本発明に係るスペーサーは、電極触媒を電解質と混合した際、電解質による触媒金属粒子表面の被覆を抑制・防止する役割を有する。
 スペーサーの形状は、粒子状、ファイバー状(繊維状)、鱗片状、層状などのものが使用できるが、好ましくは粒子状またはファイバー状である。
 本明細書において、「スペーサーの平均径(dsp)」は、触媒担体上に担持されたスペーサーの平均高さを表す。例えば図2において、スペーサー23に外接する円27の半径をdとし、スペーサー23と触媒担体21との接点と触媒担体の中心25との間の最短距離をdとしたとき、dspはdからdを差し引いた値(d-d)である。例えば、スペーサーが粒子状である場合、dspは平均一次粒子径を表し、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。また、スペーサーがファイバー状(繊維状)である場合、dspは径(直径)を表し、同様にSEMやTEMにより算出される値を採用する。スペーサーの平均径(dsp)は、触媒金属粒子の平均径(dcat)との比(dsp/dcat)が3.5以上10以下を満たす範囲内にあれば特に制限されない。スペーサーの平均径(dsp)は、好ましくは5nm以上40nm以下であり、より好ましくは10nm以上30nm以下であり、さらにより好ましくは12nm以上20nm以下である。かような範囲にあれば、スペーサーは触媒担体上に高分散で担持され、かつ、スペーサーとしての機能を発揮することができる。また、スペーサーがファイバー状(繊維状)である場合のファイバーの長さは特に制限されないが、触媒担体上の分散性などを考慮すると、1~50μm程度、好ましくは5~20μmである。
 スペーサーの担持量(担持率)は、特に制限されないが、触媒担体上の分散性などを考慮すると、電極触媒の重量を100重量%としたとき、好ましくは0.5重量%以上30重量%以下であり、より好ましくは1重量%以上20重量%以下であり、さらにより好ましくは1.5重量%以上12重量%以下である。なお、スペーサーの担持量は、誘導結合プラズマ発光分析(ICP atomic emission spectrometry)や誘導結合プラズマ質量分析(ICP mass spectrometry)、蛍光X線分析(XRF)等の、従来公知の方法によって調べることができる。
 触媒担体の平均径(dsup)に対するスペーサーの平均径(dsp)の比(dsp/dsup)は、特に制限されないが、好ましくは0.01以上0.1以下であり、より好ましくは0.02以上0.08以下であり、さらにより好ましくは0.03以上0.06以下である。かような範囲にあれば、スペーサーが触媒担体上に高分散で担持され、かつ、スペーサーとしての機能が良好に発揮される。
 スペーサーの材質は、無機化合物、有機化合物、有機無機ハイブリッド化合物のいずれでもよいが、安定性(反応性の低さ)の観点から、無機化合物であることが好ましい。無機化合物の例としては、以下に制限されないが、ケイ素、アルミニウム、チタン、ジルコニウム、セリウム、スズ等の金属の酸化物、窒化物などが挙げられる。これらのうち、スペーサーは、金属酸化物であることがより好ましい。スペーサーは、SiO、AlおよびTiOからなる群より選択される少なくとも1つを含むことが特に好ましい。
 スペーサーは、合成品、市販品のいずれを用いてもよい。市販品としては、スノーテックス(登録商標)20、30、40、OS、O、OS、OXS、XS、O-40、C、N、S、20L、OL(以上、日産化学工業株式会社製)、SiO:品番637238、637246、791334、Al:品番718475、634131、551643、790915、790923、TiO:品番718467、798525、798509、798495(以上、アルドリッチ社製)などが挙げられる。上述したスペーサーは1種のみを単独で用いてもよいし、2種以上を併用してもよい。
 [触媒担体]
 触媒担体は、後述する触媒金属粒子およびスペーサーを担持するための担体、ならびに触媒粒子と他の部材との間での電子の授受に関与する電子伝導パスとして機能する。触媒担体としては、触媒金属粒子を所望の分散状態で担持させるための比表面積を有していればよく、カーボン担体、非カーボン担体のいずれであってもよい。ここで、「カーボン担体」とは、主成分として炭素原子を含む担体を指す。「主成分として炭素原子を含む」とは、「炭素原子のみからなる」および「実質的に炭素原子からなる」の双方を含む概念であり、炭素原子以外の元素が含まれていてもよい。「実質的に炭素原子からなる」とは、2~3重量%以下の不純物の混入が許容されうることを意味する。非カーボン担体とは、上記のカーボン担体の定義に該当しないものを指し、金属酸化物などが挙げられる。
 カーボン担体の具体例としては、アセチレンブラック、ケッチェンブラック、サーマルブラック、オイルファーネスブラック、チャネルブラック、ランプブラック、黒鉛化カーボンなどが挙げられる。より具体的には、バルカン(登録商標)XC-72R、バルカン(登録商標)P、ブラックパールズ(登録商標)880、ブラックパールズ(登録商標)1100、ブラックパールズ(登録商標)1300、ブラックパールズ(登録商標)2000、リーガル(登録商標)400(以上、キャボットジャパン株式会社製)、ケッチェンブラック(登録商標)EC300J、ケッチェンブラック(登録商標)EC600JD(以上、ライオン・スペシャリティ・ケミカルズ株式会社製)、#3150、#3250(三菱化学株式会社製)、デンカブラック(登録商標)(デンカ株式会社製)などが挙げられる。
 触媒担体の形状は、粒子状、板状、柱状、管状、不定形状など、任意の形状を有することができる。
 触媒担体の大きさは、特に限定されない。担持の容易さ、触媒利用率、電極触媒層の厚みを適切な範囲で制御するなどの観点から、触媒担体の平均径(dsup)は、100~2000nmであることが好ましく、200~1000nmであることがより好ましく、300~500nmであることがさらにより好ましい。また、一次粒子が連結あるいは凝集して触媒担体を形成している場合、平均一次粒子径は5~30nmであることが好ましく、10~20nmであることがさらにより好ましい。平均一次粒子径は、SEMやTEMにより測定した値を採用する。「触媒担体の平均径(dsup)」は、X線回折(XRD)における触媒担体の回折ピークの半値幅より求められる結晶子径や、透過型電子顕微鏡(TEM)により調べられる触媒担体の粒子径の平均値として測定されうる。本明細書では、「触媒担体の平均径(dsup)」は、統計上有意な数(例えば、少なくとも200個、好ましくは少なくとも300個)のサンプルについて透過型電子顕微鏡像より調べられる触媒担体の最大径の平均値である。
 触媒担体のBET比表面積は、触媒金属粒子およびスペーサーを高分散担持させるのに十分な比表面積であればよいが、好ましくは10~5000m/gであり、より好ましくは50~2000m/gであり、さらにより好ましくは100~1000m/gであり、特に好ましくは300~800m/gである。このような比表面積であれば、触媒担体に十分な触媒金属粒子を担持でき、高い触媒活性を発揮することができる。
 なお、担体の「BET比表面積(m/g担体)」は、窒素吸着法により測定される。詳細には、触媒粉末約0.04~0.07gを精秤し、試料管に封入する。この試料管を真空乾燥器で90℃×数時間予備乾燥し、測定用サンプルとする。秤量には、島津製作所株式会社製電子天秤(AW220)を用いる。なお、塗布シートの場合には、これの全質量から、同面積のテフロン(登録商標)(基材)質量を差し引いた塗布層の正味の質量約0.03~0.04gを試料質量として用いる。次に、下記測定条件にて、BET比表面積を測定する。吸着・脱着等温線の吸着側において、相対圧(P/P)約0.00~0.45の範囲から、BETプロットを作成することで、その傾きと切片からBET比表面積を算出する。
Figure JPOXMLDOC01-appb-C000001
 [触媒金属粒子]
 触媒金属粒子は、電気的化学反応の触媒作用をする機能を有する。触媒金属粒子は、触媒活性、一酸化炭素などに対する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものが好ましく用いられる。すなわち、触媒金属粒子は、白金であるまたは白金と白金以外の金属成分を含む。
