WO2017208757A1 - 失火検出装置及びビークル - Google Patents

失火検出装置及びビークル Download PDF

Info

Publication number
WO2017208757A1
WO2017208757A1 PCT/JP2017/017727 JP2017017727W WO2017208757A1 WO 2017208757 A1 WO2017208757 A1 WO 2017208757A1 JP 2017017727 W JP2017017727 W JP 2017017727W WO 2017208757 A1 WO2017208757 A1 WO 2017208757A1
Authority
WO
WIPO (PCT)
Prior art keywords
misfire
rotational speed
fluctuation
periodic
rotation speed
Prior art date
Application number
PCT/JP2017/017727
Other languages
English (en)
French (fr)
Inventor
誠 脇村
一輝 岩本
耀 荒牧
俊一 赤間
実 堀田
芳彦 野々垣
Original Assignee
ヤマハ発動機株式会社
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社, 株式会社デンソー filed Critical ヤマハ発動機株式会社
Priority to EP17806315.2A priority Critical patent/EP3450735B8/en
Priority to TW106117348A priority patent/TW201742983A/zh
Publication of WO2017208757A1 publication Critical patent/WO2017208757A1/ja
Priority to US16/206,139 priority patent/US10823639B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/11Testing internal-combustion engines by detecting misfire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/02Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B67/00Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
    • F02B67/04Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus
    • F02B67/06Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus driven by means of chains, belts, or like endless members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/02Gearings for conveying rotary motion by endless flexible members with belts; with V-belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/06Gearings for conveying rotary motion by endless flexible members with chains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a misfire detection device and a vehicle that detect misfire of a four-stroke engine.
  • misfire detection device for detecting misfire of a 4-stroke engine
  • a misfire detection device for an internal combustion engine disclosed in Patent Document 1.
  • the misfire detection device for an internal combustion engine obtains the average rotational speed ⁇ n in the explosion stroke for each cylinder based on the output of the rotation angle sensor.
  • the average rotational speed deviation ( ⁇ n ⁇ 4 ⁇ n ⁇ 3 ) of each cylinder is obtained and the average rotational speed fluctuation amount ⁇ n is set.
  • misfire is determined based on the average rotational speed fluctuation amount ⁇ n .
  • a 4-stroke engine that is a detection target as disclosed in Patent Document 1 may be provided so as to drive a wound transmission wound around a plurality of transmission vehicles.
  • a four-stroke engine may be mounted on a vehicle that travels with a driving force transmitted by a winding transmission.
  • the conventional misfire detection device as disclosed in Patent Document 1 when a four-stroke engine that is a misfire detection target is provided in, for example, a vehicle including a wound transmission body, the vehicle is on a rough road. However, it may be difficult to properly determine misfire even when traveling on a flat road. Further, in the conventional misfire detection device as disclosed in Patent Document 1, when it is difficult to properly determine misfire, misfire is caused due to a bad road even when traveling on a flat road.
  • misfire detection device In some cases, it was difficult to distinguish. As a result, in the conventional misfire detection device, the reliability of misfire detection may be low depending on the device (vehicle or the like) provided with the 4-stroke engine. In a misfire detection device, it has been desired to improve detection reliability.
  • An object of the present invention is to provide a misfire detection device with improved detection reliability and a vehicle equipped with the misfire detection device.
  • the present invention adopts the following configuration in order to solve the above-described problems.
  • a misfire detection device that detects misfire of a four-stroke engine that drives a wound transmission wound around a plurality of transmission vehicles so as to move cyclically,
  • the misfire detection device comprises: A rotational speed acquisition unit configured to obtain a rotational speed of a rotating body rotated by the four-stroke engine;
  • a misfire determination unit configured to determine the presence or absence of misfire of the 4-stroke engine based on the rotation speed of the rotating body obtained by the rotation speed acquisition unit; Based on the rotation speed obtained by the rotation speed acquisition unit, a plurality of rotations included in the rotation variation of the 4-stroke engine, and within a circulation cycle of at least one element of the winding transmission body and the plurality of transmission vehicles.
  • a periodic fluctuation detecting unit configured to detect a cyclic fluctuation repeated in the circulation cycle of the one element so as to have an extreme value.
  • the presence or absence of misfire is determined based on the rotational speed of the rotating body rotated by the four-stroke engine, and at least one of the winding transmission body and the plurality of transmission vehicles. Cyclic fluctuations that are repeated in the circulation cycle of the one element so as to have a plurality of extreme values within the circulation cycle of the element are detected.
  • the periodic variation may affect the determination of the presence or absence of misfire.
  • the detection result of the periodic fluctuation by the periodic fluctuation detector can be used. This makes it possible to determine whether or not the one element affects the determination of the presence or absence of misfire. That is, the case where the effectiveness of the determination of the presence or absence of misfire is high and the case where it is low are distinguished. Therefore, the reliability of misfire detection in the misfire detection apparatus can be improved.
  • the present inventors have examined the above-mentioned problems and obtained the following knowledge.
  • Rotational fluctuations of a four-stroke engine provided in a device include, for example, fluctuations not related to the engine crank angular speed and fluctuations related to the engine crank angular speed.
  • Examples of the fluctuation not related to the crank angular speed of the engine include acceleration or deceleration of the four-stroke engine due to operation of the device, change in the rotational speed of the four-stroke engine due to change in external load on the device, and the like.
  • the change in the external load on the device includes, for example, a change in the load applied to the four-stroke engine of the vehicle when traveling on a rough road.
  • the fluctuations related to the crank angular speed of the engine include, for example, combustion variation, cylinder deviation, tolerance of the crank angular speed sensor or a detected portion of the sensor, and the like.
  • the rotational speed of a 4-stroke engine detected by a crank angular speed sensor includes rotational fluctuations due to various causes as described above.
  • the conventional misfire detection apparatus as disclosed in Patent Document 1 it is possible to perform diagnosis such as determination of the presence or absence of misfire while suppressing the influence of rotational fluctuation due to these causes.
  • a variation other than the above-described variation may occur as a variation related to the crank angular speed of the engine.
  • fluctuations associated with the crank angular speed of the engine include not only fluctuations due to internal factors of the engine, such as variations in combustion, cylinder deviation, tolerance of the crank angular speed sensor or the detected part of the sensor, but also outside the engine. There may be fluctuations due to technical factors. Therefore, it may be difficult to apply a conventional control device depending on a device (vehicle or the like) provided with a 4-stroke engine.
  • the inventors of the present invention examined fluctuations due to external factors of the engine.
  • the inventors of the present invention include fluctuations due to at least one element of the winding transmission body and the plurality of transmission vehicles in the fluctuation of the rotational speed of the four-stroke engine that drives the winding transmission body. Found that there may be.
  • the present inventors include a variation caused by at least one element of the winding transmission body and the plurality of transmission vehicles in the rotation variation of the four-stroke engine, in the conventional misfire detection device, It was found that it was difficult to discriminate misfire in a four-stroke engine, even when not driving on a rough road.
  • the present inventors have found that the fluctuation due to the winding transmission body has a periodicity corresponding to the circulation cycle of the winding transmission body, etc., and the fluctuation due to the temporary state of the road surface on which the vehicle travels, etc. It has been found that this influences the judgment of the presence or absence of misfire more constantly.
  • the present invention has been completed based on the above-described findings.
  • periodic fluctuations in the rotational speed of the four-stroke engine that are repeated in the circulation cycle of at least one of the winding transmission and the plurality of transmission vehicles are detected. Therefore, for example, it is possible to detect a state in which it is difficult to detect misfire due to at least one element of the winding transmission body and the plurality of transmission vehicles.
  • the detection reliability can be improved.
  • the misfire detection device of the present invention is configured to detect only a periodic variation repeated in a circulation cycle of at least one element of the winding transmission body and the plurality of transmission vehicles, and a misfire of the 4-stroke engine. There is no need to be.
  • the misfire detection device of the present invention may be configured to detect a variation other than a periodic variation included in a rotational variation of a four-stroke engine, for example, that is repeated in the circulation cycle of the one element.
  • the misfire detection device may be configured to detect, for example, a smooth swell that fluctuates in a period other than the periodic fluctuation, or a fluctuation that accompanies acceleration / deceleration.
  • the determination of the presence or absence of misfire of the 4-stroke engine is performed based on the rotational speed of the rotating body rotated by the 4-stroke engine.
  • the determination of whether or not the 4-stroke engine has misfired is made without being based on the pressure of the 4-stroke engine.
  • the determination of whether or not the 4-stroke engine has misfired is made without being based on the temperature of the 4-stroke engine.
  • the determination of the presence or absence of misfire of the 4-stroke engine may be performed based only on the rotational speed of the rotating body rotated by the 4-stroke engine, as in an embodiment described later.
  • the misfire determination unit determines the presence or absence of misfire based on, for example, the amount of change in the rotational speed of the rotating body. For example, the misfire determination unit determines the presence or absence of misfire based on the change in the fluctuation amount of the rotational speed after the passage of a predetermined crank angle section. However, the misfire determination unit may determine the presence or absence of misfire, for example, without being based on a change in the fluctuation amount after the predetermined crank angle interval. Further, the misfire determination unit may determine the presence or absence of misfire, for example, regardless of the amount of change in the rotational speed of the rotating body.
  • the periodic fluctuation detection unit detects periodic fluctuations including steep fluctuations.
  • the periodic fluctuation detected by the periodic fluctuation detector may be a smooth fluctuation.
  • the periodic variation has a plurality of extreme values within a circulation cycle of at least one element of the wound transmission body and the plurality of transmission wheels. The plurality of extreme values may appear at random intervals within one circulation cycle, or may appear at equal intervals.
  • the plurality of extreme values includes a maximum value or a minimum value.
  • the maximum value is a rotation speed at a point where the rotation speed of the rotating body turns from increasing to decreasing in the order of acquisition.
  • the minimum value is the rotational speed at the point where the rotational speed of the rotating body starts from decreasing to increasing in the order of acquisition.
  • the periodic fluctuation detection unit detects the periodic fluctuation based on the rotation speed averaged in a section larger than the timing interval at which the rotation speed is acquired
  • the extreme value is set to each average rotation speed. Judgment based on. For example, when the periodic variation detection unit detects a periodic variation in rotational speed thinned out from the rotational speed acquired by the rotational speed acquisition unit, the extreme value is determined based on the thinned rotational speed.
  • the periodic fluctuation detection unit is configured such that the amplitude of the periodic fluctuation repeated at least in the circulation cycle of at least one element of the winding transmission body and the plurality of transmission vehicles is greater than the amplitude of fluctuation accompanying the combustion operation of the four-stroke engine. If it is also larger, periodic fluctuations are detected. However, the periodic fluctuation detection unit may detect the periodic fluctuation when the amplitude of the periodic fluctuation is smaller than the amplitude of the fluctuation accompanying the combustion operation.
  • detection of periodic fluctuations repeated in the circulation cycle of at least one element of the winding transmission body and the plurality of transmission vehicles is performed on the rotational speed of the rotating body rotated by the 4-stroke engine. Based on.
  • the periodic fluctuation is detected without being based on an acceleration sensor provided in the winding transmission body or the transmission vehicle.
  • Periodic fluctuations that are repeated in the circulation cycle of at least one element of the winding transmission body and the plurality of transmission vehicles are detected only by the rotational speed of the rotating body that is rotated by a four-stroke engine as in the embodiment described later. May be performed on the basis of
  • the rotational speed acquisition unit obtains the rotational speed of the rotating body rotated by the four-stroke engine, for example, using the crank angle as a reference for the acquisition timing.
  • the periodic fluctuation detection unit detects the periodic fluctuation based on, for example, the rotation speed obtained by the rotation speed acquisition unit with reference to the crank angle.
  • the rotational speed acquisition unit may obtain the rotational speed, for example, with the passage of a fixed time as a reference for the acquisition timing.
  • the periodic fluctuation detection unit may detect the periodic fluctuation based on, for example, a rotation speed obtained with reference to a certain time.
  • the misfire detection device may include, for example, a combustion control unit that controls the operation of a four-stroke engine.
  • the misfire detection device may be a device different from the device that controls the operation of the engine.
  • the misfire detection device further includes, for example, a misfire notification unit configured to output information representing a determination result of the presence or absence of misfire by the misfire determination unit to the outside of the misfire detection device.
  • a misfire notification unit configured to output information representing a determination result of the presence or absence of misfire by the misfire determination unit to the outside of the misfire detection device.
  • the misfire detection device may not output detection information to the outside of the misfire detection device, for example.
  • the misfire detection device may use the determination result for another function of the misfire detection device.
  • the misfire detection device is mounted on the device together with, for example, a 4-stroke engine.
  • the 4-stroke engine and the misfire detection device are mounted on, for example, a vehicle.
  • the 4-stroke engine and the misfire detection device may be applied to devices other than the vehicle.
  • the 4-stroke engine and the misfire detection device may be applied to a power generation device, for example.
  • the 4-stroke engine is, for example, a single cylinder engine or an engine having two or more cylinders.
  • Rotating body is rotated by a 4-stroke engine.
  • the rotating body need not be configured to receive a driving force directly from the four-stroke engine.
  • the rotating body may receive the driving force indirectly from the 4-stroke engine through a mechanism other than the 4-stroke engine.
  • the rotating body is, for example, a crankshaft, a gear, a wheel, or a propeller.
  • the winding transmission body is, for example, a chain or a belt.
  • the transmission vehicle may be a sprocket or a pulley, for example.
  • the wound transmission may be a cogged belt, for example.
  • An information output unit configured to output detection information representing a detection result of the periodic variation by the periodic variation detection unit is further provided outside the misfire detection device.
  • misfire detection device of (2) detection information indicating the detection result of the periodic fluctuation is output. Therefore, it is possible to discriminate between the case where the effectiveness of the determination result of the presence or absence of misfire is high and the case where it is low due to the influence of the periodic fluctuation. For this reason, in the scene where the determination result of the presence or absence of misfire is used, the reliability of the information used improves.
  • the information output unit does not necessarily have to output the information on the detection result of the periodic variation every time the periodic variation detector determines the periodic variation. For example, each time the periodic fluctuation is determined by the periodic fluctuation detector, the information output unit may store the periodic fluctuation determination result. When the stored determination result of the periodic fluctuation satisfies a predetermined condition, the information output unit may output information on the periodic fluctuation.
  • the device from which the misfire notification unit and / or the information output unit outputs information is, for example, a lamp or an image display device.
  • the device from which the misfire notification unit and / or the information output unit outputs information may be a diagnostic device connected to the misfire detection device at an arbitrary timing, for example.
  • the information output unit may output information when connected to the device.
  • the misfire detection device of (2) The information output unit outputs the detection information as information representing an abnormality of the one element based on detection of the periodic variation by the periodic variation detection unit.
  • the misfire detection device of (3) it is possible to notify the abnormal state of the one element based on the detection of the periodic fluctuation. In addition to identifying the validity of the determination result of the presence or absence of misfire by the information indicating the abnormality of the one element, repair or replacement of the one element is prompted. As a result, the effectiveness of determination is improved.
  • the misfire determination unit determines whether or not the four-stroke engine has misfired in at least a part of a period during which the four-stroke engine is operating based on detection of the periodic variation by the periodic variation detection unit. Stop.
  • the misfire of the 4-stroke engine is detected during at least a part of the period during which the 4-stroke engine is operating based on the detection of the periodic fluctuation by the periodic fluctuation detection unit.
  • the presence / absence judgment stops.
  • the determination of the presence or absence of misfire can be stopped in a situation where the reliability of the determination of the presence or absence of misfire is likely to decrease due to the periodic fluctuation. For this reason, the situation where the result of the determination with low effectiveness is output is suppressed. Therefore, the reliability regarding the determination of the presence or absence of misfire is further improved.
  • the misfire detection device detects the periodic variation based on the circulation cycle of the one element and the rotation speed of the rotating body obtained by the rotation speed acquisition unit.
  • the misfire detection device of (5) since the periodic variation is detected based on the circulation cycle of the one element and the rotation speed of the rotating body, the periodic variation of the one element is precise. Detected. Therefore, the reliability regarding the determination of the presence or absence of misfire is further improved.
  • a method of detecting the periodic fluctuation based on the circulation cycle of the one element and the rotation speed of the rotating body for example, there is a method of determining whether or not a specific fluctuation pattern appears in the circulation cycle.
  • a method of detecting the periodic fluctuation for example, there is a method of converting a change in rotational speed into a frequency domain.
  • the misfire detection device acquires the rotation speed of the rotating body obtained by the rotation speed acquisition unit and the rotation speed before a period that is a natural number times the circulation cycle than when the rotation speed is obtained.
  • the periodic variation is detected by performing a calculation using the rotation speed of the rotating body obtained by the unit.
  • the misfire detection device of (6) the rotational speed of the rotating body obtained by the rotational speed acquisition section and the rotational speed acquisition section before the period that is a natural number times the circulation cycle than when the rotational speed is obtained. Since the calculation using the rotation speed of the obtained rotating body is performed, periodic fluctuations can be detected with a simple calculation. For this reason, it is possible to accurately detect periodic fluctuations in a limited time. Therefore, the reliability regarding the determination of the presence or absence of misfire is further improved.
  • the rotational speed of the rotating body obtained by the rotational speed acquisition section and the rotational speed of the rotating body obtained by the rotational speed acquisition section before a period that is a natural number times the circulation cycle than when the rotational speed was obtained.
  • the calculation for example, the following calculation can be adopted.
  • a calculation in which the value of the calculation result increases as the correlation between repeated cyclic fluctuations increases.
  • a periodic fluctuation detection part performs the calculation of an autocorrelation function, for example.
  • the calculation is not limited to this.
  • a calculation in which the value of the calculation result does not increase according to the correlation or the amplitude may be employed.
  • the period that is a natural number times the circulation cycle is, for example, a circulation cycle.
  • the period that is a natural number times the circulation period may be, for example, a period that is twice or more the circulation period.
  • the misfire detection device according to any one of (1) to (6),
  • the winding transmission is configured to mesh with the plurality of transmission wheels.
  • the wound transmission body is configured to mesh with a plurality of transmission vehicles
  • fluctuations in rotational speed due to an abnormality in at least one of the winding transmission body and the plurality of transmission vehicles may cause circulation of the one element. Prone to occur in cycles.
  • the misfire detection device of (7) it is possible to detect periodic fluctuations in the rotational speed caused by the abnormality of the one element as information for determining the effectiveness of misfire detection. Therefore, the reliability regarding the determination of the presence or absence of misfire is improved.
  • the misfire detection device according to (7), The plurality of extreme values are generated due to meshing between the wound transmission body and one of the plurality of transmission vehicles in a variation in rotational speed of the four-stroke engine.
