WO2017203568A1 - 導波管装置 - Google Patents

導波管装置 Download PDF

Info

Publication number
WO2017203568A1
WO2017203568A1 PCT/JP2016/065184 JP2016065184W WO2017203568A1 WO 2017203568 A1 WO2017203568 A1 WO 2017203568A1 JP 2016065184 W JP2016065184 W JP 2016065184W WO 2017203568 A1 WO2017203568 A1 WO 2017203568A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
cross
sectional shape
waveguide device
shape
Prior art date
Application number
PCT/JP2016/065184
Other languages
English (en)
French (fr)
Inventor
素実 渡辺
秀憲 湯川
優 牛嶋
米田 尚史
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016556330A priority Critical patent/JPWO2017203568A1/ja
Priority to PCT/JP2016/065184 priority patent/WO2017203568A1/ja
Publication of WO2017203568A1 publication Critical patent/WO2017203568A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/123Hollow waveguides with a complex or stepped cross-section, e.g. ridged or grooved waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/02Bends; Corners; Twists
    • H01P1/022Bends; Corners; Twists in waveguides of polygonal cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/181Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being hollow waveguides
    • H01P5/182Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being hollow waveguides the waveguides being arranged in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/19Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type

Definitions

  • the present invention relates to a waveguide device that propagates radio waves.
  • a hollow waveguide in a waveguide device that propagates radio waves such as microwaves and millimeter waves generally has a rectangular or circular cross section in a direction perpendicular to the propagation direction of the radio waves.
  • a waveguide having a rectangular cross-sectional shape is manufactured by screwing or diffusion bonding in a state where two members of the waveguide divided into two in the radio wave propagation direction face each other.
  • the waveguide is manufactured by screwing or diffusion bonding, poor bonding is likely to occur, and if the bonding is insufficient, high-frequency radio waves may leak and deteriorate performance. is there.
  • Non-Patent Document 1 discloses a 3D printer that forms a desired three-dimensional shape by stacking materials such as powder metal one layer at a time based on three-dimensional shape data. If the 3D printer is used, the entire structure of the waveguide can be manufactured in a lump, so that it is not necessary to perform screwing or diffusion bonding, and the problem of poor bonding can be solved. However, when the cross-sectional shape is rectangular, the central portion of the side that forms the ceiling portion that is horizontal to the laminated surface of the 3D printer is affected by its own weight among the plurality of sides that form the cross-sectional shape. Deformation may occur and droop down. Non-Patent Document 1 below discloses a technique for adding support to a side that is horizontal with respect to the laminated surface of a 3D printer.
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain a waveguide device that can be manufactured using a 3D printer without adding a support.
  • the waveguide device configures a ceiling portion in a first cross-sectional shape among a plurality of sides constituting a first cross-sectional shape that is a cross-sectional shape in a direction orthogonal to a radio wave propagation direction.
  • the side which is carrying out is equipped with the 1st waveguide which inclines with respect to the transversal direction in 1st cross-sectional shape.
  • the side which comprises the ceiling part in 1st cross-sectional shape among the several sides which comprise 1st cross-sectional shape which is the shape of the cross section of the direction orthogonal to the propagation direction of an electromagnetic wave
  • it since it is configured to be inclined with respect to the short direction in the first cross-sectional shape, there is an effect that it can be manufactured using a 3D printer without adding a support.
  • FIG. 1A is a perspective transparent view showing a waveguide device according to Embodiment 1 of the present invention
  • FIG. 1B is a side transparent view of the waveguide device from A in FIG. 1A
  • FIG. 1C is a waveguide from B in FIG. 1A
  • FIG. 1D is a cross-sectional view taken along C in FIG. 1A
  • 2A is a perspective transparent view showing the waveguide 1 of the waveguide device according to Embodiment 1 of the present invention
  • FIG. 2B is a cross-sectional view of the waveguide 1 taken along C in FIG. 1A. It is sectional drawing of the waveguide 2 in F of FIG. 1A.
  • 1 is a cross-sectional view of a tube 1.
  • FIG. 9A is a perspective transparent view showing another waveguide device according to Embodiment 1 of the present invention
  • FIG. 9B is a side transparent view of the waveguide device taken from A in FIG. 9A
  • FIG. 9C is taken from B in FIG. 9A.
  • FIG. 10A is a perspective transparent view showing another waveguide device according to Embodiment 1 of the present invention
  • FIG. 10A is a perspective transparent view showing another waveguide device according to Embodiment 1 of the present invention
  • FIG. 9B is a side transparent view of the waveguide device taken from A in FIG. 9A
  • FIG. 9C is taken from B in FIG. 9A.
  • FIG. 10A is a perspective transparent view showing another waveguide device according to Embodiment 1 of the present invention
  • FIG. 10A is a perspective transparent view showing another waveguide device according to Embodiment 1 of the present invention
  • FIG. 10B is a side transparent view of the waveguide device from A in FIG. 10A
  • FIG. 10C is derived from B in FIG. 10A. It is the upper surface transmission figure which looked at the wave tube apparatus.
  • 11A is a perspective transparent view showing a waveguide device according to Embodiment 2 of the present invention
  • FIG. 11B is a side transparent view of the waveguide device from A in FIG. 11A
  • FIG. 11C is a waveguide from B in FIG. 1A
  • FIG. 11D is a side transmission view of the waveguide device viewed from C in FIG. 1A
  • 12A is an explanatory diagram showing the pass characteristics and coupling characteristics of the waveguide device of FIG. 11, and
  • FIG. 12B is an explanatory diagram showing the isolation characteristics and the reflection characteristics of the waveguide device of FIG.
  • FIG. 1 is a block diagram showing a waveguide device according to Embodiment 1 of the present invention.
  • 1A is a perspective transparent view showing a waveguide device according to Embodiment 1 of the present invention
  • FIG. 1B is a side transparent view of the waveguide device as viewed from A in FIG. 1A
  • 1C is a top transparent view of the waveguide device from B in FIG. 1A
  • FIG. 1D is a cross-sectional view at C in FIG. 1A.
  • a waveguide 2 that is a second waveguide is connected as a branching waveguide to a waveguide 1 that is a first waveguide.
  • the side wall where the waveguide 2 is connected is perforated, and a part of the radio wave propagated through the waveguide 1 is distributed to the waveguide 2.
  • D in FIGS. 1A and 1B is a laminated surface of the 3D printer.
  • FIG. 2 is a block diagram showing the waveguide 1 of the waveguide device according to Embodiment 1 of the present invention.
  • 2A is a perspective transparent view showing the waveguide 1 of the waveguide device according to Embodiment 1 of the present invention
  • FIG. 2B is a cross-sectional view of the waveguide 1 taken along C in FIG. 1A.
  • FIG. 3 is a cross-sectional view of the waveguide 2 in F of FIG. 1A.
  • A is the propagation direction of the radio wave in the waveguide 1, and the cross-sectional shape of the waveguide 1 in C of FIG. Is a hexagon as shown in FIG. 1D and FIG. 2B, for example.
  • the cross-sectional shape (second cross-sectional shape) of the waveguide 2 in F of FIG. 1A which is a cross section in the direction orthogonal to the propagation direction E of the radio wave, is, for example, As shown in FIG. 3, it is a hexagon.