 白金以外の金属成分としては、特に制限はなく公知の触媒成分が同様にして使用でき、具体的には、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、銅、銀、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム、亜鉛などの金属などが挙げられる。白金以外の金属成分は1種であっても2種以上であってもよい。なかでも、触媒性能の観点からは、遷移金属であることが好ましい。ここで、遷移金属原子とは、第3族元素から第12族元素を指し、遷移金属原子の種類もまた、特に制限されない。触媒活性の観点から、遷移金属原子は、バナジウム、クロム、マンガン、鉄、コバルト、銅、亜鉛およびジルコニウムからなる群より選択されることが好ましい。
 合金の組成は、合金化する金属の種類にもよるが、例えば、白金の含有量を30~90原子%とし、白金と合金化する金属の含有量を10~70原子%とするのがよい。なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質を持っているものの総称である。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがあり、いずれであってもよい。
 触媒金属粒子の形状は、特に制限されず、球状、板状、針状、柱状、角状、多面体状などであってもよい。
 触媒金属粒子の平均径(dcat)は、1nm以上30nm以下であることが好ましく、2nm以上10nm以下であることがより好ましく、3nm以上5nm以下であることがさらにより好ましい。かような範囲であれば、触媒金属粒子の単位重量当たりの活性(重量比活性)を高くしつつ、触媒金属粒子の溶解や凝集を抑制することができる。なお、本明細書において、「触媒金属粒子の平均径(dcat)」は、触媒金属粒子の最大径を表す。触媒金属粒子が球状の場合、dcatは平均結晶子径を表す。上記「平均結晶子径」は、XRDのPt(111)に由来する41°付近のスペクトルからシェラーの式を用いて算出する。なお、粒子の大きさを平均粒子径で表す場合もあるが、平均粒子径は、上記触媒金属粒子の大きさを表す平均結晶子径と実質的に同等である。このため、触媒金属粒子の平均粒子径もまた、上記範囲であることが好ましい。なお、上記「平均粒子径」は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値である。
 触媒金属粒子の担持量(担持率)は、特に制限されないが、電極触媒前駆体の重量(触媒担体および触媒金属粒子の合計重量)を100重量%としたとき、好ましくは2重量%以上60重量%以下である。かような範囲にすることで、触媒金属粒子同士の凝集が抑制され、また、電極触媒層の厚さの増加を抑制できるため好ましい。より好ましくは5重量%以上50重量%以下、さらにより好ましくは10重量%以上40重量%以下、特に好ましくは20重量%以上30重量%以下である。かような範囲にあれば、触媒担体上での触媒金属粒子の分散性と触媒活性とのバランスが適切に制御されうる。なお、触媒金属粒子の担持量は、誘導結合プラズマ発光分析(ICP atomic emission spectrometry)や誘導結合プラズマ質量分析(ICP mass spectrometry)、蛍光X線分析(XRF)など、従来公知の方法によって調べることができる。
 また、本発明に係る電極触媒において、触媒金属粒子の担持量は、スペーサーの担持量より多いことが好ましい。具体的には、スペーサーの担持量に対する触媒金属粒子の担持量の割合(=触媒金属粒子の担持量/スペーサーの担持量)が、好ましくは1.1倍以上50倍以下、より好ましくは1.5倍以上20倍以下であり、さらにより好ましくは2.0倍以上15倍以下である。かような触媒金属粒子とスペーサーとの混合割合であれば、触媒金属粒子とスペーサーとは触媒担体上に十分近傍に存在する。このため、電極触媒を電解質と混合した場合、スペーサーが立体障害として十分作用し、電解質がスペーサーの近傍に存在する触媒金属粒子と接触することをより有効に抑制・防止する。ゆえに、触媒金属粒子と電解質との間に空隙がより効率よく形成され、非被覆触媒金属粒子の表面積をより増加できる。
 [電極触媒の製造方法]
 本発明に係る電極触媒は、上記構成を有するものである限り、いずれの方法によって製造されてもよい。本発明の好ましい形態によると、本発明に係る電極触媒は、触媒担体に触媒金属粒子を担持させて電極触媒前駆体を作製する工程(工程1)、および当該電極触媒前駆体にスペーサーを担持させる工程(工程2)によって製造される。かようにまず小さい触媒金属粒子を触媒担体に担持した後に大きなスペーサーを担持するため、大部分のスペーサーはより小さい触媒金属粒子上には配置されない。また、たとえ、スペーサーが触媒金属粒子上に存在したとしても、大きさの相違によりスペーサーは不安定に触媒金属粒子上に存在するため、より安定に存在するために触媒担体上に移動する。ゆえに、この順序で製造した場合、触媒担体上にスペーサーを介して担持される触媒金属粒子は理論上存在しない。すなわち、例えば図2で示すように、スペーサー23は、近傍の触媒金属粒子22に比べて突出した形で(外周領域24を有して)触媒担体21の表面上に担持される。これにより、電極触媒を電解質と混合して電極触媒層を形成した場合、電解質と接触する触媒金属粒子の量(表面積)を低減できる。その結果、反応ガス(特に酸素)が触媒金属粒子表面に接触する機会が増加し、反応ガス、触媒金属粒子および水の三相界面の形成が促進され、高い触媒活性を発揮することができる。すなわち、本発明の一実施形態に係る電極触媒の製造方法は、触媒担体に触媒金属粒子を担持させて電極触媒前駆体を作製し、当該電極触媒前駆体をスペーサーと混合して電極触媒を製造する方法である。
 (工程1:電極触媒前駆体の作製)
 電極触媒前駆体の製造方法(触媒担体への触媒金属粒子の担持方法)は特に限定されず、従来公知の方法を用いることができる。例えば、液相還元法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル(マイクロエマルジョン法)などの方法が使用できる。
 液相還元法の例としては、触媒担体の表面に触媒金属粒子を析出させた後、熱処理を行う方法などが挙げられる。具体的には、例えば、触媒金属粒子の前駆体溶液に、触媒担体を浸漬して還元した後、熱処理を行う方法などが挙げられる。
 ここで、触媒金属粒子の前駆体としては、特に制限されず、使用される触媒金属粒子の種類によって適宜選択される。具体的には、上記白金などの触媒金属の塩化物、硝酸塩、硫酸塩、塩化物、酢酸塩およびアミン化合物などが例示できる。より具体的には、塩化白金(ヘキサクロロ白金酸六水和物)、塩化パラジウム、塩化ロジウム、塩化ルテニウム、塩化コバルトなどの塩化物、硝酸パラジウム、硝酸ロジウム、硝酸イリジウムなどの硝酸塩、硫酸パラジウム、硫酸ロジウムなどの硫酸塩、酢酸ロジウムなどの酢酸塩、ジニトロジアンミン白金硝酸、ジニトロジアンミンパラジウムなどのアンミン化合物などが好ましく、例示される。また、触媒金属の前駆体溶液の調製に使用される溶媒は、触媒金属の前駆体を溶解できるものであれば特に制限されず、使用される触媒金属の前駆体の種類によって適宜選択される。具体的には、水、酸、アルカリ、有機溶媒などが挙げられる。触媒金属の前駆体溶液中の触媒金属の前駆体の濃度は、特に制限されないが、金属換算で0.1重量%以上50重量%以下であることが好ましく、より好ましくは0.5重量%以上20重量%以下である。
 還元剤としては、水素、ヒドラジン、ホウ素化水素ナトリウム、チオ硫酸ナトリウム、クエン酸、クエン酸ナトリウム、L-アスコルビン酸、水素化ホウ素ナトリウム、ホルムアルデヒド、メタノール、エタノール、エチレン、一酸化炭素などが挙げられる。なお、水素などの常温でガス状の物質は、バブリングで供給することもできる。還元剤の量は、上記触媒金属の前駆体を触媒金属に還元できる量であれば特に制限されず、公知の量を同様にして適用できる。
 析出条件は、触媒金属粒子が触媒担体上に析出されうる条件であれば特に制限されない。例えば、析出温度は、好ましくは溶媒の沸点付近(溶媒沸点±10℃、より好ましくは溶媒沸点±5℃)の温度であり、より好ましくは室温~100℃である。また、析出時間は、好ましくは1~10時間であり、より好ましくは2~8時間である。なお、上記析出工程は、必要であれば、撹拌、混合しながら行ってもよい。これにより、触媒金属の前駆体が還元され、触媒金属粒子が触媒担体上に生成する。
