WO2017204034A1 - 熱流測定装置 - Google Patents

熱流測定装置 Download PDF

Info

Publication number
WO2017204034A1
WO2017204034A1 PCT/JP2017/018342 JP2017018342W WO2017204034A1 WO 2017204034 A1 WO2017204034 A1 WO 2017204034A1 JP 2017018342 W JP2017018342 W JP 2017018342W WO 2017204034 A1 WO2017204034 A1 WO 2017204034A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermocouple
protection member
sheet
conductor
surface protection
Prior art date
Application number
PCT/JP2017/018342
Other languages
English (en)
French (fr)
Inventor
倫央 郷古
谷口 敏尚
坂井田 敦資
岡本 圭司
芳彦 白石
浅野 正裕
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/304,040 priority Critical patent/US11193900B2/en
Priority to EP17802626.6A priority patent/EP3467460A1/en
Priority to CN201780031696.6A priority patent/CN109196318B/zh
Priority to KR1020187033005A priority patent/KR20180128070A/ko
Publication of WO2017204034A1 publication Critical patent/WO2017204034A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/20Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient

Definitions

  • the present disclosure relates to a heat flow measurement device in which a heat flux sensor and a thermocouple are integrally configured.
  • a heat flux sensor that is formed in a thin plate shape and outputs a signal corresponding to the heat flux flowing between one surface in the thickness direction and the other surface is known.
  • Patent Document 1 describes a heat flow measuring device in which a plurality of electrically independent heat flux sensors are simultaneously formed in the process of manufacturing one multilayer substrate. This heat flow measuring device reduces the individual performance differences among the plurality of heat flux sensors.
  • the heat flow measuring device described in Patent Document 1 can measure heat generated inside a measurement object by being attached to the surface of the measurement object.
  • the heat flow on the surface of the measurement object is affected by the heat generated inside the measurement object and is also affected by changes in the outside air temperature.
  • the heat flow measuring device outputs a signal corresponding to the heat generated inside the measurement object and also outputs a signal corresponding to a change in the outside air temperature. Therefore, in the heat flow measurement in which the heat flow measuring device is attached to the surface of the measurement object, a signal corresponding to a change in the outside air temperature becomes a temperature drift, so that it is difficult to detect heat generated inside the measurement object.
  • thermocouple in addition to the heat flux sensor for the heat flow measuring device. If a thermocouple is used to detect temperature changes on the surface of the object due to changes in the outside air temperature, the temperature drift from the heat flux sensor signal based on the signal output from the heat flux sensor and the signal output from the thermocouple. Can reduce the effects of
  • the thickness of the heat flow measuring device increases.
  • the airflow near the surface of the measurement object is disturbed. Therefore, the output signal of the heat flux sensor and the output signal of the thermocouple accurately correspond to the heat flow on the surface of the measurement object due to the heat generated inside the measurement object and the heat flow on the surface of the measurement object due to changes in the outside air temperature. It doesn't become a thing. Therefore, in such an arrangement, it is difficult for the heat flow measuring device to accurately detect the heat generated inside the measurement object.
  • thermocouple signal and the heat flux sensor signal do not correspond to each other. Therefore, even in such an arrangement, it is difficult for the heat flow measuring device to reduce the influence of temperature drift from the signal of the heat flux sensor.
  • This disclosure is intended to provide a heat flow measuring device capable of accurately detecting the heat flow of a measurement object.
  • the heat flow measuring device includes a heat flux sensor and a thermocouple sheet.
  • the heat flux sensor is composed of a plate-like insulating base material, a plurality of conductors embedded in a plurality of via holes that are made of metals having different thermoelectric powers and lead in the thickness direction of the insulating base material, and the insulating base material in the plurality of conductors.
  • thermocouple sheet is a thermocouple having a joint portion in which a first conductor and a second conductor made of metals having different thermoelectric powers are joined, and in a direction intersecting the direction in which the first conductor and the second conductor are arranged.
  • thermocouple sheet that covers the thermocouple from one side and a second insulating sheet that covers the thermocouple from the side opposite to the first insulating sheet are provided, and the temperature of the joint is detected.
  • the surface protection member and the back surface protection member are fixed at positions where they extend in the surface direction from the insulating base material.
  • the heat flow measuring device can accurately detect the heat flow of the measurement object by reducing temperature drift due to changes in the outside air temperature based on the output signal of the heat flux sensor and the output signal of the thermocouple.
  • thermocouple since the heat flux sensor and the thermocouple can be brought closer to the surface direction, the heat flux sensor and the thermocouple respectively detect the heat flow and temperature at substantially the same position of the measurement object. Therefore, the thermocouple signal and the heat flux sensor signal correspond to each other. Therefore, the heat flow measuring device can reduce the influence of temperature drift from the signal of the heat flux sensor.
  • FIG. 1 is a diagram schematically showing a state in which the heat flow measuring device according to the first embodiment of the present invention is attached to a measurement object
  • FIG. 2 is a schematic diagram of the II-II cross section of FIG.
  • FIG. 3 is a graph schematically showing the output characteristics of the heat flux sensor and the output characteristics of the thermocouple constituting the heat flow measuring device
  • FIG. 4 is a plan view of the heat flow measuring device according to the first embodiment
  • 5 is a cross-sectional view taken along the line VV in FIG.
  • FIG. 6 is a flowchart of the manufacturing method of the heat flow measuring device according to the first embodiment.
  • FIG. 7 is a flowchart of a method of manufacturing a thermocouple sheet constituting the heat flow measuring device
  • FIG. 8 is an explanatory diagram of a method of manufacturing a thermocouple sheet constituting the heat flow measuring device
  • 9 is a cross-sectional view taken along line IX-IX in FIG.
  • FIG. 10 is an explanatory diagram of a method of manufacturing a thermocouple sheet constituting the heat flow measuring device
  • FIG. 11 is an explanatory diagram of a method of manufacturing a thermocouple sheet constituting the heat flow measuring device
  • FIG. 12 is an explanatory diagram of a method of manufacturing a thermocouple sheet constituting the heat flow measuring device
  • FIG. 10 is an explanatory diagram of a method of manufacturing a thermocouple sheet constituting the heat flow measuring device
  • FIG. 11 is an explanatory diagram of a method of manufacturing a thermocouple sheet constituting the heat flow measuring device
  • FIG. 12 is an explanatory diagram of a method of manufacturing a thermocouple sheet constitu
  • FIG. 13 is an explanatory diagram of a method of manufacturing a thermocouple sheet constituting the heat flow measuring device
  • FIG. 14 is an explanatory diagram of a method of manufacturing a thermocouple sheet constituting the heat flow measuring device
  • FIG. 15 is a schematic view of a member for a heat flux sensor constituting the heat flow measuring device
  • FIG. 16 is an explanatory diagram of a manufacturing method of the heat flow measuring device
  • FIG. 17 is an explanatory diagram of a manufacturing method of the heat flow measuring device
  • FIG. 18 is a cross-sectional view of a heat flow measuring device according to the second embodiment of the present invention
  • 19 is a plan view in the XIX direction of FIG. FIG.
  • FIG. 20 is an explanatory diagram of a manufacturing method of the heat flow measuring device of the second embodiment.
  • FIG. 21 is a plan view of a thermocouple constituting the heat flow measuring device according to the third embodiment of the present invention
  • FIG. 22 is a plan view of a thermocouple constituting the heat flow measuring device according to the fourth embodiment of the present invention.
  • thermocouple 20 A first embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, the heat flow measuring device 1 of the present embodiment is configured such that a heat flux sensor 10 and a thermocouple 20 are integrally formed.
  • the heat flux sensor 10 includes an insulating base material 100, a surface protection member 110 that covers one surface in the thickness direction of the insulating base material 100, and a back surface protection member 120 that covers the other surface.
  • the insulating base material 100 is embedded with a plurality of interlayer connection members 130 and 140 made of metals having different thermoelectric powers so as to exhibit the Seebeck effect.
  • a front surface wiring pattern 111 and a back surface wiring pattern 121 for connecting a plurality of interlayer connection members 130 and 140 in series are formed on the front surface protection member 110 and the back surface protection member 120, respectively.
  • the heat flux sensor 10 outputs a signal corresponding to the thermoelectromotive force generated in the interlayer connection members 130 and 140 according to the heat flux flowing between one surface in the thickness direction and the other surface.
  • the thickness direction of the heat flux sensor 10 is the stacking direction of the insulating base material 100, the surface protection member 110, and the back surface protection member 120. Further, the interlayer connection members 130 and 140 of the present embodiment correspond to “conductors” recited in the claims.
  • the thermocouple sheet 200 includes a thermocouple 20, a first insulating sheet 210, and a second insulating sheet 220.
  • the thermocouple 20 is obtained by joining a first conductor 21 and a second conductor 22.
  • the 1st conductor 21 and the 2nd conductor 22 are comprised from the metal foil from which thermoelectric power differs, respectively.
  • a portion where the first conductor 21 and the second conductor 22 are joined is referred to as a joint portion 23.
  • the thermocouple 20 is a thermoelectromotive force generated in the thermocouple 20 in accordance with a temperature difference between the junction 23 and the detection unit 30 connected to the first conductor 21 and the second conductor 22 through wirings 34 and 35. Output a signal according to.
  • the first insulating sheet 210 covers the thermocouple 20 from one side in a direction intersecting the direction in which the first conductor 21 and the second conductor 22 are arranged.
  • the second insulating sheet 220 covers the thermocouple 20 from the side opposite to the first insulating sheet 210. The details of the configuration of the heat flux sensor 10 and the thermocouple sheet 200 will be described later.
  • the heat flow measuring device 1 can be used by being attached to the surface 3 of the measurement object 2.
  • the heat generation source 4 inside the measurement object 2 is schematically indicated by a broken line.
  • the wires 31 and 32 connected to the pad portions 124 and 125 at the ends of the back surface wiring pattern 121 of the heat flux sensor 10 pass through the inside of the tubular shield wire 33 and are connected to the detection unit 30.
  • Wirings 34 and 35 connected to the first conductor 21 and the second conductor 22 of the thermocouple 20 also pass through the inside of the tubular shield wire 33 and are connected to the detection unit 30. Thereby, the output signal of the heat flux sensor 10 and the output signal of the thermocouple 20 are input to the detection unit 30.
  • the detection unit 30 includes a microcomputer and its peripheral devices. Based on the output signal of the heat flux sensor 10 and the output signal of the thermocouple 20, the detection unit 30 transmits heat generated in the heat generation source 4 inside the measurement object 2 from the inside of the measurement object 2 to the surface 3. The heat flow of the surface 3 can be measured.
  • the detection unit 30 may be capable of calculating the amount of heat generated by the heat generation source 4 of the measurement target 2 based on the heat flow measured on the surface 3 of the measurement target 2.
  • Shield wire 33 has a conductor for preventing electromagnetic waves from entering from the outside.
  • the conductor of the shield wire 33 is formed in a cylindrical shape so as to surround the wiring inside the shield wire 33, and is electrically connected to the measurement object 2 through the wiring 36 or the like.
  • the conductor of the shield wire 33 is preferably connected to the ground 37. Thereby, the noise with respect to the voltage signal which the heat flux sensor 10 and the thermocouple 20 output can be reduced.
  • FIG. 3 an example of an output signal of the thermocouple 20 detected by the detection unit 30 is schematically shown by a solid line A, and an example of an output signal of the heat flux sensor 10 at that time is schematically shown by a solid line B. .
  • the outside air temperature gradually increases from time t0 to time t4 and gradually decreases from time t4 to time t8. Further, the temperature of the detection unit 30 is assumed to be substantially constant from time t0 to time t8.
  • the temperature of the surface 3 of the measurement object 2 increases as the outside air temperature increases, and decreases as the outside air temperature decreases. Therefore, as shown by the solid line A, the output signal of the thermocouple 20 gradually increases from time t0 to time t4, and gradually decreases from time t4 to time t8.
  • the heat flux on the surface 3 of the measurement object 2 flows from the outside air side to the measurement object 2 side as the outside air temperature rises, and flows from the measurement object 2 side to the outside air side as the outside air temperature decreases. Therefore, as shown by the solid line B, the output signal of the heat flux sensor 10 gradually decreases from time t0 to time t4, and gradually increases from time t4 to time t8. That is, the output signal of the thermocouple 20 and the output signal of the heat flux sensor 10 exhibit behaviors opposite to the heat flow on the surface 3 of the measurement object 2 due to changes in the outside air temperature.
  • thermocouple 20 and the output signal of the heat flux sensor 10 rise between time t1 and time t2, and the output signal and heat flux of the thermocouple 20 rise between time t2 and time t3. Both of the output signals of the sensor 10 are lowered.
  • the output signal of the thermocouple 20 and the output signal of the heat flux sensor 10 both rise from time t5 to time t6, and the output signal and heat flux of the thermocouple 20 rise from time t6 to time t7. Both of the output signals of the sensor 10 are lowered. That is, the output signal of the thermocouple 20 and the output signal of the heat flux sensor 10 indicate that the heat generated by the heat generation source 4 inside the measurement object 2 is transmitted through the measurement object 2 and the surface of the measurement object 2 3 shows the same behavior for the heat flow.
  • the detection unit 30 compares the output signal of the heat flux sensor 10 with the output signal of the thermocouple 20 to remove the heat flow on the surface 3 of the measurement object 2 due to a change in the outside air temperature, and to detect the inside of the measurement object 2. Only the heat flow on the surface 3 of the measurement object 2 can be measured by the heat generated by the heat generation source 4.
  • the insulating base material 100, the front surface protection member 110, and the back surface protection member 120 are integrated.
  • the second interlayer connection members 140 are alternately connected in series.
  • the insulating substrate 100 is made of a flexible thermoplastic resin film or thermosetting resin film, and has a plate shape.
  • a plurality of first via holes 101 and a plurality of second via holes 102 are formed in the insulating base material 100 in the thickness direction.
  • a first interlayer connection member 130 is embedded in the first via hole 101, and a second interlayer connection member 140 is embedded in the second via hole 102. That is, the first interlayer connection member 130 and the second interlayer connection member 140 are embedded in the insulating base material 100 so as to alternate.
  • the first interlayer connection member 130 and the second interlayer connection member 140 are made of thermoelectric materials such as metals and semiconductors having different thermoelectric powers so as to exhibit the Seebeck effect.
  • the first interlayer connection member 130 is a metal compound obtained by solid-phase sintering so that Bi-Sb-Te alloy powder constituting the P-type maintains a crystal structure of a plurality of metal atoms before sintering. Composed.
  • the second interlayer connection member 140 is a metal compound obtained by solid-phase sintering so that the Bi-Te alloy powder constituting the N-type maintains the crystal structure of a plurality of metal atoms before sintering. Composed.
  • the first and second interlayer connection members 130 and 140 are hidden behind a surface wiring pattern 111 described later and cannot be seen. However, for convenience of explanation, the positions of the first and second interlayer connection members 130 and 140 are indicated by broken lines and hatched there.
  • the surface protection member 110 covers the surface 100a of the insulating base material 100.
  • the surface protection member 110 is made of a flexible thermoplastic resin film or thermosetting resin film.
  • the surface protection member 110 is formed longer in one of the surface directions than the insulating base material 100 and extends from the insulating base material 100 in one of the surface directions.
  • a plurality of surface wiring patterns 111 in which copper foil or the like is patterned are formed on the surface protection member 110 on the surface 110a side facing the insulating base material 100.
  • the positions of the plurality of surface wiring patterns 111 are indicated by solid lines on the assumption that the surface protection member 110 is transparent or translucent.
  • the plurality of surface wiring patterns 111 are electrically connected to one end portion of the first interlayer connection member 130 and one end portion of the second interlayer connection member 140 adjacent thereto.
  • the back surface protection member 120 covers the back surface 100b of the insulating base material 100.
  • the back surface protection member 120 is configured by a flexible thermoplastic resin film or a thermosetting resin film.
  • the back surface protection member 120 is formed longer in one of the surface directions than the insulating base material 100 and extends from the insulating base material 100 in one of the surface directions.
  • the back surface protection member 120 extends longer than the front surface protection member 110.
  • the back surface protection member 120 is formed with a plurality of back surface wiring patterns 121 in which a copper foil or the like is patterned on the surface 120 a side facing the insulating base material 100.
  • the plurality of backside wiring patterns 121 are electrically connected to the other end of the first interlayer connection member 130 and the other end of the second interlayer connection member 140 adjacent thereto.
  • the first interlayer connection member 130 and the second interlayer connection member 140 that are adjacent to each other are connected so as to be alternately folded by the front surface wiring pattern 111 and the back surface wiring pattern 121. In this manner, the first interlayer connection member 130 and the second interlayer connection member 140 are connected in series by the front surface wiring pattern 111 and the back surface wiring pattern 121.