  • the cross-sectional shape of the waveguide 1 when referred to, it means the first cross-sectional shape, and when the cross-sectional shape of the waveguide 2 is referred to, it means the second cross-sectional shape.
  • the cross-sectional shape of the waveguide 1 in C of FIG. 1A has sides 11, 12, 13, 14, 15, and 16.
  • the sides 11 and 12 are sides constituting the ceiling portion in the cross-sectional shape of the waveguide 1
  • the sides 13 and 14 are sides constituting the bottom portion in the cross-sectional shape of the waveguide 1.
  • the cross-sectional shape of the waveguide 1 has a long axis 21 and a short axis 22, and the short axis 22 passes through the center of gravity of the cross-sectional shape of the waveguide 1. It is the axis in the short direction.
  • the longitudinal direction in the cross-sectional shape of the waveguide 1 matches the vertical direction
  • the short direction in the cross-sectional shape of the waveguide 1 matches the horizontal direction 23.
  • the cross-sectional shape of the waveguide 1 is a line-symmetric shape with the longitudinal axis 21 as the symmetry axis, and a line-symmetric shape with the transverse axis 22 as the symmetry axis. That is, the cross-sectional shape of the waveguide 1 is a hexagon that is symmetrical with respect to two axes.
  • the side 11 is inclined with respect to the horizontal direction 23, and the inclination angle of the side 11 is ⁇ 11 .
  • Edges 12 are inclined relative to the horizontal direction 23, the inclination angle of the sides 12 is theta 12.
  • Edges 13 are inclined relative to the horizontal direction 23, the inclination angle of the sides 13 is theta 13.
  • Edges 14 are inclined relative to the horizontal direction 23, the inclination angle of the sides 14 is theta 14.
  • Edges 15 are inclined relative to the horizontal direction 23, a 15 tilt angle ⁇ of the edge 15.
  • Edges 16 are inclined relative to the horizontal direction 23, the inclination angle of the sides 16 is theta 16.
  • the slope 17 is a slope of the ceiling portion of the waveguide 1 formed by the side 11 in the cross-sectional shape of the waveguide 1.
  • the slope 18 is a slope of the ceiling portion of the waveguide 1 formed by the side 12 in the cross-sectional shape of the waveguide 1.
  • the slope 19 is the bottom slope of the waveguide 1 formed by the side 13 in the cross-sectional shape of the waveguide 1.
  • the slope 20 is the bottom slope of the waveguide 1 formed by the side 14 in the cross-sectional shape of the waveguide 1.
  • the cross-sectional shape of the waveguide 2 in F of FIG. 1A has sides 31, 32, 33, 34, 35, and 36.
  • the sides 31 and 32 are sides constituting the ceiling portion in the cross-sectional shape of the waveguide 2
  • the sides 33 and 34 are sides constituting the bottom portion in the cross-sectional shape of the waveguide 2.
  • the cross-sectional shape of the waveguide 2 has a longitudinal axis 41 and a short-side axis 42, and the short-side axis 42 passes through the center of gravity of the cross-sectional shape of the waveguide 2. It is the axis in the short direction. In the example of FIGS.
  • the longitudinal direction in the cross-sectional shape of the waveguide 2 coincides with the vertical direction
  • the short direction in the cross-sectional shape of the waveguide 2 coincides with the horizontal direction 43.
  • the cross-sectional shape of the waveguide 2 is a line-symmetric shape with the axis 41 in the longitudinal direction as the axis of symmetry, and a line-symmetric shape with the axis 42 in the short direction as the axis of symmetry. That is, the cross-sectional shape of the waveguide 2 is a hexagon symmetrical with respect to two axes.
  • the side 31 is inclined with respect to the horizontal direction 43, and the inclination angle of the side 31 is ⁇ 31 .
  • Edges 32 are inclined relative to the horizontal direction 43, the inclination angle of the sides 32 is theta 32.
  • the side 33 is inclined with respect to the horizontal direction 43, and the inclination angle of the side 33 is ⁇ 33 .
  • the side 34 is inclined with respect to the horizontal direction 43, and the inclination angle of the side 34 is ⁇ 34 .
  • the side 35 is inclined with respect to the horizontal direction 43, and the inclination angle of the side 35 is ⁇ 35 .
  • the side 36 is inclined with respect to the horizontal direction 43, and the inclination angle of the side 36 is ⁇ 36 .
  • the slope 37 is a slope of the ceiling portion of the waveguide 2 formed by the side 31 in the cross-sectional shape of the waveguide 2.
  • the slope 38 is a slope of the ceiling portion of the waveguide 2 formed by the side 32 in the cross-sectional shape of the waveguide 2.
  • the slope 39 is a slope at the bottom of the waveguide 2 formed by the side 33 in the cross-sectional shape of the waveguide 2.
  • the slope 40 is a slope at the bottom of the waveguide 2 formed by the side 34 in the cross-sectional shape of the waveguide 2.
  • the connecting portion 2 a is an end portion of the ceiling portion of the waveguide 2 that is extended so as to be in contact with the slope 18 of the ceiling portion of the waveguide 1.
  • the connecting portion 2 b is an end portion of the bottom portion of the waveguide 2 extended so as to be in contact with the inclined surface 20 of the bottom portion of the waveguide 1.
  • the longitudinal dimension of the cross-sectional shape of the waveguide 1 is different from the longitudinal dimension of the cross-sectional shape of the waveguide 2.
  • the longitudinal dimension of the cross-sectional shape is longer than the longitudinal dimension of the cross-sectional shape of the waveguide 2.
  • FIG. 4 is an explanatory view showing a state in which the sides constituting the ceiling part are deformed due to the influence of its own weight.
  • FIG. 5 is an explanatory diagram showing an example in which a support is added to the sides constituting the horizontal ceiling.
  • a support is added to the side constituting the horizontal ceiling portion, the deformation of the central portion of the side can be prevented, but as described above, after the waveguide is manufactured, Since it is necessary to remove the support, the manufacturing process becomes complicated and the manufacturing cost increases.
  • the ceiling part in the waveguide 1 is comprised by making a cross-sectional shape into a hexagon.
  • the sides 11 and 12 are inclined with respect to the horizontal direction 23 which is the laminated surface D of the 3D printer.
  • the sides 31 and 32 constituting the ceiling portion of the waveguide 2 are inclined with respect to the horizontal direction 43 that is the laminated surface D of the 3D printer.
  • the influence of the own weight is reduced, so that deformation of the central portion can be prevented.
  • the tilt angles ⁇ a and ⁇ c are 10 ° or more, the influence of the own weight is reduced, so that deformation of the central portion can be prevented.
  • the tilt angles ⁇ a , ⁇ c are not limited to 10 ° or more, and even if the tilt angles ⁇ a , ⁇ c are less than 10 °, and are larger than 0 °, Since the influence of its own weight is smaller than when it is horizontal, deformation of the central portion may be prevented.
  • FIG. 6 is a cross-sectional view showing an example of a cross-sectional shape of the waveguide 1.
  • 1 is a cross-sectional view of a waveguide 1.
  • the generated modes are TE10, TE20, and TE01, which are the same as the modes generated in a waveguide having a rectangular cross-sectional shape.
  • the modes generated in the waveguide 1 are TE10 and TE20. , TE30, and the cross-sectional shape is different from the mode generated in the rectangular waveguide.
  • the mode generated in the waveguide 1 is described.
  • the cross-sectional shape of the waveguide 2 is the same as the cross-sectional shape of the waveguide 1, the mode generated in the waveguide 2 is This is the same mode that occurs in the wave tube 1.
  • Figure 7 is an explanatory diagram showing a tilt angle theta a in the waveguide 1, the relationship between the cutoff frequency fc of the fundamental mode TE10.