 熱処理条件としては、例えば、熱処理温度は、好ましくは300~1200℃であり、より好ましくは500~1150℃であり、さらにより好ましくは700~1000℃であり、特に好ましくは900~1000℃である。また、熱処理時間は、好ましくは0.02~3時間であり、より好ましくは0.1~2時間であり、さらにより好ましくは0.2~1.5時間である。なお、触媒金属前駆体の還元促進効果の観点から、熱処理工程は、水素ガスを含む雰囲気下、より好ましくは水素雰囲気下で行うことが好ましい。
 あるいは、触媒金属粒子を予め作製してから触媒担体に担持させることによって、電極触媒前駆体を作製してもよい。この方法の場合、特殊な形態を有する高活性な触媒金属粒子を、その活性を保持したまま、触媒担体に担持させることができる。
 (工程2:電極触媒前駆体へのスペーサーの担持)
 電極触媒前駆体へのスペーサーの担持方法は特に限定されず、従来公知の方法を用いることができる。例えば、吸着法、含浸法、液相還元担持法、蒸発乾固法、噴霧熱分解法、スパッタリング法などの方法が使用できる。
 吸着法の例としては、液体媒体中で電極触媒前駆体およびスペーサーを分散させて混合し、濾過および乾燥する方法などが挙げられる。
 ここで、電極触媒前駆体およびスペーサーを分散させる手段は、特に制限されず、ホモジナイザー、超音波分散装置、マグネチックスターラーなどの適当な分散手段を適宜組み合わせてもよい。また、電極触媒前駆体およびスペーサーは、一度に液体媒体中に分散させてもよいし、例えば、まずスペーサーを分散させ、その後に電極触媒前駆体を分散させるなど、二度に分けて分散させてもよい。
 液体媒体としては、電極触媒前駆体およびスペーサーを均一に分散できるものであれば特に制限されず、例えばn-ヘキサノールなどが挙げられる。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 混合条件としては、例えば、混合温度は、好ましくは20~50℃である。また、混合時間は、好ましくは0.5~24時間である。
 乾燥条件としては、例えば、乾燥温度は、好ましくは20~80℃であり、より好ましくは40~60℃である。また、乾燥時間は、好ましくは0.5~24時間である。
 なお、上記方法では、電極触媒前駆体とスペーサーとを液体媒体中に分散させて吸着担持させた後、濾過および乾燥させることで、電極触媒を得ることができる。
 <電極触媒層>
 本発明は、上記の電極触媒を含む電極触媒層についても提供する。
 [電解質]
 本発明に係る電極触媒層は、上記の電極触媒以外に、好ましくは電解質を含む。電極触媒層に用いられる電解質は、特に制限されないが、電極触媒の被覆のしにくさの観点から、高分子(高分子電解質)であることが好ましい。
 高分子電解質は、特に限定されず従来公知の知見が適宜参照されうる。高分子電解質は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質と炭化水素系高分子電解質とに大別される。
 フッ素系高分子電解質を構成するイオン交換樹脂としては、例えば、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)などのパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが挙げられる。耐熱性、化学的安定性、耐久性、機械強度に優れるという観点からは、これらのフッ素系高分子電解質が好ましく用いられ、特に好ましくはパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質が用いられる。
 炭化水素系高分子電解質として、具体的には、スルホン化ポリエーテルスルホン(S-PES)、スルホン化ポリアリールエーテルケトン、スルホン化ポリベンズイミダゾールアルキル、ホスホン化ポリベンズイミダゾールアルキル、スルホン化ポリスチレン、スルホン化ポリエーテルエーテルケトン(S-PEEK)、スルホン化ポリフェニレン(S-PPP)などが挙げられる。原料が安価で製造工程が簡便であり、かつ材料の選択性が高いといった製造上の観点からは、これらの炭化水素系高分子電解質が好ましく用いられる。なお、上述したイオン交換樹脂は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、上述した材料のみに制限されず、その他の材料が用いられてもよい。
 また、本発明の電極触媒層に含まれる電解質は、本発明の作用効果を損なわない範囲内で、非高分子を含んでもよい。当該非高分子は、重量平均分子量(Mw)が10,000以下の低分子量化合物、例えば、ナフィオン(登録商標)等の高分子電解質の原料(例えば、モノマー)や中間生成物(例えば、オリゴマー)等を含むが、これに制限されない。
 [電極触媒層の製造方法]
 電極触媒層の製造方法は、特に制限されず、例えば、電極触媒、電解質、溶剤および必要に応じてその他の添加剤を混合して触媒インクを調製し、これを塗布および乾燥することで得られる。
 触媒インクにおける電解質の配合量は、特に制限されないが、電極触媒1重量部に対して、0.1重量部以上2重量部以下であることが好ましく、0.2重量部以上1重量部以下であることがより好ましく、0.3重量部以上0.5重量部以下であることがさらにより好ましい。
 触媒インクの調製に用いられる溶剤としては、電極触媒および電解質を均一に分散あるいは溶解でき、かつ塗布後に除去可能なものであれば特に制限されず、具体的には、n-ヘキサノール、シクロヘキサノール、メタノール、エタノール、n-プロパノール(n-プロピルアルコール)、イソプロパノール、n-ブタノール、sec-ブタノール、イソブタノール、およびtert-ブタノールなどの炭素数1~6の低級アルコール、プロピレングリコール、ベンゼン、トルエン、キシレンなどが挙げられる。これらの他にも、酢酸ブチルアルコール、ジメチルエーテル、エチレングリコールなどが挙げられる。これらは、1種を単独で使用してもあるいは2種以上の混合液の状態で使用してもよい。
 触媒インクの固形分濃度は、特に制限されないが、好ましくは0.1~10mg/mLであり、より好ましくは0.2~5mg/mLであり、さらにより好ましくは0.3~2mg/mLであり、特に好ましくは0.5~1mg/mLである。
 触媒インクには、必要に応じて、撥水剤、分散剤、増粘剤、造孔剤などの添加剤を混合してもよい。これらの添加剤を使用する場合、その添加量は、それぞれ、触媒インクの全量に対して、好ましくは5~20重量%である。
 上記したような触媒インクを対象基材上に塗布することで、電極触媒層が形成される。この際、電極触媒層の形成条件は、特に制限されず、公知の方法が同様にしてあるいは適宜修飾を加えて使用できる。たとえば、触媒インクを対象基材上に、乾燥後の厚みが所望の厚みになるように、塗布し、真空乾燥機内にてまたは減圧下で乾燥を行う。乾燥温度は、特に制限されないが、25~150℃、より好ましくは25~100℃、さらにより好ましくは25~50℃である。乾燥時間は、特に制限されないが、1~24時間、より好ましくは5~24時間、さらにより好ましくは12~24時間である。
 電極触媒層の膜厚(乾燥膜厚)は、好ましくは0.05~30μm、より好ましくは1~20μm、さらにより好ましくは1~10μm、特に好ましくは1~5μmである。なお、上記は、カソード触媒層およびアノード触媒層双方に適用される。しかしながら、カソード触媒層およびアノード触媒層は、同じであってもあるいは異なってもよい。
 本発明に係る電極触媒は、触媒活性に優れるだけでなく、耐久性にも優れる。このため、本発明に係る電極触媒は、家庭用や移動体駆動用の電源などより高性能が求められる燃料電池用途により好適に適用できる。すなわち、本発明に係る電極触媒を触媒層に有する膜電極接合体および燃料電池は、発電性能に優れる。以下では、本発明に係る電極触媒を含む触媒層を備える膜電極接合体(MEA)および燃料電池について説明する。
 <膜電極接合体(MEA)>
 本発明に係る電極触媒は、膜電極接合体(MEA)に好適に使用できる。すなわち、本発明は、本発明の電極触媒を含む膜電極接合体(MEA)、特に燃料電池用膜電極接合体(MEA)をも提供する。かような膜電極接合体(MEA)は、高い発電性能(特に重量比活性)および耐久性を発揮できる。
 本発明の電極触媒を含む膜電極接合体(MEA)は、従来の電極触媒に代えて、本発明に係る電極触媒(触媒)を用いる以外は、同様の構成を適用できる。以下に、本発明のMEAの好ましい形態を説明するが、本発明は下記形態に限定されない。
 MEAは、電解質膜、上記電解質膜の両面に順次形成されるアノード触媒層およびアノードガス拡散層ならびにカソード触媒層およびカソードガス拡散層から構成される。そしてこの膜電極接合体(MEA)において、前記カソード触媒層およびアノード触媒層の少なくとも一方に本発明に係る電極触媒が使用される。