  • misfire detection device of (8) periodic fluctuations in the rotational speed including a plurality of extreme values caused by an abnormality of at least one element of the winding transmission body and the plurality of transmission vehicles can be effectively detected by misfire. It can be detected as information for judging sex. Therefore, the reliability regarding the determination of the presence or absence of misfire is improved.
  • a plurality of transmission vehicles a wound transmission member wound around the plurality of transmission vehicles so as to move in a circulating manner, a four-stroke engine that drives the winding transmission member, and the four-stroke engine
  • the vehicle includes the misfire detection device according to any one of (1) to (8).
  • the vehicle is a straddle-type vehicle including, for example, a motorcycle, a three-wheel vehicle, or a four-wheel vehicle. However, the vehicle may be a four-wheel vehicle having a passenger compartment.
  • a vehicle is a manned vehicle or an unmanned transport.
  • the vehicle may be an outboard motor including a propeller driven by an engine, for example.
  • the misfire determination unit detects that the vehicle is traveling on a rough road.
  • the misfire determination unit does not necessarily have to detect traveling on a rough road.
  • FIG. 1 is an external view showing a vehicle including a misfire detection device according to a first embodiment of the present invention. It is a block diagram which shows typically the structure of the control apparatus shown in FIG. 1, and its peripheral apparatus. It is a block diagram which shows the structure of the control apparatus shown in FIG. It is a flowchart which shows operation
  • (B) is a graph which shows the example of a measurement of the rotational speed of a crankshaft in case a deteriorated winding transmission body is used. It is a graph which expands and shows the fluctuation
  • FIG. 1 is an external view showing a vehicle including a misfire detection device according to a first embodiment of the present invention.
  • a vehicle 50 shown in FIG. 1 includes a vehicle body 51 and wheels 52.
  • the vehicle 50 is a motorcycle having two wheels 52.
  • the wheels 52 are arranged side by side in the front-rear direction X of the vehicle 50 with respect to the vehicle body 51 of the vehicle 50.
  • the vehicle body 51 is provided with suspensions 56 and 57.
  • the wheel 52 is supported by suspensions 56 and 57.
  • the vehicle body 51 has a swing arm 55 that can swing in the vertical direction Z around an axis A extending in the left-right direction with respect to the vehicle body 51.
  • the swing arm 55 supports the rear wheel 52 at the end opposite to the axis A.
  • the rear wheel 52 is supported so as to be swingable in the vertical direction Z around the axis A extending in the left-right direction with respect to the vehicle body 51.
  • the vehicle 50 includes a control device 10, a four-stroke engine 20, a wound transmission body 59a, and a plurality of transmission vehicles 59b.
  • the 4-stroke engine 20 is also simply referred to as the engine 20.
  • the control device 10 and the engine 20 are provided on the vehicle body 51.
  • the winding transmission body 59a is endless and is wound around a plurality of transmission wheels 59b.
  • the winding transmission body 59a moves cyclically with the rotation of the transmission wheel 59b.
  • the winding transmission body 59a is configured to mesh with a plurality of transmission wheels 59b.
  • the winding transmission body 59a is a chain.
  • the transmission wheel 59b is a sprocket.
  • the engine 20 drives the winding transmission body 59a via the transmission 58.
  • the driving force of the engine 20 is transmitted to the wheels 52 via the winding transmission body 59a and the transmission vehicle 59b.
  • the engine 20 drives the wheels 52.
  • the winding transmission body 59a and the plurality of transmission wheels 59b transmit the driving force of the engine 20.
  • At least one element of the winding transmission body 59a and the plurality of transmission wheels 59b is also referred to as a transmission element 59.
  • Control device 10 detects misfire of engine 20.
  • the control device 10 corresponds to an example of a misfire detection device of the present invention.
  • the control device 10 is also referred to as a misfire detection device 10.
  • the control device 10 controls the engine 20.
  • FIG. 2 is a configuration diagram schematically showing the configuration of the control device shown in FIG. 1 and its peripheral devices.
  • FIG. 2 is a device related to the 4-stroke engine 20 (engine 20).
  • the engine 20 according to the present embodiment is a three-cylinder engine.
  • FIG. 2 shows a configuration for one cylinder.
  • a single cylinder engine or a two-cylinder engine can be adopted, and an engine having four or more cylinders can also be adopted.
  • the engine 20 includes a crankshaft 21.
  • the crankshaft 21 corresponds to an example of a rotating body referred to in the present invention.
  • the crankshaft 21 rotates with the operation of the engine 20. That is, the crankshaft 21 is rotated by the engine 20.
  • the crankshaft 21 is provided with a plurality of detected portions 25 for detecting the rotation of the crankshaft 21.
  • the detected portions 25 are arranged in the circumferential direction of the crankshaft 21 with a predetermined detection angle as viewed from the rotation center of the crankshaft 21.
  • the detection angle is, for example, 15 degrees.
  • the detected portion 25 moves in conjunction with the rotation of the crankshaft 21.
  • the control device 10 includes a CPU 101, a memory 102, and an I / O port 103.
  • the CPU 101 performs arithmetic processing based on the control program.
  • the memory 102 stores a control program and information necessary for calculation.
  • the I / O port 103 inputs / outputs a signal to / from an external device.
  • a rotation sensor 105 for detecting the rotation of the crankshaft 21 is connected to the I / O port 103.
  • the rotation sensor 105 is a sensor for obtaining the rotation speed of the crankshaft 21 of the engine 20.
  • the rotation sensor 105 outputs a signal when it detects the passage of the detected portion 25.
  • the rotation sensor 105 outputs a signal each time the crankshaft 21 of the engine 20 rotates by a detection angle.
  • a display device 30 is also connected to the I / O port 103. The display device 30 displays information output from the control device 10.
  • the control device 10 of the present embodiment detects misfire of the engine 20 based on the rotational speed of the crankshaft 21.
  • the control device 10 of the present embodiment also has a function as an electronic control unit (ECU) that controls the operation of the engine 20.
  • the control device 10 is connected to an unillustrated intake pressure sensor, a fuel injection device, and a spark plug.
  • FIG. 3 is a block diagram showing a configuration of the control device 10 shown in FIG.
  • the control device 10 includes a rotation speed acquisition unit 11, a periodic variation detection unit 12, a periodic variation notification unit 13, a misfire determination unit 14, a misfire notification unit 15, and a combustion control unit 16.
  • Each unit of the control device 10 is realized by the CPU 101 (see FIG. 2) that executes the control program controlling the hardware shown in FIG.
  • the rotation speed acquisition unit 11 obtains the rotation speed of the crankshaft 21 based on the output of the rotation sensor 105.
  • the periodic fluctuation detection unit 12 detects fluctuations included in the rotation fluctuation of the engine 20 and repeated in the circulation cycle of the transmission element 59 (see FIG. 1).
  • the periodic variation detector 12 detects a periodic variation that is repeated in the circulation cycle of the transmission element 59 based on the rotational speed of the crankshaft 21 obtained by the rotational speed acquisition unit 11.
  • the periodic fluctuation detector 12 of the present embodiment detects a periodic fluctuation that is repeated in the circulation cycle of the wound transmission body 59a.
  • the periodic fluctuation notification unit 13 outputs detection information indicating the detection result of the periodic fluctuations by the periodic fluctuation detection unit 12 to the display device 30 outside the control device 10.
  • the periodic fluctuation notification unit 13 is also referred to as an information output unit 13.
  • the misfire determination unit 14 detects misfire of the engine 20 based on the rotation speed of the crankshaft 21 obtained by the rotation speed acquisition unit 11.
  • the misfire determination unit 14 detects a bad road traveling. Specifically, the misfire determination unit 14 determines whether or not the vehicle 50 (see FIG. 1) on which the engine 20 and the control device 10 are mounted is traveling on a rough road based on the rotation speed obtained by the rotation speed acquisition unit 11. To detect.
  • the misfire determination unit 14 may detect traveling on a rough road regardless of the rotation speed obtained by the rotation speed acquisition unit 11. For example, traveling on a rough road may be detected based on the rotation speed of the wheel 52.
  • the misfire notification unit 15 outputs misfire detection information representing the determination result of the presence or absence of misfire by the misfire determination unit 14 to the display device 30. This notifies the detection of misfire. Further, the misfire notification unit 15 also outputs a detection result of the rough road traveling.
  • the combustion control unit 16 controls the combustion operation of the engine 20 by controlling a fuel injection unit and a spark plug (not shown).
  • FIG. 4 is a flowchart showing the operation of the control device 10 shown in FIG.
  • the control device 10 repeats the process shown in FIG.
  • the combustion control unit 16 controls the combustion operation of the engine 20 (S11).
  • the rotational speed acquisition unit 11 obtains the rotational speed of the crankshaft 21 of the engine 20 (S12).
  • the periodic variation detector 12 detects the periodic variation included in the rotational variation of the engine 20 and repeated in the circulation cycle of the transmission element 59 (S13).
  • the periodic variation notification unit 13 outputs detection information indicating detection of the periodic variation.
  • the misfire determination unit 14 determines whether or not the engine 20 has misfired (S16). Further, the misfire determination unit 14 also detects a bad road traveling. In addition, each of the rotational speed acquisition part 11, the periodic fluctuation detection part 12, the periodic fluctuation notification part 13, and the misfire determination part 14 performs the process of each data, when the data of each part can be processed. . When a bad road traveling is detected by the misfire determination unit 14 (Yes in S17), the misfire notification unit 15 also outputs information indicating the detection result of the rough road traveling (S18).
  • the misfire notification unit 15 If the misfire determination unit 14 does not detect a bad road traveling (No in S17) and determines that there is a misfire (Yes in S19), the misfire notification unit 15 outputs information indicating the misfire detection result ( S21). Note that the order in which the rotational speed acquisition unit 11, the periodic variation detection unit 12, the periodic variation notification unit 13, the misfire determination unit 14, the misfire notification unit 15, and the combustion control unit 16 operate is limited to the order illustrated in FIG. Absent. In addition, some of the processes may be collectively performed as an operation of one expression. Further, it is not always necessary for the misfire notification unit 15 to output information on the presence of misfire each time the misfire determination unit 14 determines that misfire has occurred.
  • the misfire determination unit 14 stores the determination result that there is a misfire, and the stored determination result that there is a misfire satisfies a predetermined condition.
  • the misfire notification unit 15 may output information on misfire.
  • the predetermined condition in this case is, for example, that the determination of the presence of misfire is performed at a predetermined frequency. Further, it is not always necessary for the misfire notification unit 15 to output information on bad road travel every time the misfire determination unit 14 determines rough road travel.
  • the misfire determination unit 14 stores the determination result of the rough road travel, and the stored determination result of the rough road satisfies a predetermined condition.
  • the misfire notification unit 15 may output information on rough road traveling.
  • the periodic fluctuation notification unit 13 it is not always necessary for the periodic fluctuation notification unit 13 to output information on the detection result of the periodic fluctuation every time the periodic fluctuation detector 12 determines the periodic fluctuation. For example, every time periodic fluctuation is determined by the periodic fluctuation detector 12, the periodic fluctuation notification unit 13 stores the periodic fluctuation determination result, and the stored periodic fluctuation determination result is predetermined. When the above condition is satisfied, the periodic fluctuation notification unit 13 may output information on the periodic fluctuation.
  • the display device 30 illustrated in FIG. 2 is a diagnostic device connected to the control device 10 at an arbitrary timing, for example, the periodic variation notification unit 13 or the misfire notification unit 15 is connected to the control device 10. Information may be output when connected.
  • the rotation speed acquisition unit 11 obtains the rotation speed of the crankshaft 21 based on a signal from the rotation sensor 105 (see FIG. 2).
  • the rotation sensor 105 outputs a signal every time the crankshaft 21 rotates by a detection angle.
  • the rotational speed acquisition unit 11 measures the time required for the crankshaft 21 to rotate by the detection angle by measuring the time interval of the timing when the signal from the rotation sensor 105 is output.
  • the rotation speed acquisition unit 11 obtains a rotation speed determined by measuring this time. That is, the rotational speed acquisition unit 11 obtains the rotational speed of the crankshaft 21 using the crank angle as a reference for the acquisition timing. Specifically, the rotational speed acquisition unit 11 obtains the rotational speed of the crankshaft 21 for each constant crank angle.
  • the rotation speed obtained by the rotation speed acquisition unit 11 is the rotation speed of the crankshaft 21, so the rotation speed obtained by the rotation speed acquisition unit 11 is the rotation speed of the engine 20.
  • the fluctuation of the rotational speed of the engine 20 includes a fluctuation due to combustion of the engine 20.
  • Variation due to combustion of the engine 20 has an angular period shorter than a crank angle corresponding to four strokes.
  • the fluctuation in the rotational speed of the engine 20 may include not only fluctuation due to combustion of the engine 20 but also fluctuation due to external factors of the engine 20 such as the structure of the vehicle 50.
  • the rotational speed acquisition part 11 in this embodiment also obtains the rotational speed corresponding to the section over a plurality of detection angles as the rotational speed.
  • the rotational speed acquisition unit 11 obtains, for example, the rotational speed of the 180-degree crank angle section corresponding to the explosion stroke of each cylinder and the rotational speed of the 180-degree crank angle section corresponding to the stroke between the explosion strokes.
  • FIG. 5 is a graph showing a first example of the rotational speed of the crankshaft 21 rotated by the engine 20.
  • the horizontal axis indicates the rotation angle ⁇ of the crankshaft.
  • the vertical axis represents the rotation speed. In the first example shown in FIG.
  • FIG. 5 schematically shows fluctuations in the rotational speed associated with the combustion operation of the engine 20.
  • the one-dot chain line graph indicates the rotation speed OMG ′ obtained each time a signal is output from the rotation sensor 105 in accordance with the passage of one detected unit 25.
  • the one-dot chain line graph is generated by connecting the rotational speed OMG ′ obtained for each passage of the detected portion 25 with a curve.
  • the rotational speed OMG ′ is obtained by a time interval at which a signal is output. That is, the rotational speed OMG ′ is a rotational speed for each detected angle.
  • the rotational speed OMG ′ indicates the instantaneous rotational speed.
  • the engine 20 according to the present embodiment is a three-cylinder four-stroke engine with an equidistant explosion. Accordingly, a peak of the rotational speed corresponding to the same stroke of each cylinder appears every 720/3 degrees, that is, every 240 degrees crank angle.
  • the solid line graph shows the rotational speed OMG in a section over a plurality of detection angles.
  • the solid line graph shows the rotational speed OMG in the 180-degree crank angle section.
  • the rotation speed acquisition unit 11 obtains a value of the rotation speed OMG by calculating an average in a 180-degree crank angle section for the rotation speed OMG ′ for each detected angle.
  • each point of the rotational speed OMG can also be obtained by accumulating the time intervals of signals received from the rotation sensor 105 over a plurality of sections.
  • the graph of the rotational speed OMG is generated by connecting points of values obtained at every 120 ° crank angle (every half of the 240 ° crank angle corresponding to the same stroke of each cylinder) with a curve. Therefore, the peak position in the graph of the rotational speed OMG may deviate from the peak position of the instantaneous rotational speed.
  • the value of each point in the graph of the rotational speed OMG is the speed in the 180-degree crank angle section including that point. In addition, said 180 degree
  • the value of the rotational speed OMG is obtained by calculating the average of the instantaneous rotational speed over a section 90 degrees before the rotational angle corresponding to the value and a section 90 degrees after the rotational angle.
  • the graph of the rotational speed OMG is generated by connecting the obtained average values with a curve.
  • the rotational speed OMG has a smaller fluctuation range than the rotational speed OMG ′ for each detected angle, which is the instantaneous rotational speed.
  • the rotational speed OMG represents rotational fluctuation due to combustion of the engine 20.
  • the control device 10 detects the presence or absence of misfire of the engine 20 by using the rotational speed OMG in the 180-degree crank angle section.
  • an angle other than the 180-degree crank angle may be employed as a section for calculating the value of the rotational speed OMG.
  • a crank angle smaller than 180 degrees such as a 120-degree crank angle or a 90-degree crank angle, can be adopted as a section for calculating the rotational speed OMG.
  • a detection angle that is a crank angle of 15 degrees can be used as a section for calculating the rotation speed OMG.
  • the rotation speed OMG ′ can be used as the rotation speed OMG. That is, an angle of 180 degrees or less can be adopted as a section for calculating the value of the rotational speed OMG.
  • the 180-degree crank angle section need not be set so as to completely overlap each stroke, and may have a deviation with respect to each stroke.
  • the rotational speed OMG, the averaged rotational speed, and the like are used as the rotational speed.
  • the format representing these rotational speeds is not particularly limited. That is, the rotation speed may be expressed, for example, in the form of the time required for the crankshaft 21 to rotate at a predetermined angle, and the rotation speed or angle calculated per unit time calculated as the reciprocal of the time. It may be expressed in the form.
  • the misfire determination unit 14 illustrated in FIG. 3 determines whether or not the engine 20 has misfired based on the rotational fluctuation due to the combustion of the engine 20.
  • the misfire determination unit 14 determines the presence or absence of misfire of the engine 20 based on the rotation speed of the crankshaft 21 obtained by the rotation speed acquisition unit 11.
  • the misfire determination unit 14 calculates the fluctuation amount in the cylinder in which the same stroke continues for the rotational speed OMG of the engine 20.
  • the misfire determination unit 14 determines the misfire of the 4-stroke engine by calculating the amount of fluctuation.
  • FIG. 6 is a graph showing a second example of the rotational speed of the crankshaft 21 rotated by the engine 20.
  • the horizontal axis of the graph in FIG. 6 indicates the rotation angle ⁇ of the crankshaft 21, and the vertical axis indicates the rotation speed.
  • the graph of FIG. 6 represents a wider range of rotation angles than the graph of FIG.
  • the solid line graph indicates the rotational speed OMG of the crankshaft 21, that is, the rotational speed of the engine 20, as in the case of FIG.
  • the graph schematically shows the fluctuation of the rotational speed OMG.
  • the graph of the rotational speed OMG is obtained by connecting the rotational speed values calculated for the crank angle corresponding to the explosion stroke and the intake stroke with a curve, as in FIG.
  • the engine 20 according to the present embodiment is a three-cylinder four-stroke engine with an equidistant explosion.
  • the rotation speed peak corresponding to the compression stroke of each cylinder appears at every 240 ° crank angle.
  • the number of the crank angle position to be detected at a certain point in time is set to “0”, and the numbers are sequentially given every 120 degrees crank angle from the position of “0”.
  • the intake stroke (# 3S) of the third cylinder among the three cylinders is set as the position of “0” that is the detection target at a certain time.
  • the position “0” is a position “1” corresponding to the explosion stroke (# 1W) of the first cylinder and a position “ ⁇ 1” corresponding to the explosion stroke (# 2W) of the second cylinder. Intermediate position.
  • the positions “2”, “4”, and “6” correspond to the intake strokes (# 2S, # 1S, # 3S) in the second cylinder, the first cylinder, and the third cylinder, respectively. .
  • the value of the rotational speed OMG at each position “0”, “1”, “2”,... is represented as OMG0, OMG1, OMG2,.
  • the rotation speed of the crankshaft 21 obtained by the rotation speed acquisition unit 11 is the rotation speed of the engine 20. Therefore, the rotational speed OMG of the crankshaft 21 will be described as the rotational speed OMG of the engine 20.
  • the graph of the rotational speed OMG of the crankshaft 21 shown in FIG. 6 represents the rotational fluctuation (variation in rotational speed) of the engine 20.
  • the rotational fluctuation of the engine 20 has a rotational fluctuation due to the combustion operation of the engine 20.
  • the rotational fluctuation due to the combustion operation has a number of repetition cycles corresponding to the number of cylinders per 720 degree crank angle.
  • the rotational fluctuation of the rotational speed OMG shown in FIG. 6 has three repetition periods per 720 degree crank angle. That is, the cycle of the rotational fluctuation due to the combustion operation of the engine 20 is shorter than the crank angle (720 degrees) corresponding to 4 strokes.
  • the misfire determination unit 14 calculates the fluctuation amount in the cylinder in which the same stroke continues for the rotational speed OMG of the engine 20.
  • the misfire determination unit 14 determines the misfire of the 4-stroke engine by calculating the amount of fluctuation.
  • the misfire determination unit 14 calculates a difference in rotational speed between cylinders in which the same stroke continues.
  • the misfire determination unit 14 uses the rotational speed OMG of the engine 20 as the rotational speed.
  • the calculated difference is set as the first fluctuation amount. For example, when the position “0” shown in FIG. 6 is a detection target, the positions of the crank angles corresponding to the cylinders in which the same stroke continues are the positions “0” and “2”.
  • the position “2” corresponds to the intake stroke (# 2S in FIG. 6) of the second cylinder.
  • the position “0” corresponds to the intake stroke (# 3S in FIG. 6) of the third cylinder.
  • the first fluctuation amount is a difference between the rotational speed OMG2 and the rotational speed OMG0.
  • the rotational speed OMG2 is the rotational speed at the position "2" shown in FIG.
  • the rotation speed OMG0 is the rotation speed at the position “0”.