  • the extension wirings 122 and 123 that are the ends of the back surface wiring pattern 121 in which the first interlayer connection member 130 and the second interlayer connection member 140 are connected in series are such that the back surface protection member 120 is more in the surface direction than the insulating substrate 100. It is provided at a location extending to one side. In the place where the back surface protection member 120 extends longer than the front surface protection member 110, the extended wirings 122 and 123 of the back surface wiring pattern 121 are exposed to the outside air. The portions where the extended wirings 122 and 123 are exposed to the outside become pad portions 124 and 125 that function as terminals for connecting the wirings.
  • thermoelectromotive force is generated in the first and second interlayer connection members 130 and 140 by the Seebeck effect.
  • the heat flux sensor 10 outputs this thermoelectromotive force as a sensor signal (for example, a voltage signal).
  • thermocouple sheet 200 firstly, the configuration of the thermocouple sheet 200 will be described.
  • the thermocouple sheet 200 has a structure in which the thermocouple 20, the first insulating sheet 210, and the second insulating sheet 220 are integrated.
  • the thermocouple 20 is formed by welding a first conductor 21 and a second conductor 22 made of metals having different thermoelectric powers so as to exhibit the Seebeck effect. A location where the first conductor 21 and the second conductor 22 are joined becomes a joint 23 for detecting temperature.
  • the 1st conductor 21 and the 2nd conductor 22 of this embodiment are comprised with the metal foil.
  • the first insulating sheet 210 is made of a flexible thermoplastic resin film or thermosetting resin film and has a plate shape.
  • the first insulating sheet 210 covers the thermocouple 20 from one side in a direction intersecting the direction in which the first conductor 21 and the second conductor 22 are arranged.
  • the second insulating sheet 220 covers the thermocouple 20 from the side opposite to the first insulating sheet 210.
  • the first insulating sheet 210 is formed longer in one of the surface directions than the second insulating sheet 220 and extends from the second insulating sheet 220 in one of the surface directions.
  • thermocouple 20 In the place where the first insulating sheet 210 extends longer than the second insulating sheet 220, the first conductor 21 and the second conductor 22 constituting the thermocouple 20 are exposed to the outside air. The portions where the first conductor 21 and the second conductor 22 are exposed to the outside air become pad portions 24 and 25 that function as terminals for connecting wiring.
  • thermocouple 20 when a temperature difference is generated between the junction 23 and the detection unit 30, a thermoelectromotive force is generated in the junction 23 due to the Seebeck effect.
  • the thermocouple 20 outputs this thermoelectromotive force as a sensor signal (for example, a voltage signal).
  • thermocouple sheet 200 is fixed at a position where the surface protection member 110 and the back surface protection member 120 extend from the insulating substrate 100 in the surface direction.
  • the insulating base material 100 constituting the heat flux sensor 10 has a recess 11 that is recessed from the side 12 on the thermocouple sheet 200 side to the interlayer connection members 130 and 140 side.
  • the joint 23 of the thermocouple 20 included in the thermocouple sheet 200 enters the recess 11 included in the insulating base material 100. Therefore, the distance between the first and second interlayer connecting members 130 and 140 of the heat flux sensor 10 and the joint 23 of the thermocouple 20 is short.
  • the back surface protection member 120 is bent toward the surface protection member 110 and is in close contact with the surface protection member 110 at a position extending in the surface direction from the insulating base material 100.
  • the thermocouple sheet 200 is fixed to the opposite side of the back surface protection member 120 to the front surface protection member 110 at a position where the front surface protection member 110 and the back surface protection member 120 are in close contact.
  • the surface 120 b opposite to the insulating base material 100, and the thermocouple sheet 200 are joined to the joint 23.
  • the thermocouple sheet 200 at the place where the is disposed is aligned with the surface 200b opposite to the back surface protection member 120.
  • two surfaces are aligned includes not only a state where the two surfaces are aligned on the same plane but also a state where the surfaces are slightly shifted due to manufacturing tolerances or aging.
  • the thickness of the thermocouple sheet 200 is the same as or thinner than that of the insulating substrate 100. Therefore, in the heat flow measuring device 1, the thickness T1 at the location where the thermocouple sheet 200 is provided is within the range of the thickness T2 where the heat flux sensor 10 is provided.
  • this manufacturing method includes a thermocouple sheet forming step S10, a heat flux sensor member preparing step S20, a laminate forming step S30, and an integrated pressing step S40.
  • thermocouple sheet forming step S10 in the manufacturing method of the heat flow measuring device 1 will be described.
  • the thermocouple sheet 200 is formed by the thermocouple preparing step S11, the thermocouple laminate forming step S12, the pressing step S13, and the cutting step S14 shown in FIG.
  • thermocouple preparation step S11 a first conductor 21 and a second conductor 22 made of metal foils having different thermoelectric powers are prepared, and the tips are joined together by welding to form a joint 23. Thereby, the thermocouple 20 is prepared.
  • the first release paper 51 and the second insulating sheet 220 are arranged on the jig base 40 formed in a predetermined size. . Further, the end positioning jig 41 and the intermediate positioning jig 42 are fixed to the jig base 40 by bolts 43 from above.
  • the first release paper 51 for example, a thermosetting resin sheet or a thermoplastic resin sheet formed from an aramid resin or the like is used.
  • the second insulating sheet 220 for example, a thermosetting resin sheet or a thermoplastic resin sheet formed from an aramid resin having an adhesive layer on the front surface and the back surface is used.
  • the end positioning jig 41 and the intermediate positioning jig 42 are provided with a plurality of grooves 44 and 45 for positioning the thermocouple 20.
  • a plurality of thermocouples 20 are arranged on the second insulating sheet 220 according to the plurality of grooves 44 and 45.
  • the plurality of thermocouples 20 are arranged in a direction in which a plurality of groove portions 44 and 45 provided in the end portion positioning jig 41 and the intermediate positioning jig 42 are arranged, and face each other with the intermediate positioning jig 42 interposed therebetween.
  • the holding jig 46 is fixed to the jig base 40 from above the first release paper 51, the second insulating sheet 220, and the thermocouple 20 with bolts 43. Thereby, the position shift of the 1st release paper 51, the 2nd insulating sheet 220, and the thermocouple 20 is prevented. Thereafter, the intermediate positioning jig 42 is removed from the jig base 40.
  • the first insulating sheet 210 is disposed on the first release paper 51, the second insulating sheet 220, and the thermocouple 20. Thereby, the laminated body of the thermocouple 20 is formed.
  • a thermosetting resin sheet or a thermoplastic resin sheet formed from an aramid resin having an adhesive layer on the front surface and the back surface is used.
  • the jig base 40 is installed in the press machine 70, and the second release paper 52 and the first buffer material 61 are further arranged on the first insulating sheet 210.
  • the second release paper 52 for example, a thermosetting resin sheet or a thermoplastic resin sheet formed from an aramid resin or the like is used.
  • the first buffer material 61 for example, Teflon (registered trademark) is used.
  • the laminated body of the thermocouple 20 is heated while being pressed in the laminating direction by the press machine 70, and the first insulating sheet 210, the thermocouple 20, and the second insulating sheet 220 are pressure-bonded.
  • the pressure of the press machine 70 at this time is 2 MPa or more, for example, and the temperature is 300 ° C. or more.
  • the integrated sheet 201 is cut at the positions indicated by the one-dot chain lines C1 to C4 in FIG. Thereby, as shown in FIG. 14, the thermocouple sheet
  • the heat flux sensor member preparing step S20 the insulating substrate 100, the front surface wiring pattern 111, the front surface protection member 110, the back surface wiring pattern 121, and the back surface protection.
  • a member 120 is prepared.
  • the insulating base material 100 includes a plurality of types of conductive pastes 131 and 141 having different thermoelectric powers embedded in a plurality of via holes 101 and 102 in order to constitute the heat flux sensor 10. It is.
  • the insulating base material 100 may be composed of a plurality of layers, or may be composed of a single layer.
  • a plurality of first via holes 101 are formed in the insulating base material 100 by a drill or a laser.
  • the plurality of first via holes 101 are filled with a first conductive paste 131 for forming a first interlayer connection member 130 by solid phase sintering.
  • a method (apparatus) for filling the first via hole 101 with the first conductive paste 131 the method (apparatus) described in Japanese Patent Application No. 2010-50356 by the present applicant may be adopted.
  • the insulating base material 100 is placed on an adsorption paper (not shown) laid on a holding table (not shown). Then, the first conductive paste 131 is filled into the first via hole 101 while the first conductive paste 131 is melted. As a result, most of the organic solvent of the first conductive paste 131 is adsorbed to the suction paper, and the alloy powder is placed in close contact with the first via hole 101.
  • the first conductive paste 131 a paste obtained by adding Bi-Sb-Te alloy powder in which metal atoms maintain a predetermined crystal structure to an organic solvent such as paraffin is used.
  • a plurality of second via holes 102 are formed in the insulating base material 100 by a drill or a laser. Each of the plurality of second via holes 102 is formed so as to be positioned between two adjacent first via holes 101 among the plurality of first via holes 101.
  • the plurality of second via holes 102 are filled with a second conductive paste 141 for forming the second interlayer connection member 140 by solid phase sintering.
  • the filling of the second conductive paste 141 can be performed by the same method as the filling method of the first conductive paste 131 described above.
  • an organic solvent such as terpine is added to Bi-Te alloy powder in which metal atoms different from the metal atoms constituting the first conductive paste 131 maintain a predetermined crystal structure.
  • the paste is used.
  • paraffin or the like may be used as the organic solvent of the second conductive paste 141.
  • the surface wiring pattern 111 is connected to one end in the thickness direction of the insulating base material 100 in the plurality of conductive pastes 131 and 141. Further, the surface protection member 110 covers one surface in the thickness direction of the insulating base material 100 and the surface wiring pattern 111. The surface protection member 110 is longer in the surface direction than the insulating base material 100.
  • a copper foil or the like is formed on at least the surface of the surface protection member 110 that faces the insulating substrate 100. Then, the surface wiring pattern 111 is formed on the surface protection member 110 by appropriately patterning the copper foil.
  • the back surface wiring pattern 121 is connected to the other ends in the thickness direction of the insulating base material 100 in the plurality of conductive pastes 131 and 141.
  • the back surface protection member 120 covers the other surface in the thickness direction of the insulating base material 100 and the back surface wiring pattern 121.
  • the back surface protection member 120 is longer in the surface direction than the insulating base material 100 and the surface protection member 110.
  • a copper foil or the like is formed on at least the surface of the back surface protection member 120 that faces the insulating substrate 100.
  • the back surface wiring pattern 121 is formed with respect to the back surface protection member 120 by patterning the copper foil suitably.
  • the third release paper 53 is disposed on the lower press plate 71 of the press machine, and the thermocouple sheet 200 illustrated in FIG. 14 is disposed thereon.
  • the back surface protection member 120 in which the back surface wiring pattern 121 is formed is laminated on the third release paper 53 disposed on the lower press plate 71 and the thermocouple sheet 200.
  • the insulating base material 100 and the surface protection member 110 on which the front surface wiring pattern 111 is formed are sequentially laminated on the back surface wiring pattern 121.
  • the fourth release paper 54 and the second cushioning material 62 are disposed on the surface protection member 110.
  • the thermosetting resin sheet or thermoplastic resin sheet formed for example from an aramid resin etc.
  • the second buffer material 62 for example, Teflon is used.
  • thermocouple sheet 200 is disposed on the opposite side of the back surface protection member 120 to the front surface protection member 110 at a position where the front surface protection member 110 and the back surface protection member 120 extend in the surface direction from the insulating base material 100.
  • the Rukoto At this time, a portion where at least the conductive pastes 131 and 141 are disposed on the surface 120b of the back surface protection member 120 on the opposite side to the insulating base material 100 and the back surface protection member 120 on the thermocouple sheet 200 on the opposite side. It is set as the state which aligned with the location where the junction part 23 is arrange
  • thermocouple sheet 200 opposite to the back surface protection member 120 are aligned. Is preferred. Further, the joining portion 23 and the conductive pastes 131 and 141 are arranged close to each other so that the joining portion 23 of the thermocouple 20 included in the thermocouple sheet 200 enters the recess 11 included in the insulating base material 100. In this way, a laminate is formed.
  • a state where two places are aligned when it is referred to as “a state where two places are aligned,” it includes a state where the two positions are slightly aligned due to manufacturing tolerances in addition to aligning the two positions on the same plane.
  • the case where “the entire surface is aligned” includes not only the alignment of the entire surface on the same plane but also a slight shift due to manufacturing tolerances.
  • the integrated pressing step S40 the laminate disposed between the lower press plate 71 and the upper press plate 72 of the press is heated while being pressed in the stacking direction in a vacuum.
  • the pressure of the press machine at this time is, for example, 10 MPa or more, and the temperature is 320 ° C. or more.
  • the plurality of first and second conductive pastes 131 and 141 embedded in the plurality of via holes 101 and 102 of the insulating base material 100 are solid-sintered to be a plurality of first and second interlayer connection members 130, 140.
  • first and second interlayer connection members 130 and 140, the front surface wiring pattern 111, and the back surface wiring pattern 121 are electrically connected. Furthermore, the insulating base material 100, the surface protection member 110, the back surface protection member 120, and the thermocouple sheet 200 are pressure-bonded. By this one-time integrated pressing step S40, the laminated body is integrated, and the heat flux sensor 10 and the thermocouple 20 are integrally formed.
  • the heat flow measuring device 1 according to the first embodiment described above has the following operational effects.
  • thermocouple sheet 200 is fixed at a position where the surface protection member 110 or the back surface protection member 120 extends from the insulating base material 100 in the surface direction.
  • the thickness of the heat flow measuring device 1 can be reduced as compared with the configuration in which the heat flux sensor 10 and the thermocouple 20 are stacked in the thickness direction. Therefore, when the heat flow measuring device 1 is attached to the surface 3 of the measurement object 2, the turbulence of the airflow in the vicinity of the surface 3 of the measurement object 2 is suppressed. Therefore, the heat flow measuring device 1 can accurately detect the heat flow of the measurement object 2 by reducing temperature drift due to changes in the outside air temperature based on the output signal of the heat flux sensor 10 and the output signal of the thermocouple 20.
  • thermocouple sheet 200 by fixing the thermocouple sheet 200 at a position where the front surface protection member 110 or the back surface protection member 120 extends from the insulating base material 100 in the surface direction, the heat flux sensor 10 and the thermocouple 20 are brought closer to each other in the surface direction. It becomes possible to provide. Therefore, each of the heat flux sensor 10 and the thermocouple 20 detects the heat flow and temperature at substantially the same position of the measurement object 2. Therefore, the signal of the thermocouple 20 and the signal of the heat flux sensor 10 correspond to each other. As a result, the heat flow measuring device 1 can reduce the influence of temperature drift from the signal of the heat flux sensor 10.
  • seat the surface 120b opposite to the back surface protection member 120 of the thermocouple sheet 200 at the place where the joint portion 23 is disposed at 200 is aligned.
  • the heat flow measuring device 1 when the heat flow measuring device 1 is attached to the surface 3 of the measurement object 2, the heat flux sensor 10 and the joint 23 of the thermocouple 20 are brought close to the surface 3 of the measurement object 2, and the measurement object The heat flux sensor 10 and the thermocouple sheet 200 can be brought into close contact with the surface 3 of 2. Therefore, the heat flow measuring device 1 can accurately detect the heat flow characteristics of the measurement object 2 based on the output signal of the heat flux sensor 10 and the output signal of the thermocouple 20.
  • the thickness T1 of the location where the thermocouple sheet is provided is within the range of the thickness T2 of the location where the heat flux sensor 10 is provided.
  • the thickness of the heat flow measuring device 1 can be reduced within the range of the thickness T2 of the heat flux sensor 10. Therefore, when the heat flow measuring device 1 is attached to the surface 3 of the measurement object 2, the turbulence of the airflow in the vicinity of the surface 3 of the measurement object 2 can be suppressed.
  • the heat flow measuring device 1 allows the heat flow and temperature at substantially the same location of the measurement object 2 by reducing the distance between the interlayer connection members 130 and 140 of the heat flux sensor 10 and the joint 23 of the thermocouple 20. Can be measured. Therefore, the heat flow measuring device 1 can accurately detect the heat flow characteristics of the measurement object 2 based on the output signal of the heat flux sensor 10 and the output signal of the thermocouple 20.
  • the manufacturing method of the heat flow measuring device 1 of the first embodiment has the following operational effects.
  • a thermocouple sheet 200 is disposed on the opposite side of 110 to form a laminated body, and the laminated body is heated while being pressurized in the laminating direction.
  • the conductive pastes 131 and 141 are solid-sintered to form interlayer connection members 130 and 140.