 [電解質膜]
 電解質膜は、例えば、固体高分子電解質膜から構成される。この固体高分子電解質膜は、例えば、燃料電池(PEFCなど)の運転時にアノード触媒層で生成したプロトンを膜厚方向に沿ってカソード触媒層へと選択的に透過させる機能を有する。また、固体高分子電解質膜は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。
 固体高分子電解質膜を構成する電解質材料としては特に限定されず従来公知の知見が適宜参照されうる。例えば、上記のフッ素系高分子電解質や炭化水素系高分子電解質を用いることができる。この際、触媒層に用いられる高分子電解質と必ずしも同じものを用いる必要はない。
 電解質膜の厚さは、得られる燃料電池の特性を考慮して適宜決定すればよく、特に制限されない。電解質膜の厚さは、通常は5~300μm程度である。電解質膜の厚さがかような範囲内の値であると、製膜時の強度や使用時の耐久性および使用時の出力特性のバランスが適切に制御されうる。
 [触媒層]
 触媒層は、実際に電池反応が進行する層である。具体的には、アノード触媒層では水素の酸化反応が進行し、カソード触媒層では酸素の還元反応が進行する。ここで、本発明の電極触媒は、カソード触媒層またはアノード触媒層のいずれに存在していてもよい。酸素還元活性の向上の必要性を考慮すると、少なくともカソード触媒層に本発明の電極触媒が使用されることが好ましい。ただし、上記形態に係る触媒層は、アノード触媒層として用いてもよいし、カソード触媒層およびアノード触媒層双方として用いてもよいなど、特に制限されるものではない。
 触媒層は、本発明に係る電極触媒および電解質を含む。電解質としては、イオン伝導性の高分子電解質であることが好ましい。上記高分子電解質は、燃料極側の触媒活物質周辺で発生したプロトンを伝達する役割を果たすことから、プロトン伝導性高分子とも呼ばれる。高分子電解質としては、上述の[電解質]の項で列挙したものを使用することができる。
 プロトンの伝達を担う高分子電解質においては、プロトンの伝導度が重要となる。ここで、高分子電解質のEWが大きすぎる場合には触媒層全体でのイオン伝導性が低下する。したがって、本形態の触媒層は、EWの小さい高分子電解質を含むことが好ましい。具体的には、本形態の触媒層は、好ましくはEWが1500g/eq.以下の高分子電解質を含み、より好ましくは1200g/eq.以下の高分子電解質を含み、特に好ましくは1000g/eq.以下の高分子電解質を含む。一方、EWが小さすぎる場合には、親水性が高すぎて、水の円滑な移動が困難となる。かような観点から、高分子電解質のEWは600g/eq.以上であることが好ましい。なお、EW(Equivalent Weight)は、プロトン伝導性を有する交換基の当量重量を表している。当量重量は、イオン交換基1当量あたりのイオン交換膜の乾燥重量であり、「g/eq.」の単位で表される。
 また、触媒層は、EWが異なる2種類以上の高分子電解質を発電面内に含み、この際、高分子電解質のうち最もEWが低い高分子電解質が流路内ガスの相対湿度が90%以下の領域に用いることが好ましい。このような材料配置を採用することにより、電流密度領域によらず、抵抗値が小さくなって、電池性能の向上を図ることができる。流路内ガスの相対湿度が90%以下の領域に用いる高分子電解質、すなわちEWが最も低い高分子電解質のEWとしては、900g/eq.以下であることが望ましい。これにより、上述の効果がより確実、顕著なものとなる。
 さらに、EWが最も低い高分子電解質を冷却水の入口と出口の平均温度よりも高い領域に用いることが望ましい。これによって、電流密度領域によらず、抵抗値が小さくなって、電池性能のさらなる向上を図ることができる。
 さらには、燃料電池システムの抵抗値を小さくするとする観点から、EWが最も低い高分子電解質は、流路長に対して燃料ガスおよび酸化剤ガスの少なくとも一方のガス供給口から3/5以内の範囲の領域に用いることが望ましい。
 触媒層の膜厚(乾燥膜厚)は、好ましくは0.05~30μm、より好ましくは1~20μm、さらに好ましくは2~15μmである。なお、上記は、カソード触媒層およびアノード触媒層双方に適用される。しかしながら、カソード触媒層およびアノード触媒層は、同じであってもあるいは異なってもよい。
 [ガス拡散層]
 ガス拡散層(アノードガス拡散層、カソードガス拡散層)は、セパレータのガス流路を介して供給されたガス(燃料ガスまたは酸化剤ガス)の触媒層への拡散を促進する機能、および電子伝導パスとしての機能を有する。
 ガス拡散層の基材を構成する材料は特に限定されず、従来公知の知見が適宜参照されうる。例えば、炭素製の織物、紙状抄紙体、フェルト、不織布といった導電性および多孔質性を有するシート状材料が挙げられる。基材の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30~500μm程度とすればよい。基材の厚さがかような範囲内の値であれば、機械的強度とガスおよび水などの拡散性とのバランスが適切に制御されうる。
 ガス拡散層は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリプロピレン、ポリエチレンなどが挙げられる。
 また、撥水性をより向上させるために、ガス拡散層は、撥水剤を含むカーボン粒子の集合体からなるカーボン粒子層(マイクロポーラス層;MPL、図示せず)を基材の触媒層側に有するものであってもよい。
 カーボン粒子層に含まれるカーボン粒子は特に限定されず、カーボンブラック、グラファイト、膨張黒鉛などの従来公知の材料が適宜採用されうる。なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いられうる。カーボン粒子の平均粒子径は、10~100nm程度とするのがよい。これにより、毛細管力による高い排水性が得られるとともに、触媒層との接触性も向上させることが可能となる。
 カーボン粒子層に用いられる撥水剤としては、上述した撥水剤と同様のものが挙げられる。なかでも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられうる。
 カーボン粒子層におけるカーボン粒子と撥水剤との混合比は、撥水性および電子伝導性のバランスを考慮して、重量比で90:10~40:60(カーボン粒子:撥水剤)程度とするのがよい。なお、カーボン粒子層の厚さについても特に制限はなく、得られるガス拡散層の撥水性を考慮して適宜決定すればよい。
 [膜電極接合体(MEA)の製造方法]
 膜電極接合体(MEA)の作製方法としては、特に制限されず、従来公知の方法を使用できる。例えば、電解質膜に触媒層をホットプレスで転写または塗布し、これを乾燥したものに、ガス拡散層を接合する方法や、ガス拡散層の微多孔質層側(微多孔質層を含まない場合には、基材層の片面に触媒層を予め塗布して乾燥することによりガス拡散電極(GDE)を2枚作製し、固体高分子電解質膜の両面にこのガス拡散電極をホットプレスで接合する方法を使用することができる。ホットプレスなどの塗布、接合条件は、固体高分子電解質膜や触媒層内の高分子電解質の種類(パ-フルオロスルホン酸系や炭化水素系)によって適宜調整すればよい。
 <燃料電池>
 上述した膜電極接合体(MEA)は、燃料電池に好適に使用できる。すなわち、本発明は、本発明に係る電極触媒を含む膜電極接合体(MEA)を用いてなる燃料電池をも提供する。かような燃料電池は、高い発電性能(特に重量比活性)および耐久性を発揮できる。
 ここで、燃料電池は、膜電極接合体(MEA)と、燃料ガスが流れる燃料ガス流路を有するアノード側セパレータと酸化剤ガスが流れる酸化剤ガス流路を有するカソード側セパレータとからなる一対のセパレータとを有する。本発明の燃料電池は、耐久性に優れ、かつ高い発電性能を発揮できる。