  • the misfire determination unit 14 calculates a difference in the cylinders in which the same stroke continues at a position 720 degrees before the crankshaft 21 where the first fluctuation amount is calculated. This difference is defined as a second variation amount.
  • the second fluctuation amount is a difference between the rotational speed OMG8 and the rotational speed OMG6.
  • the rotational speed OMG6 is the rotational speed OMG of the engine 20 at the position "6”.
  • the rotation speed OMG8 is the rotation speed at the position “8”.
  • the misfire determination unit 14 calculates the difference between the first variation amount and the second variation amount as the variation index ⁇ OMG. The misfire determination unit 14 determines that there is a misfire when the variation index ⁇ OMG is within a predetermined misfire determination range.
  • misfire determination unit 14 determines that there is a misfire.
  • the misfire determination value CK is the lower limit of the misfire determination range.
  • the misfire determination unit 14 determines that there is no misfire when the variation index ⁇ OMG is smaller than the misfire determination value CK.
  • the broken line MS_OMG in FIG. 6 indicates the fluctuation of the rotational speed when misfire occurs.
  • a broken line MS_OMG schematically shows fluctuations in the rotation speed when misfire occurs in the explosion stroke (# 1W) of the first cylinder.
  • the rotation speed does not increase due to the explosion, and therefore, from the explosion stroke (# 3W) of the cylinder before the first cylinder to the explosion stroke (# 2W) of the cylinder after the first cylinder.
  • the rotation speed continues to decrease. That is, the rotational speed OMG0 at the position “0” is lower than the case where no misfire occurs. For this reason, the first fluctuation amount at the position “0” increases compared to the case where no misfire occurs. In this case, the fluctuation index ⁇ OMG at the position “0” increases as compared with the case where no misfire occurs.
  • the variation index ⁇ OMG is larger than the misfire determination value CK, it is determined that there is misfire.
  • the variation index ⁇ OMG can be increased by other factors of misfire as described above.
  • the fluctuation index ⁇ OMG increases, for example, when the vehicle 50 (see FIG. 1) on which the engine 20 is mounted travels on a bad road instead of a flat road.
  • load fluctuations due to road surface unevenness and the like are transmitted from the wheel 52 (see FIG. 1) to the crankshaft 21 of the engine 20 via the transmission element 59 and the like.
  • the rotational speed OMG varies. If the fluctuation caused by the traveling on the rough road included in the fluctuation of the rotational speed OMG increases, the misfire determination unit 14 cannot perform an appropriate misfire determination.
  • the misfire determination unit 14 determines that the vehicle 50 (see FIG. 1) is traveling on a bad road when the variation index ⁇ OMG is outside the misfire determination range described above. For example, when the frequency at which the fluctuation index ⁇ OMG exceeds a predetermined rough road determination value exceeds a predetermined value, it is determined that the vehicle 50 (see FIG. 1) is traveling on a rough road.
  • the bad road determination value is set to an upper limit value that the fluctuation index ⁇ OMG can take when the vehicle 50 is traveling on a flat road without misfire.
  • the rough road determination value is smaller than the misfire determination value CK.
  • the fluctuation index ⁇ OMG when traveling on a rough road may exceed the misfire determination value CK.
  • the example in which the frequency at which the variation index ⁇ OMG exceeds the determination value is determined has been described.
  • each determination is not limited to this, and may be performed based on, for example, the number of times the variation index ⁇ OMG exceeds the determination value.
  • Rotational speed fluctuation due to running on a rough road is not fluctuation caused by the structure or performance of the engine 20 itself or the vehicle 50.
  • the fluctuations in the rotational speed due to traveling on a rough road reflect the temporary environment in which the engine 20 or the vehicle 50 is placed.
  • the misfire notification unit 15 reports the misfire determination result by the misfire determination unit 14.
  • the misfire notification unit 15 causes the display device 30 (see FIG. 3) to display that there is a misfire when the misfire determination unit 14 determines that there is a misfire. Further, the misfire notification unit 15 causes the display device 30 to display information on rough road traveling. When the misfire determination unit 14 detects a bad road traveling, the misfire information indicating the detection result of the rough road traveling is output to the display device 30.
  • the display device 30 is, for example, a lamp.
  • the display device 30 may be used for both misfire display and rough road travel display.
  • the display device 30 may be an image display.
  • the display device 30 may be a diagnostic device connected to the control device 10 when the vehicle 50 is inspected / repaired, for example. In this case, the display device 30 may not be always connected to the control device 10.
  • the misfire notification unit 15 stores information representing the result of determination by the misfire determination unit 14 in the memory 102 when the vehicle 50 is in operation.
  • the misfire notification unit 15 outputs information stored in the memory 102 when a diagnostic device as the display device 30 is connected to the control device 10.
  • the diagnostic device as the display device 30 displays the result of determination by the misfire determination unit 14.
  • the display device 30 displays a history of determination results.
  • the misfire determination unit 14 determines the presence or absence of misfire based on the change in the fluctuation amount of the rotational speed after a predetermined crank angle period has elapsed. More specifically, the misfire determination unit 14 determines the presence or absence of misfire based on the change between the first fluctuation amount and the second fluctuation amount of the rotation speed.
  • the first fluctuation amount is a fluctuation amount of the rotation speed between the cylinders in which the same stroke in the rotation speed continues.
  • the second fluctuation amount is a fluctuation amount of the rotation speed after a predetermined crank angle period rather than the rotation speed between the cylinders in which the same stroke continues.
  • the predetermined crank angle period is, for example, a 720 degree crank angle.
  • the misfire determination unit 14 calculates a difference between the first variation amount and the second variation amount as the variation index ⁇ OMG.
  • the misfire determination unit 14 determines that there is a misfire when the difference between the first variation amount and the second variation amount is within a predetermined misfire determination range.
  • the first variation amount or the second variation amount increases, for example, when the rotation of the engine accelerates or decelerates according to control.
  • the misfire determination unit 14 determines the change in the rotational speed variation after the 720-degree crank angle period by calculating the difference between the first variation and the second variation. To do. Thereby, the influence when the rotation of the engine accelerates or decelerates according to the control is suppressed. Further, a change in the rotational speed for the same stroke is determined by determining a change in the amount of fluctuation in the rotational speed after the 720-degree crank angle period has elapsed. Therefore, the influence by the crank angle position of the object for judging the change is suppressed. Therefore, in the detection of misfire, the influence of acceleration or deceleration according to control is suppressed.
  • the rotational fluctuation caused by other than misfire may include rotational fluctuation caused by deterioration of the transmission element 59 in addition to the rotational fluctuation caused by acceleration or deceleration described above.
  • the transmission element 59 is a mechanism driven by the engine 20 and is a part of the vehicle 50 on which the engine 20 is mounted. Therefore, the rotational fluctuation due to the deterioration of the transmission element 59 is essentially different from the rotational fluctuation due to a temporary environment such as traveling on a rough road.
  • [Cyclic fluctuation detector] 3 detects a periodic fluctuation that is included in the rotation fluctuation of the engine 20 and is repeated in the circulation cycle of the transmission element 59.
  • the periodic fluctuation detection unit 12 detects a periodic fluctuation based on the rotation speed obtained by the rotation speed acquisition unit 11. More specifically, the periodic variation detector 12 detects the periodic variation based on the circulation cycle of the transmission element 59 and the rotational speed of the crankshaft 21 obtained by the rotational speed acquisition unit 11.
  • the periodic fluctuation detection unit 12 detects an abnormal state of the winding transmission body 59a by detecting a periodic fluctuation repeated in the circulation cycle of the winding transmission body 59a.
  • FIG. 7A is a graph showing an example of measurement of the rotational speed of the crankshaft 21.
  • the horizontal axis indicates the rotation angle ⁇ of the crankshaft 21, and the vertical axis indicates the rotation speed OMG.
  • the graph of FIG. 7A represents a wider range of rotation angles than the graph of FIG. For this reason, the fluctuation of the rotational speed OMG is drawn more finely than the graph of FIG.
  • the graph of FIG. 7 shows the rotation speed when the vehicle 50 on which the engine 20 is mounted is caused to travel.
  • FIG. 7A shows the fluctuation of the rotational speed accompanying the combustion operation of the engine 20.
  • FIG. 7B is a graph showing a measurement example of the rotation speed of the crankshaft 21 when a deteriorated winding transmission body is used as the winding transmission body 59a.
  • the vertical axis and horizontal axis in FIG. 7B are the same as the vertical axis and horizontal axis in FIG.
  • the scales of the vertical axis and the horizontal axis in FIG. 7B are the same as the scales of the vertical axis and the horizontal axis in FIG.
  • Both the graphs of FIG. 7A and FIG. 7B show the rotation speed when not traveling on a rough road and when the engine 20 is not misfired.
  • the rotational speed shown in the graph of FIG. 7B is influenced by the deteriorated winding transmission body 59a.
  • the rotation speed when the deteriorated winding transmission body 59a is used includes fluctuations different from the fluctuation of the rotation speed when the normal winding transmission body 59a that is not deteriorated is used.
  • the amplitude of the fluctuation different from the fluctuation of the rotational speed when the normal winding transmission body 59a is used (FIG. 7A) is larger than the amplitude of the fluctuation accompanying the combustion operation of the engine 20 shown in FIG. .
  • the fluctuations different from the fluctuations in the rotational speed when the normal winding transmission body 59a is used are repeated at a predetermined circulation cycle.
  • FIG. 8 is an enlarged graph showing fluctuations in the rotational speed of the crankshaft 21 when the deteriorated winding transmission 59a is used.
  • FIG. 8 corresponds to a graph obtained by enlarging a part of FIG.
  • the rotational speed OMG shown in FIG. 8 includes periodic fluctuations repeated in the circulation cycle of the transmission element 59 (see FIG. 1).
  • the rotational speed OMG includes a periodic variation that is repeated in the circulation cycle of the wound transmission body 59a.
  • the circulation period Pc of the wound transmission body 59a is shown.
  • the circulation period Pc is shown corresponding to a typical extreme value H representing a plurality of extreme values so that the repetition of fluctuations in the circulation period Pc can be easily understood.
  • the extreme value H is the maximum value H.
  • the circulation period Pc is also shown corresponding to an extreme value L different from the extreme value H.
  • the extreme value L is the minimal value L.
  • the extreme values H and L are examples of extreme values included in the rotational speed OMG.
  • the rotational speed OMG has an extreme value other than the extreme values H and L.
  • the symbol pk is attached to the extreme value in one circulation period Pc.
  • a plurality of extreme values pk including extreme values H and L are repeated in a circulation cycle Pc.
  • the extreme value pk has a different value for each circulation period Pc.
  • not all extreme values are repeated in the circulation cycle Pc.
  • the rotational speed OMG has a tendency to repeat a plurality of extreme values pk in the circulation cycle Pc. That is, the rotational speed OMG has a periodic variation that is repeated in the circulation cycle Pc.
  • the periodic variation repeated in the circulation cycle Pc shown in FIG. 8 is caused by the deterioration of the transmission element 59 (see FIG. 1).
  • the periodic fluctuation detection unit 12 in FIG. 3 detects a periodic fluctuation that is repeated in the circulation period Pc (see FIG. 8) of the wound transmission body 59a.
  • the periodic fluctuation detection unit 12 includes a rotation speed acquisition unit that is obtained by the rotation speed of the crankshaft 21 obtained by the rotation speed acquisition unit 11 and a period that is a natural number times the circulation cycle Pc before the rotation speed is obtained. 11 is performed using the rotational speed of the crankshaft 21 obtained in step 11. Thereby, the periodic variation detector 12 detects a periodic variation repeated in the circulation cycle Pc. Thereby, the periodic fluctuation detection unit 12 detects an abnormal state of the wound transmission body 59a as the transmission element 59.
  • the periodic fluctuation detection unit 12 detects the periodic fluctuation at least when the amplitude of the periodic fluctuation repeated in the circulation cycle of the transmission element 59 is larger than the amplitude of the fluctuation accompanying the combustion operation of the engine 20. Specifically, the periodic fluctuation detection unit 12 performs a calculation in which the value of the calculation result increases as the correlation between the periodic fluctuations repeated in the circulation period Pc increases. Further, the periodic fluctuation detection unit 12 performs a calculation in which the value of the calculation result increases as the amplitude of the periodic fluctuation increases.
  • the periodic fluctuation detection unit 12 calculates an autocorrelation function with a detection period that is a natural number multiple of the circulation period Pc with respect to the rotational speed OMG. More specifically, the periodic fluctuation detection unit 12 calculates the product of the rotational speed obtained with the crank angle as the reference of the acquisition timing and the rotational speed value delayed by the circulation period Pc. When the calculated product is larger than the predetermined determination value, the periodic variation detection unit 12 determines that the rotational speed variation due to the deterioration of the wound transmission body 59a is included. The determination value is determined in advance by actual measurement or simulation.
  • the periodic fluctuation detection unit 12 performs computation in which the value of the computation result increases as the correlation between the periodic fluctuations repeated in the circulation cycle Pc increases, and the value of the computation result increases as the amplitude of the periodic fluctuation increases. I do. For this reason, by adjusting the determination value, fluctuations in the rotational speed that affect the misfire determination are detected with high accuracy.
  • the rotational speed acquisition unit 11 acquires the rotational speed of the crankshaft 21 (rotary body) using the crank angle instead of time as a reference for the acquisition timing. That is, the rotational speed acquisition unit 11 acquires the rotational speed of the crankshaft 21 (rotating body) not for every predetermined time but for every predetermined crank angle.
  • the periodic variation detector 12 detects a periodic variation repeated in the circulation cycle Pc of the transmission element 59 based on the rotational speed acquired by the rotational speed acquisition unit with reference to the crank angle. Specifically, the circulation cycle Pc is determined based on the rotational speed of the crankshaft 21 and the gear ratio in the transmission 58.
  • the fluctuation of the rotational speed due to the winding transmission body 59a is a fluctuation due to an external factor of the engine.
  • the period of fluctuation by the winding transmission body 59a dynamically changes according to the fluctuation of the rotational speed of the engine when viewed on the time axis. For this reason, when the rotational speed is acquired with a certain time as a reference, it is difficult to detect the fluctuation of the rotational speed caused by the wound transmission body 59a.
  • fluctuations in rotational speed due to the wound transmission body 59a which are external factors of the engine, are detected based on the rotational speed obtained with reference to the crank angle. For this reason, the influence of the fluctuation
  • the fluctuation of the rotation speed caused by the meshing between the winding transmission body 59a and the transmission vehicle 59b is not a swell of the rotation speed but a relatively steep fluctuation. Since the periodic fluctuation detection unit 12 detects the fluctuation of the rotation speed caused by the meshing, the fluctuation of the rotation speed caused by the deterioration of the winding transmission body 59a is detected with high accuracy.
  • the periodic fluctuation notification unit (information output unit) 13 outputs fluctuation detection information representing the detection result of the periodic fluctuation by the periodic fluctuation detection unit 12 to the display device 30. Thereby, the detection of the periodic fluctuation is notified.
  • the display device 30 is, for example, a lamp.
  • the display device 30 may be used for both the display of the periodic fluctuation detection result and the misfire display. Further, as described above, the display device 30 may be a diagnostic device connected to the control device 10 when the vehicle 50 is inspected / repaired, for example.
  • the periodic fluctuation notification unit 13 stores information representing the result of determination by the periodic fluctuation detection unit 12 in the memory 102 when the vehicle 50 is in operation.
  • the periodic fluctuation notification unit 13 outputs information stored in the memory 102 when a diagnostic device as the display device 30 is connected to the control device 10. As a result, the diagnostic device as the display device 30 displays the detection result by the periodic fluctuation detection unit 12. In this case, the display device 30 displays a history of detection results. For example, the display device 30 shows the result of determination by the misfire determination unit 14 and the detection result of periodic fluctuation.
  • the periodic fluctuation notification unit 13 outputs fluctuation detection information as information indicating the effectiveness of the determination result of the presence or absence of misfire by the misfire determination unit 14. The display on the display device 30 based on the fluctuation detection information indicates that the effectiveness of misfire determination is low.
  • the periodic fluctuation notification unit 13 outputs fluctuation detection information as information representing an abnormal state of the wound transmission body 59a based on the detection of the periodic fluctuation by the periodic fluctuation detection unit 12.
  • the display on the display device 30 based on the fluctuation detection information indicates an abnormal state of the winding transmission body 59a.
  • the misfire determination unit 14 determines engine misfire based on the rotational speed of the crankshaft 21. If the rotation speed includes a fluctuation as shown in FIG. 7B, the accuracy of the determination of the presence or absence of misfire by the misfire determination unit 14 decreases. That is, the effectiveness of misfire determination is reduced.
  • the deterioration of the wound transmission body 59a is related to the performance of the mechanism driven by the engine 20. For this reason, the fluctuation of the rotational speed due to the deterioration of the winding transmission 59a is different from the temporary fluctuation such as when the vehicle travels on a rough road, for example, and constantly affects the accuracy of misfire detection. In other words, the accuracy of determination by the misfire determination unit 14 may be constantly reduced.
  • the winding transmission body 59 a is a part related to the engine 20.
  • the state of the wound transmission body 59a is essentially different from an environment such as traveling on a rough road.
  • the deterioration of the winding transmission body 59a is detected in a situation where the accuracy of the misfire determination by the misfire determination unit 14 is reduced due to the deterioration of the winding transmission body 59a. Therefore, for example, when no misfire is detected, a case where no misfire actually occurs and a case where the misfire determination unit 14 is in an undetectable state are clearly distinguished. That is, it becomes clear when the misfire determination result is valid. Therefore, the reliability of the determination result by the misfire determination unit 14 is improved.
  • information on the result of detection by the periodic fluctuation detecting unit 12 is output to the outside of the control device 10 by the periodic fluctuation notifying unit 13. For this reason, when using the result of determination by the misfire determination unit 14 outside the control device 10, it is clear whether the result may be used as it is or when the result cannot be used as it is. That is, it becomes clear when the misfire detection result used outside the control device 10 is valid.
  • the misfire determination unit 14 determines a bad road traveling. According to the present embodiment, the cause of the deterioration in the accuracy of misfire determination is clarified. That is, it is clear whether the misfire determination accuracy is reduced by a temporary environment such as driving on a rough road, or whether the misfire determination accuracy is reduced by a function closely related to the engine 20. Differentiated.
  • the periodic fluctuation notification unit 13 outputs detection information as information representing an abnormality of the wound transmission body 59a based on the detection of the periodic fluctuation by the periodic fluctuation detection unit 12. As a result, repair or replacement of the wound transmission body 59a by repair work and maintenance work is promoted. By repairing or replacing the winding transmission body 59a, periodic fluctuations repeated in the circulation cycle of the winding transmission body 59a are reduced. Therefore, the reliability of determination by the misfire determination unit 14 is improved.
  • the control device related to the three-cylinder engine has been described as an example of the misfire detection device.
  • the misfire detection device of the present invention is not limited to this, and may be a misfire detection device according to a single cylinder engine.
  • the above-described “cylinder with the same stroke continuing” means the same cylinder.
  • the periodic variation detection unit that detects the variation repeated in the circulation cycle of the wound transmission body has been described as an example of the periodic variation detection unit.
  • the periodic fluctuation detection unit included in the misfire detection apparatus of the present invention is not limited to this, and may detect fluctuations repeated in the circulation cycle of a plurality of transmission vehicles around which the winding transmission body is wound. Periodic fluctuations due to transmission wheel wear are detected.
  • the periodic fluctuation detection part with which the misfire detection apparatus of this invention is provided may detect the fluctuation
  • Control device (misfire detection device) DESCRIPTION OF SYMBOLS 11 Rotational speed acquisition part 14 Misfire determination part 12 Periodic fluctuation detection part 13 Periodic fluctuation notification part (information output part) 20 Engine 21 Crankshaft (Rotating body) 50 Vehicle 59 Transmission element 59a Winding transmission body 59b Multiple transmission vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