  • Basic cutoff frequency fc of the fundamental mode TE10 as shown in FIG.
  • the tilt angle theta a is 70 ° or less, generally, the cross section occurs in a rectangular waveguide It becomes the same as the cut-off frequency fc of mode TE10. Further, the higher order mode generated in the waveguide 1 also, the tilt angle theta a is 70 ° or less, generally the same as the higher mode cross section occurs in a rectangular waveguide. From the above, it is desirable that the inclination angle is ⁇ a ⁇ 70 °.
  • the first cross-sectional shape that is the cross-sectional shape in the direction perpendicular to the propagation direction of the radio wave
  • the ceiling portion in the second cross-sectional shape among the sides 31 to 36 constituting the second cross-sectional shape which is the shape of the cross section in the direction orthogonal to the propagation direction of the radio wave. Since the sides 31 and 32 constituting the head are inclined with respect to the short-side direction in the second cross-sectional shape, it is possible to manufacture using a 3D printer without adding a support. There is.
  • the cross-sectional shape of the waveguide 1 is a hexagon symmetric with respect to two axes has been shown, but the sides 11 and 12 constituting the ceiling portion are in the short direction.
  • the cross-sectional shape of the waveguide 1 may be a shape that is not symmetrical with respect to the two axes as shown in FIG. 8A and 8B are explanatory diagrams showing an example of a cross-sectional shape of the waveguide 1.
  • the waveguide 1 shown in FIG. 8A has a shape symmetrical with respect to the axis 22 in the short direction because the sides 13 and 14 constituting the bottom are parallel to the laminated surface D of the 3D printer. Not.
  • the sides 13 and 14 constituting the bottom are horizontal with the laminated surface D of the 3D printer, and the sides 11 and 12 constituting the ceiling are in the same direction. Leaning on. For this reason, it does not have a line-symmetric shape with respect to the short axis 22, and does not have a line-symmetric shape with respect to the long axis 21.
  • the cross-sectional shape of the waveguide 1 is not symmetrical with respect to the two axes.
  • the shape is desirable.
  • the waveguide 2 may have a cross-sectional shape that is not symmetrical with respect to the two axes, similarly to the waveguide 1.
  • the ceiling portion and the bottom portion of the waveguide 2 are provided with connecting portions 2a and 2b extended so as to be in contact with the slopes 18 and 20 of the ceiling and bottom portions of the waveguide 1.
  • the ceiling part and bottom part in the waveguide 2 may not be provided with the connection parts 2a and 2b.
  • 9A is a perspective transparent view showing another waveguide device according to Embodiment 1 of the present invention
  • FIG. 9B is a side transparent view of the waveguide device from A of FIG. 9A
  • FIG. 9C is B of FIG. 9A. It is the upper surface transmission figure which looked at the waveguide apparatus from FIG.
  • FIG. 10A is a perspective transparent view showing another waveguide device according to Embodiment 1 of the present invention
  • FIG. 10B is a side transparent view of the waveguide device from A of FIG. 10A
  • FIG. 10C is B of FIG. 10A.
  • It is the upper surface transmission figure which looked at the waveguide apparatus from FIG.
  • the connecting portions 2 a and 2 b are not provided, the upper and lower portions of the waveguide 2 are not connected to the side wall of the waveguide 1. If holes are opened in the upper and lower portions of the waveguide 2 that is not connected to the side wall of the waveguide 1, radio waves leak, so the upper portion of the waveguide 2 that is not connected to the side wall of the waveguide 1. And the hole is closed at the lower part, and the hole is opened only in the central part of the waveguide 2 connected to the side wall of the waveguide 1.
  • Embodiment 2 FIG. In the first embodiment, the waveguide device including the waveguide 1 and the waveguide 2 is shown. However, in the state where two waveguides 1 are arranged in parallel, a plurality of waveguides 2 are arranged. Two waveguides 1 may be connected.
  • FIG. 11 is a block diagram showing a waveguide device according to Embodiment 2 of the present invention.
  • FIG. 11A is a perspective transparent view showing a waveguide device according to Embodiment 2 of the present invention
  • FIG. 11B is a side transparent view of the waveguide device as viewed from A of FIG. 11A
  • 11C is a top transparent view of the waveguide device viewed from B in FIG. 1A
  • FIG. 11D is a side transparent view of the waveguide device viewed from C in FIG. 1A.
  • the same reference numerals as those in FIGS. 1, 9, and 10 indicate the same or corresponding parts, and thus description thereof is omitted.
  • the input port 51 is a port for inputting a signal.
  • the passing port 52, the coupling port 53, and the isolation port 54 are ports that output signals.
  • two waveguides 1 arranged in parallel have five waveguides 2 at intervals of a quarter wavelength ( ⁇ / 4) at the frequency of the fundamental wave of radio waves. Is provided.
  • the two waveguides 1 are distinguished by the waveguide 1a and the waveguide 1b.
  • five waveguides 2 are provided, but four or less, or six or more waveguides 2 may be provided.
  • the interval between the five waveguides 2 is ⁇ / 4.
  • the interval between the five waveguides 2 is not limited to ⁇ / 4. It may be provided with a large interval or a small interval.
  • FIG. 11 the interval between the five waveguides 2 is not limited to ⁇ / 4. It may be provided with a large interval or a small interval.
  • the longitudinal dimensions of the cross-sectional shapes of the two waveguides 1 a and 1 b are different from the longitudinal dimensions of the cross-sectional shapes of the five waveguides 2.
  • the dimensions may be the same or different.
  • the dimensions and shapes of the five waveguides 2 may all be the same or different from each other. Accordingly, the five waveguides 2 may be, for example, waveguides having connecting portions 2a and 2b as shown in FIG. 1, or connecting portions 2a and 2b as shown in FIG. 9 and FIG. It may be a waveguide that does not have.
  • the signal input from the input port 51 is propagated through the waveguide 1 a and is distributed at the location where the waveguide 2 is connected.
  • One signal distributed at the location where the waveguide 2 is connected is propagated through the waveguide 1 a and output from the passage port 52.
  • the other signal distributed at the location where the waveguide 2 is connected is propagated through the waveguide 2 and distributed at the location where it is connected to the waveguide 1b.
  • One signal distributed at the location connected to the waveguide 1b is output from the coupling port 53, and the other signal distributed at the location connected to the waveguide 1b is output from the isolation port 54. Is output.
  • FIG. 12 is an explanatory diagram showing characteristics of the waveguide device of FIG. 12A shows the pass characteristics and coupling characteristics of the waveguide device of FIG. 11, and FIG. 12B shows the isolation characteristics and reflection characteristics of the waveguide device of FIG.
  • the simulation results are shown in the case where the inclination angles ⁇ a and ⁇ c are 45 ° and the interval between the five waveguides 2 is ⁇ / 4.
  • the waveguide device of FIG. 11 is a device having a desired degree of coupling of about 3 dB, and it is confirmed from FIG. 12 that good characteristics are obtained.
  • both the passing characteristic from the input port 51 to the coupling port 53 and the coupling characteristic from the input port 51 to the coupling port 53 are ⁇ 3.1 ⁇ 0.4 dB. Is confirmed to be 24%. Also, it is confirmed that the reflection characteristic is ⁇ 27.5 dB or less.
  • This invention is suitable for a waveguide device that propagates radio waves.