 以下、適宜図面を参照しながら、本発明に係る電極触媒を使用した触媒層を有する膜電極接合体(MEA)および燃料電池の一実施形態を詳細に説明する。しかし、本発明は、以下の実施形態のみには制限されない。なお、各図面は説明の便宜上誇張されて表現されており、各図面における各構成要素の寸法比率が実際とは異なる場合がある。また、本発明の実施の形態について図面を参照しながら説明した場合では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 図5は、本発明の一実施形態に係る固体高分子形燃料電池(PEFC)1の基本構成を示す概略図である。PEFC1は、まず、固体高分子電解質膜2と、これを挟持する一対の触媒層(アノード触媒層3aおよびカソード触媒層3c)とを有する。そして、固体高分子電解質膜2と触媒層(3a、3c)との積層体はさらに、一対のガス拡散層(GDL)(アノードガス拡散層4aおよびカソードガス拡散層4c)により挟持されている。このように、固体高分子電解質膜2、一対の触媒層(3a、3c)および一対のガス拡散層(4a、4c)は、積層された状態で膜電極接合体(MEA)10を構成する。
 PEFC1において、MEA10はさらに、一対のセパレータ(アノードセパレータ5aおよびカソードセパレータ5c)により挟持されている。図5において、セパレータ(5a、5c)は、図示したMEA10の両端に位置するように図示されている。ただし、複数のMEAが積層されてなる燃料電池スタックでは、セパレータは、隣接するPEFC(図示せず)のためのセパレータとしても用いられるのが一般的である。換言すれば、燃料電池スタックにおいてMEAは、セパレータを介して順次積層されることにより、スタックを構成することとなる。なお、実際の燃料電池スタックにおいては、セパレータ(5a、5c)と固体高分子電解質膜2との間や、PEFC1とこれと隣接する他のPEFCとの間にガスシール部が配置されるが、図5ではこれらの記載を省略する。
 セパレータ(5a、5c)は、例えば、厚さ0.5mm以下の薄板にプレス処理を施すことで図5に示すような凹凸状の形状に成形することにより得られる。セパレータ(5a、5c)のMEA側から見た凸部はMEA10と接触している。これにより、MEA10との電気的な接続が確保される。また、セパレータ(5a、5c)のMEA側から見た凹部(セパレータの有する凹凸状の形状に起因して生じるセパレータとMEAとの間の空間)は、PEFC1の運転時にガスを流通させるためのガス流路として機能する。具体的には、アノードセパレータ5aのガス流路6aには燃料ガス(例えば、水素など)を流通させ、カソードセパレータ5cのガス流路6cには酸化剤ガス(例えば、空気など)を流通させる。
 一方、セパレータ(5a、5c)のMEA側とは反対の側から見た凹部は、PEFC1の運転時にPEFCを冷却するための冷媒(例えば、水)を流通させるための冷媒流路7とされる。さらに、セパレータには通常、マニホールド(図示せず)が設けられる。このマニホールドは、スタックを構成した際に各セルを連結するための連結手段として機能する。かような構成とすることで、燃料電池スタックの機械的強度が確保されうる。
 なお、図5に示す実施形態においては、セパレータ(5a、5c)は凹凸状の形状に成形されている。ただし、セパレータは、かような凹凸状の形態のみに限定されるわけではなく、ガス流路および冷媒流路の機能を発揮できる限り、平板状、一部凹凸状などの任意の形態であってもよい。
 [セパレータ]
 セパレータは、固体高分子形燃料電池などの燃料電池の単セルを複数個直列に接続して燃料電池スタックを構成する際に、各セルを電気的に直列に接続する機能を有する。また、セパレータは、燃料ガス、酸化剤ガス、および冷却剤を互に分離する隔壁としての機能も有する。これらの流路を確保するため、上述したように、セパレータのそれぞれにはガス流路および冷却流路が設けられていることが好ましい。セパレータを構成する材料としては、緻密カーボングラファイト、炭素板などのカーボンや、ステンレスなどの金属など、従来公知の材料が適宜制限なく採用できる。セパレータの厚さやサイズ、設けられる各流路の形状やサイズなどは特に限定されず、得られる燃料電池の所望の出力特性などを考慮して適宜決定できる。
 燃料電池の製造方法は、特に制限されることなく、燃料電池の分野において従来公知の知見が適宜参照されうる。
 さらに、燃料電池が所望する電圧を発揮できるように、セパレータを介して膜電極接合体(MEA)を複数積層して直列に繋いだ構造の燃料電池スタックを形成してもよい。燃料電池の形状などは、特に限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよい。
 上述したPEFCや膜電極接合体(MEA)は、発電性能および耐久性に優れる触媒層を用いている。したがって、当該PEFCや膜電極接合体(MEA)は発電性能および耐久性に優れる。
 本実施形態のPEFCやこれを用いた燃料電池スタックは、例えば、車両に駆動用電源として搭載されうる。
 上記のような燃料電池は、優れた発電性能を発揮する。ここで、燃料電池の種類としては、特に限定されず、上記した説明中では固体高分子形燃料電池を例に挙げて説明したが、この他にも、アルカリ型燃料電池、ダイレクトメタノール型燃料電池、マイクロ燃料電池などが挙げられる。なかでも小型かつ高密度・高出力化が可能であるから、固体高分子形燃料電池(PEFC)が好ましく挙げられる。また、前記燃料電池は、搭載スペースが限定される車両などの移動体用電源の他、定置用電源などとして有用である。なかでも、比較的長時間の運転停止後に高い出力電圧が要求される自動車などの移動体用電源として用いられることが特に好ましい。
 燃料電池を運転する際に用いられる燃料は特に限定されない。例えば、水素、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、第2級ブタノール、第3級ブタノール、ジメチルエーテル、ジエチルエーテル、エチレングリコール、ジエチレングリコールなどが用いられうる。なかでも、高出力化が可能である点で、水素やメタノールが好ましく用いられる。
 また、燃料電池の適用用途は特に限定されるものではないが、車両に適用することが好ましい。本発明の電極触媒を含む膜電極接合体は、発電性能および耐久性に優れ、小型化が実現可能である。このため、本発明の燃料電池は、車載性の点から、車両に該燃料電池を適用した場合、特に有利である。
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」および「部」は、それぞれ、「重量%」および「重量部」を意味する。
 <電極触媒の作製>
 (合成例1)
 触媒担体としてアセチレンブラック(OSAB、BET比表面積800m/g、平均二次粒子径300~400nm)(デンカ株式会社製)46g、白金濃度4.6重量%のジニトロジアンミン(II)白金硝酸溶液1000g(白金含有量46g)、還元剤としてエタノール100mLを添加して、80℃で7時間混合した後、白金を化学的に還元させた。これを濾過して室温(25℃)で12時間乾燥した後、水素雰囲気下、900℃で1時間熱処理を行うことにより、電極触媒前駆体を得た。当該電極触媒前駆体について、白金の物性値は以下のとおりであった:平均結晶子径3.4nm、(電極触媒前駆体の重量に対する)担持率25.6重量%、比表面積83m/g。
 (合成例2)
 合成例1で得られた電極触媒前駆体に対し、スペーサーとしてSiO粒子を担持させて、電極触媒1を作製した。具体的には、ホモジナイザーで平均一次粒子径5nmのSiO粒子(日産化学工業株式会社製スノーテックス(登録商標)OXS)3.8mgをn-ヘキサノール25mLに分散させ、合成例1で得られた電極触媒前駆体15mgを添加し、25℃で4時間撹拌した。これを濾過した後、60℃で4時間乾燥し、電極触媒1を得た。電極触媒1において、SiO担持率は5.4重量%であり、白金粒子の平均径(dcat)に対するSiO粒子の平均径(dsp)の比は1.5であった。また、走査型電子顕微鏡(SEM)により、電極触媒1の表面を観察した結果を、図6に示す。図6において、31は触媒担体を、32はSiO粒子を、33は触媒担体上に直接担持された白金粒子を、34は触媒担体上にSiO粒子を介して担持された白金粒子を、それぞれ示す。SEM観察の結果、触媒担体上にSiO粒子を介して担持されている白金粒子の個数は、触媒担体上に担持されている白金粒子の任意の100個に対して、2個であった。すなわち、触媒担体上にSiO粒子を介して担持されている白金粒子の個数は、触媒担体上に担持されている白金粒子の全個数に対して、2%であった。
 (合成例3)
 合成例2について、平均一次粒子径5nmのSiO粒子を平均一次粒子径12.5nmのSiO粒子(アルドリッチ社製、品番637238)に変更した以外は、合成例2と同様にして、電極触媒2を得た。電極触媒2において、SiO担持率は11.3重量%であり、白金粒子の平均径(dcat)に対するSiO粒子の平均径(dsp)の比は3.7であった。また、SEM観察により、触媒担体上にSiO粒子を介して担持されている白金粒子の個数は、触媒担体上に担持されている白金粒子の全個数に対して、5%以下であった。