検出の信頼性が向上した失火検出装置及びビークルを提供することを課題とする。失火検出装置は、4ストロークエンジンにより回転される回転体の回転速度を得るように構成された回転速度取得部と、前記回転速度取得部で得られた前記回転体の回転速度に基づいて前記4ストロークエンジンの失火の有無を判定するように構成された失火判定部と、前記回転速度取得部により得られる回転速度に基づいて、前記4ストロークエンジンの回転変動に含まれ、巻掛伝動体及び複数の伝動車の内の少なくとも一つの要素の循環周期内に複数の極値を有するように一つの要素の循環周期で繰り返される周期的変動を検出するように構成された周期的変動検出部とを備える。

Description

失火検出装置及びビークル
 本発明は、4ストロークエンジンの失火を検出する失火検出装置及びビークルに関する。
 従来、4ストロークエンジンの失火を検出する失火検出装置としては、例えば、特許文献1に開示された内燃機関用失火検出装置がある。前記内燃機関用失火検出装置は、回転角センサの出力に基づいて各気筒毎に爆発行程における平均回転数ωを求める。次に、爆発行程が連続する各気筒の平均回転数ωの偏差(第1の変動量(ωn-1-ω))とこれより回転角360°CA(crank angle)前の連続する各気筒の平均回転数の偏差(第2の変動量(ωn-4-ωn-3))を求めて平均回転数変動量Δωを設定する。そして、平均回転数変動量Δωに基づいて失火を判別する。
特開平4-365958号公報
 特許文献1に開示されるような検出対象である4ストロークエンジンは、複数の伝動車に巻き掛けられた巻掛伝動体を駆動するように設けられる場合がある。例えば、4ストロークエンジンは、巻掛伝動体によって伝達される駆動力で走行するビークルに搭載される場合がある。
 特許文献1に開示されるような従来の失火検出装置では、失火の検出対象である4ストロークエンジンが、例えば、巻掛伝動体を備えたビークルに設けられている場合には、ビークルが悪路ではなく平坦路を走行している時であっても、失火を適切に判別することが困難な場合がある。また、特許文献1に開示されるような従来の失火検出装置では、失火を適切に判別することが困難な場合に、平坦路を走行している時であっても、悪路のため失火が判別困難であると処理される場合があった。
 この結果、従来の失火検出装置では、4ストロークエンジンが設けられる装置(ビークル等)によっては、失火検出の信頼性が低い場合があった。失火検出装置では、検出の信頼性を向上することが望まれていた。
 本発明の目的は、検出の信頼性が向上した失火検出装置、及び失火検出装置を備えたビークルを提供することである。
 本発明は、上述した課題を解決するために、以下の構成を採用する。
 (1) 循環的に移動するように複数の伝動車に巻き掛けられた巻掛伝動体を駆動する4ストロークエンジンの失火を検出する失火検出装置であって、
 前記失火検出装置は、
前記4ストロークエンジンにより回転される回転体の回転速度を得るように構成された回転速度取得部と、
前記回転速度取得部で得られた前記回転体の回転速度に基づいて前記4ストロークエンジンの失火の有無を判定するように構成された失火判定部と、
前記回転速度取得部により得られる回転速度に基づいて、前記4ストロークエンジンの回転変動に含まれ、前記巻掛伝動体及び前記複数の伝動車の内の少なくとも一つの要素の循環周期内に複数の極値を有するように前記一つの要素の循環周期で繰り返される周期的変動を検出するように構成された周期的変動検出部と
を備える。
 (1)の失火検出装置によれば、4ストロークエンジンにより回転される回転体の回転速度に基づいて失火の有無が判定されるとともに、巻掛伝動体及び複数の伝動車の内の少なくとも一つの要素の循環周期内に複数の極値を有するように前記一つの要素の循環周期で繰り返される周期的変動が検出される。前記周期的変動は、失火の有無の判定に影響を与える場合がある。失火の有無の判定が影響を受けているか否かを示す指標として、周期的変動検出部による周期的変動の検出結果を利用することができる。これによって、前記一つの要素が失火の有無の判定に影響しているか否かを判断することが可能になる。つまり、失火の有無の判定の有効性が高い場合と低い場合とが区別される。従って、失火検出装置における失火の検出の信頼性を向上することができる。
 本発明者らは、上述した課題について検討を行い、以下の知見を得た。
 装置(ビークル等)に設けられた4ストロークエンジンの回転変動には、例えば、エンジンのクランク角速度と関連しない変動と、エンジンのクランク角速度と関連する変動とが含まれる。エンジンのクランク角速度と関連しない変動としては、例えば、前記装置が操作されることによる4ストロークエンジンの加速又は減速、前記装置に対する外的負荷の変化による4ストロークエンジンの回転速度の変化等が挙げられる。なお、前記装置に対する外的負荷の変化には、例えば、悪路走行時のビークルの4ストロークエンジンに加わる負荷の変化等が含まれる。また、エンジンのクランク角速度と関連する変動としては、例えば、燃焼のバラツキ、気筒の偏り、クランク角速度センサ又はセンサの被検出部の公差等が挙げられる。
 通常、クランク角速度センサにより検出される4ストロークエンジンの回転速度には、上述したような種々の原因による回転変動が含まれている。特許文献1に開示されたような従来の失火検出装置によれば、これらの原因による回転変動の影響を抑えて、失火の有無の判別等の診断を行うことができる。
 しかしながら、4ストロークエンジンが設けられる装置によっては、エンジンのクランク角速度と関連する変動として、上述した変動以外の変動が生じる場合がある。例えば、ビークルでは、エンジンのクランク角速度と関連する変動として、燃焼のバラツキ、気筒の偏り、クランク角速度センサ又はセンサの被検出部の公差等のエンジンの内的要因による変動だけではなく、エンジンの外的要因による変動が生じる場合がある。そのため、4ストロークエンジンが設けられる装置(ビークル等)によっては、従来の制御装置を適用することが困難な場合があった。
 そこで、本発明者らは、エンジンの外的要因による変動について検討を行った。そして、本発明者らは、巻掛伝動体を駆動する4ストロークエンジンの回転速度の変動には、巻掛伝動体及び複数の伝動車の内の少なくとも一つの要素に起因する変動が含まれている場合があることを見出した。さらに、本発明者らは、4ストロークエンジンの回転変動に、巻掛伝動体及び複数の伝動車の内の少なくとも一つの要素に起因する変動が含まれているため、従来の失火検出装置では、悪路走行時でないにも拘わらず、4ストロークエンジンにおける失火を判別することが困難であったことを見出した。加えて、本発明者らは、巻掛伝動体等による変動は、巻掛伝動体等の循環周期に対応した周期性を有しており、ビークルが走行する路面の一時的な状態等による変動よりも恒常的に失火の有無の判断に影響することを見出した。
 本発明は、上述した知見に基づいて完成した発明である。
 本発明の失火検出装置では、巻掛伝動体及び複数の伝動車の内の少なくとも一つの要素の循環周期で繰り返される前記4ストロークエンジンの回転速度の周期的変動の検出が行われる。このため、例えば、巻掛伝動体及び複数の伝動車の内の少なくとも一つの要素に起因して失火の検出が困難である状態を検出することが可能となる。また、この結果、前記要素に起因して失火の検出が困難である場合に、例えば悪路走行のため一時的に失火検出できないと誤認識される事態が抑えられる。従って、検出の信頼性を向上することができる。
 本発明の失火検出装置は、巻掛伝動体及び複数の伝動車の内の少なくとも一つの要素の循環周期で繰り返される周期的変動と、4ストロークエンジンの失火とのみを検出するように構成されている必要はない。
 本発明の失火検出装置は、例えば、4ストロークエンジンの回転変動に含まれる、前記一つの要素の循環周期で繰り返される周期的変動以外の変動を検出するように構成されていてもよい。失火検出装置は、例えば、前記周期的変動以外の周期で変動する滑らかなうねり、又は加減速に伴う変動を検出するように構成されていてもよい。
 本発明の失火検出装置では、4ストロークエンジンの失火の有無の判定が、4ストロークエンジンにより回転される回転体の回転速度に基づいて行われる。4ストロークエンジンの失火の有無の判定は、4ストロークエンジンの圧力に基づかずに行われる。4ストロークエンジンの失火の有無の判定は、4ストロークエンジンの温度に基づかずに行われる。4ストロークエンジンの失火の有無の判定は、後述する実施形態のように、4ストロークエンジンにより回転される回転体の回転速度のみに基づいて行われてもよい。
 本発明の失火検出装置では、失火判定部が、例えば、回転体の回転速度の変動量に基づいて失火の有無を判定する。失火判定部は、例えば、回転速度の変動量の、所定クランク角度区間の経過後における変化に基づいて失火の有無を判定する。ただし、失火判定部は、例えば、変動量の、所定クランク角度区間の経過後における変化に基づかずに失火の有無を判定してもよい。また、失火判定部は、例えば、回転体の回転速度の変動量によらずに、失火の有無を判定してもよい。
 周期的変動検出部は、急峻な変動を含む周期的変動を検出する。ただし、周期的変動検出部が検出する周期的変動は、滑らかな変動でもよい。周期的変動は、巻掛伝動体及び複数の伝動車の内の少なくとも一つの要素の循環周期内に複数の極値を有する。複数の極値は、一つの循環周期内でランダムな間隔で出現してもよく、等間隔に出現してもよい。
 複数の極値は、極大値又は極小値を含む。極大値は、回転体の回転速度が、取得の順に見て、増加から減少に転じる箇所における回転速度である。極小値は、回転体の回転速度が、取得の順に見て、減少から増加に転じる箇所における回転速度である。
 例えば周期的変動検出部が、回転速度が取得されるタイミング間隔よりも大きい区間で平均化された回転速度に基づいて周期的変動を検出する場合、極値は平均化されたそれぞれの回転速度に基づいて判断される。例えば周期的変動検出部が、回転速度取得部によって取得された回転速度から間引かれた回転速度の周期的変動を検出する場合、極値は間引かれた回転速度に基づいて判断される。
 周期的変動検出部は、少なくとも、巻掛伝動体及び複数の伝動車の内の少なくとも一つの要素の循環周期で繰り返される周期的変動の振幅が、4ストロークエンジンの燃焼動作に伴う変動の振幅よりも大きい場合に、周期的変動を検出する。ただし、周期的変動検出部は、周期的変動の振幅が、燃焼動作に伴う変動の振幅よりも小さい場合に周期的変動を検出してもよい。
 本発明の失火検出装置では、巻掛伝動体及び複数の伝動車の内の少なくとも一つの要素の循環周期で繰り返される周期的変動の検出が、4ストロークエンジンにより回転される回転体の回転速度に基づいて行われる。周期的変動の検出は、巻掛伝動体又は伝動車に設けられた加速度センサに基づかずに行われる。巻掛伝動体及び複数の伝動車の内の少なくとも一つの要素の循環周期で繰り返される周期的変動の検出は、後述する実施形態のように、4ストロークエンジンにより回転される回転体の回転速度のみに基づいて行われてもよい。
 本発明の失火検出装置において、回転速度取得部は、例えば、クランク角度を取得タイミングの基準として、4ストロークエンジンにより回転される回転体の回転速度を得る。また、周期的変動検出部は、例えば、回転速度取得部でクランク角度を基準として得られる回転速度に基づいて、周期的変動を検出する。ただし、回転速度取得部は、例えば、一定時間の経過を取得タイミングの基準として、回転速度を得てもよい。また、周期的変動検出部は、例えば、一定時間の経過を基準として得られる回転速度に基づいて、周期的変動を検出してもよい。
 失火検出装置は、例えば、4ストロークエンジンの動作を制御する燃焼制御部を有してもよい。ただし、失火検出装置は、エンジンの動作を制御する装置とは別の装置であってもよい。
 失火検出装置は、例えば、失火検出装置の外部に、失火判定部による失火の有無の判定結果を表す情報を出力するように構成された失火報知部を更に備える。ただし、失火検出装置は、例えば、失火検出装置の外部に検出情報を出力しなくともよい。例えば、失火検出装置は、判定結果を、失火検出装置が有する他の機能で利用してもよい。
 失火検出装置は、例えば、4ストロークエンジンとともに装置に搭載される。4ストロークエンジン及び失火検出装置は、例えば、ビークルに搭載される。ただし、4ストロークエンジン及び失火検出装置は、ビークル以外の装置に適用されてもよい。4ストロークエンジン及び失火検出装置は、例えば、発電装置に適用されてもよい。
 4ストロークエンジンは、例えば、単気筒エンジンまたは2以上の気筒を有するエンジンである。
 回転体は、4ストロークエンジンにより回転される。回転体は、4ストロークエンジンから直接駆動力を受けるように構成されている必要はない。回転体は、4ストロークエンジンから4ストロークエンジン以外の機構を介して間接的に駆動力を受けてもよい。回転体は、例えば、クランクシャフト、ギヤ、車輪、又はプロペラ等である。
 巻掛伝動体は、例えばチェーン又はベルトである。ただし、伝動車は、例えばスプロケット又はプーリでもよい。巻掛伝動体は、例えばコグドベルトでもよい。
 (2) (1)の失火検出装置であって、
 前記失火検出装置の外部に、前記周期的変動検出部による前記周期的変動の検出結果を表す検出情報を出力するように構成された情報出力部を更に備える。
 (2)の失火検出装置によれば、前記周期的変動の検出結果を表す検出情報が出力される。従って、前記周期的変動の影響で失火の有無の判定結果の有効性が高い場合と低い場合とが識別できる。このため、失火の有無の判定結果が利用される場面において、利用される情報の信頼性が向上する。
 情報出力部は、必ずしも周期的変動検出部が周期的変動を判定するごとに周期的変動の検出結果の情報の出力を行わなくてもよい。例えば、周期的変動検出部により周期的変動の判定が行われるごとに、情報出力部が周期的変動の判定結果を記憶してもよい。記憶された周期的変動の判定結果が所定の条件を満たした場合に、情報出力部が周期的変動の情報を出力してもよい。
 失火報知部及び/又は情報出力部が情報を出力する装置は、例えば、ランプ、画像表示装置である。失火報知部及び/又は情報出力部が情報を出力する装置は、例えば、任意のタイミングで失火検出装置と接続される診断装置でもよい。
 情報出力部から情報を受信する装置が、例えば、失火検出装置と任意のタイミングで接続される装置である場合、情報出力部は、当該装置と接続された時に情報を出力してもよい。
 (3) (2)の失火検出装置であって、
 前記情報出力部は、前記周期的変動検出部による前記周期的変動の検出に基づいて、前記一つの要素の異常を表す情報として前記検出情報を出力する。
 (3)の失火検出装置によれば、前記周期的変動の検出に基づいて、前記一つの要素の異常状態の報知が可能である。前記一つの要素の異常を表す情報によって、失火の有無の判定結果の有効性が識別されることに加え、前記一つの要素の修理又は交換が促される。この結果、判定の有効性の向上が図られる。
 (4) (1)から(3)いずれか1の失火検出装置であって、
 前記失火判定部は、前記周期的変動検出部による前記周期的変動の検出に基づいて、前記4ストロークエンジンが作動している期間の少なくとも一部において、前記4ストロークエンジンの失火の有無の判定を停止する。