  • the interlayer connection members 130 and 140, the front surface wiring pattern 111, and the back surface wiring pattern 121 are electrically connected, and the insulating base material 100, the front surface protection member 110, the back surface protection member 120, and the thermocouple sheet 200 are pressure-bonded. To do. Thereby, the heat flux sensor 10 and the thermocouple 20 are integrally formed.
  • the thickness of the location of the heat flux sensor 10 provided in the heat flow measuring device 1 and the thickness of the location of the thermocouple sheet 200 can be made uniform, and the thickness of the heat flow measuring device 1 can be reduced. Therefore, when the heat flow measuring device 1 is attached to the surface 3 of the measurement object 2, the turbulence of the airflow in the vicinity of the surface 3 of the measurement object 2 is suppressed. Therefore, the heat flow measuring device 1 can accurately detect the heat flow of the measurement object 2 by reducing temperature drift due to changes in the outside air temperature based on the output signal of the heat flux sensor 10 and the output signal of the thermocouple 20.
  • the heat flow measuring device 1 can be formed by pressing the insulating base material 100, the surface protection member 110, the back surface protection member 120, the thermocouple sheet 200, and the like once. Therefore, it is possible to suppress the formation of wrinkles or gaps in members such as the insulating base material 100, the surface protection member 110, the back surface protection member 120, and the thermocouple sheet 200.
  • the heat flow measuring device 1 when the heat flow measuring device 1 is attached to the surface 3 of the measurement object 2, the heat flux sensor 10 and the joint 23 of the thermocouple 20 are brought closer to the surface 3 of the measurement object 2 and the measurement is performed.
  • the heat flux sensor 10 and the thermocouple sheet 200 can be brought into close contact with the surface 3 of the object 2. Therefore, the heat flow measuring device 1 can accurately detect the heat flow characteristics of the measurement object 2 based on the output signal of the heat flux sensor 10 and the output signal of the thermocouple 20.
  • the heat flow measuring device 1 can accurately detect the heat flow characteristics of the measurement object 2 based on the output signal of the heat flux sensor 10 and the output signal of the thermocouple 20.
  • the first insulating sheet 210 is disposed on one side of the thermocouple 20 and the second insulating sheet 220 is disposed on the other side in the thermocouple sheet forming step S10.
  • the laminated body of the thermocouple 20 formed in this manner is heated while being pressed in the laminating direction, and the first insulating sheet 210, the thermocouple 20, and the second insulating sheet 220 are pressure bonded.
  • thermocouple sheet 200 when the thermocouple sheet 200 is disposed at a position where the front surface protection member 110 and the back surface protection member 120 extend in the plane direction from the insulating base material 100, the thermocouple sheet 200 can be accurately and easily positioned with respect to the heat flux sensor 10. It can be carried out.
  • thermocouple sheet 200 is changed with respect to the first embodiment, and the other parts are the same as those in the first embodiment. Therefore, only different portions from the first embodiment will be described. .
  • the thermocouple sheet 200 constituting the heat flow measuring device 1 of the second embodiment is a position where the surface protection member 110 and the back surface protection member 120 extend from the insulating base material 100 in the surface direction. In FIG. 5, it is fixed between the front surface protection member 110 and the back surface protection member 120. In this state, of the back surface protection member 120 where the plurality of interlayer connection members 130 and 140 are disposed in the heat flux sensor 10, the surface 120 b opposite to the insulating base material 100, and the thermocouple sheet 200 are joined to the joint 23. Of the back surface protection member 120 at the place where is disposed, the surface 120b opposite to the thermocouple sheet 200 is aligned.
  • a short-circuit preventing insulating sheet 230 is provided between the thermocouple sheet 200 and the back surface protection member 120.
  • This insulating sheet 230 for short circuit prevention includes the pad portions 24 and 25 of the thermocouple 20 included in the thermocouple sheet 200 and the pad portions 124 and 125 where the back surface wiring pattern 121 is exposed from the second insulating sheet 220 included in the thermocouple sheet 200. And prevent short circuit.
  • thermocouple sheet 200 and the short-circuit prevention insulating sheet 230 is the same as or thinner than the thickness of the insulating substrate 100. Therefore, in the heat flow measuring device 1, the thickness T1 at the location where the thermocouple sheet 200 is provided is within the range of the thickness T2 where the heat flux sensor 10 is provided.
  • the manufacturing method of the second embodiment also includes a thermocouple sheet forming step S10, a heat flux sensor member preparing step S20, a laminate forming step S30, and an integrated pressing step S40, as in the first embodiment.
  • the thermocouple sheet forming step S10, the heat flux sensor member preparing step S20, and the integrated pressing step S40 are the same as the steps described in the first embodiment.
  • a protective member 120 is disposed.
  • the insulating base material 100 and the thermocouple sheet 200 are arranged side by side on the back surface protection member 120, and the surface protection member 110 on which the surface wiring pattern 111 is formed is further disposed thereon.
  • Release paper 54 and second cushioning material 62 are arranged.
  • thermocouple sheet 200 is disposed between the front surface protection member 110 and the rear surface protection member 120 at a position where the front surface protection member 110 and the rear surface protection member 120 extend in the surface direction from the insulating base material 100. It becomes. At this time, at least the portion where the conductive pastes 131 and 141 are disposed on the surface 120b located on the opposite side of the insulating base material 100 in the back surface protection member 120 and the side opposite to the thermocouple sheet 200 in the back surface protection member 120. Of the surface 120b, at least a portion where the joint portion 23 is disposed is in a state substantially aligned on the same plane.
  • thermocouple sheet 200 the entire surface 120b of the back surface protection member 120 opposite to the insulating substrate 100 and the entire surface 120b of the back surface protection member 120 opposite to the thermocouple sheet 200 are aligned. Is preferred. Further, the joining portion 23 and the conductive pastes 131 and 141 are arranged close to each other so that the joining portion 23 of the thermocouple 20 included in the thermocouple sheet 200 enters the recess 11 included in the insulating base material 100. In this way, a laminate is formed.
  • the laminated body disposed between the lower press plate 71 and the upper press plate 72 of the press is heated while being pressurized in the lamination direction in a vacuum.
  • the plurality of first and second conductive pastes 131 and 141 embedded in the plurality of via holes 101 and 102 of the insulating base material 100 are solid-sintered to be a plurality of first and second interlayer connection members 130, 140.
  • the first and second interlayer connection members 130 and 140, the front surface wiring pattern 111, and the back surface wiring pattern 121 are electrically connected.
  • the insulating base material 100, the surface protection member 110, the back surface protection member 120, and the thermocouple sheet 200 are pressure-bonded.
  • thermocouple sheet 200 of the back surface protection member 120 is aligned.
  • thermocouple 20 is stacked on the surface opposite to the measurement target 2 in the heat flux sensor 10
  • the joint 23 of the thermocouple 20 is connected to the measurement target 2. It is possible to approach the surface 3. Further, the heat flux sensor 10 and the thermocouple sheet 200 can be brought into close contact with the surface 3 of the measurement object 2. Therefore, the heat flow measuring device 1 can accurately detect the heat flow characteristics of the measurement object 2 based on the output signal of the heat flux sensor 10 and the output signal of the thermocouple 20.
  • thermocouple 20 which the thermocouple sheet
  • seat 200 has with respect to 1st Embodiment, Since it is the same as that of 1st, 2nd Embodiment about others, 1st, Only parts different from the second embodiment will be described.
  • FIG. 21 shows only the thermocouple 20 included in the thermocouple sheet 200 constituting the heat flow measuring device 1.
  • the thermocouple 20 is formed by welding a first conductor 21 and a second conductor 22 made of metal foils having different thermoelectric powers by welding or the like. A location where the first conductor 21 and the second conductor 22 are joined becomes a joint 23 for detecting temperature.
  • the first conductor 21 has a first pad portion 24 for wiring connection at the end opposite to the joint portion 23.
  • the second conductor 22 has a second pad portion 25 for wiring connection at the end opposite to the joint portion 23.
  • the width W 1 of the first conductor 21 excluding the first pad portion 24 is narrower than the width W 2 of the first pad portion 24.
  • the width W 3 of the second conductor 22 excluding the second pad portion 25 is narrower than the width W 4 of the second pad portion 25.
  • the heat capacity of the first conductor 21 excluding the first pad portion 24 can be reduced, and the heat capacity of the second conductor 22 excluding the second pad portion 25 can be reduced. Therefore, in the thermocouple 20, when a temperature difference occurs between the joint portion 23 and the detection portion 30, the heat of the joint portion 23 is suppressed from being transmitted to the first conductor 21 and the second conductor 22. Therefore, since the thermoelectromotive force generated at the joint 23 is suppressed from being reduced by heat transfer from the joint 23 to the first conductor 21 and the second conductor 22, the thermocouple 20 reduces the temperature of the joint 23. It can be detected accurately.
  • the thermocouple sheet 200 is formed by covering the thermocouple 20 from both sides with the first insulating sheet 210 and the second insulating sheet 220. The Therefore, even when the width W1 of the first conductor 21 excluding the first pad portion 24 and the width W3 of the second conductor 22 excluding the second pad portion 25 are made thin, the thermocouple sheet 200 is easily handled. Is possible. Therefore, when the thermocouple sheet 200 is disposed at a position where the surface protection member 110 and the back surface protection member 120 extend in the plane direction from the insulating base material 100, the thermocouple sheet 200 can be accurately and easily positioned with respect to the heat flux sensor 10. It can be carried out.
  • thermocouple 20 included in the thermocouple sheet 200 is changed with respect to the first embodiment, and the others are the same as those in the first and second embodiments. Only parts different from the second embodiment will be described.
  • FIG. 22 shows only the thermocouple 20 included in the thermocouple sheet 200 constituting the heat flow measuring device 1.
  • the thermocouple 20 is obtained by joining a first conductor 21 and a second conductor 22 made of linear members having different thermoelectric powers by welding or the like. A location where the first conductor 21 and the second conductor 22 are joined becomes a joint 23 for detecting temperature.
  • a first pad 26 for wiring connection is attached to the first conductor 21 at the end opposite to the joint 23 by welding or the like.
  • a second pad 27 for wiring connection is attached to the second conductor 22 at the end opposite to the joint 23 by welding or the like.
  • the width W5 of the first conductor 21 made of a linear member is narrower than the width W6 of the first pad 26.
  • the width W7 of the second conductor 22 made of a linear member is narrower than the width W8 of the second pad 27.
  • the heat capacity of the first conductor 21 can be reduced, and the heat capacity of the second conductor 22 can be reduced. Therefore, in the thermocouple 20, when a temperature difference occurs between the joint portion 23 and the detection portion 30, the heat of the joint portion 23 is suppressed from being transmitted to the first conductor 21 and the second conductor 22. Therefore, the thermocouple 20 can accurately detect the temperature of the junction 23 because the thermoelectromotive force generated in the junction 23 due to heat transfer to the first conductor 21 and the second conductor 22 is suppressed. .
  • the thermocouple sheet 200 is formed by covering the thermocouple 20 from both sides with the first insulating sheet 210 and the second insulating sheet 220. The Therefore, even when the width W5 of the first conductor 21 and the width W7 of the second conductor 22 are reduced, the thermocouple sheet 200 can be easily handled. Therefore, when the thermocouple sheet 200 is disposed at a position where the front surface protection member 110 and the back surface protection member 120 extend in the plane direction from the insulating base material 100, the thermocouple sheet 200 can be accurately and easily positioned with respect to the heat flux sensor 10. It can be carried out.
  • the heat flow measurement device is used by being attached to the surface of the measurement object.
  • the heat flow measurement device may be used by being embedded in the measurement object.
  • a heat flow measuring apparatus is provided with a heat flux sensor and a thermocouple sheet
  • the heat flux sensor has a plurality of conductors, a front surface wiring pattern, a back surface wiring pattern, a front surface protection member, and a back surface protection member, and detects a heat flux flowing between one surface in the thickness direction and the other surface.
  • the plurality of conductors are embedded in a plurality of via holes made of a plate-like insulating base material and metals having different thermoelectric powers and leading to the thickness direction of the insulating base material.
  • the surface wiring pattern is connected to one end in the thickness direction of the insulating base material in the plurality of conductors.
  • the back surface wiring pattern is connected to the other ends in the thickness direction of the insulating base material in the plurality of conductors.
  • the surface protection member covers one surface in the thickness direction of the insulating substrate and the surface wiring pattern.
  • the back surface protection member covers the other surface in the thickness direction of the insulating base material and the back surface wiring pattern.
  • the thermocouple sheet includes a thermocouple, a first insulating sheet, and a second insulating sheet, and detects the temperature of the joint.
  • the thermocouple has a joint portion in which a first conductor and a second conductor made of metals having different thermoelectric powers are joined.
  • the first insulating sheet covers the thermocouple from one side in a direction intersecting the direction in which the first conductor and the second conductor are arranged.
  • the second insulating sheet covers the thermocouple from the side opposite to the first insulating sheet.
  • the thermocouple sheet is fixed at a position where the front surface protection member and the rear surface protection member extend in the surface direction from the insulating base material.
  • thermocouple sheet is fixed to the opposite side of the back surface protection member to the front surface protection member at a position where the front surface protection member and the back surface protection member extend in the surface direction from the insulating base material. .
  • the back surface protection member of the back surface protection member at the position where the plurality of conductors are disposed on the heat flux sensor, the surface opposite to the insulating base material, and the back surface protection member of the thermocouple sheet at the position where the joint portion is disposed on the thermocouple sheet The opposite side is aligned.
  • the heat flow measuring device when the heat flow measuring device is attached to the surface of the measurement object, the heat flux sensor and the thermocouple junction are brought close to the surface of the measurement object, and the heat flux sensor and The thermocouple sheet can be brought into close contact. Therefore, the heat flow measuring device can accurately detect the heat flow characteristics of the measurement object based on the output signal of the heat flux sensor and the output signal of the thermocouple.
  • thermocouple sheet is fixed between the front surface protection member and the rear surface protection member at a position where the front surface protection member and the rear surface protection member extend in the surface direction from the insulating base material.
  • thermocouple junction closer to the surface of the object to be measured, compared to the structure in which the thermocouple is stacked on the surface opposite to the object to be measured. It is. Further, the heat flux sensor and the thermocouple sheet can be brought into close contact with the surface of the measurement object. Therefore, the heat flow measuring device can accurately detect the heat flow characteristics of the measurement object based on the output signal of the heat flux sensor and the output signal of the thermocouple.
  • seat was provided is in the range of the thickness of the location in which the heat flux sensor was provided.
  • the thickness of the heat flow measuring device can be reduced within the range of the thickness of the heat flux sensor. Therefore, when the heat flow measuring device is attached to the surface of the measurement object, the turbulence of the air current near the surface of the measurement object can be suppressed.
  • the insulating base material has a recess that is recessed from the side on the thermocouple sheet side to the conductor side.
  • the thermocouple bonding portion of the thermocouple sheet enters the recess of the insulating base material.
  • the heat flow measuring device can measure the heat flow and temperature at almost the same location of the measurement object by reducing the distance between the conductor of the heat flux sensor and the junction of the thermocouple. Therefore, the heat flow measuring device can accurately detect the heat flow characteristics of the measurement object based on the output signal of the heat flux sensor and the output signal of the thermocouple.
  • the first conductor and the second conductor of the thermocouple are made of metal foil.
  • the 1st conductor has the 1st pad part for wiring connection in the edge part on the opposite side to a junction part.
  • the 2nd conductor has the 2nd pad part for wiring connection in the edge part on the opposite side to a junction part.
  • the width of the first conductor excluding the first pad portion is narrower than the width of the first pad portion.
  • the width of the second conductor excluding the second pad portion is narrower than the width of the second pad portion.
  • the heat capacity of the first conductor excluding the first pad portion can be reduced, and the heat capacity of the second conductor excluding the second pad portion can be reduced. Therefore, it is suppressed that the heat of a junction part is transmitted to the 1st conductor and the 2nd conductor. Therefore, the thermocouple can accurately detect the temperature of the junction.
  • the first conductor and the second conductor of the thermocouple are composed of linear members.
  • a first pad for wiring connection is attached to the first conductor at the end opposite to the joint.
  • a second pad for wiring connection is attached to the end of the second conductor opposite to the joint.
  • thermocouple can accurately detect the temperature of the junction.