Landscapes

  • Waveguides (AREA)

Abstract

電波の伝搬方向に直交する方向の断面の形状である第1の断面形状を構成している辺(11),(12),(13),(14),(15),(16)のうち、第1の断面形状における天井部を構成している辺(11),(12)が、第1の断面形状における短手方向に対して傾いているように構成する。これにより、自重の影響が小さくなるため、中央部分の変形を防ぐことができる。したがって、サポートを付加することなく、3Dプリンタを用いて製造することができる。

Description

導波管装置
 この発明は、電波を伝搬する導波管装置に関するものである。
 例えば、マイクロ波やミリ波などの電波を伝搬する導波管装置における中空の導波管は、一般的に、電波の伝搬方向に直交する方向の断面の形状が矩形や円形である。
 例えば、断面形状が矩形の導波管は、同導波管を電波の伝搬方向に2分割された形状の2つの部材が対向された状態で、ねじ止めや拡散接合されることで製造される。
 しかし、導波管が、ねじ止めや拡散接合されることで製造される場合、接合不良が生じ易くなり、接合が不十分な状態では、高い周波数の電波が漏洩して性能が劣化することがある。
 以下の非特許文献1には、3次元の形状データに基づいて、粉末金属などの材料を1層ずつ層状に積み重ねることで、目的の立体形状を成形する3Dプリンタが開示されている。
 3Dプリンタを用いれば、導波管の全体構造を一括して製造することが可能であるため、ねじ止めや拡散接合を行う必要がなく、接合不良が生じる問題を解決することができる。
 ただし、断面形状が矩形である場合、断面形状を構成している複数の辺のうち、3Dプリンタの積層面に対して水平な天井部を構成している辺の中央部分が、自重の影響で変形が生じて、下方に垂れてしまうことがある。
 以下の非特許文献1には、3Dプリンタの積層面に対して水平な辺にサポートを付加する技術が開示されている。
発行者:望月洋介「3Dプリンタ総覧2015」 日経BP社発行 編集:日経ものづくり、2015年、pp.81~85
 3Dプリンタの積層面に対して水平な天井部を構成している辺にサポートを付加すれば、天井部を構成している辺の中央部分の変形を防ぐことができる。しかし、サポートを付加する場合、導波管を製造した後に、サポートを除去する必要があるため、製造工程が煩雑になり、製造コストが高くなってしまうという課題があった。
 この発明は上記のような課題を解決するためになされたもので、サポートを付加することなく、3Dプリンタを用いて製造することができる導波管装置を得ることを目的とする。
 この発明に係る導波管装置は、電波の伝搬方向に直交する方向の断面の形状である第1の断面形状を構成している複数の辺のうち、第1の断面形状における天井部を構成している辺が、第1の断面形状における短手方向に対して傾いている第1の導波管を備えているものである。
 この発明によれば、電波の伝搬方向に直交する方向の断面の形状である第1の断面形状を構成している複数の辺のうち、第1の断面形状における天井部を構成している辺が、第1の断面形状における短手方向に対して傾いているように構成したので、サポートを付加することなく、3Dプリンタを用いて製造することができる効果がある。
図1Aはこの発明の実施の形態1による導波管装置を示す斜視透過図、図1Bは図1AのAから導波管装置をみた側面透過図、図1Cは図1AのBから導波管装置をみた上面透過図、図1Dは図1AのCにおける断面図である。 図2Aはこの発明の実施の形態1による導波管装置の導波管1を示す斜視透過図、図2Bは図1AのCにおける導波管1の断面図である。 図1AのFにおける導波管2の断面図である。 天井部を構成している辺が自重の影響で変形している様子を示す説明図である。 水平な天井部を構成している辺に対してサポートを付加している例を示す説明図である。 図6Aは傾き角度θ=45°、θ=90°である場合の導波管1の断面図、図6Bは傾き角度θ=70°、θ=90°である場合の導波管1の断面図である。 導波管1,2における傾き角度θ,θと、基本モードTE10の遮断周波数fcとの関係を示す説明図である。 図8A及び図8Bは導波管1における断面形状の一例を示す説明図である。 図9Aはこの発明の実施の形態1による他の導波管装置を示す斜視透過図、図9Bは図9AのAから導波管装置をみた側面透過図、図9Cは図9AのBから導波管装置をみた上面透過図である。 図10Aはこの発明の実施の形態1による他の導波管装置を示す斜視透過図、図10Bは図10AのAから導波管装置をみた側面透過図、図10Cは図10AのBから導波管装置をみた上面透過図である。 図11Aはこの発明の実施の形態2による導波管装置を示す斜視透過図、図11Bは図11AのAから導波管装置をみた側面透過図、図11Cは図1AのBから導波管装置をみた上面透過図、図11Dは図1AのCから導波管装置をみた側面透過図である。 図12Aは図11の導波管装置の通過特性及び結合特性を示す説明図、図12Bは図11の導波管装置のアイソレーション特性及び反射特性を示す説明図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面にしたがって説明する。
実施の形態1.
 図1はこの発明の実施の形態1による導波管装置を示す構成図である。
 図1Aはこの発明の実施の形態1による導波管装置を示す斜視透過図であり、図1Bは図1AのAから導波管装置をみた側面透過図である。
 また、図1Cは図1AのBから導波管装置をみた上面透過図であり、図1Dは図1AのCにおける断面図である。
 図1の導波管装置では、第1の導波管である導波管1に対して、第2の導波管である導波管2が分岐導波管として接続されている。即ち、導波管1の側壁のうち、導波管2が接続されている箇所の側壁は穴が開いており、導波管1を伝搬される電波の一部が導波管2に分配される。
 この実施の形態1では、導波管1,2が3Dプリンタで製造されるものを想定しており、図1A及び図1BにおけるDは3Dプリンタの積層面である。
 図2はこの発明の実施の形態1による導波管装置の導波管1を示す構成図である。
 図2Aはこの発明の実施の形態1による導波管装置の導波管1を示す斜視透過図であり、図2Bは図1AのCにおける導波管1の断面図である。
 図3は図1AのFにおける導波管2の断面図である。
 図1から図3において、Aは導波管1における電波の伝搬方向であり、電波の伝搬方向Aに直交する方向の断面である図1AのCにおける導波管1の断面の形状(第1の断面形状)は、例えば、図1Dや図2Bに示すように6角形である。
 Eは導波管2における電波の伝搬方向であり、電波の伝搬方向Eに直交する方向の断面である図1AのFにおける導波管2の断面の形状(第2の断面形状)は、例えば、図3に示すように6角形である。
 以下、導波管1の断面形状と称するときは第1の断面形状を意味し、導波管2の断面形状と称するときは第2の断面形状を意味する。
 図1AのCにおける導波管1の断面形状は、辺11,12,13,14,15,16を有している。
 辺11,12は、導波管1の断面形状における天井部を構成している辺であり、辺13,14は、導波管1の断面形状における底部を構成している辺である。
 導波管1の断面形状は、長手方向の軸21と、短手方向の軸22とを有しており、短手方向の軸22は、導波管1における断面形状の重心を通っている短手方向の軸である。