 (4)の失火検出装置によれば、周期的変動検出部による前記周期的変動の検出に基づいて、前記4ストロークエンジンが作動している期間の少なくとも一部において、前記4ストロークエンジンの失火の有無の判定が停止する。前記周期的変動に起因して失火の有無の判定の信頼性が低下しやすい状況で、失火の有無の判定を停止することができる。このため、有効性が低い判定の結果が出力される事態が抑えられる。従って、失火の有無の判定についての信頼性がより向上する。
 (5) (1)から(4)いずれか1の失火検出装置であって、
 前記周期的変動検出部は、前記一つの要素の循環周期と、前記回転速度取得部で得られた前記回転体の回転速度とに基づいて、前記周期的変動を検出する。
 (5)の失火検出装置によれば、前記一つの要素の循環周期と、回転体の回転速度とに基づいて前記周期的変動が検出されるので、前記一つの要素についての周期的変動が精密に検出される。従って、失火の有無の判定についての信頼性がより向上する。
 前記一つの要素の循環周期と、回転体の回転速度とに基づいて前記周期的変動を検出する方法として、例えば、循環周期で特定の変動のパターンが現れるか否かを判別する方法がある。前記周期的変動を検出する方法としては、例えば、回転速度の変化を周波数領域に変換する方法がある。
 (6) (5)の失火検出装置であって、
 前記周期的変動検出部は、前記回転速度取得部で得られた前記回転体の回転速度と、前記回転速度が得られた時よりも前記循環周期の自然数倍の期間前に前記回転速度取得部で得られた前記回転体の回転速度とを用いる演算を行うことによって、前記周期的変動を検出する。
 (6)の失火検出装置によれば、回転速度取得部で得られた回転体の回転速度と、回転速度が得られた時よりも循環周期の自然数倍の期間前に回転速度取得部で得られた回転体の回転速度とを用いる演算を行うので、簡易な演算で周期的変動が検出できる。このため、限られた時間で精密に周期的変動を検出することができる。従って、失火の有無の判定についての信頼性がより向上する。
 回転速度取得部で得られた回転体の回転速度と、回転速度が得られた時よりも循環周期の自然数倍の期間前に回転速度取得部で得られた回転体の回転速度とを用いる演算として、例えば、次のような演算が採用され得る。
・繰り返す周期的変動の相互間の相関が大きいほど、演算結果の値が大きくなる演算。
・周期的変動の振幅が大きいほど、演算結果の値が大きくなる演算。
上記の演算として、周期的変動検出部は、例えば、自己相関関数の演算を行う。ただし、演算はこれに限られない。演算としては、演算結果の値が相関又は振幅に応じて大きくならない演算も採用され得る。
 前記循環周期の自然数倍の期間は、例えば、循環周期である。なお、前記循環周期の自然数倍の期間は、例えば、前記循環周期の2倍以上の期間でもよい。
 (7) (1)から(6)いずれか1の失火検出装置であって、
 前記巻掛伝動体は、前記複数の伝動車と噛み合うように構成されている。
 巻掛伝動体が複数の伝動車と噛み合うように構成されている場合、巻掛伝動体及び複数の伝動車の内の少なくとも一つの要素の異常による回転速度の変動が、前記一つの要素の循環周期で生じやすい。(7)の失火検出装置によれば、前記一つの要素の異常によって生じる回転速度の周期的変動を、失火検出の有効性を判断するための情報として検出できる。従って、失火の有無の判定についての信頼性が向上する。
 (8) (7)の失火検出装置であって、
 前記複数の極値は、前記4ストロークエンジンの回転速度の変動において、前記巻掛伝動体と前記複数の伝動車のいずれかとの噛み合いに起因して生じる。
 (8)の失火検出装置によれば、巻掛伝動体及び複数の伝動車の内の少なくとも一つの要素の異常によって生じる、複数の極値を含む回転速度の周期的変動を、失火検出の有効性を判断するための情報として検出できる。従って、失火の有無の判定についての信頼性が向上する。
 (9) 複数の伝動車と、循環的に移動するように前記複数の伝動車に巻き掛けられた巻掛伝動体と、前記巻掛伝動体を駆動する4ストロークエンジンと、前記4ストロークエンジンにより回転される回転体とを備えたビークルであって、
 前記ビークルは、(1)から(8)いずれか1の失火検出装置を備える。
 (9)のビークルによれば、失火検出装置による失火の検出の信頼性を向上することができる。
 ビークルは、例えば、自動二輪車、三輪車両または四輪車両を含む鞍乗型車両である。ただし、ビークルは、車室を有する四輪車両であってもよい。ビークルは、有人の乗物、又は無人の輸送機関である。ビークルは、例えばエンジンで駆動されるプロペラを備えた船外機でもよい。
 失火検出装置が、ビークルに備えられる場合、失火判定部は、ビークルが悪路を走行していることを検出する。ただし、失火判定部は、必ずしも悪路の走行を検出しなくともよい。
 本発明によれば、検出の信頼性が向上した失火検出装置及びビークルを提供できる。
本発明の第一実施形態に係る失火検出装置を備えたビークルを示す外観図である。 図1に示す制御装置及びその周辺の装置の構成を模式的に示す構成図である。 図2に示す制御装置の構成を示すブロック図である。 図3に示す制御装置の動作を示すフローチャートである。 エンジンにより回転されるクランクシャフトの回転速度の第1の例を示すグラフである。 エンジンにより回転されるクランクシャフトの回転速度の第2の例を示すグラフである。 (A)は、クランクシャフト21の回転速度の測定例を示すグラフである。(B)は、劣化した巻掛伝動体が用いられた場合におけるクランクシャフトの回転速度の測定例を示すグラフである。 劣化した巻掛伝動体59aが用いられた場合のクランクシャフトの回転速度の変動を拡大して示すグラフである。
 以下、本発明の実施形態について、図面を参照しながら説明する。
 図1は、本発明の第一実施形態に係る失火検出装置を備えたビークルを示す外観図である。
 図1に示すビークル50は、車体51及び車輪52を備えている。ビークル50は、2つの車輪52を有する自動二輪車である。車輪52は、ビークル50の車体51に対して、ビークル50の前後方向Xに並んで配置されている。車体51には、サスペンション56、57が設けられている。車輪52は、サスペンション56、57により支持されている。車体51は、車体51に対して左右方向に延びる軸Aの周りに上下方向Zに揺動可能なスイングアーム55を有している。スイングアーム55は、軸Aと反対の端において、後ろの車輪52を支持している。従って、後ろの車輪52は、車体51に対して左右方向に延びる軸Aの周りに上下方向Zに揺動可能に支持されている。
 ビークル50は、制御装置10、4ストロークエンジン20、巻掛伝動体59a、及び複数の伝動車59bを備えている。4ストロークエンジン20を単にエンジン20とも称する。制御装置10及びエンジン20は、車体51に設けられている。
 巻掛伝動体59aは、無端であり、複数の伝動車59bに巻き掛けられている。巻掛伝動体59aは伝動車59bの回転に伴い循環的に移動する。本実施形態において、巻掛伝動体59aは、複数の伝動車59bと噛み合うように構成されている。巻掛伝動体59aはチェーンである。伝動車59bはスプロケットである。
 エンジン20は、変速機58を介して巻掛伝動体59aを駆動する。エンジン20の駆動力は、巻掛伝動体59a及び伝動車59bを介して車輪52に伝達される。エンジン20は、車輪52を駆動する。
 巻掛伝動体59a及び複数の伝動車59bは、エンジン20の駆動力を伝動する。巻掛伝動体59a及び複数の伝動車59bの内の少なくとも一つの要素を、伝動要素59とも称する。
 制御装置10は、エンジン20の失火を検出する。制御装置10は、本発明の失火検出装置の一例に相当する。本明細書では、制御装置10を、失火検出装置10とも称する。また、制御装置10は、エンジン20の制御を行う。
 [制御装置]
 図2は、図1に示す制御装置及びその周辺の装置の構成を模式的に示す構成図である。
 図2に示す制御装置(失火検出装置)10は、4ストロークエンジン20(エンジン20)に係る装置である。本実施形態に係るエンジン20は、3気筒エンジンである。図2には、1気筒分の構成が示されている。ただし、エンジン20の種類としては、単気筒エンジンまたは2気筒エンジンも採用可能であり、また、4以上の気筒を有するエンジンも採用可能である。
 エンジン20は、クランクシャフト21を備えている。クランクシャフト21は、本発明にいう回転体の一例に相当する。クランクシャフト21はエンジン20の動作に伴い回転する。つまり、クランクシャフト21は、エンジン20により回転される。クランクシャフト21には、クランクシャフト21の回転を検出させるための複数の被検出部25が設けられている。被検出部25は、クランクシャフト21の周方向に、クランクシャフト21の回転中心から見て予め定められた検出角度を空けて並んでいる。検出角度は、例えば15度である。被検出部25は、クランクシャフト21の回転と連動して移動する。
 制御装置10は、CPU101、メモリ102、及びI/Oポート103を備えている。
 CPU101は、制御プログラムに基づいて演算処理を行う。メモリ102は、制御プログラムと、演算に必要な情報とを記憶する。I/Oポート103は、外部装置に対し信号を入出力する。
 I/Oポート103には、クランクシャフト21の回転を検出するための回転センサ105が接続されている。回転センサ105は、エンジン20のクランクシャフト21の回転速度を得るためのセンサである。回転センサ105は、被検出部25の通過を検出すると信号を出力する。回転センサ105は、エンジン20のクランクシャフト21が検出角度回転する毎に信号を出力する。
 I/Oポート103には、表示装置30も接続されている。表示装置30は、制御装置10から出力される情報を表示する。
 本実施形態の制御装置10は、クランクシャフト21の回転速度に基づいて、エンジン20の失火を検出する。本実施形態の制御装置10は、エンジン20の動作を制御する電子制御装置(ECU)としての機能も有する。制御装置10には、不図示の吸気圧力センサ、燃料噴射装置、及び、点火プラグが接続される。
 図3は、図2に示す制御装置10の構成を示すブロック図である。
 制御装置10は、回転速度取得部11、周期的変動検出部12、周期的変動報知部13、失火判定部14、失火報知部15、及び燃焼制御部16を備えている。制御装置10の各部は、制御プログラムを実行するCPU101(図2参照)が、図2に示すハードウェアを制御することによって実現される。
 回転速度取得部11は、回転センサ105の出力に基づいてクランクシャフト21の回転速度を得る。
 周期的変動検出部12は、エンジン20の回転変動に含まれ、伝動要素59(図1参照)の循環周期で繰り返される変動を検出する。周期的変動検出部12は、回転速度取得部11により得られるクランクシャフト21の回転速度に基づいて、伝動要素59の循環周期で繰り返される周期的変動を検出する。本実施形態の周期的変動検出部12は、巻掛伝動体59aの循環周期で繰り返される周期的変動を検出する。
 周期的変動報知部13は、周期的変動検出部12による周期的変動の検出結果を表す検出情報を、制御装置10の外部の表示装置30に出力する。これにより周期的変動の検出が報知される。周期的変動報知部13を情報出力部13とも称する。
 失火判定部14は、回転速度取得部11により得られるクランクシャフト21の回転速度に基づいて、エンジン20の失火を検出する。失火判定部14は、悪路走行の検出を行う。詳細には、失火判定部14は、回転速度取得部11により得られる回転速度に基づいて、エンジン20及び制御装置10を搭載するビークル50(図1参照)が悪路を走行しているか否か検出する。なお、失火判定部14は、例えば、回転速度取得部11により得られる回転速度によらず、悪路の走行を検出してもよい。例えば、悪路の走行は、車輪52の回転速度に基づいて検出されてもよい。
 失火報知部15は、失火判定部14による失火の有無の判定結果を表す失火検出情報を表示装置30に出力する。これにより失火の検出が報知される。また、失火報知部15は、悪路走行の検出結果も出力する。
 燃焼制御部16は、不図示の燃料噴射部及び点火プラグを制御することによって、エンジン20の燃焼動作を制御する。
 図4は、図3に示す制御装置10の動作を示すフローチャートである。
 制御装置10では図4に示す処理が繰り返される。まず、燃焼制御部16がエンジン20の燃焼動作を制御する(S11)。次に、回転速度取得部11がエンジン20のクランクシャフト21の回転速度を得る(S12)。次に、周期的変動検出部12が、エンジン20の回転変動に含まれた、伝動要素59の循環周期で繰り返される周期的変動を検出する(S13)。周期的変動検出部12によって周期的変動が検出された場合(S14でYes)、周期的変動報知部13が、周期的変動の検出を表す検出情報を出力する。周期的変動検出部12によって伝動要素59の循環周期で繰り返される周期的変動が検出されない場合(S14でNo)、失火判定部14が、エンジン20の失火の有無の判定を行う(S16)。また、失火判定部14は、悪路走行の検出も行う。なお、回転速度取得部11、周期的変動検出部12、周期的変動報知部13、及び失火判定部14のそれぞれは、各部のデータが処理可能となった時に、それぞれのデータの処理を実行する。
 失火判定部14によって悪路走行が検出された場合(S17でYes)、失火報知部15が悪路走行の検出結果を表す情報も出力する(S18)。失火判定部14によって悪路走行が検出されず(S17でNo)、かつ、失火が有りと判定された場合(S19でYes)、失火報知部15が失火の検出結果を表す情報を出力する(S21)。
 なお、回転速度取得部11、周期的変動検出部12、周期的変動報知部13、失火判定部14、失火報知部15、及び燃焼制御部16が動作する順は、図4に示す順に限られない。また、いくつかの部分の処理は、一つの式の演算としてまとめて実施されてもよい。
 また、必ずしも、失火判定部14が失火有りと判定するごとに失火報知部15が失火有りの情報を出力する必要はない。例えば、失火判定部14により失火有りの判定が行われるごとに、失火判定部14が失火有りの判定結果を記憶しておき、記憶された失火有りの判定結果が所定の条件を満たした場合に、失火報知部15が失火有りの情報を出力してもよい。この場合の所定の条件は、例えば、所定の頻度で失火有りの判定が行われることである。また、必ずしも、失火判定部14が悪路走行を判定するごとに失火報知部15が悪路走行の情報の出力を行う必要はない。例えば、失火判定部14により悪路走行の判定が行われるごとに、失火判定部14が悪路走行の判定結果を記憶しておき、記憶された悪路走行の判定結果が所定の条件を満たした場合に、失火報知部15が悪路走行の情報を出力してもよい。また、必ずしも、周期的変動検出部12が周期的変動を判定するごとに周期的変動報知部13が周期的変動の検出結果の情報の出力を行う必要はない。例えば、周期的変動検出部12により周期的変動の判定が行われるごとに、周期的変動報知部13が周期的変動の判定結果を記憶しておき、記憶された周期的変動の判定結果が所定の条件を満たした場合に、周期的変動報知部13が周期的変動の情報を出力してもよい。また、図2に示す表示装置30が例えば、制御装置10と任意のタイミングで接続される診断装置である場合、周期的変動報知部13又は失火報知部15は、表示装置30が制御装置10と接続された時に情報を出力してもよい。
 続いて、図3及び図4に示す各部の詳細を説明する。
 [回転速度取得部]