Abstract

熱流測定装置1は、熱流束センサ10および熱電対シート200を備える。熱流束センサ10は、絶縁基材100、複数の層間接続部材130、140、表面配線パターン111、裏面配線パターン121、表面保護部材110および裏面保護部材120を有する。熱電対シート200は、熱電対20、第1絶縁シート210および第2絶縁シート220を有し、表面保護部材110および裏面保護部材120が絶縁基材100から面方向に延びた位置に固定されている。

Description

熱流測定装置 関連出願の相互参照
 本出願は、2016年5月25日に出願された日本出願番号2016-104501号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。
 本開示は、熱流束センサと熱電対とを一体に構成した熱流測定装置に関する。
 従来、薄い板状に形成され、厚み方向の一方の面と他方の面との間を流れる熱流束に応じた信号を出力する熱流束センサが知られている。
 特許文献1には、1個の多層基板を製造する工程で、電気的に独立した複数の熱流束センサを同時に形成した熱流測定装置が記載されている。この熱流測定装置は、複数の熱流束センサの性能個体差を小さくしたものである。
特開2016-11950号公報
 特許文献1に記載の熱流測定装置は、測定対象物の表面に取り付けられることにより、測定対象物の内部で発生する熱を測定できる。しかし、測定対象物の表面の熱流は、測定対象物の内部で発生する熱の影響を受けると共に、外気温の変化による影響も受ける。そのため、熱流測定装置は、測定対象物の内部で発生する熱に応じた信号を出力すると共に、外気温の変化に応じた信号も出力する。したがって、熱流測定装置を測定対象物の表面に取り付けた熱流測定では、外気温の変化に応じた信号が温度ドリフトとなるため、測定対象物の内部で発生する熱の検出が困難になる。
 その対策として、熱流測定装置に対し、熱流束センサに加え、熱電対を設けることが考えられる。熱電対を用いて外気温の変化による対象物の表面の温度変化を検出すれば、熱流束センサから出力される信号と熱電対から出力される信号とに基づき、熱流束センサの信号から温度ドリフトの影響を低減できる。
 熱流測定装置に対して熱流束センサと熱電対とを設ける場合、次の問題がある。
 (1)仮に熱流束センサと熱電対とを厚み方向に積み重ねて配置すると、熱流測定装置の厚みが大きくなる。このような熱流測定装置を測定対象物の表面に取り付けた場合、その測定対象物の表面近傍の気流が乱れる。そのため、熱流束センサの出力信号および熱電対の出力信号が、測定対象物の内部で発生する熱による測定対象物表面の熱流や、外気温の変化による測定対象物表面の熱流に正確に対応したものとならない。したがって、このような配置とした場合、熱流測定装置は、測定対象物の内部で発生する熱を正確に検出することが困難である。
 (2)仮に熱流束センサと熱電対とを面方向に離れた位置に配置すると、熱流束センサが検出する熱流と熱電対が検出する温度変化とがそれぞれ測定対象物の異なる位置の熱流および温度変化となる。その場合、熱電対の信号と熱流束センサの信号とが対応したものにならない。したがって、このような配置とした場合にも、熱流測定装置は、熱流束センサの信号から温度ドリフトの影響を低減することが困難である。
 本開示は、測定対象物の熱流を正確に検出できる熱流測定装置を提供することを目的とする。
 本開示の第一の態様において、熱流測定装置は、熱流束センサおよび熱電対シートを備える。熱流束センサは、板状の絶縁基材、熱電能が異なる金属から構成されて絶縁基材の厚み方向に通じる複数のビアホールに埋め込まれた複数の導電体、複数の導電体における絶縁基材の厚み方向の一方の端部同士に接続する表面配線パターン、複数の導電体における絶縁基材の厚み方向の他方の端部同士に接続する裏面配線パターン、絶縁基材の厚み方向の一方の面と表面配線パターンとを覆う表面保護部材、および絶縁基材の厚み方向の他方の面と裏面配線パターンとを覆う裏面保護部材を有し、厚み方向の一方の面と他方の面との間を流れる熱流束を検出する。熱電対シートは、熱電能が異なる金属から構成された第1導体と第2導体とが接合された接合部を有する熱電対、第1導体と第2導体とが並ぶ方向に対し交差する方向の一方の側から熱電対を覆う第1絶縁シート、および第1絶縁シートとは反対側から熱電対を覆う第2絶縁シートを有し、接合部の温度を検出する。この熱電対シートは、表面保護部材および裏面保護部材が絶縁基材から面方向に延びた位置に固定されている。
 これによれば、仮に熱流束センサと熱電対とを厚み方向に重ねて配置した構成と比較して、熱流測定装置の厚みを薄くできる。そのため、測定対象物の表面に熱流測定装置を取り付けたとき、その測定対象物の表面近傍の気流の乱れが抑制される。したがって、熱流測定装置は、熱流束センサの出力信号と熱電対の出力信号とに基づき、外気温の変化等による温度ドリフトを低減し、測定対象物の熱流を正確に検出できる。
 また、熱流束センサと熱電対とを面方向に近づけることが可能になるので、熱流束センサと熱電対とはそれぞれ、測定対象物のほぼ同じ位置の熱流および温度を検出する。そのため、熱電対の信号と熱流束センサの信号とが対応したものとなる。したがって、熱流測定装置は、熱流束センサの信号から温度ドリフトの影響を低減できる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本発明の第1実施形態に係る熱流測定装置を測定対象物に取り付けた状態を模式的に示す図であり、 図2は、図1のII-II断面の模式図であり、 図3は、熱流測定装置を構成する熱流束センサの出力特性と熱電対の出力特性とを模式的に示すグラフであり、 図4は、第1実施形態に係る熱流測定装置の平面図であり、 図5は、図4のV-V断面図であり、 図6は、第1実施形態に係る熱流測定装置の製造方法のフローチャートであり、 図7は、熱流測定装置を構成する熱電対シートの製造方法のフローチャートであり、 図8は、熱流測定装置を構成する熱電対シートの製造方法の説明図であり、 図9は、図8のIX-IX断面図であり、 図10は、熱流測定装置を構成する熱電対シートの製造方法の説明図であり、 図11は、熱流測定装置を構成する熱電対シートの製造方法の説明図であり、 図12は、熱流測定装置を構成する熱電対シートの製造方法の説明図であり、 図13は、熱流測定装置を構成する熱電対シートの製造方法の説明図であり、 図14は、熱流測定装置を構成する熱電対シートの製造方法の説明図であり、 図15は、熱流測定装置を構成する熱流束センサ用の部材の模式図であり、 図16は、熱流測定装置の製造方法の説明図であり、 図17は、熱流測定装置の製造方法の説明図であり、 図18は、本発明の第2実施形態に係る熱流測定装置の断面図であり、 図19は、図18のXIX方向の平面図であり、 図20は、第2実施形態の熱流測定装置の製造方法の説明図であり、 図21は、本発明の第3実施形態に係る熱流測定装置を構成する熱電対の平面図であり、 図22は、本発明の第4実施形態に係る熱流測定装置を構成する熱電対の平面図である。
 以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明する。
 (第1実施形態)
 本発明の第1実施形態について図面を参照しつつ説明する。図1および図2に示すように、本実施形態の熱流測定装置1は、熱流束センサ10と熱電対20とが一体に構成されたものである。
 熱流束センサ10は、絶縁基材100と、その絶縁基材100の厚み方向の一方の面を覆う表面保護部材110と、他方の面を覆う裏面保護部材120とを有する。絶縁基材100には、ゼーベック効果を発揮するように互いに熱電能が異なる金属から構成された複数の層間接続部材130、140が埋め込まれている。表面保護部材110と裏面保護部材120にはそれぞれ、複数の層間接続部材130、140を直列接続するための表面配線パターン111および裏面配線パターン121が形成されている。熱流束センサ10は、その厚み方向の一方の面と他方の面との間を流れる熱流束に応じて層間接続部材130、140に発生する熱起電力に応じた信号を出力する。なお、熱流束センサ10の厚み方向とは、絶縁基材100、表面保護部材110および裏面保護部材120の積層方向のことである。また、本実施形態の層間接続部材130、140は、特許請求の範囲に記載の「導電体」に相当する。
 熱電対シート200は、熱電対20、第1絶縁シート210および第2絶縁シート220を有する。熱電対20は、第1導体21と第2導体22とが接合されたものである。第1導体21と第2導体22とは、それぞれ熱電能が異なる金属箔から構成されている。第1導体21と第2導体22とが接合された部分を接合部23という。熱電対20は、その接合部23と、第1導体21および第2導体22に配線34、35を通じて接続される検出部30との間の温度差に応じて熱電対20に発生する熱起電力に応じた信号を出力する。第1絶縁シート210は、第1導体21と第2導体22とが並ぶ方向に対し交差する方向の一方の側から熱電対20を覆っている。第2絶縁シート220は、第1絶縁シート210とは反対側から熱電対20を覆っている。なお、熱流束センサ10および熱電対シート200の構成の詳細については後述する。
 熱流測定装置1は、測定対象物2の表面3に取り付けて使用することが可能である。なお、図2では、測定対象物2の内部の熱発生源4を模式的に破線で示している。
 熱流束センサ10が有する裏面配線パターン121の端部のパッド部124、125にそれぞれ接続する配線31、32は、チューブ状のシールド線33の内側を通り、検出部30に接続されている。熱電対20が有する第1導体21と第2導体22にそれぞれ接続する配線34、35も、チューブ状のシールド線33の内側を通り、検出部30に接続されている。これにより、熱流束センサ10の出力信号と、熱電対20の出力信号とは、検出部30に入力される。
 検出部30は、マイクロコンピュータおよびその周辺機器などから構成されている。検出部30は、熱流束センサ10の出力信号と熱電対20の出力信号とに基づき、測定対象物2の内部の熱発生源4で発生した熱が測定対象物2の内部から表面3に伝わり、その表面3の熱流を測定できる。検出部30は、この測定対象物2の表面3で測定される熱流に基づき、測定対象物2の熱発生源4で発生した熱量を算出できるものであってもよい。
 シールド線33は外部からの電磁波の侵入を防ぐための導体を有している。シールド線33が有する導体は、シールド線33の内部で配線を囲うように筒状に形成され、配線36などを通じて測定対象物2に電気的に接続されている。シールド線33が有する導体は、グランド37に接続されることが好ましい。これにより、熱流束センサ10および熱電対20が出力する電圧信号に対するノイズを低減できる。
 図3では、検出部30において検出される熱電対20の出力信号の一例を実線Aに模式的に示し、その際の熱流束センサ10の出力信号の一例を実線Bに模式的に示している。
 この例では、外気温が、時刻t0から時刻t4にかけて次第に上昇し、時刻t4から時刻t8にかけて次第に下降しているものとする。また、検出部30の温度は、時刻t0から時刻t8に亘りほぼ一定であるとする。
 測定対象物2の表面3の温度は、外気温の上昇に伴って上昇し、外気温の低下に伴って低下する。そのため、実線Aに示すように、熱電対20の出力信号は、時刻t0から時刻t4にかけて次第に上昇し、時刻t4から時刻t8にかけて次第に下降している。
 一方、測定対象物2の表面3の熱流束は、外気温の上昇に伴って外気側から測定対象物2側に流れ、外気温の低下に伴って測定対象物2側から外気側に流れる。そのため、実線Bに示すように、熱流束センサ10の出力信号は、時刻t0から時刻t4にかけて次第に下降し、時刻t4から時刻t8にかけて次第に上昇している。すなわち、熱電対20の出力信号と熱流束センサ10の出力信号とは、外気温の変化によって測定対象物2の表面3の熱流に対して逆向きの挙動を示す。
 ここで、時刻t1から時刻t2の間、および、時刻t5から時刻t6の間に、測定対象物2の内部の熱発生源4で熱が発生したものとする。このとき、熱発生源4で発生した熱は測定対象物2の内部から表面3に伝わり、その表面3に熱流が生じる。そのため、時刻t1から時刻t2の間で、熱電対20の出力信号と熱流束センサ10の出力信号とはいずれも上昇し、時刻t2から時刻t3の間で、熱電対20の出力信号と熱流束センサ10の出力信号とはいずれも下降している。また、時刻t5から時刻t6の間で、熱電対20の出力信号と熱流束センサ10の出力信号とはいずれも上昇し、時刻t6から時刻t7の間で、熱電対20の出力信号と熱流束センサ10の出力信号とはいずれも下降している。すなわち、熱電対20の出力信号と熱流束センサ10の出力信号とは、測定対象物2の内部の熱発生源4で発生した熱が測定対象物2の内部を伝わり、測定対象物2の表面3の熱流に対して同じ向きの挙動を示す。
 したがって、検出部30は、熱流束センサ10の出力信号と熱電対20の出力信号とを比べることで、外気温の変化によって測定対象物2の表面3の熱流を除き、測定対象物2の内部の熱発生源4で発生した熱により測定対象物2の表面3の熱流のみを測定できる。
 次に、熱流測定装置1が備える熱流束センサ10および熱電対シート200の構成について説明する。