 (合成例4)
 合成例1で得られた電極触媒前駆体に対し、スペーサーとしてAl粒子を担持させて、電極触媒を作製した。具体的には、平均一次粒子径13nmのAl粒子(アルドリッチ社製、品番718475)1mgをn-ヘキサノール25mLに分散させ、合成例1で得られた電極触媒前駆体15mgを添加し、25℃で4時間撹拌した。これを濾過および乾燥し、電極触媒3を得た。電極触媒3において、Al担持率は1.8重量%であり、白金粒子の平均径(dcat)に対するAl粒子の平均径(dsp)の比は3.8であった。また、SEM観察により、触媒担体上にSiO粒子を介して担持されている白金粒子の個数は、触媒担体上に担持されている白金粒子の全個数に対して、5%以下であった。
 (合成例5)
 合成例1で得られた電極触媒前駆体に対し、スペーサーとしてTiO粒子を担持させて、電極触媒を作製した。具体的には、平均一次粒子径15nmのTiO粒子(アルドリッチ社製、品番718467)1mgをn-ヘキサノール25mLに分散させ、合成例1で得られた電極触媒前駆体15mgを添加し、25℃で4時間撹拌した。これを濾過および乾燥し、電極触媒4を得た。電極触媒4において、TiO担持率は7.9重量%であり、白金粒子の平均径(dcat)に対するTiO粒子の平均径(dsp)の比は4.4であった。また、SEM観察により、触媒担体上にSiO粒子を介して担持されている白金粒子の個数は、触媒担体上に担持されている白金粒子の全個数に対して、5%以下であった。
 (合成例6)
 合成例1で得られた電極触媒前駆体に対し、スペーサーとしてAlナノファイバーを担持させて、電極触媒を作製した。具体的には、径20nm、長さ10μmのAlナノファイバー(アルドリッチ社製、品番:790915)1mgをn-ヘキサノール25mLに分散させ、合成例1で得られた電極触媒前駆体15mgを添加し、25℃で4時間撹拌した。これを濾過および乾燥し、電極触媒5を得た。電極触媒5において、Al担持率は6.2重量%であり、白金粒子の平均径(dcat)に対するAlナノファイバーの平均径(dsp)の比は5.9であった。また、SEM観察により、触媒担体上にSiO粒子を介して担持されている白金粒子の個数は、触媒担体上に担持されている白金粒子の全個数に対して、5%以下であった。
 (合成例7)
 触媒担体としてアセチレンブラック(OSAB、BET比表面積800m/g、平均二次粒子径300~400nm)(デンカ株式会社製)、および平均一次粒子径12.5nmのSiO粒子(アルドリッチ社製、品番637238)をヘキサノールに分散させ、25℃で4時間撹拌した。これを濾過した後、60℃で4時間乾燥した。ここで得られた粉体(OSAB54g相当の量)と、白金濃度4.6重量%のジニトロジアンミン(II)白金硝酸溶液1000g(白金含有量46g)、還元剤としてエタノール100mLを添加して、80℃で7時間混合した後、白金を化学的に還元させた。これを濾過して室温(25℃)で12時間乾燥した後、水素雰囲気下、900℃で1時間熱処理を行うことにより、電極触媒6を得た。当該電極触媒6について、白金の物性値は以下のとおりであった:平均結晶子径3.5nm、(電極触媒6の重量に対する)担持率17.6重量%、比表面積105m/g。また、電極触媒6の重量に対するスペーサー担持率は5.8重量%であった。また、SEM観察により、触媒担体上にSiO粒子を介して担持されている白金粒子の個数は、触媒担体上に担持されている白金粒子の全個数に対して、30%超であった。
 <回転ディスク電極(RDE)装置の調製>
 (比較例1)
 合成例1で作製した電極触媒前駆体13.25mg、5重量%電解質分散液(デュポン社製ナフィオン(登録商標)D520)(比重1.0)0.1mLおよびn-ヘキサノール25mLを十分に混合し、触媒インクを調製した。触媒担体量20μg分の触媒インクをマイクロピペットで採取した。直径6mmのグラッシーカーボン製回転ディスク電極(RDE)装置(北斗電工株式会社製)の上に滴下した後、25℃で24時間乾燥させ、膜厚1μmの電極触媒層がコートされたRDE装置を作製した。
 (比較例2)
 比較例1について、電極触媒前駆体を合成例2で作製した電極触媒1 13.97mg(電極触媒前駆体量13.25mg)に変更した以外は、比較例1と同様にして、RDE装置を作製した。
 (比較例3)
 比較例1について、電極触媒前駆体を合成例7で作製した電極触媒6 14.07mg(電極触媒前駆体量13.25mg)に変更した以外は、比較例1と同様にして、RDE装置を作製した。
 (実施例1)
 比較例1について、電極触媒前駆体を合成例3で作製した電極触媒2 14.75mg(電極触媒前駆体量13.25mg)に変更した以外は、比較例1と同様にして、RDE装置を作製した。
 (実施例2)
 比較例1について、電極触媒前駆体を合成例4で作製した電極触媒3 13.49mg(電極触媒前駆体量13.25mg)に変更した以外は、比較例1と同様にして、RDE装置を作製した。
 (実施例3)
 比較例1について、電極触媒前駆体を合成例5で作製した電極触媒4 14.30mg(電極触媒前駆体量13.25mg)に変更した以外は、比較例1と同様にして、RDE装置を作製した。
 (実施例4)
 比較例1について、電極触媒前駆体を合成例6で作製した電極触媒5 14.07mg(電極触媒前駆体量13.25mg)に変更した以外は、比較例1と同様にして、RDE装置を作製した。
 <回転ディスク電極の性能評価>
 実施例1~4および比較例1~3で作製した回転ディスク電極(RDE)装置を用い、以下の方法により、酸素還元反応(ORR)活性および電気化学的有効表面積の計測を行い、ORR比活性を算出した。評価条件および評価プロトコルは、参考文献(固体高分子形燃料電池の目標・研究開発課題と評価方法の提案、p.17~22、燃料電池実用化推進協議会(FCCJ)、2011年1月)に従った。
 具体的には、まず、超音波洗浄および煮沸洗浄によりRDE装置を十分に洗浄し、濃度を0.1Mに調製した電解液(過塩素酸 HClO)をRDE装置に注いだ。次に、RDE装置を25℃に制御しながら、RDE装置内に窒素をバブリングした。電極の回転数をゼロとした状態で、電極表面のクリーニングと表面積の測定のため、サイクリックボルタンメトリーを実施した。電位範囲は0.05~1.20V vs.RHE、スキャンレートは50mV/sとした。再現性のあるボルタモグラムが得られた後、上記参考文献に従い、水素吸着電気量および電極の白金重量から白金の電気化学的有効表面積(m/g_Pt)を算出した。その後、酸素(純度99.99995%以上)を30分程度バブリングした。バブリング終了後、電位走査0.05V→1.2Vの方向にスキャンレート10mV/sの条件で対流ボルタンメトリーを実施し、電位が0.9Vのときの電流値(A)を計測した。この値を用いて、RDE装置のORR活性(A/g_Pt)を算出し、当該ORR活性を上記の電気化学的有効表面積で除したORR比活性(μA/cm_Pt)を算出した。
 実施例1~4および比較例1~3に係るRDE装置の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1の結果から、本発明に係る電極触媒を電極触媒層に有するRDEは、触媒活性(ORR比活性)に優れることがわかった。当該結果より、本発明の電極触媒は、スペーサーの効果によって、反応ガス(O)の触媒金属粒子表面への到達効率が向上し、高い触媒活性を発揮できると推察される。
 なお、本出願は、2016年6月3日に出願された日本特許出願第2016-112177号に基づいており、その開示内容は、参照により全体として引用されている。
 1 …固体高分子形燃料電池(PEFC)
 2 …固体高分子電解質膜
 3 …触媒層
 3a…アノード触媒層
 3c…カソード触媒層
 4a…アノードガス拡散層
 4c…カソードガス拡散層
 5a…アノードセパレータ
 5c…カソードセパレータ
 6a…アノードガス流路
 6c…カソードガス流路
 7 …冷媒流路
 10…膜電極接合体(MEA)
 20…電極触媒
 21…触媒担体
 22、22’…触媒金属粒子
 23…スペーサー
 24…外周領域
 25…触媒担体の中心
 26…触媒金属粒子に外接する円
 27…スペーサーに外接する円
 28…電解質
 29…空隙
 31…触媒担体
 32…SiO粒子
 33…触媒担体上に直接担持された白金粒子
 34…触媒担体上にSiO粒子を介して担持された白金粒子。