 回転速度取得部11は、回転センサ105(図2参照)からの信号に基づいて、クランクシャフト21の回転速度を得る。回転センサ105は、クランクシャフト21が検出角度回転する毎に信号を出力する。回転速度取得部11は、回転センサ105からの信号が出力されるタイミングの時間間隔を計測することによって、クランクシャフト21が検出角度回転するのに要した時間を計測する。回転速度取得部11は、この時間を計測することにより定まる回転速度を得る。即ち、回転速度取得部11は、クランク角度を取得タイミングの基準としてクランクシャフト21の回転速度を得る。具体的に、回転速度取得部11は、一定のクランク角度ごとにクランクシャフト21の回転速度を得る。本実施形態において、回転速度取得部11が得る回転速度はクランクシャフト21の回転速度であるので、回転速度取得部11が得る回転速度はエンジン20の回転速度である。
 エンジン20の回転速度の変動には、エンジン20の燃焼による変動が含まれている。エンジン20の燃焼による変動は、4ストロークに相当するクランク角度より短い角度周期を有する。エンジン20の回転速度の変動には、エンジン20の燃焼による変動だけでなく、ビークル50の構造といったエンジン20の外的要因による変動が含まれる場合がある。
 本実施形態における回転速度取得部11は、回転速度として、複数の検出角度に亘る区間に対応する回転速度も得る。回転速度取得部11は、例えば、各気筒の爆発行程に対応する180度クランク角度の区間の回転速度と、爆発行程の間の行程に対応する180度クランク角度の区間の回転速度とを得る。
 図5は、エンジン20により回転されるクランクシャフト21の回転速度の第1の例を示すグラフである。
 図5において横軸はクランクシャフトの回転角度θを示す。縦軸は回転速度を示す。図5に示す第1の例では、回転速度の関係を分かりやすくするため、伝動要素59の循環周期で繰り返される周期的変動を含まない場合の回転速度が示されている。図5には、エンジン20の燃焼動作に伴う回転速度の変動が模式的に示されている。
 一点鎖線のグラフは、回転センサ105から、1つの被検出部25の通過に応じて信号が出力される毎に得られる回転速度OMG’を示す。一点鎖線のグラフは、被検出部25の通過ごとに得られる回転速度OMG’を曲線で結ぶことにより生成されている。回転速度OMG’は、信号が出力される時間間隔により得られる。つまり、回転速度OMG’は、検出角度ごとの回転速度である。回転速度OMG’は、瞬時回転速度を示している。
 本実施形態に係るエンジン20は、等間隔爆発の3気筒4ストロークエンジンである。従って、各気筒の同じ行程に対応する回転速度のピークは、720/3度毎、即ち240度クランク角度毎に現れる。
 実線のグラフは、複数の検出角度に亘る区間での回転速度OMGを示す。実線のグラフは、180度クランク角度の区間における回転速度OMGを示す。
 回転速度取得部11は、検出角度ごとの回転速度OMG’について、180度クランク角度の区間での平均を算出することによって、回転速度OMGの値を得る。なお、回転速度OMGの各点の値は、回転センサ105から受ける信号の時間間隔を複数の区間に渡って累計することにより得ることもできる。回転速度OMGのグラフは、120度クランク角度毎(各気筒の同じ行程に対応する240度クランク角度の半分毎)に得られた値の点を、曲線で結ぶことにより生成されている。従って、回転速度OMGのグラフにおけるピークの位置は、瞬時回転速度のピークの位置からずれる場合もある。回転速度OMGのグラフにおける各点の値は、その点を含んだ180度クランク角度の区間における速度である。なお、上記の180度は、回転速度OMGの値を算出する区間の一例である。この一例において、回転速度OMGの値は、値に対応する回転角度より90度前の区間、及び当該回転角度より90度後の区間に亘る瞬時回転速度の平均を算出することによって得られている。回転速度OMGのグラフは、得られた平均の値を曲線で結ぶことにより生成されている。
 回転速度OMGは、瞬時回転速度である検出角度ごとの回転速度OMG’と比べて変動幅は小さい。しかし、回転速度OMGは、エンジン20の燃焼による回転変動を表している。本実施形態の制御装置10は、180度クランク角度の区間における回転速度OMGを用いて、エンジン20の失火の有無の検出を行う。
 なお、回転速度OMGの値を算出する区間として、180度クランク角度以外の角度を採用することも可能である。例えば、回転速度OMGを算出する区間として、120度クランク角度又は90度クランク角度といった、180度よりも小さいクランク角度を採用することも可能である。また、回転速度OMGを算出する区間として、例えば15度クランク角度である検出角度を用いることも可能である。言い換えると、回転速度OMGとして回転速度OMG’を用いることも可能である。つまり、回転速度OMGの値を算出する区間として、180度以下の角度を採用することが可能である。
 また、上記の180度クランク角度の区間は、各行程と完全に重なるように設定される必要はなく、各行程に対しずれを有していてもよい。
 本実施形態の説明では、回転速度として、回転速度OMG、及び平均化された回転速度等が用いられる。これらの回転速度を表す形式は、特に限定されない。即ち、回転速度は、例えば、クランクシャフト21が予め定められた角度回転するのに要する時間の形式で表されてもよく、また、時間の逆数として演算される単位時間当たりの回転数又は角度の形式で表されてもよい。
 [失火判定部]
 図3に示す失火判定部14は、エンジン20の燃焼による回転変動に基づいて、エンジン20の失火の有無を判定する。失火判定部14は、回転速度取得部11で得られたクランクシャフト21の回転速度に基づいてエンジン20の失火の有無を判定する。
 失火判定部14は、エンジン20の回転速度OMGについて、同一の行程が連続する気筒における変動量を算出する。失火判定部14は、変動量を算出することによって4ストロークエンジンの失火を判定する。
 図6は、エンジン20により回転されるクランクシャフト21の回転速度の第2の例を示すグラフである。
 図6のグラフの横軸はクランクシャフト21の回転角度θを示し、縦軸は回転速度を示す。図6のグラフは、図5のグラフよりも広い回転角度の範囲を表している。実線のグラフは、図5の場合と同様に、クランクシャフト21の回転速度OMG、即ち、エンジン20の回転速度を示している。グラフは、回転速度OMGの変動を概略的に示している。回転速度OMGのグラフは、図5と同様に、爆発行程及び吸気行程に対応するクランク角度について算出された回転速度の値を曲線で結ぶことによって得られる。
 図6のグラフは、時間を基準とした回転速度の推移ではなく、クランク角度を基準とした回転速度OMGの推移を示している。
 本実施形態に係るエンジン20は、等間隔爆発の3気筒4ストロークエンジンである。各気筒の圧縮行程に対応する回転速度のピークは、240度クランク角度毎に表れる。
 図6のグラフにおいて、ある時点における検出対象のクランク角度の位置の番号を「0」とし、「0」の位置から120度クランク角度ごと順に番号を付している。図6の例では、3つの気筒のうち第3の気筒の吸気行程(#3S)を、ある時点における検出対象である「0」の位置とする。「0」の位置は、第1の気筒の爆発行程(#1W)に対応する「1」の位置と、第2の気筒の爆発行程(#2W)に対応する「-1」の位置との中間の位置である。また、「2」,「4」,「6」の位置は、第2の気筒、第1の気筒、第3の気筒における吸気行程(#2S,#1S,#3S)にそれぞれ対応している。
 各位置「0」,「1」,「2」,…における回転速度OMGの値を、OMG0,OMG1,OMG2,…と表す。回転速度取得部11が得るクランクシャフト21の回転速度は、エンジン20の回転速度である。従って、クランクシャフト21の回転速度OMGをエンジン20の回転速度OMGとして説明する。
 図6に示すクランクシャフト21の回転速度OMGのグラフは、エンジン20の回転変動(回転速度の変動)を表している。
 エンジン20の回転変動は、エンジン20の燃焼動作による回転変動を有している。燃焼動作による回転変動は、720度クランク角度あたり、気筒数に相当する数の繰返し周期を有する。図6に示す回転速度OMGの回転変動は、720度クランク角度当たり3つの繰返し周期を有している。即ち、エンジン20の燃焼動作による回転変動の周期は、4ストロークに相当するクランク角度(720度)より短い。
 失火判定部14は、エンジン20の回転速度OMGについて、同一の行程が連続する気筒における変動量を算出する。失火判定部14は、変動量を算出することによって4ストロークエンジンの失火を判定する。
 詳細には、失火判定部14は、同一の行程が連続する気筒における回転速度の差を算出する。失火判定部14は、回転速度として、エンジン20の回転速度OMGを用いる。算出した差を第1の変動量とする。例えば、図6に示す「0」の位置が検出対象となる場合、同一の行程が連続する気筒に対応するクランク角度の位置は、「0」と「2」の位置である。例えば、「2」の位置は、第2の気筒の吸気行程(図6の#2S)に対応する。「0」の位置は、第3の気筒の吸気行程(図6の#3S)に対応する。つまり、「2」の位置と「0」の位置で第2の気筒の吸気行程と第3の気筒の吸気行程が連続する。第1の変動量は、回転速度OMG2と回転速度OMG0の差である。ここで、回転速度OMG2は、図6に示す「2」の位置の回転速度である。また、回転速度OMG0は、「0」の位置での回転速度である。
 また更に、失火判定部14は、第1の変動量を算出したクランクシャフト21の位置よりも720度クランク角度前の位置において、同一の行程が連続する気筒における差を算出する。この差を第2の変動量とする。720度クランク角度前の位置において、同一の行程が連続する気筒に対応するクランクシャフトの位置は、「6」と「8」の位置である。第2の変動量は、回転速度OMG8と回転速度OMG6の差である。ここで、回転速度OMG6は、「6」の位置での、エンジン20の回転速度OMGである。また、回転速度OMG8は、「8」の位置での回転速度である。
 また、失火判定部14は、変動指標ΔOMGとして、上記の第1の変動量と第2の変動量との差を算出する。失火判定部14は、変動指標ΔOMGが、所定の失火判定範囲内にある場合には、失火有りと判断する。これは、失火の場合における変動量の差が、所定の範囲に分布するためである。失火判定部14は、例えば、変動指標ΔOMGが、失火判定値CKよりも大きい場合には、失火有りと判断する。失火判定値CKは、失火判定範囲の下限である。失火判定部14は、変動指標ΔOMGが、失火判定値CKよりも小さい場合には、失火無しと判断する。
 図6の破線MS_OMGは、失火が生じた場合の回転速度の変動を示している。破線MS_OMGは、第1の気筒の爆発行程(#1W)において、失火が生じた場合の回転速度の変動を概略的に示している。失火が生じた場合、爆発による回転速度の上昇が生じないため、第1の気筒の前の気筒の爆発行程(#3W)から、第1の気筒の次の気筒の爆発行程(#2W)まで、回転速度が低下し続ける。つまり、「0」の位置における回転速度OMG0が、失火が生じない場合と比べて低い。このため、「0」の位置における第1の変動量は、失火が生じない場合と比べ増大する。この場合、「0」の位置における変動指標ΔOMGは、失火が生じない場合と比べて増大する。変動指標ΔOMGが失火判定値CKよりも大きい場合、失火ありと判断される。
 変動指標ΔOMGは、上述した失火の他の要因によっても増大し得る。変動指標ΔOMGは、例えば、エンジン20を搭載したビークル50(図1参照)が平坦路ではなく悪路を走行する場合に増大する。ビークル50が悪路を走行する場合、路面の凹凸等による負荷の変動が、車輪52(図1参照)から伝動要素59等を介して、エンジン20のクランクシャフト21に伝達される。この結果、回転速度OMGが変動する。回転速度OMGの変動に含まれる、悪路の走行に起因する変動が増大すると、失火判定部14が適切な失火の判定を実施できなくなる。
 悪路の走行に起因して回転速度が変動する場合、回転速度はランダムな変動を含む。即ち、回転速度の変化の周期は不規則である。また、回転速度の変化量も不規則である。従って、第1の変動量及び第2の変動量がランダムに変化する。従って、変動指標ΔOMGがランダムに変化する。失火判定部14は、変動指標ΔOMGが上述した失火判定範囲外にある場合、ビークル50(図1参照)が悪路を走行していると判定する。例えば、変動指標ΔOMGが所定の悪路判定値を超える頻度が所定の値を超える場合、ビークル50(図1参照)が悪路を走行していると判定される。例えば、悪路判定値は、ビークル50が平坦路を失火なしで走行している場合に、変動指標ΔOMGが取り得る上限値に設定されている。悪路判定値は、失火判定値CKよりも小さい。ただし、悪路の走行時における変動指標ΔOMGは、失火判定値CKを超える場合がある。
 なお、判定として、変動指標ΔOMGが判定値を超えた頻度を判定する例を説明した。しかし各判定はこれに限られず、例えば、変動指標ΔOMGが判定値を超えた回数に基づいて行われてよい。
 悪路の走行による回転速度の変動は、エンジン20自体又はビークル50の構造又は性能に起因する変動ではない。悪路の走行による回転速度の変動は、エンジン20又はビークル50が置かれた一時的な環境を反映している。
 [失火報知部]
 失火報知部15は、失火判定部14による失火の判定結果を報知する。失火報知部15は、失火判定部14により失火有りと判定された場合には、表示装置30(図3参照)に失火有りの表示を行わせる。また、失火報知部15は、表示装置30に悪路走行の情報を表示させる。失火判定部14によって悪路の走行が検出された場合、悪路走行の検出結果を表す失火情報を表示装置30に出力する。
 表示装置30は、例えば、ランプである。表示装置30は、失火の表示及び悪路走行の表示を兼用するものであってもよい。また、表示装置30は、画像表示であってもよい。表示装置30は、例えば、ビークル50の点検・修理時に制御装置10に接続される診断装置であってもよい。この場合、表示装置30は、制御装置10に常時接続されていなくともよい。失火報知部15は、ビークル50の運転時、失火判定部14による判定の結果を表す情報をメモリ102に記憶しておく。失火報知部15は、表示装置30としての診断装置が制御装置10接続された時に、メモリ102に記憶された情報を出力する。その結果、表示装置30としての診断装置が失火判定部14による判定の結果を表示する。この場合、表示装置30は、判定の結果の履歴を表示する。
 上述した失火判定部14による失火の有無の判別の処理をまとめて、図6を参照しながら説明する。
 失火判定部14は、回転速度の変動量の、所定のクランク角度期間経過後における変化に基づいて失火の有無を判定する。より詳細には、失火判定部14は、回転速度の第1の変動量と第2の変動量との変化に基づいて失火の有無を判定する。第1の変動量は、回転速度のうちの同一行程が連続する気筒間での回転速度の変動量である。第2の変動量は、前記同一行程が連続する気筒間での回転速度よりも所定のクランク角度期間後における回転速度の変動量である。所定のクランク角度期間は、例えば720度クランク角度である。
 失火判定部14は、変動指標ΔOMGとして、第1の変動量と第2の変動量との差を算出する。失火判定部14は、第1の変動量と第2の変動量との差が、所定の失火判定範囲内にある場合には、失火有りと判断する。