 図1及び図2の例では、導波管1の断面形状における長手方向は鉛直方向と一致しており、導波管1の断面形状における短手方向は水平方向23と一致している。
 導波管1の断面形状は、長手方向の軸21を対称軸とする線対称な形状であり、かつ、短手方向の軸22を対称軸とする線対称な形状である。即ち、導波管1の断面形状は、2軸に対して対称な6角形である。
 辺11は水平方向23に対して傾いており、辺11の傾き角度がθ11である。
 辺12は水平方向23に対して傾いており、辺12の傾き角度がθ12である。
 辺13は水平方向23に対して傾いており、辺13の傾き角度がθ13である。
 辺14は水平方向23に対して傾いており、辺14の傾き角度がθ14である。
 θ11=θ12=θ13=θ14=θである。
 辺15は水平方向23に対して傾いており、辺15の傾き角度がθ15である。
 辺16は水平方向23に対して傾いており、辺16の傾き角度がθ16である。
 θ15=θ16=θであり、θ=90°である。
 斜面17は導波管1の断面形状における辺11によって形成されている導波管1における天井部の斜面である。
 斜面18は導波管1の断面形状における辺12によって形成されている導波管1における天井部の斜面である。
 斜面19は導波管1の断面形状における辺13によって形成されている導波管1における底部の斜面である。
 斜面20は導波管1の断面形状における辺14によって形成されている導波管1における底部の斜面である。
 図1AのFにおける導波管2の断面形状は、辺31,32,33,34,35,36を有している。
 辺31,32は、導波管2の断面形状における天井部を構成している辺であり、辺33,34は、導波管2の断面形状における底部を構成している辺である。
 導波管2の断面形状は、長手方向の軸41と、短手方向の軸42とを有しており、短手方向の軸42は、導波管2における断面形状の重心を通っている短手方向の軸である。
 図1及び図3の例では、導波管2の断面形状における長手方向は鉛直方向と一致しており、導波管2の断面形状における短手方向は水平方向43と一致している。
 導波管2の断面形状は、長手方向の軸41を対称軸とする線対称な形状であり、かつ、短手方向の軸42を対称軸とする線対称な形状である。即ち、導波管2の断面形状は、2軸に対して対称な6角形である。
 辺31は水平方向43に対して傾いており、辺31の傾き角度がθ31である。
 辺32は水平方向43に対して傾いており、辺32の傾き角度がθ32である。
 辺33は水平方向43に対して傾いており、辺33の傾き角度がθ33である。
 辺34は水平方向43に対して傾いており、辺34の傾き角度がθ34である。
 θ31=θ32=θ33=θ34=θである。
 辺35は水平方向43に対して傾いており、辺35の傾き角度がθ35である。
 辺36は水平方向43に対して傾いており、辺36の傾き角度がθ36である。
 θ35=θ36=θであり、θ=90°である。
 斜面37は導波管2の断面形状における辺31によって形成されている導波管2における天井部の斜面である。
 斜面38は導波管2の断面形状における辺32によって形成されている導波管2における天井部の斜面である。
 斜面39は導波管2の断面形状における辺33によって形成されている導波管2における底部の斜面である。
 斜面40は導波管2の断面形状における辺34によって形成されている導波管2における底部の斜面である。
 繋ぎ部2aは導波管1における天井部の斜面18と接するように延伸された導波管2における天井部の端部である。
 繋ぎ部2bは導波管1における底部の斜面20と接するように延伸された導波管2における底部の端部である。
 この実施の形態1では、導波管1における断面形状の長手方向の寸法と、導波管2における断面形状の長手方向の寸法とが異なっており、図1の例では、導波管1における断面形状の長手方向の寸法が、導波管2における断面形状の長手方向の寸法より長くなっている。
 次に動作について説明する。
 この実施の形態1では、中空の導波管1,2が3Dプリンタで製造されるものを想定しているが、電波の伝搬方向A,Eに直交する方向の断面の形状が矩形である場合には、その断面形状を構成している複数の辺のうち、水平な天井部を構成している辺に対して、サポートを付加しなければ、図4に示すように、中央部分が自重の影響で変形して、下方に垂れてしまうことがある。
 図4は天井部を構成している辺が自重の影響で変形している様子を示す説明図である。
 図5は水平な天井部を構成している辺に対してサポートを付加している例を示す説明図である。
 図5に示すように、水平な天井部を構成している辺にサポートを付加すれば、辺の中央部分の変形を防ぐことができるが、上述したように、導波管を製造した後に、サポートを除去する必要があるため、製造工程が煩雑になり、製造コストが高くなる。
 この実施の形態1では、サポートを付加することなく、天井部を構成している辺の変形を防ぐため、断面形状を六角形にすることで、導波管1における天井部を構成している辺11,12が、3Dプリンタの積層面Dである水平方向23に対して傾いているようにしている。
 また、導波管2における天井部を構成している辺31,32が、3Dプリンタの積層面Dである水平方向43に対して傾いているようにしている。
 天井部を構成している辺11,12,31,32が3Dプリンタの積層面Dに対して傾いている場合、自重の影響が小さくなるため、中央部分の変形を防ぐことができる。
 概ね、傾き角度θ,θが10°以上であれば、自重の影響が小さくなるため、中央部分の変形を防ぐことができる。ただし、傾き角度θ,θが10°以上であるものに限るものではなく、傾き角度θ,θが10°未満の場合でも、0°より大きければ、3Dプリンタの積層面Dと水平である場合よりは自重の影響が小さくなるため、中央部分の変形を防ぐことができることがある。
 ここで、図6は導波管1の断面形状の一例を示す断面図である。
 図6Aは傾き角度θ=45°、θ=90°である場合の導波管1の断面図であり、図6Bは傾き角度θ=70°、θ=90°である場合の導波管1の断面図である。
 図6Aに示すように、傾き角度θ=45°の場合、導波管1で発生する各種のモードの中から、遮断周波数fcが低い方から3つのモードを列挙すると、導波管1で発生するモードは、TE10、TE20、TE01であり、断面形状が矩形の導波管で発生するモードと同様である。
 傾き角度θ>70°の場合、導波管1で発生する各種のモードのうち、遮断周波数fcが低い方から3つのモードを列挙すると、導波管1で発生するモードは、TE10、TE20、TE30となり、断面形状が矩形の導波管で発生するモードと異なる。
 ここでは、導波管1で発生するモードについて説明しているが、導波管2の断面形状が導波管1の断面形状と同じであれば、導波管2で発生するモードは、導波管1で発生するモードと同じである。
 図7は導波管1における傾き角度θと、基本モードTE10の遮断周波数fcとの関係を示す説明図である。
 図7における基本モードTE10の遮断周波数fcは、傾き角度θが変わっても導波管1における断面形状の面積が等しい条件で導出している。具体的には、θ=0°の矩形の断面形状である場合、断面形状の長手方向の寸法が12.954mm、短手方向の寸法が6.477mmの条件で導出している。
 基本モードTE10の遮断周波数fcは、図7に示すように、傾き角度θが大きいほど低くなり、傾き角度θが70°以下では、概ね、断面形状が矩形の導波管で発生する基本モードTE10の遮断周波数fcと同じになる。