 図4および図5に示すように、熱流束センサ10は、絶縁基材100、表面保護部材110、裏面保護部材120が一体化され、この一体化されたものの内部で第1層間接続部材130と、第2層間接続部材140とが交互に直列に接続された構造を有する。
 絶縁基材100は、可撓性を有する熱可塑性樹脂フィルムまたは熱硬化性樹脂フィルムから構成され、板状を有している。絶縁基材100には、厚み方向に通じる複数の第1ビアホール101および複数の第2ビアホール102が形成されている。
 第1ビアホール101には第1層間接続部材130が埋め込まれ、第2ビアホール102には第2層間接続部材140が埋め込まれている。つまり、絶縁基材100には、第1層間接続部材130と第2層間接続部材140とが互い違いになるように埋め込まれている。
 第1層間接続部材130と第2層間接続部材140とは、ゼーベック効果を発揮するように、熱電能が互いに異なる金属や半導体等の熱電材料で構成されている。例えば、第1層間接続部材130は、P型を構成するBi-Sb-Te合金の粉末が、焼結前における複数の金属原子の結晶構造を維持するように固相焼結された金属化合物で構成される。また、例えば、第2層間接続部材140は、N型を構成するBi-Te合金の粉末が、焼結前における複数の金属原子の結晶構造を維持するように固相焼結された金属化合物で構成される。
 なお、図4では、第1および第2層間接続部材130、140は、後述する表面配線パターン111に隠れて見えないものである。しかし、説明の便宜上、第1および第2層間接続部材130、140の位置を破線で示し、そこにハッチングを施してある。
 表面保護部材110は、絶縁基材100の表面100aを覆っている。表面保護部材110は、可撓性を有する熱可塑性樹脂フィルムまたは熱硬化性樹脂フィルムから構成されている。また、表面保護部材110は、絶縁基材100よりも面方向の一方に長く形成されており、絶縁基材100から面方向の一方に延びている。
 表面保護部材110には、絶縁基材100に向き合う面110a側に銅箔等がパターニングされた複数の表面配線パターン111が形成されている。なお、図4では、表面保護部材110が透明または半透明のものであるとして、複数の表面配線パターン111の位置を実線にて記載している。この複数の表面配線パターン111は、第1層間接続部材130の一方の端部と、それに隣り合う第2層間接続部材140の一方の端部とに電気的に接続している。
 裏面保護部材120は、絶縁基材100の裏面100bを覆っている。裏面保護部材120は、可撓性を有する熱可塑性樹脂フィルムまたは熱硬化性樹脂フィルムにて構成されている。また、裏面保護部材120は、絶縁基材100よりも面方向の一方に長く形成されており、絶縁基材100から面方向の一方に延びている。なお、裏面保護部材120は、表面保護部材110よりも長く延びている。
 裏面保護部材120には、絶縁基材100に向き合う面120a側に銅箔等がパターニングされた複数の裏面配線パターン121が形成されている。この複数の裏面配線パターン121は、第1層間接続部材130の他方の端部と、それに隣り合う第2層間接続部材140の他方の端部とに電気的に接続している。
 互いに隣接する第1層間接続部材130と第2層間接続部材140とは、表面配線パターン111と裏面配線パターン121とによって交互に折り返されるようにして接続されている。このようにして、第1層間接続部材130と第2層間接続部材140とは、表面配線パターン111と裏面配線パターン121によって直列接続されている。
 裏面配線パターン121のうち第1層間接続部材130と第2層間接続部材140とを直列接続したものの端部となる延長配線122、123は、裏面保護部材120が絶縁基材100よりも面方向の一方に延びている箇所に設けられている。裏面保護部材120が表面保護部材110よりもさらに長く延びた箇所において、裏面配線パターン121の延長配線122、123は外気に露出する。その延長配線122、123が外気に露出した箇所は、配線を接続するための端子として機能するパッド部124、125となる。
 熱流束センサ10は、その厚み方向の一方の面と他方の面との間を熱流束が生じると、第1および第2層間接続部材130、140の一方の端部と他方の端部に温度差が生じる。その際、ゼーベック効果によって第1および第2層間接続部材130、140に熱起電力が発生する。熱流束センサ10は、この熱起電力をセンサ信号(例えば、電圧信号)として出力する。
 続いて、熱電対シート200の構成について説明する。
 熱電対シート200は、熱電対20、第1絶縁シート210および第2絶縁シート220が一体化された構造を有する。熱電対20は、ゼーベック効果を発揮するように、互いに熱電能が異なる金属からなる第1導体21と第2導体22とが溶接などにより接合されたものである。第1導体21と第2導体22とが接合された箇所が、温度を検出するための接合部23となる。なお、本実施形態の第1導体21と第2導体22とは、金属箔で構成されている。
 第1絶縁シート210は、可撓性を有する熱可塑性樹脂フィルムまたは熱硬化性樹脂フィルムから構成され、板状を有している。第1絶縁シート210は、第1導体21と第2導体22とが並ぶ方向に対し交差する方向の一方の側から熱電対20を覆っている。第2絶縁シート220は、第1絶縁シート210とは反対側から熱電対20を覆っている。第1絶縁シート210は、第2絶縁シート220よりも面方向の一方に長く形成されており、第2絶縁シート220から面方向の一方に延びている。
 第1絶縁シート210が第2絶縁シート220よりも長く延びた箇所において、熱電対20を構成する第1導体21と第2導体22とは外気に露出する。その第1導体21と第2導体22が外気に露出した箇所は、配線を接続するための端子として機能するパッド部24、25となる。
 熱電対20は、接合部23と検出部30との間に温度差が生じると、ゼーベック効果によって接合部23に熱起電力が発生する。熱電対20は、この熱起電力をセンサ信号(例えば、電圧信号)として出力する。
 熱電対シート200は、表面保護部材110および裏面保護部材120が絶縁基材100から面方向に延びた位置に固定されている。ここで、熱流束センサ10を構成する絶縁基材100は、熱電対シート200側の辺12から層間接続部材130、140側へ凹む凹部11を有している。熱電対シート200が有する熱電対20の接合部23は、絶縁基材100が有する凹部11に入り込んでいる。そのため、熱流束センサ10の第1および第2層間接続部材130、140と、熱電対20の接合部23との距離は近いものとなっている。
 また、本実施形態では、裏面保護部材120は、絶縁基材100から面方向に延びた位置において、表面保護部材110側に曲げられ、表面保護部材110に密着している。熱電対シート200は、表面保護部材110と裏面保護部材120とが密着した位置において、裏面保護部材120のうち表面保護部材110とは反対側に固定されている。この状態において、熱流束センサ10に複数の層間接続部材130、140が配置される箇所における裏面保護部材120のうち絶縁基材100とは反対側の面120bと、熱電対シート200に接合部23が配置される箇所における熱電対シート200のうち裏面保護部材120とは反対側の面200bとは揃っている。
 なお、本明細書において「2つの面が揃っている」という場合、2つの面が同一平面上に揃っている状態に加え、製造公差または経年変化などにより僅かにずれている状態も含むものである。
 熱電対シート200の厚みは、絶縁基材100の厚みと同じであるか、またはそれより薄い。そのため、熱流測定装置1は、熱電対シート200が設けられた箇所の厚みT1が、熱流束センサ10が設けられた箇所の厚みT2の範囲内となっている。
 次に、熱流測定装置1の製造方法について説明する。なお、この製造方法は、複数の熱流測定装置を同時に製造するものである。
 図6に示すように、この製造方法は、熱電対シート形成工程S10、熱流束センサ用部材用意工程S20、積層体形成工程S30および一体プレス工程S40を含んでいる。
 まず、熱流測定装置1の製造方法のうち、熱電対シート形成工程S10について説明する。熱電対シート形成工程S10では、図7に示した熱電対用意工程S11、熱電対積層体形成工程S12、プレス工程S13および切断工程S14により、熱電対シート200を形成する。
 熱電対用意工程S11では、互いに熱電能の異なる金属箔から構成される第1導体21と第2導体22を用意し、その先端同士を溶接により接合して接合部23を形成する。これにより、熱電対20が用意される。
 次に、熱電対積層体形成工程S12では、図8および図9に示すように、所定のサイズに形成された治具ベース40の上に第1離型紙51と第2絶縁シート220を配置する。さらに、その上から治具ベース40に対し端部位置決め治具41および中間位置決め治具42をボルト43により固定する。第1離型紙51として、例えばアラミド樹脂などから形成される熱硬化性樹脂シートまたは熱可塑性樹脂シートが使用される。第2絶縁シート220として、例えば表面と裏面に粘着層を有するアラミド樹脂などから形成される熱硬化性樹脂シートまたは熱可塑性樹脂シートが使用される。また、端部位置決め治具41および中間位置決め治具42には、熱電対20を位置決めするための複数の溝部44、45が設けられている。その複数の溝部44、45に合わせて、第2絶縁シート220の上に複数の熱電対20を配置する。なお、複数の熱電対20は、端部位置決め治具41および中間位置決め治具42にそれぞれ設けられた複数の溝部44、45が並ぶ方向に配置されると共に、中間位置決め治具42を挟んで向き合うように配置される。
 続いて、図10に示すように、第1離型紙51と第2絶縁シート220と熱電対20の上から治具ベース40に対し、押さえ治具46をボルト43により固定する。これにより、第1離型紙51と第2絶縁シート220と熱電対20の位置ずれが防がれる。その後、中間位置決め治具42を治具ベース40から取り外す。
 次に、図11に示すように、第1離型紙51と第2絶縁シート220と熱電対20の上に、第1絶縁シート210を配置する。これにより、熱電対20の積層体が形成される。第1絶縁シート210として、例えば表面と裏面に粘着層を有するアラミド樹脂などから形成される熱硬化性樹脂シートまたは熱可塑性樹脂シートが使用される。
 続いて、図12に示すように、治具ベース40をプレス機70に設置し、第1絶縁シート210の上にさらに第2離型紙52と第1緩衝材61を配置する。第2離型紙52として、例えばアラミド樹脂などから形成される熱硬化性樹脂シートまたは熱可塑性樹脂シートが使用される。第1緩衝材61として、例えばテフロン(登録商標)が使用される。
 次に、プレス工程S13では、プレス機70により熱電対20の積層体を積層方向に加圧しつつ加熱し、第1絶縁シート210と熱電対20と第2絶縁シート220とを圧着する。このときのプレス機70の圧力は例えば2MPa以上、温度は300℃以上である。これにより、第1絶縁シート210と第2絶縁シート220が有する粘着層同士が接合し、図13に示した状態の一体シート201となる。
 続いて、切断工程S14では、図13の一点鎖線C1~C4で示した位置で一体シート201を切断する。これにより、図14に示すように、所定の実装寸法に成形された熱電対シート200が形成される。
 次に、熱流測定装置1の製造方法のうち、熱流束センサ用部材用意工程S20について説明する。
 図15(A)、(B)、(C)に示すように、熱流束センサ用部材用意工程S20では、絶縁基材100、表面配線パターン111、表面保護部材110、裏面配線パターン121および裏面保護部材120を用意する。
 図15(B)に示すように、絶縁基材100は、熱流束センサ10を構成するために熱電能が異なる複数種の導電性ペースト131、141が複数のビアホール101、102に埋め込まれたものである。絶縁基材100は、複数層で構成されたものであってもよく、または単層で構成されたものであってもよい。
 この絶縁基材100の製造方法の一例を説明する。まず、絶縁基材100に対し、ドリルまたはレーザなどにより複数の第1ビアホール101を形成する。この複数の第1ビアホール101に対し、固相焼結により第1層間接続部材130を形成するための第1導電性ペースト131を充填する。なお、第1ビアホール101に第1導電性ペースト131を充填する方法(装置)としては、本出願人による特願2010-50356号に記載の方法(装置)を採用すると良い。
 簡単に説明すると、図示しない保持台上に敷いた図示しない吸着紙の上に絶縁基材100を配置する。そして、第1導電性ペースト131を溶融させつつ、第1ビアホール101に第1導電性ペースト131を充填する。これにより、第1導電性ペースト131の有機溶剤の大部分が吸着紙に吸着され、第1ビアホール101に合金の粉末が密接して配置される。
 なお、第1導電性ペースト131としては、金属原子が所定の結晶構造を維持しているBi-Sb-Te合金の粉末をパラフィン等の有機溶剤を加えてペースト化したものが用いられる。
 次に、絶縁基材100に対し、ドリルまたはレーザなどにより複数の第2ビアホール102を形成する。複数の第2ビアホール102のそれぞれは、複数の第1ビアホール101のうちの隣り合う2つの第1ビアホール101の間に位置するように形成される。この複数の第2ビアホール102に対し、固相焼結により第2層間接続部材140を形成するための第2導電性ペースト141を充填する。第2導電性ペースト141の充填は、上述した第1導電性ペースト131の充填方法と同じ方法で行うことができる。