 第1の変動量又は第2の変動量は、例えばエンジンの回転が制御に応じて加速又は減速する場合にも増大する。本実施形態では、失火判定部14が、第1の変動量と第2の変動量との差を算出することによって、回転速度の変動量の、720度クランク角度期間の経過後における変化について判断する。これによって、エンジンの回転が制御に応じて加速又は減速する場合の影響が抑制される。また、回転速度の変動量の、720度クランク角度期間の経過後の変化が判断されることによって、同じ行程についての回転速度の変化が判断される。従って、変化を判断する対象のクランク角度位置による影響が抑制される。従って、失火の検出において、制御に応じた加速又は減速の影響が抑えられる。
 失火以外に起因する回転変動には、上記の加速又は減速による回転変動以外に、伝動要素59の劣化に起因する回転変動が含まれ得る。伝動要素59は、エンジン20が駆動する機構であり、また、エンジン20が搭載されるビークル50の部品である。従って、伝動要素59の劣化による回転変動は、悪路走行のような一時的な環境による回転変動とは本質的に異なる。
 [周期的変動検出部]
 図3の周期的変動検出部12は、エンジン20の回転変動に含まれ、伝動要素59の循環周期で繰り返される周期的変動を検出する。周期的変動検出部12は、回転速度取得部11により得られる回転速度に基づいて、周期的変動を検出する。より詳細には、周期的変動検出部12は、伝動要素59の循環周期と、回転速度取得部11で得られたクランクシャフト21の回転速度とに基づいて、周期的変動を検出する。
 周期的変動検出部12は、巻掛伝動体59aの循環周期で繰り返される周期的変動を検出することによって、巻掛伝動体59aの異常状態を検出する。
 図7(A)は、クランクシャフト21の回転速度の測定例を示すグラフである。図7(A)のグラフの横軸はクランクシャフト21の回転角度θを示し、縦軸は回転速度OMGを示す。図7(A)のグラフは、図6のグラフよりも広い回転角度の範囲を表している。このため、回転速度OMGの変動は、図6のグラフよりも細かく描かれている。
 図7のグラフは、エンジン20が搭載されたビークル50を走行させた場合の回転速度を示している。図7(A)には、エンジン20の燃焼動作に伴う回転速度の変動が示されている。
 図7(B)は、巻掛伝動体59aとして、劣化した巻掛伝動体が用いられた場合におけるクランクシャフト21の回転速度の測定例を示すグラフである。図7(B)の縦軸及び横軸は、図7(A)の縦軸及び横軸とそれぞれ同じである。図7(B)の縦軸及び横軸のスケールは、図7(A)の縦軸及び横軸のスケールとそれぞれ同じである。
 図7(A)及び図7(B)のいずれのグラフも、悪路走行時でなく、且つ、エンジン20の失火が生じていない状態での回転速度を示している。図7(B)のグラフに示す回転速度は、劣化した巻掛伝動体59aの影響を受けている。劣化した巻掛伝動体59aが用いられた場合の回転速度は、劣化していない正常な巻掛伝動体59aが用いられた場合の回転速度の変動とは異なる変動を含んでいる。
 正常な巻掛伝動体59aを用いた場合の回転速度の変動(図7(A))と異なる変動の振幅は、図7(A)に示すエンジン20の燃焼動作に伴う変動の振幅よりも大きい。正常な巻掛伝動体59aを用いた場合の回転速度の変動と異なる変動は、所定の循環周期で繰り返されている。
 図8は、劣化した巻掛伝動体59aが用いられた場合のクランクシャフト21の回転速度の変動を拡大して示すグラフである。図8は、図7(B)の一部を拡大したグラフに相当する。
 図8に示す回転速度OMGには、伝動要素59(図1参照)の循環周期で繰り返される周期的変動が含まれている。図8に示す例において、回転速度OMGは、巻掛伝動体59aの循環周期で繰り返される周期的変動を含んでいる。
 図8のグラフには、巻掛伝動体59aの循環周期Pcが示されている。循環周期Pcは、循環周期Pcでの変動の繰返しが分かりやすいよう、複数の極値を代表する典型的な極値Hに対応して示されている。極値Hは極大値Hである。また、循環周期Pcは、極値Hとは別の極値Lにも対応して示されている。極値Lは極小値Lである。極値H,Lは、回転速度OMGに含まれる極値の一例である。回転速度OMGは、極値H,L以外の極値を有している。図8では、例として、一つの循環周期Pc内の極値に符号pkが付されている。
 極値H,Lを含む複数の極値pkは、循環周期Pcで繰り返される。詳細には、極値pkは、循環周期Pcごとに異なる値を有する。また、全ての極値が循環周期Pcで繰り返すとは限らない。詳細には、回転速度OMGは、循環周期Pcで複数の極値pkを繰り返す傾向を有する。つまり、回転速度OMGは、循環周期Pcで繰り返される周期的変動を有する。
 図8に示す循環周期Pcで繰り返される周期的変動は、伝動要素59(図1参照)の劣化に起因している。
 図3の周期的変動検出部12は、巻掛伝動体59aの循環周期Pc(図8参照)で繰り返される周期的変動を検出する。
 周期的変動検出部12は、回転速度取得部11で得られたクランクシャフト21の回転速度と、当該回転速度が得られた時よりも循環周期Pcの自然数倍の期間前に回転速度取得部11で得られたクランクシャフト21の回転速度とを用いる演算を行う。これによって、周期的変動検出部12は、循環周期Pcで繰り返される周期的変動を検出する。これによって、周期的変動検出部12は、伝動要素59としての巻掛伝動体59aの異常状態を検出する。
 周期的変動検出部12は、少なくとも、伝動要素59の循環周期で繰り返される周期的変動の振幅が、エンジン20の燃焼動作に伴う変動の振幅よりも大きい場合に、周期的変動を検出する。
 周期的変動検出部12は、詳細には、循環周期Pcで繰り返す周期的変動の相互間の相関が大きいほど、演算結果の値が大きくなる演算を行う。また、周期的変動検出部12は、周期的変動の振幅が大きいほど、演算結果の値が大きくなる演算を行う。
 周期的変動検出部12は、詳細には、回転速度OMGに対し、循環周期Pcの自然数倍を検出周期とした自己相関関数を算出する。周期的変動検出部12は、より詳細には、クランク角度を取得タイミングの基準として得られた回転速度に対し、循環周期Pc遅れた回転速度の値との積を演算する。
 演算した積が所定の判定値よりも大きい場合、周期的変動検出部12は、巻掛伝動体59aの劣化に起因した回転速度の変動が含まれていると判定する。判定値は、実測又はシミュレーションによって予め定められる。
 周期的変動検出部12は、循環周期Pcで繰り返す周期的変動の相互間の相関が大きいほど、演算結果の値が大きくなり、周期的変動の振幅が大きいほど、演算結果の値が大きくなる演算を行う。このため、判定値を調整することにより、失火判定に影響を与える回転速度の変動が高い精度で検出される。
 本実施形態において、回転速度取得部11は、時間ではなくクランク角度を取得タイミングの基準としてクランクシャフト21(回転体)の回転速度を取得する。つまり、回転速度取得部11は、所定の時間ごとでなく所定のクランク角度ごとにクランクシャフト21(回転体)の回転速度を取得する。周期的変動検出部12は、回転速度取得部によってクランク角度を基準として取得された回転速度に基づいて、伝動要素59の循環周期Pcで繰り返される周期的変動を検出する。詳細には、循環周期Pcは、クランクシャフト21の回転速度と、変速機58における変速比に基づいて決定される。
 巻掛伝動体59aによる回転速度の変動は、エンジンの外的要因による変動である。しかし、巻掛伝動体59aによる変動の周期は、時間軸で見た場合、エンジンの回転速度の変動に応じて動的に変化する。このため、一定の時間を基準として回転速度を取得した場合、巻掛伝動体59aに起因する回転速度の変動の検出は困難である。
 本実施形態では、エンジンの外的要因である巻掛伝動体59aによる回転速度の変動が、クランク角度を基準として得られた回転速度に基づいて検出される。このため、検出に対するエンジンの回転速度の変動の影響を抑えることができる。従って、巻掛伝動体59aの劣化に起因する回転速度の変動が高い精度で検出される。
 巻掛伝動体59aと伝動車59bとの噛み合いに起因して生じる回転速度の変動は、回転速度のうねりではなく、比較的急峻な変動である。周期的変動検出部12は、上記の噛み合いに起因して生じる回転速度の変動を検出するので、巻掛伝動体59aの劣化に起因する回転速度の変動が高い精度で検出される。
[周期的変動報知部]
 周期的変動報知部(情報出力部)13は、周期的変動検出部12による周期的変動の検出結果を表す変動検出情報を表示装置30に出力する。これにより周期的変動の検出が報知される。
 表示装置30は、上述したように、例えば、ランプである。表示装置30は、周期的変動の検出結果の表示、及び失火の表示を兼用するものであってもよい。また、表示装置30は、上述したように、例えば、ビークル50の点検・修理時に制御装置10に接続される診断装置であってもよい。周期的変動報知部13は、ビークル50の運転時、周期的変動検出部12による判定の結果を表す情報をメモリ102に記憶しておく。周期的変動報知部13は、表示装置30としての診断装置が制御装置10接続された時に、メモリ102に記憶された情報を出力する。その結果、表示装置30としての診断装置が周期的変動検出部12による検出結果を表示する。この場合、表示装置30は、検出結果の履歴を表示する。
 例えば、表示装置30には、失火判定部14による判定の結果と、周期的変動の検出結果が示される。
 周期的変動報知部13は、失火判定部14による失火の有無の判定結果の有効性を表す情報として変動検出情報を出力する。変動検出情報に基づく表示装置30の表示は、失火の判定の有効性が低いことを示す。また、周期的変動報知部13は、周期的変動検出部12による周期的変動の検出に基づいて、巻掛伝動体59aの異常状態を表す情報として変動検出情報を出力する。変動検出情報に基づく表示装置30の表示は、巻掛伝動体59aの異常状態を示す。
 本実施形態において、失火判定部14は、クランクシャフト21の回転速度に基づいてエンジンの失火を判定する。
 回転速度に、図7(B)に示すような変動が含まれると、失火判定部14による失火の有無の判定の精度が低下する。つまり、失火の判定の有効性が低下する。
 巻掛伝動体59aの劣化は、エンジン20が駆動する機構の性能に関わる。このため、巻掛伝動体59aの劣化に起因する回転速度の変動は、例えばビークルが悪路を走行する場合のような一時的な変動と異なり、恒常的に失火の検出の精度に影響する。つまり、失火判定部14による判定の精度が恒常的に低下するおそれがある。また、失火判定の精度は、巻掛伝動体59aを交換することによって、回復する。巻掛伝動体59aは、エンジン20に関連する部品である。エンジン20の失火検出の条件として、巻掛伝動体59aの状態は、悪路走行のような環境とは本質的に異なる。
 本実施形態によれば、巻掛伝動体59aの劣化に起因して失火判定部14による失火判定の精度が低下する状況において、巻掛伝動体59aの劣化が検出される。
 従って、例えば、失火が検出されない場合に、実際に失火が生じていない場合と、失火判定部14が検出不能な状態にある場合とが明確に区別される。つまり、失火の判定結果が有効である場合が明確になる。従って、失火判定部14による判定の結果における信頼性が向上する。
 また、周期的変動報知部13によって、周期的変動検出部12による検出の結果の情報が制御装置10の外部に出力される。このため、制御装置10の外部で失火判定部14による判定の結果を利用する場合に、結果をそのまま利用してよい場合と、結果をそのまま利用できない場合とが明確になる。つまり、制御装置10の外部で用いる失火の検出結果が有効である場合が明確になる。
 本実施形態では、図4のフローチャートを参照して説明したように、周期的変動検出部12によって巻掛伝動体59aの循環周期で繰り返される周期的変動が検出された場合(図4のS14でYes)、失火の有無の判定(図4のS19)及び判定結果の出力(図4のS21)が停止する。つまり、エンジン20が作動している期間において、失火の有無の判定が停止する。従って、周期的変動によって失火の判定で誤判定が生じ得る状況において、誤判定の結果の出力が防止される。失火の判定の結果の出力内容における信頼性が向上する。
 本実施形態では、失火判定部14が悪路走行の判定を行う。本実施形態によれば、失火の判定の精度が低下している原因が明確になる。つまり、悪路走行のような一時的な環境によって失火の判定の精度が低下しているのか、あるいは、エンジン20と密接に関連する機能によって失火の判定の精度が低下しているのかが明確に区別される。
 周期的変動報知部13が、周期的変動検出部12による周期的変動の検出に基づいて、巻掛伝動体59aの異常を表す情報として検出情報を出力する。この結果、修理作業及び保守作業による巻掛伝動体59aの修理又は交換が促進される。巻掛伝動体59aが修理又は交換されることによって、巻掛伝動体59aの循環周期で繰り返される周期的変動が低下する。従って、失火判定部14による判定の信頼性が向上する。
 なお、上記の実施形態では、失火検出装置の例として、3気筒エンジンに係る制御装置を説明した。本発明の失火検出装置はこれに限られず、単気筒エンジンに係る失火検出装置であってもよい。単気筒エンジンの場合、上述した「同一の行程が連続する気筒」は、同一の気筒を意味する。
 また、上記の実施形態では、周期的変動検出部の例として、巻掛伝動体の循環周期で繰り返される変動を検出する周期的変動検出部を説明した。本発明の失火検出装置が備える周期的変動検出部はこれに限られず、巻掛伝動体が巻き掛けられた複数の伝動車の循環周期で繰り返される変動を検出してもよい。伝動車の摩耗に起因する周期的変動が検出される。
 また、本発明の失火検出装置が備える周期的変動検出部は、巻掛伝動体及び伝動車のそれぞれの循環周期で繰り返される変動を検出してもよい。巻掛伝動体及び伝動車それぞれの摩耗に起因する周期的変動が検出される。
 上記実施形態に用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではない。ここに示されかつ述べられた特徴事項の如何なる均等物をも排除するものではなく、本発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。本発明は、多くの異なった形態で具現化され得るものである。この開示は本発明の原理の実施形態を提供するものと見なされるべきである。それらの実施形態は、本発明をここに記載しかつ/又は図示した好ましい実施形態に限定することを意図するものではないという了解のもとで、実施形態がここに記載されている。ここに記載した実施形態に限定されるものではない。本発明は、この開示に基づいて当業者によって認識され得る、均等な要素、修正、削除、組み合わせ、改良及び/又は変更を含むあらゆる実施形態をも包含する。クレームの限定事項はそのクレームで用いられた用語に基づいて広く解釈されるべきであり、本明細書あるいは本願のプロセキューション中に記載された実施形態に限定されるべきではない。本発明は、クレームで用いられた用語に基づいて広く解釈されるべきである。
 10  制御装置(失火検出装置) 
 11  回転速度取得部
 14  失火判定部
 12  周期的変動検出部
 13  周期的変動報知部(情報出力部)
 20  エンジン
 21  クランクシャフト(回転体)
 50  ビークル
 59  伝動要素
 59a 巻掛伝動体
 59b 複数の伝動車