 また、導波管1で発生する高次モードについても、傾き角度θが70°以下では、概ね、断面形状が矩形の導波管で発生する高次モードと同じになる。
 以上より、傾き角度は、θ≦70°であることが望ましい。
 以上で明らかなように、この実施の形態1によれば、電波の伝搬方向に直交する方向の断面の形状である第1の断面形状を構成している辺11~16のうち、第1の断面形状における天井部を構成している辺11,12が、第1の断面形状における短手方向に対して傾いているように構成したので、サポートを付加することなく、3Dプリンタを用いて製造することができる効果がある。
 また、この実施の形態1によれば、電波の伝搬方向に直交する方向の断面の形状である第2の断面形状を構成している辺31~36のうち、第2の断面形状における天井部を構成している辺31,32が、第2の断面形状における短手方向に対して傾いているように構成したので、サポートを付加することなく、3Dプリンタを用いて製造することができる効果がある。
 この実施の形態1では、導波管1の断面形状が、2軸に対して対称な6角形である例を示したが、天井部を構成している辺11,12が、短手方向に対して傾いていればよく、図8に示すように、導波管1の断面形状が、2軸に対して対称でない形状であってもよい。
 図8A及び図8Bは導波管1における断面形状の一例を示す説明図である。
 図8Aの導波管1は、底部を構成している辺13,14が、3Dプリンタの積層面Dと水平になっているため、短手方向の軸22に対して線対称な形状になっていない。
 図8Bの導波管1は、底部を構成している辺13,14が、3Dプリンタの積層面Dと水平になっており、また、天井部を構成している辺11,12が同じ方向に傾いている。このため、短手方向の軸22に対して線対称な形状になっておらず、長手方向の軸21に対して線対称な形状になっていない。
 ただし、導波管1の断面形状が、2軸に対して対称な形状でない場合、高次モードを誘発する可能性があるため、導波管1の断面形状は、2軸に対して対称な形状な方が望ましい。
 なお、導波管2についても、導波管1と同様に、断面形状が、2軸に対して対称でない形状であってもよい。
 この実施の形態1では、導波管2における天井部及び底部が、導波管1における天井部及び底部の斜面18,20と接するように延伸された繋ぎ部2a,2bを備えているものを示したが、図9及び図10に示すように、導波管2における天井部及び底部が、繋ぎ部2a,2bを備えていないものであってもよい。
 図9Aはこの発明の実施の形態1による他の導波管装置を示す斜視透過図であり、図9Bは図9AのAから導波管装置をみた側面透過図、図9Cは図9AのBから導波管装置をみた上面透過図である。
 図10Aはこの発明の実施の形態1による他の導波管装置を示す斜視透過図であり、図10Bは図10AのAから導波管装置をみた側面透過図、図10Cは図10AのBから導波管装置をみた上面透過図である。
 なお、図9の例では、繋ぎ部2a,2bを備えていないため、導波管2の上部及び下部が、導波管1の側壁と接続されていない。導波管1の側壁と接続されていない導波管2の上部及び下部に穴が開いていると電波が漏れてしまうため、導波管1の側壁と接続されていない導波管2の上部及び下部は穴が塞がれており、導波管1の側壁と接続されている導波管2の中央部だけに穴が開いている。
実施の形態2.
 上記実施の形態1では、導波管1と導波管2を備えた導波管装置を示したが、導波管1が2つ平行に並べられた状態で、複数の導波管2が、2つの導波管1を繋いでいるものであってもよい。
 図11はこの発明の実施の形態2による導波管装置を示す構成図である。
 図11Aはこの発明の実施の形態2による導波管装置を示す斜視透過図であり、図11Bは図11AのAから導波管装置をみた側面透過図である。
 また、図11Cは図1AのBから導波管装置をみた上面透過図であり、図11Dは図1AのCから導波管装置をみた側面透過図である。
 図11において、図1、図9及び図10と同一符号は同一または相当部分を示すので説明を省略する。
 入力ポート51は信号を入力するポートである。
 通過ポート52、結合ポート53及びアイソレーションポート54は信号を出力するポートである。
 図11の例では、平行に並べられている2つの導波管1に対して、5つの導波管2が、電波の基本波の周波数で4分の1波長(λ/4)の間隔で設けられている。
 この実施の形態2では、説明の便宜上、2つの導波管1を導波管1aと導波管1bで区別する。
 図11の例では、5つの導波管2が設けられているが、4つ以下、あるいは、6つ以上の導波管2が設けられていてもよい。
 また、図11の例では、5つの導波管2の間隔がλ/4の例を示しているが、5つの導波管2の間隔がλ/4に限るものではなく、λ/4より大きい間隔や小さい間隔で設けられていてもよい。
 図11の例では、2つの導波管1a,1bにおける断面形状の長手方向の寸法と、5つの導波管2における断面形状の長手方向の寸法とが異なっているが、断面形状の長手方向の寸法は、同一であってもよいし、異なっていてもよい。また、5つの導波管2の寸法や形状は、全て同一であってもよいし、互いに異なっていてもよい。したがって、5つの導波管2は、例えば、図1に示すように繋ぎ部2a,2bを有する導波管であってもよいし、図9や図10に示すように繋ぎ部2a,2bを有しない導波管であってもよい。
 図11の例では、入力ポート51から入力された信号は、導波管1a内を伝搬され、導波管2が接続されている箇所で分配される。
 導波管2が接続されている箇所で分配された一方の信号は、導波管1a内を伝搬されて、通過ポート52から出力される。
 また、導波管2が接続されている箇所で分配された他方の信号は、導波管2内を伝搬され、導波管1bと接続されている箇所で分配される。
 導波管1bと接続されている箇所で分配された一方の信号は、結合ポート53から出力され、導波管1bと接続されている箇所で分配された他方の信号は、アイソレーションポート54から出力される。
 図12は図11の導波管装置の特性を示す説明図である。
 図12Aは図11の導波管装置の通過特性及び結合特性を示し、図12Bは図11の導波管装置のアイソレーション特性及び反射特性を示している。
 図12の例では、傾き角度θ,θが45°、5つの導波管2の間隔がλ/4である場合のシミュレーション結果を示している。
 図11の導波管装置は、所望の結合度が約3dBの装置であり、図12より、良好な特性が得られていることが確認される。即ち、周波数が16.5~21.5GHzの範囲では、入力ポート51から結合ポート53への通過特性と、入力ポート51から結合ポート53への結合特性とが共に-3.1±0.4dBとなる割合が24%であることが確認される。また、反射特性が-27.5dB以下であることが確認される。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明は、電波を伝搬する導波管装置に適している。
 1,1a,1b 導波管(第1の導波管)、2 導波管(第2の導波管)、2a,2b 繋ぎ部、11,12 天井部を構成している辺、13,14 底部を構成している辺、15,16 辺、17~20 斜面、21 長手方向の軸、22 短手方向の軸、23 水平方向、31,32 天井部を構成している辺、33,34 底部を構成している辺、35,36 辺、37~40 斜面、41 長手方向の軸、42 短手方向の軸、43 水平方向、51 入力ポート、52 通過ポート、53 結合ポート、54 アイソレーションポート。