 なお、第2導電性ペースト141としては、第1導電性ペースト131を構成する金属原子と異なる金属原子が所定の結晶構造を維持しているBi-Te合金の粉末をテレピネ等の有機溶剤を加えてペースト化したものが用いられる。なお、第2導電性ペースト141の有機溶剤として、パラフィン等を使用してもよい。
 図15(A)に示すように、表面配線パターン111は、複数の導電性ペースト131、141における絶縁基材100の厚み方向の一方の端部同士に接続するものである。また、表面保護部材110は、絶縁基材100の厚み方向の一方の面と表面配線パターン111とを覆うものである。表面保護部材110は、絶縁基材100よりも面方向に長い。
 この表面配線パターン111と表面保護部材110の製造方法の一例を説明する。まず、表面保護部材110のうち少なくとも絶縁基材100と対向する面に銅箔等を形成する。そして、その銅箔を適宜パターニングすることにより、表面保護部材110に対し表面配線パターン111を形成する。
 図15(C)に示すように、裏面配線パターン121は、複数の導電性ペースト131、141における絶縁基材100の厚み方向の他方の端部同士に接続するものである。また、裏面保護部材120は、絶縁基材100の厚み方向の他方の面と裏面配線パターン121とを覆うものである。裏面保護部材120は、絶縁基材100および表面保護部材110よりも面方向に長い。
 この裏面配線パターン121と裏面保護部材120の製造方法の一例を説明する。まず、裏面保護部材120のうち少なくとも絶縁基材100と対向する面に銅箔等を形成する。そして、その銅箔を適宜パターニングすることにより、裏面保護部材120に対し裏面配線パターン121を形成する。
 続いて、熱流測定装置1の製造方法のうち、積層体形成工程S30について説明する。
 図16および図17に示すように、プレス機の下側プレス板71の上に、第3離型紙53を配置し、その上に図14で示した熱電対シート200を配置する。続いて、下側プレス板71の上に配置された第3離型紙53の上と熱電対シート200の上に裏面配線パターン121が形成された裏面保護部材120を積層する。その後、裏面配線パターン121の上に絶縁基材100、および、表面配線パターン111が形成された表面保護部材110を順に積層する。さらに、表面保護部材110の上に第4離型紙54と第2緩衝材62を配置する。なお、第3および第4離型紙53、54として、例えばアラミド樹脂などから形成される熱硬化性樹脂シートまたは熱可塑性樹脂シートが使用される。また、第2緩衝材62として、例えばテフロンが使用される。
 これにより、熱電対シート200は、表面保護部材110と裏面保護部材120とが絶縁基材100から面方向に延びた位置において、裏面保護部材120のうち表面保護部材110とは反対側に配置されることとなる。このとき、裏面保護部材120における絶縁基材100とは反対側に位置する面120bのうち少なくとも導電性ペースト131、141が配置された箇所と、熱電対シート200における裏面保護部材120とは反対側の面200bのうち少なくとも接合部23が配置された箇所とを揃えた状態とする。なお、裏面保護部材120における絶縁基材100とは反対側に位置する面120bの全面と、熱電対シート200における裏面保護部材120とは反対側の面200bの全面とを揃えた状態とすることが好ましい。また、熱電対シート200が有する熱電対20の接合部23を、絶縁基材100が有する凹部11に入り込ませるようにして、接合部23と導電性ペースト131、141とを近づけて配置する。このようにして、積層体が形成される。
 なお、本明細書において「2つの箇所を揃えた状態とする」という場合、2つの箇所を同一平面上に揃えることに加え、製造公差などにより僅かにずれている状態も含むものである。また、「全面を揃えた状態とする」という場合も、全面を同一平面上に揃えることに加え、製造公差などにより僅かにずれている状態も含むものである。
 次に、熱流測定装置1の製造方法のうち、一体プレス工程S40について説明する。一体プレス工程S40では、プレス機の下側プレス板71と上側プレス板72との間に配置された積層体を真空中で積層方向に加圧しつつ加熱する。このときのプレス機の圧力は例えば10MPa以上、温度は320℃以上である。これにより、絶縁基材100の複数のビアホール101、102に埋め込まれた複数の第1および第2導電性ペースト131、141は、固体焼結して複数の第1および第2層間接続部材130、140となる。また、第1および第2層間接続部材130、140と表面配線パターン111と裏面配線パターン121とが電気的に接続する。さらに、絶縁基材100と表面保護部材110と裏面保護部材120と熱電対シート200とが圧着される。この1回の一体プレス工程S40により、積層体が一体化し、熱流束センサ10と熱電対20とが一体に形成される。
 なお、上述した製造方法により製造された複数の熱流測定装置は、後の工程で単一の熱流測定装置1に分割される。
 以上説明した第1実施形態の熱流測定装置1は、次の作用効果を奏する。
 (1)第1実施形態の熱流測定装置1は、熱電対シート200が、表面保護部材110または裏面保護部材120が絶縁基材100から面方向に延びた位置に固定されている。
 これによれば、仮に熱流束センサ10と熱電対20とを厚み方向に積み重ねて配置した構成と比較して、熱流測定装置1の厚みを薄くできる。そのため、測定対象物2の表面3に熱流測定装置1を取り付けたとき、その測定対象物2の表面3の近傍の気流の乱れが抑制される。したがって、熱流測定装置1は、熱流束センサ10の出力信号と熱電対20の出力信号とに基づき、外気温の変化等による温度ドリフトを低減し、測定対象物2の熱流を正確に検出できる。
 また、表面保護部材110または裏面保護部材120が絶縁基材100から面方向に延びた位置に熱電対シート200を固定することで、熱流束センサ10と熱電対20とを面方向において近い位置に設けることが可能になる。そのため、熱流束センサ10と熱電対20とはそれぞれ、測定対象物2のほぼ同じ位置の熱流および温度を検出する。したがって、熱電対20の信号と熱流束センサ10の信号とが対応したものとなる。その結果、熱流測定装置1は、熱流束センサ10の信号から温度ドリフトの影響を低減できる。
 (2)第1実施形態では、熱流束センサ10に複数の層間接続部材130、140が配置される箇所における裏面保護部材120のうち絶縁基材100とは反対側の面120bと、熱電対シート200に接合部23が配置される箇所における熱電対シート200のうち裏面保護部材120とは反対側の面200bとが揃っている。
 これによれば、熱流測定装置1を測定対象物2の表面3に取り付けたとき、測定対象物2の表面3に熱流束センサ10と熱電対20の接合部23とを近づけると共に、測定対象物2の表面3に熱流束センサ10と熱電対シート200とを密着させることが可能である。したがって、熱流測定装置1は、熱流束センサ10の出力信号と熱電対20の出力信号とに基づき、測定対象物2の熱流特性を正確に検出できる。
 (3)第1実施形態では、熱電対シートが設けられた箇所の厚みT1は、熱流束センサ10が設けられた箇所の厚みT2の範囲内となっている。
 これによれば、熱流測定装置1の厚みを熱流束センサ10の厚みT2の範囲内で薄くできる。そのため、測定対象物2の表面3に熱流測定装置1を取り付けたとき、その測定対象物2の表面3の近傍の気流の乱れを抑制できる。
 (4)第1実施形態では、熱電対シート200が有する熱電対20の接合部23は、絶縁基材100が有する凹部11に入り込んでいる。
 これによれば、熱流測定装置1は、熱流束センサ10の層間接続部材130、140と熱電対20の接合部23との距離を近づけることで、測定対象物2のほぼ同一箇所の熱流および温度を測定できる。したがって、熱流測定装置1は、熱流束センサ10の出力信号と熱電対20の出力信号とに基づき、測定対象物2の熱流特性を正確に検出できる。
 第1実施形態の熱流測定装置1の製造方法は、次の作用効果を奏する。
 (5)第1実施形態による熱流測定装置1の製造方法では、表面保護部材110と裏面保護部材120とが絶縁基材100から面方向に延びた位置において、裏面保護部材120のうち表面保護部材110とは反対側に熱電対シート200を配置して積層体を形成し、その積層体を積層方向に加圧しつつ加熱する。このとき、導電性ペースト131、141を固体焼結させて層間接続部材130、140とする。さらに、層間接続部材130、140と表面配線パターン111と裏面配線パターン121とを電気的に接続し、且つ、絶縁基材100と表面保護部材110と裏面保護部材120と熱電対シート200とを圧着する。これにより、熱流束センサ10と熱電対20とが一体に形成される。
 これによれば、熱流測定装置1が備える熱流束センサ10の箇所の厚みと熱電対シート200の箇所の厚みとを揃え、且つ、熱流測定装置1の厚みを薄くできる。そのため、測定対象物2の表面3に熱流測定装置1を取り付けた場合、その測定対象物2の表面3の近傍の気流の乱れが抑制される。したがって、熱流測定装置1は、熱流束センサ10の出力信号と熱電対20の出力信号とに基づき、外気温の変化等による温度ドリフトを低減し、測定対象物2の熱流を正確に検出できる。
 また、この製造方法によれば、絶縁基材100、表面保護部材110、裏面保護部材120および熱電対シート200等に対し1回のプレス加工をすることで、熱流測定装置1を形成できる。そのため、絶縁基材100、表面保護部材110、裏面保護部材120および熱電対シート200等の部材にしわや隙間などができることを抑制できる。
 (6)第1実施形態の製造方法では、積層体に対して一体プレス工程S40を行う際、裏面保護部材120における絶縁基材100とは反対側に位置する面120bのうち少なくとも導電性ペースト131、141が配置された箇所と、熱電対シート200における裏面保護部材120とは反対側の面200bのうち少なくとも接合部23が配置された箇所とを揃えた状態とする。
 これによれば、熱流測定装置1を測定対象物2の表面3に取り付けた場合、測定対象物2の表面3に対して熱流束センサ10と熱電対20の接合部23とを近づけると共に、測定対象物2の表面3に熱流束センサ10と熱電対シート200とを密着させることが可能である。したがって、熱流測定装置1は、熱流束センサ10の出力信号と熱電対20の出力信号とに基づき、測定対象物2の熱流特性を正確に検出できる。
 (7)第1実施形態の製造方法では、積層体形成工程S30を行う際、熱電対シート200が有する熱電対20の接合部23を絶縁基材100が有する凹部11に入り込ませる。
 これによれば、熱流測定装置1は、熱流束センサ10の層間接続部材130、140と熱電対20の接合部23との距離が近くなるので、測定対象物2のほぼ同一箇所の熱流および温度を測定できる。したがって、熱流測定装置1は、熱流束センサ10の出力信号と熱電対20の出力信号とに基づき、測定対象物2の熱流特性を正確に検出できる。
 (8)第1実施形態の製造方法では、熱電対シート形成工程S10の際、熱電対20の一方の側に第1絶縁シート210を配置し、他方の側に第2絶縁シート220を配置して形成した熱電対20の積層体を積層方向に加圧しつつ加熱して、第1絶縁シート210と熱電対20と第2絶縁シート220とを圧着する。
 これによれば、熱電対20として細いものを使用した場合でも、その取り扱いを容易に行うことが可能である。そのため、表面保護部材110と裏面保護部材120とが絶縁基材100から面方向に延びた位置に熱電対シート200を配置する際、熱流束センサ10に対する熱電対シート200の位置決めを正確且つ容易に行うことができる。
 (第2実施形態)
 本発明の第2実施形態について説明する。第2実施形態は、第1実施形態に対して熱電対シート200の配置を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図18および図19に示すように、第2実施形態の熱流測定装置1を構成する熱電対シート200は、表面保護部材110と裏面保護部材120とが絶縁基材100から面方向に延びた位置において、表面保護部材110と裏面保護部材120との間に固定されている。この状態において、熱流束センサ10に複数の層間接続部材130、140が配置される箇所における裏面保護部材120のうち絶縁基材100とは反対側の面120bと、熱電対シート200に接合部23が配置される箇所における裏面保護部材120のうち熱電対シート200とは反対側の面120bとは揃っている。
 なお、熱電対シート200と裏面保護部材120の間には、短絡防止用絶縁シート230が設けられている。この短絡防止用絶縁シート230は、熱電対シート200が有する熱電対20のパッド部24、25と、裏面配線パターン121が熱電対シート200の有する第2絶縁シート220から露出したパッド部124、125とが短絡することを防ぐ。
 熱電対シート200と短絡防止用絶縁シート230とを合わせた厚みは、絶縁基材100の厚みと同じであるか、またはそれより薄い。そのため、熱流測定装置1は、熱電対シート200が設けられた箇所の厚みT1が、熱流束センサ10が設けられた箇所の厚みT2の範囲内となっている。
 次に、第2実施形態の熱流測定装置1の製造方法について説明する。