Claims (8)

  1.  触媒担体上に触媒金属粒子およびスペーサーを担持してなり、前記触媒金属粒子の平均径(dcat)に対する前記スペーサーの平均径(dsp)の比(dsp/dcat)が3.5以上10以下である、電極触媒。
  2.  前記dsp/dcatが3.7以上6.0以下である、請求項1に記載の電極触媒。
  3.  前記触媒担体上に前記スペーサーを介して担持されている触媒金属粒子の個数が、前記触媒金属粒子の全個数に対して、20%未満である、請求項1または2に記載の電極触媒。
  4.  前記スペーサーは金属酸化物である、請求項1~3のいずれか1項に記載の電極触媒。
  5.  前記スペーサーは、SiO、AlおよびTiOからなる群より選択される少なくとも1つを含む、請求項1~4のいずれか1項に記載の電極触媒。
  6.  前記スペーサーは、粒子状またはファイバー状である、請求項1~5のいずれか1項に記載の電極触媒。
  7.  触媒担体に触媒金属粒子を担持させて電極触媒前駆体を作製し、
     前記電極触媒前駆体をスペーサーと混合して電極触媒を製造する、
    ことを有する、請求項1~6のいずれか1項に記載の電極触媒の製造方法。
  8.  請求項1~6のいずれか1項に記載の電極触媒を含む電極触媒層。
PCT/JP2017/017744 2016-06-03 2017-05-10 電極触媒、その製造方法および当該電極触媒を用いた電極触媒層 WO2017208761A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3026335A CA3026335C (en) 2016-06-03 2017-05-10 Electrode catalyst, method for producing the same, and electrode catalyst layer using electrode catalyst
JP2018520753A JP6721679B2 (ja) 2016-06-03 2017-05-10 電極触媒、その製造方法および当該電極触媒を用いた電極触媒層
KR1020187034972A KR102103098B1 (ko) 2016-06-03 2017-05-10 전극 촉매, 그의 제조 방법 및 당해 전극 촉매를 사용한 전극 촉매층
US16/306,208 US10411268B2 (en) 2016-06-03 2017-05-10 Electrode catalyst, method for producing the same, and electrode catalyst layer using electrode catalyst
CN201780034314.5A CN109314249B (zh) 2016-06-03 2017-05-10 电极催化剂及其制造方法、以及使用该电极催化剂的电极催化剂层
EP17806319.4A EP3467921B1 (en) 2016-06-03 2017-05-10 Electrode catalyst, method for manufacturing same, and electrode catalyst layer using electrode catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016112177 2016-06-03
JP2016-112177 2016-06-03