Claims (11)

  1.  電波の伝搬方向に直交する方向の断面の形状である第1の断面形状を構成している複数の辺のうち、前記第1の断面形状における天井部を構成している辺が、前記第1の断面形状における短手方向に対して傾いている第1の導波管を備えた導波管装置。
  2.  前記第1の断面形状を構成している複数の辺のうち、前記第1の断面形状における底部を構成している辺が、前記短手方向に対して傾いていることを特徴とする請求項1記載の導波管装置。
  3.  前記第1の断面形状は、前記第1の断面形状における長手方向の軸を対称軸とする線対称な形状であることを特徴とする請求項1記載の導波管装置。
  4.  前記第1の断面形状は、前記第1の断面形状の重心を通る短手方向の軸を対称軸とする線対称な形状であることを特徴とする請求項1記載の導波管装置。
  5.  電波の伝搬方向に直交する方向の断面の形状である第2の断面形状を構成している複数の辺のうち、前記第2の断面形状における天井部を構成している辺が、前記第2の断面形状における短手方向に対して傾いている第2の導波管を備え、
     前記第2の導波管は、前記第1の導波管から分岐されている分岐導波管であることを特徴とする請求項1記載の導波管装置。
  6.  前記第2の断面形状を構成している複数の辺のうち、前記第2の断面形状における底部を構成している辺が、前記第2の断面形状における短手方向に対して傾いていることを特徴とする請求項5記載の導波管装置。
  7.  前記第2の断面形状は、前記第2の断面形状における長手方向の軸を対称軸とする線対称な形状であることを特徴とする請求項5記載の導波管装置。
  8.  前記第2の断面形状は、前記第2の断面形状の重心を通る短手方向の軸を対称軸とする線対称な形状であることを特徴とする請求項5記載の導波管装置。
  9.  前記第2の導波管における天井部及び底部は、前記第1の導波管における天井部及び底部の斜面と接するように延伸された繋ぎ部を有していることを特徴とする請求項5記載の導波管装置。
  10.  前記第1の断面形状における長手方向の寸法と、前記第2の断面形状における長手方向の寸法とが異なっていることを特徴とする請求項5記載の導波管装置。
  11.  電波の伝搬方向に直交する方向の断面の形状である第2の断面形状を構成している複数の辺のうち、前記第2の断面形状における天井部を構成している辺が、前記第2の断面形状における短手方向に対して傾いている第2の導波管を備え、
     前記第2の導波管は、前記第1の導波管が2つ平行に並べられた状態で、前記2つの第1の導波管を繋ぐ導波管であり、
     前記第2の導波管が複数設けられていることを特徴とする請求項1記載の導波管装置。
PCT/JP2016/065184 2016-05-23 2016-05-23 導波管装置 WO2017203568A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016556330A JPWO2017203568A1 (ja) 2016-05-23 2016-05-23 導波管装置の製造方法
PCT/JP2016/065184 WO2017203568A1 (ja) 2016-05-23 2016-05-23 導波管装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065184 WO2017203568A1 (ja) 2016-05-23 2016-05-23 導波管装置

Publications (1)

Publication Number Publication Date
WO2017203568A1 true WO2017203568A1 (ja) 2017-11-30

Family

ID=60411722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065184 WO2017203568A1 (ja) 2016-05-23 2016-05-23 導波管装置

Country Status (2)