 第2実施形態の製造方法も第1実施形態と同様に、熱電対シート形成工程S10、熱流束センサ用部材用意工程S20、積層体形成工程S30および一体プレス工程S40を含んでいる。熱電対シート形成工程S10と熱流束センサ用部材用意工程S20と一体プレス工程S40は、第1実施形態で説明した工程と同じである。
 第2実施形態の積層体形成工程S30では、図20に示すように、プレス機の下側プレス板71の上に配置した第3離型紙53の上に、裏面配線パターン121が形成された裏面保護部材120を配置する。裏面保護部材120の上に、絶縁基材100と熱電対シート200とを並べて配置し、その上に、表面配線パターン111が形成された表面保護部材110を配置し、さらにその上に、第4離型紙54と第2緩衝材62を配置する。
 これにより、熱電対シート200は、表面保護部材110と裏面保護部材120とが絶縁基材100から面方向に延びた位置において、表面保護部材110と裏面保護部材120との間に配置されることとなる。このとき、裏面保護部材120における絶縁基材100とは反対側に位置する面120bのうち少なくとも導電性ペースト131、141が配置された箇所と、裏面保護部材120における熱電対シート200とは反対側の面120bのうち少なくとも接合部23が配置された箇所とをほぼ同一平面上に揃えた状態とする。なお、裏面保護部材120における絶縁基材100とは反対側に位置する面120bの全面と、裏面保護部材120における熱電対シート200とは反対側の面120bの全面とを揃えた状態とすることが好ましい。また、熱電対シート200が有する熱電対20の接合部23を、絶縁基材100が有する凹部11に入り込ませるようにして、接合部23と導電性ペースト131、141とを近づけて配置する。このようにして、積層体が形成される。
 次に、一体プレス工程S40において、プレス機の下側プレス板71と上側プレス板72との間に配置された積層体を真空中で積層方向に加圧しつつ加熱する。これにより、絶縁基材100の複数のビアホール101、102に埋め込まれた複数の第1および第2導電性ペースト131、141は、固体焼結して複数の第1および第2層間接続部材130、140となる。また、第1および第2層間接続部材130、140と表面配線パターン111と裏面配線パターン121とが電気的に接続する。さらに、絶縁基材100と表面保護部材110と裏面保護部材120と熱電対シート200とが圧着される。この1回の一体プレス工程S40により、積層体が一体化し、熱流束センサ10と熱電対20とが一体に形成される。
 以上説明した第2実施形態の熱流測定装置1は、熱流束センサ10に複数の層間接続部材130、140が配置される箇所における裏面保護部材120のうち絶縁基材100とは反対側の面120bと、熱電対シート200に接合部23が配置される箇所における裏面保護部材120のうち熱電対シート200とは反対側の面120bとが揃っている。
 この構成によっても、仮に熱流束センサ10のうち測定対象物2とは反対側の面に熱電対20を積み重ねて設けた構成と比較して、熱電対20の接合部23を測定対象物2の表面3に近づけることが可能である。また、測定対象物2の表面3に熱流束センサ10と熱電対シート200とを密着させることが可能である。したがって、熱流測定装置1は、熱流束センサ10の出力信号と熱電対20の出力信号とに基づき、測定対象物2の熱流特性を正確に検出できる。
 (第3実施形態)
 本発明の第3実施形態について説明する。第3実施形態は、第1実施形態に対して熱電対シート200が有する熱電対20の構成を変更したものであり、その他については第1、第2実施形態と同様であるため、第1、第2実施形態と異なる部分についてのみ説明する。
 図21では、熱流測定装置1を構成する熱電対シート200が有する熱電対20のみを示している。熱電対20は、互いに熱電能が異なる金属箔から構成された第1導体21と第2導体22とが溶接などにより接合されたものである。第1導体21と第2導体22とが接合された箇所が、温度を検出するための接合部23となる。第1導体21は、接合部23とは反対側の端部に配線接続用の第1パッド部24を有している。また、第2導体22は、接合部23とは反対側の端部に配線接続用の第2パッド部25を有している。ここで、第3実施形態の熱電対20は、第1パッド部24を除く第1導体21の幅W1が、第1パッド部24の幅W2より細い。また、第2パッド部25を除く第2導体22の幅W3が、第2パッド部25の幅W4より細い。熱電対20は、接合部23と検出部30との間に温度差が生じると、ゼーベック効果によって接合部23に発生する熱起電力をセンサ信号として出力する。
 第3実施形態では、上記の構成により、第1パッド部24を除く第1導体21の熱容量を小さくし、第2パッド部25を除く第2導体22の熱容量を小さくできる。そのため、熱電対20は、接合部23と検出部30との間に温度差が生じたとき、その接合部23の熱が第1導体21と第2導体22に伝わることが抑制される。したがって、接合部23に発生する熱起電力が接合部23から第1導体21と第2導体22への伝熱によって小さくなることが抑制されるので、熱電対20は、接合部23の温度を正確に検出できる。
 なお、第3実施形態においても、第1、第2実施形態と同様に、第1絶縁シート210と第2絶縁シート220とによって熱電対20を両面から覆うことで、熱電対シート200が形成される。そのため、第1パッド部24を除く第1導体21の幅W1と、第2パッド部25を除く第2導体22の幅W3とを細くした場合でも、熱電対シート200の取り扱いを容易に行うことが可能である。したがって、表面保護部材110と裏面保護部材120とが絶縁基材100から面方向に延びた位置に熱電対シート200を配置する際、熱流束センサ10に対する熱電対シート200の位置決めを正確且つ容易に行うことができる。
 (第4実施形態)
 本発明の第4実施形態について説明する。第4実施形態も、第1実施形態に対して熱電対シート200が有する熱電対20の構成を変更したものであり、その他については第1、第2実施形態と同様であるため、第1、第2実施形態と異なる部分についてのみ説明する。
 図22では、熱流測定装置1を構成する熱電対シート200が有する熱電対20のみを示している。熱電対20は、互いに熱電能が異なる線状部材から構成された第1導体21と第2導体22とが溶接などにより接合されたものである。第1導体21と第2導体22とが接合された箇所が、温度を検出するための接合部23となる。第1導体21には、接合部23とは反対側の端部に配線接続用の第1パッド26が溶接などにより取り付けられている。また、第2導体22には、接合部23とは反対側の端部に配線接続用の第2パッド27が溶接などにより取り付けられている。線状部材から構成された第1導体21の幅W5は、第1パッド26の幅W6より細い。また、線状部材から構成された第2導体22の幅W7は、第2パッド27の幅W8より細い。熱電対20は、接合部23と検出部30との間に温度差が生じると、ゼーベック効果によって接合部23に発生する熱起電力をセンサ信号として出力する。
 第4実施形態では、上記の構成により、第1導体21の熱容量を小さくし、第2導体22の熱容量を小さくできる。そのため、熱電対20は、接合部23と検出部30との間に温度差が生じたとき、その接合部23の熱が第1導体21と第2導体22に伝わることが抑制される。したがって、第1導体21と第2導体22への伝熱によって接合部23に発生する熱起電力が小さくなることが抑制されるので、熱電対20は、接合部23の温度を正確に検出できる。
 なお、第4実施形態においても、第1~第3実施形態と同様に、第1絶縁シート210と第2絶縁シート220とによって熱電対20を両面から覆うことで、熱電対シート200が形成される。そのため、第1導体21の幅W5と第2導体22の幅W7とを細くした場合でも、熱電対シート200の取り扱いを容易に行うことが可能である。そのため、表面保護部材110と裏面保護部材120とが絶縁基材100から面方向に延びた位置に熱電対シート200を配置する際、熱流束センサ10に対する熱電対シート200の位置決めを正確且つ容易に行うことができる。
 (他の実施形態)
 本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
 例えば、上述した実施形態では熱流測定装置は測定対象物の表面に取り付けて使用するものとしたが、熱流測定装置は測定対象物の内部に埋め込んで使用してもよい。
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、熱流測定装置は、熱流束センサおよび熱電対シートを備える。熱流束センサは、複数の導電体、表面配線パターン、裏面配線パターン、表面保護部材、および裏面保護部材を有し、厚み方向の一方の面と他方の面との間を流れる熱流束を検出する。複数の導電体は、板状の絶縁基材、熱電能が異なる金属から構成されて絶縁基材の厚み方向に通じる複数のビアホールに埋め込まれている。表面配線パターンは、複数の導電体における絶縁基材の厚み方向の一方の端部同士に接続する。裏面配線パターンは、複数の導電体における絶縁基材の厚み方向の他方の端部同士に接続する。表面保護部材は、絶縁基材の厚み方向の一方の面と表面配線パターンとを覆う。裏面保護部材は、絶縁基材の厚み方向の他方の面と裏面配線パターンとを覆う。熱電対シートは、熱電対、第1絶縁シート、および第2絶縁シートを有し、接合部の温度を検出する。熱電対は、熱電能が異なる金属から構成された第1導体と第2導体とが接合された接合部を有する。第1絶縁シートは、第1導体と第2導体とが並ぶ方向に対し交差する方向の一方の側から熱電対を覆う。第2絶縁シートは、第1絶縁シートとは反対側から熱電対を覆う。その熱電対シートは、表面保護部材および裏面保護部材が絶縁基材から面方向に延びた位置に固定されている。
 第2の観点によれば、熱電対シートは、表面保護部材と裏面保護部材とが絶縁基材から面方向に延びた位置において、裏面保護部材のうち表面保護部材とは反対側に固定される。熱流束センサに複数の導電体が配置される箇所における裏面保護部材のうち絶縁基材とは反対側の面と、熱電対シートに接合部が配置される箇所における熱電対シートのうち裏面保護部材とは反対側の面とが揃っている。
 これによれば、熱流測定装置を測定対象物の表面に取り付けたとき、測定対象物の表面に対し熱流束センサと熱電対の接合部とを近づけると共に、測定対象物の表面に熱流束センサと熱電対シートとを密着させることが可能である。したがって、熱流測定装置は、熱流束センサの出力信号と熱電対の出力信号とに基づき、測定対象物の熱流特性を正確に検出できる。
 第3の観点によれば、熱電対シートは、表面保護部材と裏面保護部材とが絶縁基材から面方向に延びた位置において、表面保護部材と裏面保護部材との間に固定される。熱流束センサに複数の導電体が配置される箇所における裏面保護部材のうち絶縁基材とは反対側の面と、熱電対シートに接合部が配置される箇所における裏面保護部材のうち熱電対シートとは反対側の面とが揃っている。
 この構成によっても、仮に熱流束センサのうち測定対象物とは反対側の面に熱電対を積み重ねて設けた構成と比較して、熱電対の接合部を測定対象物の表面に近づけることが可能である。また、測定対象物の表面に熱流束センサと熱電対シートとを密着させることが可能である。したがって、熱流測定装置は、熱流束センサの出力信号と熱電対の出力信号とに基づき、測定対象物の熱流特性を正確に検出できる。
 第4の観点によれば、熱電対シートが設けられた箇所の厚みは、熱流束センサが設けられた箇所の厚みの範囲内となっている。
 これによれば、熱流測定装置の厚みを熱流束センサの厚みの範囲内で薄くできる。そのため、測定対象物の表面に熱流測定装置を取り付けたとき、その測定対象物の表面近傍の気流の乱れを抑制できる。
 第5の観点によれば、絶縁基材は、熱電対シート側の辺から導電体側へ凹む凹部を有している。熱電対シートが有する熱電対の接合部は、絶縁基材が有する凹部に入り込んでいる。
 これによれば、熱流測定装置は、熱流束センサの導電体と熱電対の接合部との距離を近づけることで、測定対象物のほぼ同一箇所の熱流および温度を測定できる。したがって、熱流測定装置は、熱流束センサの出力信号と熱電対の出力信号とに基づき、測定対象物の熱流特性を正確に検出できる。
 第6の観点によれば、熱電対の第1導体と第2導体とは金属箔から構成されている。第1導体は、接合部とは反対側の端部に配線接続用の第1パッド部を有する。第2導体は、接合部とは反対側の端部に配線接続用の第2パッド部を有する。第1パッド部を除く第1導体の幅は、第1パッド部の幅より細い。第2パッド部を除く第2導体の幅は、第2パッド部の幅より細い。
 これによれば、第1パッド部を除く第1導体の熱容量を小さくし、第2パッド部を除く第2導体の熱容量を小さくできる。そのため、接合部の熱が第1導体と第2導体に伝わることが抑制される。したがって、熱電対は、接合部の温度を正確に検出できる。
 第7の観点によれば、熱電対の第1導体と第2導体とは線状部材から構成されている。第1導体には、接合部とは反対側の端部に配線接続用の第1パッドが取り付けられている。第2導体には、接合部とは反対側の端部に配線接続用の第2パッドが取り付けられている。
 これによれば、第1導体と第2導体の熱容量が小さくなるので、接合部の熱が第1導体と第2導体に伝わることが抑制される。したがって、熱電対は、接合部の温度を正確に検出できる。