Publications (1)

Publication Number Publication Date
WO2017208761A1 true WO2017208761A1 (ja) 2017-12-07

Family

ID=60479506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017744 WO2017208761A1 (ja) 2016-06-03 2017-05-10 電極触媒、その製造方法および当該電極触媒を用いた電極触媒層

Country Status (7)

Country Link
US (1) US10411268B2 (ja)
EP (1) EP3467921B1 (ja)
JP (1) JP6721679B2 (ja)
KR (1) KR102103098B1 (ja)
CN (1) CN109314249B (ja)
CA (1) CA3026335C (ja)
WO (1) WO2017208761A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031479A1 (ja) * 2018-08-09 2020-02-13 三井金属鉱業株式会社 燃料電池用電極触媒層及びそれを用いた固体高分子形燃料電池
JP2021082578A (ja) * 2019-11-19 2021-05-27 株式会社豊田中央研究所 アイオノマコート触媒及びその製造方法、並びに、保護材被覆電極触媒及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363056A (ja) * 2003-06-06 2004-12-24 Nissan Motor Co Ltd 固体高分子型燃料電池用触媒担持電極とその製造方法
WO2007145215A1 (ja) * 2006-06-13 2007-12-21 Hitachi Maxell, Ltd. 微粒子担持カーボン粒子およびその製造方法ならびに燃料電池用電極
JP2008123860A (ja) * 2006-11-13 2008-05-29 Hitachi Maxell Ltd 金属酸化物担持カーボン及びそれを用いた燃料電池用電極
JP2008181696A (ja) * 2007-01-23 2008-08-07 Asahi Glass Co Ltd 燃料電池用触媒およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4471146B2 (ja) * 2003-08-06 2010-06-02 多木化学株式会社 直接メタノール型燃料電池用電極触媒の製造方法
JP2005270864A (ja) * 2004-03-25 2005-10-06 Nissan Motor Co Ltd 燃料電池電極触媒体とその製法
KR100647700B1 (ko) * 2005-09-14 2006-11-23 삼성에스디아이 주식회사 담지 촉매 및 이를 이용한 연료전지
JP5607597B2 (ja) * 2011-06-29 2014-10-15 トヨタ自動車株式会社 再酸化防止高分子型燃料電池電極触媒
JP2013059741A (ja) * 2011-09-14 2013-04-04 Toyota Motor Corp 触媒担持担体とその製作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363056A (ja) * 2003-06-06 2004-12-24 Nissan Motor Co Ltd 固体高分子型燃料電池用触媒担持電極とその製造方法
WO2007145215A1 (ja) * 2006-06-13 2007-12-21 Hitachi Maxell, Ltd. 微粒子担持カーボン粒子およびその製造方法ならびに燃料電池用電極
JP2008123860A (ja) * 2006-11-13 2008-05-29 Hitachi Maxell Ltd 金属酸化物担持カーボン及びそれを用いた燃料電池用電極
JP2008181696A (ja) * 2007-01-23 2008-08-07 Asahi Glass Co Ltd 燃料電池用触媒およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031479A1 (ja) * 2018-08-09 2020-02-13 三井金属鉱業株式会社 燃料電池用電極触媒層及びそれを用いた固体高分子形燃料電池
US11652216B2 (en) 2018-08-09 2023-05-16 Mitsui Mining & Smelting Co., Ltd. Electrode catalyst layer for fuel cells and solid polymer fuel cell using same
JP2021082578A (ja) * 2019-11-19 2021-05-27 株式会社豊田中央研究所 アイオノマコート触媒及びその製造方法、並びに、保護材被覆電極触媒及びその製造方法
JP7310759B2 (ja) 2019-11-19 2023-07-19 株式会社豊田中央研究所 アイオノマコート触媒及びその製造方法、並びに、保護材被覆電極触媒及びその製造方法

Also Published As

Publication number Publication date
CA3026335A1 (en) 2017-12-07
CA3026335C (en) 2020-04-21
US10411268B2 (en) 2019-09-10
KR102103098B1 (ko) 2020-04-21
JP6721679B2 (ja) 2020-07-15
KR20190004324A (ko) 2019-01-11
CN109314249B (zh) 2020-11-06
EP3467921A1 (en) 2019-04-10
US20190165382A1 (en) 2019-05-30
CN109314249A (zh) 2019-02-05
EP3467921B1 (en) 2020-07-08
EP3467921A4 (en) 2019-07-03
JPWO2017208761A1 (ja) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6461805B2 (ja) 触媒用炭素粉末ならびに当該触媒用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池
US10573901B2 (en) Catalyst and manufacturing method thereof, and electrode catalyst layer using the catalyst
JP5998277B2 (ja) 燃料電池用触媒、およびこれを含む燃料電池用電極触媒層
JP6628867B2 (ja) 電極触媒ならびに当該電極触媒を用いる膜電極接合体および燃料電池
JP6675705B2 (ja) アノード電極触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
JP6276870B2 (ja) 燃料電池用電極触媒層、ならびに当該触媒層を用いる燃料電池用膜電極接合体および燃料電池
JP6721679B2 (ja) 電極触媒、その製造方法および当該電極触媒を用いた電極触媒層
JP2018081740A (ja) 燃料電池用炭素粉末ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池
JP6554954B2 (ja) 触媒混合物およびその製造方法ならびに当該触媒混合物を用いてなる電極触媒層、膜電極接合体および燃料電池
JP6183120B2 (ja) 燃料電池用膜電極接合体および燃料電池
JP6862792B2 (ja) 電極触媒の製造方法
WO2018069979A1 (ja) 触媒層の製造方法、触媒層、ならびに触媒前駆体および当該触媒前駆体の製造方法
JP7570140B1 (ja) 電極材料及びその製造方法、並びにこれを使用した電極、膜電極接合体及び固体高分子形燃料電池
JP6988143B2 (ja) 燃料電池用触媒層の製造方法および電極触媒混合物
JP6191368B2 (ja) 燃料電池用膜電極接合体および燃料電池
JP2024046820A (ja) 電極材料、並びにこれを使用した電極、膜電極接合体及び固体高分子形燃料電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3026335

Country of ref document: CA

Ref document number: 2018520753

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20187034972

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017806319

Country of ref document: EP

Effective date: 20190103