Claims (9)

  1.  循環的に移動するように複数の伝動車に巻き掛けられた巻掛伝動体を駆動する4ストロークエンジンの失火を検出する失火検出装置であって、
     前記失火検出装置は、
    前記4ストロークエンジンにより回転される回転体の回転速度を得るように構成された回転速度取得部と、
    前記回転速度取得部で得られた前記回転体の回転速度に基づいて前記4ストロークエンジンの失火の有無を判定するように構成された失火判定部と、
    前記回転速度取得部により得られる回転速度に基づいて、前記4ストロークエンジンの回転変動に含まれ、前記巻掛伝動体及び前記複数の伝動車の内の少なくとも一つの要素の循環周期内に複数の極値を有するように前記一つの要素の循環周期で繰り返される周期的変動を検出するように構成された周期的変動検出部と
    を備える。
  2.  請求項1に記載の失火検出装置であって、
     前記失火検出装置の外部に、前記周期的変動検出部による前記周期的変動の検出結果を表す検出情報を出力するように構成された情報出力部を更に備える。
  3.  請求項2に記載の失火検出装置であって、
     前記情報出力部は、前記周期的変動検出部による前記周期的変動の検出に基づいて、前記一つの要素の異常を表す情報として前記検出情報を出力する。
  4.  請求項1から3いずれか1項に記載の失火検出装置であって、
     前記失火判定部は、前記周期的変動検出部による前記周期的変動の検出に基づいて、前記4ストロークエンジンが作動している期間の少なくとも一部において、前記4ストロークエンジンの失火の有無の判定を停止する。
  5.  請求項1から4いずれか1項に記載の失火検出装置であって、
     前記周期的変動検出部は、前記一つの要素の循環周期と、前記回転速度取得部で得られた前記回転体の回転速度とに基づいて、前記周期的変動を検出する。
  6.  請求項5に記載の失火検出装置であって、
     前記周期的変動検出部は、前記回転速度取得部で得られた前記回転体の回転速度と、前記回転速度が得られた時よりも前記循環周期の自然数倍の期間前に前記回転速度取得部で得られた前記回転体の回転速度とを用いる演算を行うことによって、前記周期的変動を検出する。
  7.  請求項1から6いずれか1項に記載の失火検出装置であって、
     前記巻掛伝動体は、前記複数の伝動車と噛み合うように構成されている。
  8.  請求項7に記載の失火検出装置であって、
     前記複数の極値は、前記4ストロークエンジンの回転速度の変動において、前記巻掛伝動体と前記複数の伝動車のいずれかとの噛み合いに起因して生じる。
  9.  複数の伝動車と、循環的に移動するように前記複数の伝動車に巻き掛けられた巻掛伝動体と、前記巻掛伝動体を駆動する4ストロークエンジンと、前記4ストロークエンジンにより回転される回転体とを備えたビークルであって、
     前記ビークルは、請求項1から8いずれか1項に記載の失火検出装置を備える。
PCT/JP2017/017727 2016-05-31 2017-05-10 失火検出装置及びビークル WO2017208757A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17806315.2A EP3450735B8 (en) 2016-05-31 2017-05-10 Misfire detection device and vehicle
TW106117348A TW201742983A (zh) 2016-05-31 2017-05-25 點火不良檢測裝置及車輛
US16/206,139 US10823639B2 (en) 2016-05-31 2018-11-30 Misfire detection device and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016108482A JP2017214857A (ja) 2016-05-31 2016-05-31 失火検出装置及びビークル
JP2016-108482 2016-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/206,139 Continuation-In-Part US10823639B2 (en) 2016-05-31 2018-11-30 Misfire detection device and vehicle

Publications (1)

Publication Number Publication Date
WO2017208757A1 true WO2017208757A1 (ja) 2017-12-07

Family

ID=60479311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017727 WO2017208757A1 (ja) 2016-05-31 2017-05-10 失火検出装置及びビークル

Country Status (5)

Country Link
US (1) US10823639B2 (ja)
EP (1) EP3450735B8 (ja)
JP (1) JP2017214857A (ja)
TW (1) TW201742983A (ja)
WO (1) WO2017208757A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184071A1 (ja) 2019-03-13 2020-09-17 ヤマハ発動機株式会社 ストラドルドビークル用駆動系異常判定装置、及びストラドルドビークル

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102119872B1 (ko) * 2018-12-04 2020-06-05 현대오트론 주식회사 단기통 4행정 엔진의 실화 진단 방법 및 시스템
KR102119876B1 (ko) * 2018-12-04 2020-06-05 현대오트론 주식회사 단기통 4행정 엔진의 실화 진단 방법 및 장치
KR102119873B1 (ko) * 2018-12-04 2020-06-05 현대오트론 주식회사 단기통 4행정 엔진의 실화 진단 방법 및 장치
JP6593560B1 (ja) * 2019-02-15 2019-10-23 トヨタ自動車株式会社 内燃機関の失火検出装置、内燃機関の失火検出システム、データ解析装置、および内燃機関の制御装置
JP7139514B2 (ja) * 2019-03-13 2022-09-20 ヤマハ発動機株式会社 ストラドルドビークルエンジンユニット、及びストラドルドビークル
GB2588435B (en) 2019-10-24 2022-06-08 Delphi Automotive Systems Lux Method of determining acceleration of a crankshaft
JP7327323B2 (ja) * 2020-08-27 2023-08-16 株式会社デンソー 判定装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861131A (ja) * 1994-08-10 1996-03-05 Yamaha Motor Co Ltd 2サイクルエンジンの不整燃焼低減装置
JP2010024850A (ja) * 2008-07-15 2010-02-04 Toyota Motor Corp 内燃機関の失火判定装置
JP2014199040A (ja) * 2013-03-29 2014-10-23 本田技研工業株式会社 エンジン制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2982381B2 (ja) 1991-06-12 1999-11-22 株式会社デンソー 内燃機関用失火検出装置
JP3203463B2 (ja) * 1994-04-11 2001-08-27 株式会社ユニシアジェックス 車両の悪路走行検出装置及び車両用エンジンの失火検出装置
JP3449170B2 (ja) 1996-08-09 2003-09-22 トヨタ自動車株式会社 内燃機関の失火検出装置
JP3958636B2 (ja) * 2002-02-28 2007-08-15 本田技研工業株式会社 車両用多気筒内燃機関の失火検出装置
JP4946889B2 (ja) * 2008-01-23 2012-06-06 トヨタ自動車株式会社 内燃機関の失火検出装置
US8281650B2 (en) 2008-07-09 2012-10-09 Toyota Jidosha Kabushiki Kaisha Misfire determination device and misfire determination method for internal combustion engine
ITTO20110770A1 (it) * 2011-08-12 2013-02-13 Magneti Marelli Spa Metodo per il riconoscimento del fenomeno di misfire in un motore a combustione interna
JP6353333B2 (ja) * 2014-10-01 2018-07-04 川崎重工業株式会社 失火判定装置
EP3306064B8 (en) * 2015-06-02 2022-06-01 Denso Corporation Control device
JP6889542B2 (ja) * 2016-11-09 2021-06-18 川崎重工業株式会社 内燃機関の失火判定装置および失火判定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861131A (ja) * 1994-08-10 1996-03-05 Yamaha Motor Co Ltd 2サイクルエンジンの不整燃焼低減装置
JP2010024850A (ja) * 2008-07-15 2010-02-04 Toyota Motor Corp 内燃機関の失火判定装置
JP2014199040A (ja) * 2013-03-29 2014-10-23 本田技研工業株式会社 エンジン制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184071A1 (ja) 2019-03-13 2020-09-17 ヤマハ発動機株式会社 ストラドルドビークル用駆動系異常判定装置、及びストラドルドビークル
JPWO2020184071A1 (ja) * 2019-03-13 2020-09-17
JP7139512B2 (ja) 2019-03-13 2022-09-20 ヤマハ発動機株式会社 ストラドルドビークル用駆動系異常判定装置、及びストラドルドビークル
US11821813B2 (en) 2019-03-13 2023-11-21 Yamaha Hatsudoki Kabushiki Kaisha Drive train abnormality determination device for straddled vehicle, and straddled vehicle

Also Published As

Publication number Publication date
TW201742983A (zh) 2017-12-16
US20190101472A1 (en) 2019-04-04
EP3450735B1 (en) 2021-12-08
EP3450735A1 (en) 2019-03-06
EP3450735A4 (en) 2019-05-15
JP2017214857A (ja) 2017-12-07
US10823639B2 (en) 2020-11-03
EP3450735B8 (en) 2022-02-23

Similar Documents

Publication Publication Date Title
WO2017208757A1 (ja) 失火検出装置及びビークル
JP6454010B2 (ja) 制御装置
US10309872B2 (en) Misfire determination apparatus for internal combustion engine
CN111033021B (zh) 内燃机失火检测装置
JP6658588B2 (ja) 内燃機関の失火検出装置
US10788397B2 (en) Engine misfire determination device and vehicle
US7540185B2 (en) System and method for detecting engine misfires
US10794314B2 (en) Unequal interval combustion engine misfire determination device and vehicle
KR101180410B1 (ko) 내연기관의 실화 검출방법 및 그 장치
WO2020184073A1 (ja) ストラドルドビークルエンジンユニット、及びストラドルドビークル
JP7139512B2 (ja) ストラドルドビークル用駆動系異常判定装置、及びストラドルドビークル
JPH09329055A (ja) 内燃機関における回転速度変動に基づいて作動する燃焼ミスファイヤ検出の遮断方法
JP2007092560A (ja) エンジンの失火検出装置
JP2004225552A (ja) 多気筒内燃機関の失火検出装置
JP2021110092A (ja) 道路診断システム
JPH0734947A (ja) 内燃機関の燃焼状態診断装置
JP2007002814A (ja) 内燃機関の失火検出装置
JP2013142327A (ja) 車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017806315

Country of ref document: EP

Effective date: 20181128