Claims (7)

  1.  板状の絶縁基材(100)、熱電能が異なる金属から構成されて前記絶縁基材の厚み方向に通じる複数のビアホール(101、102)に埋め込まれた複数の導電体(130、140)、複数の前記導電体における前記絶縁基材の厚み方向の一方の端部同士に接続する表面配線パターン(111)、複数の前記導電体における前記絶縁基材の厚み方向の他方の端部同士に接続する裏面配線パターン(121)、前記絶縁基材の厚み方向の一方の面(100a)と前記表面配線パターンとを覆う表面保護部材(110)、および前記絶縁基材の厚み方向の他方の面(100b)と前記裏面配線パターンとを覆う裏面保護部材(120)を有し、厚み方向の一方の面と他方の面との間を流れる熱流束を検出する熱流束センサ(10)と、
     熱電能が異なる金属から構成された第1導体(21)と第2導体(22)とが接合された接合部を有する熱電対(20)、前記第1導体と前記第2導体とが並ぶ方向に対し交差する方向の一方の側から前記熱電対を覆う第1絶縁シート(210)、および前記第1絶縁シートとは反対側から前記熱電対を覆う第2絶縁シート(220)を有し、前記接合部の温度を検出する熱電対シート(200)と、を備え、
     前記熱電対シートは、前記表面保護部材および前記裏面保護部材が前記絶縁基材から面方向に延びた位置に固定されている熱流測定装置。
  2.  前記熱電対シートは、前記表面保護部材と前記裏面保護部材とが前記絶縁基材から面方向に延びた位置において、前記裏面保護部材のうち前記表面保護部材とは反対側に固定されており、
     前記熱流束センサに複数の前記導電体が配置される箇所における前記裏面保護部材のうち前記絶縁基材とは反対側の面(120b)と、前記熱電対シートに前記接合部が配置される箇所における前記熱電対シートのうち前記裏面保護部材とは反対側の面(200b)とが揃っている請求項1に記載の熱流測定装置。
  3.  前記熱電対シートは、前記表面保護部材と前記裏面保護部材とが前記絶縁基材から面方向に延びた位置において、前記表面保護部材と前記裏面保護部材との間に固定されており、
     前記熱流束センサに複数の前記導電体が配置される箇所における前記裏面保護部材のうち前記絶縁基材とは反対側の面と、前記熱電対シートに前記接合部が配置される箇所における前記裏面保護部材のうち前記熱電対シートとは反対側の面とが揃っている請求項1に記載の熱流測定装置。
  4.  前記熱電対シートが設けられた箇所の厚み(T1)は、前記熱流束センサが設けられた箇所の厚み(T2)の範囲内となっている請求項1ないし3のいずれか1つに記載の熱流測定装置。
  5.  前記絶縁基材は、前記熱電対シート側の辺(12)から前記導電体側へ凹む凹部(11)を有しており、
     前記熱電対シートが有する前記熱電対の前記接合部は、前記絶縁基材が有する前記凹部に入り込んでいる請求項1ないし4のいずれか1つに記載の熱流測定装置。
  6.  前記熱電対の前記第1導体と前記第2導体とは金属箔から構成されており、
     前記第1導体は、前記接合部とは反対側の端部に配線接続用の第1パッド部(24)を有し、
     前記第2導体は、前記接合部とは反対側の端部に配線接続用の第2パッド部(25)を有し、
     前記第1パッド部を除く前記第1導体の幅は、前記第1パッド部の幅より細く、
     前記第2パッド部を除く前記第2導体の幅は、前記第2パッド部の幅より細い請求項1ないし5のいずれか1つに記載の熱流測定装置。
  7.  前記熱電対の前記第1導体と前記第2導体とは線状部材から構成されており、
     前記第1導体には、前記接合部とは反対側の端部に配線接続用の第1パッド(26)が取り付けられ、
     前記第2導体には、前記接合部とは反対側の端部に配線接続用の第2パッド(27)が取り付けられている請求項1ないし5のいずれか1つに記載の熱流測定装置。
PCT/JP2017/018342 2016-05-25 2017-05-16 熱流測定装置 WO2017204034A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/304,040 US11193900B2 (en) 2016-05-25 2017-05-16 Heat flow measurement apparatus
EP17802626.6A EP3467460A1 (en) 2016-05-25 2017-05-16 Heat flow measurement device
CN201780031696.6A CN109196318B (zh) 2016-05-25 2017-05-16 热流测定装置
KR1020187033005A KR20180128070A (ko) 2016-05-25 2017-05-16 열류측정장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-104501 2016-05-25
JP2016104501A JP6500841B2 (ja) 2016-05-25 2016-05-25 熱流測定装置

Publications (1)

Publication Number Publication Date
WO2017204034A1 true WO2017204034A1 (ja) 2017-11-30

Family

ID=60412848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018342 WO2017204034A1 (ja) 2016-05-25 2017-05-16 熱流測定装置

Country Status (7)

Country Link
US (1) US11193900B2 (ja)
EP (1) EP3467460A1 (ja)
JP (1) JP6500841B2 (ja)
KR (1) KR20180128070A (ja)
CN (1) CN109196318B (ja)
TW (1) TWI644085B (ja)
WO (1) WO2017204034A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102124199B1 (ko) * 2018-10-17 2020-06-17 고려대학교 산학협력단 액체 금속 공융 갈륨인듐 전극을 기반으로 하는 열전 측정 시스템 및 열전 소자
WO2023190785A1 (ja) * 2022-03-29 2023-10-05 京セラ株式会社 流路構造体および半導体製造装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280192A (en) * 1975-12-26 1977-07-05 Showa Denko Kk Heat flow sensor
JPS54166887U (ja) * 1978-05-15 1979-11-24
JPS57200828A (en) * 1981-06-04 1982-12-09 Showa Denko Kk Manufacture of thermopile
JPS6010138A (ja) * 1983-06-30 1985-01-19 Toshiba Corp 熱流束測定装置
US6278051B1 (en) * 1997-10-09 2001-08-21 Vatell Corporation Differential thermopile heat flux transducer
JP2016011950A (ja) * 2014-06-03 2016-01-21 株式会社デンソー 熱流分布測定装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT261257B (de) * 1964-08-06 1968-04-10 Ceskoslovenska Akademie Ved Für den Durchgang eines Wärmeflusses dienender Meßkörper aus keramischer Masse mit Thermoelementen
US3411987A (en) * 1967-12-06 1968-11-19 Atomic Energy Commission Usa Device for measuring the deposition of solids in nuclear reactors
CN1152241C (zh) * 2002-05-13 2004-06-02 重庆大学 热流计测头及其制作方法
CN100359303C (zh) * 2003-09-30 2008-01-02 重庆大学 薄膜电路热流计测头
EP1715331B1 (de) * 2003-10-28 2013-08-21 Mettler-Toledo AG Thermoanalytischer Sensor und Verfahren zu dessen Herstellung
EP1717566A1 (de) * 2005-04-25 2006-11-02 Mettler-Toledo AG Thermoanalytischer Sensor
KR100690926B1 (ko) * 2006-02-03 2007-03-09 삼성전자주식회사 마이크로 열유속 센서 어레이
US7510323B2 (en) * 2006-03-14 2009-03-31 International Business Machines Corporation Multi-layered thermal sensor for integrated circuits and other layered structures
CN100494928C (zh) * 2007-02-01 2009-06-03 北京工业大学 一种热分配计量的方法及装置
US20090175314A1 (en) * 2008-01-04 2009-07-09 Hollander Milton B Thermometer sheet material
JP5280192B2 (ja) * 2008-12-26 2013-09-04 株式会社パロマ 加熱調理器
JP5423487B2 (ja) 2010-03-08 2014-02-19 株式会社デンソー 貫通ビアへの導電材料充填装置およびその使用方法
CN101819074B (zh) * 2010-03-16 2012-07-04 中国飞机强度研究所 一种薄膜式热流密度传感器制造方法
CN103033291B (zh) * 2012-12-11 2015-11-25 北京遥测技术研究所 一种圆箔热电堆热流传感器
CN105358949B (zh) * 2013-05-30 2018-03-02 科磊股份有限公司 用于测量热通量的方法及系统
JP5761302B2 (ja) * 2013-06-04 2015-08-12 株式会社デンソー 車両用の快適温調制御装置
CN103592046B (zh) * 2013-10-22 2016-08-17 中国科学院力学研究所 一种整体式热电偶
CN103983365B (zh) * 2014-05-29 2017-02-15 北京航空航天大学 多测头瞬态辐射热流计及热辐射热流密度的测定方法
CN104181195B (zh) * 2014-08-28 2017-02-15 电子科技大学 一种基于稳态法的导热系数测量装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280192A (en) * 1975-12-26 1977-07-05 Showa Denko Kk Heat flow sensor
JPS54166887U (ja) * 1978-05-15 1979-11-24
JPS57200828A (en) * 1981-06-04 1982-12-09 Showa Denko Kk Manufacture of thermopile
JPS6010138A (ja) * 1983-06-30 1985-01-19 Toshiba Corp 熱流束測定装置
US6278051B1 (en) * 1997-10-09 2001-08-21 Vatell Corporation Differential thermopile heat flux transducer
JP2016011950A (ja) * 2014-06-03 2016-01-21 株式会社デンソー 熱流分布測定装置

Also Published As

Publication number Publication date
CN109196318B (zh) 2020-06-05
US11193900B2 (en) 2021-12-07
TW201809618A (zh) 2018-03-16
JP6500841B2 (ja) 2019-04-17
EP3467460A1 (en) 2019-04-10
US20200182811A1 (en) 2020-06-11
TWI644085B (zh) 2018-12-11
KR20180128070A (ko) 2018-11-30
CN109196318A (zh) 2019-01-11
JP2017211271A (ja) 2017-11-30

Similar Documents

Publication Publication Date Title
WO2016063465A1 (ja) 状態検出センサ
JP6983527B2 (ja) 電流検出用抵抗器
EP3480574A1 (en) Heat flux sensor module and manufacturing method therefor
WO2017204034A1 (ja) 熱流測定装置
WO2017204033A1 (ja) 熱流測定装置の製造方法
EP2905626B1 (en) Integrated current sensor system and method for producing an integrated current sensor system
KR20140050686A (ko) 반도체 장치 및 그 제조 방법
JP2013195076A (ja) 磁気検出装置およびその製造方法
WO2021220540A1 (ja) 温度センサアレイおよびその取付構造体
JP5884611B2 (ja) 電子装置
JP2019174128A (ja) 熱流測定装置およびその製造方法
JP6806520B2 (ja) 半導体装置および配線基板の設計方法
JP6864440B2 (ja) 半導体装置
CN112771657A (zh) 挠性印刷电路板、接合体、压力传感器及质量流量控制装置
CN111693752A (zh) 电流检测装置
JP6341427B2 (ja) 回路構成体及び電気接続箱
JP7309390B2 (ja) 電流検出装置
CN109196670B (zh) 热电转换装置及其制造方法
JP2017117995A (ja) 電子装置
JP2018049942A (ja) 変位センサ
JP5800076B2 (ja) 電子装置および電子装置の取付構造
CN115825520A (zh) 电流检测装置
JPWO2018147227A1 (ja) 電気素子
JP2011243796A (ja) 電子装置および電子装置の取付構造
JP2010002331A (ja) 熱電対センサ基板及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187033005

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802626

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017802626

Country of ref document: EP

Effective date: 20190102