Country Link
JP (1) JPWO2017203568A1 (ja)
WO (1) WO2017203568A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3087954A1 (fr) * 2018-10-31 2020-05-01 Thales Guide d'onde obtenu par fabrication additive
WO2020102543A1 (en) 2018-11-14 2020-05-22 Optisys, LLC Hollow metal waveguides having irregular hexagonal cross-sections and methods of fabricating same
WO2020106774A1 (en) 2018-11-19 2020-05-28 Optisys, LLC Irregular hexagon cross-sectioned hollow metal waveguide filters
WO2020208595A1 (fr) * 2019-04-11 2020-10-15 Swissto12 Sa Dispositif à guide d'ondes et procédé de fabrication de ce dispositif
WO2021024389A1 (ja) * 2019-08-06 2021-02-11 三菱電機株式会社 導波管回路、及び導波管回路の製造方法
US11128034B2 (en) 2018-03-02 2021-09-21 Optisys, LLC Mass customization of antenna assemblies using metal additive manufacturing
WO2022091283A1 (ja) * 2020-10-29 2022-05-05 三菱電機株式会社 ブランチラインカプラ
WO2022137185A1 (fr) * 2020-12-24 2022-06-30 Swissto12 Sa Réseau d'antennes à fentes
US11381006B2 (en) 2017-12-20 2022-07-05 Optisys, Inc. Integrated tracking antenna array
WO2023129325A1 (en) * 2021-12-30 2023-07-06 Raytheon Company Waveguide components of waveguides formed with additive manufacturing
EP3664216B1 (de) * 2018-12-05 2023-11-15 Airbus Defence and Space GmbH Asymmetrischer hohlleiter
WO2023233352A1 (fr) * 2022-06-02 2023-12-07 Swissto12 Sa Filtre à guide d'ondes en peigne à résonateurs omnidirectionnels
US11996600B2 (en) 2018-11-14 2024-05-28 Optisys, Inc. Hollow metal waveguides having irregular hexagonal cross sections with specified interior angles
US12003011B2 (en) 2022-07-05 2024-06-04 Optisys, Inc. Integrated tracking antenna array

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202604A (ja) * 1986-03-03 1987-09-07 Nippon Telegr & Teleph Corp <Ntt> 導波管型方向性結合器
JP2013232742A (ja) * 2012-04-27 2013-11-14 Yazaki Corp 分岐部材及びこれを用いた車載用通信システム
JP2015188146A (ja) * 2014-03-26 2015-10-29 日東電工株式会社 導波管およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691950B (zh) * 2013-12-20 2015-11-18 西北工业大学 微小铝合金波导件的3d打印方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202604A (ja) * 1986-03-03 1987-09-07 Nippon Telegr & Teleph Corp <Ntt> 導波管型方向性結合器
JP2013232742A (ja) * 2012-04-27 2013-11-14 Yazaki Corp 分岐部材及びこれを用いた車載用通信システム
JP2015188146A (ja) * 2014-03-26 2015-10-29 日東電工株式会社 導波管およびその製造方法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11784384B2 (en) 2017-12-20 2023-10-10 Optisys, LLC Integrated tracking antenna array combiner network
US11482793B2 (en) 2017-12-20 2022-10-25 Optisys, Inc. Integrated tracking antenna array
US11381006B2 (en) 2017-12-20 2022-07-05 Optisys, Inc. Integrated tracking antenna array
US11128034B2 (en) 2018-03-02 2021-09-21 Optisys, LLC Mass customization of antenna assemblies using metal additive manufacturing
FR3087954A1 (fr) * 2018-10-31 2020-05-01 Thales Guide d'onde obtenu par fabrication additive
EP3881391A4 (en) * 2018-11-14 2022-07-27 Optisys, LLC HOLLOW METALLIC WAVEGUIDES HAVING IRREGULAR HEXAGONAL CROSS-SECTIONS AND METHODS OF MAKING THEM
US11996600B2 (en) 2018-11-14 2024-05-28 Optisys, Inc. Hollow metal waveguides having irregular hexagonal cross sections with specified interior angles
US11211680B2 (en) 2018-11-14 2021-12-28 Optisys, LLC Hollow metal waveguides having irregular hexagonal cross-sections formed by additive manufacturing
WO2020102543A1 (en) 2018-11-14 2020-05-22 Optisys, LLC Hollow metal waveguides having irregular hexagonal cross-sections and methods of fabricating same
EP3884541A4 (en) * 2018-11-19 2022-08-24 Optisys, LLC IRREGULAR HEXAGONAL CROSS-SECTION HOLLOW METALLIC WAVEGUIDE FILTERS
WO2020106774A1 (en) 2018-11-19 2020-05-28 Optisys, LLC Irregular hexagon cross-sectioned hollow metal waveguide filters
US11233304B2 (en) 2018-11-19 2022-01-25 Optisys, LLC Irregular hexagon cross-sectioned hollow metal waveguide filters
EP3664216B1 (de) * 2018-12-05 2023-11-15 Airbus Defence and Space GmbH Asymmetrischer hohlleiter
WO2020208595A1 (fr) * 2019-04-11 2020-10-15 Swissto12 Sa Dispositif à guide d'ondes et procédé de fabrication de ce dispositif
US11923591B2 (en) 2019-04-11 2024-03-05 Swissto12 Sa Waveguide device and method of manufacturing this device
US11923592B2 (en) 2019-04-11 2024-03-05 Swissto12 Sa Waveguide device and method of manufacturing this device
JPWO2021024389A1 (ja) * 2019-08-06 2021-10-21 三菱電機株式会社 導波管回路、及び導波管回路の製造方法
WO2021024389A1 (ja) * 2019-08-06 2021-02-11 三菱電機株式会社 導波管回路、及び導波管回路の製造方法
JPWO2022091283A1 (ja) * 2020-10-29 2022-05-05
WO2022091283A1 (ja) * 2020-10-29 2022-05-05 三菱電機株式会社 ブランチラインカプラ
JP7199615B2 (ja) 2020-10-29 2023-01-05 三菱電機株式会社 ブランチラインカプラ
WO2022137185A1 (fr) * 2020-12-24 2022-06-30 Swissto12 Sa Réseau d'antennes à fentes
FR3118538A1 (fr) * 2020-12-24 2022-07-01 Swissto12 Sa Réseau d’antennes à fentes
WO2023129325A1 (en) * 2021-12-30 2023-07-06 Raytheon Company Waveguide components of waveguides formed with additive manufacturing
US12009596B2 (en) 2022-05-16 2024-06-11 Optisys, Inc. Planar monolithic combiner and multiplexer for antenna arrays
CH719745A1 (fr) * 2022-06-02 2023-12-15 Swissto12 Sa Filtre à guide d'ondes en peigne à résonateurs omnidirectionnels.
WO2023233352A1 (fr) * 2022-06-02 2023-12-07 Swissto12 Sa Filtre à guide d'ondes en peigne à résonateurs omnidirectionnels
US12003011B2 (en) 2022-07-05 2024-06-04 Optisys, Inc. Integrated tracking antenna array

Also Published As

Publication number Publication date
JPWO2017203568A1 (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2017203568A1 (ja) 導波管装置
US11495871B2 (en) Waveguide device having multiple layers, where through going empty holes are in each layer and are offset in adjoining layers for leakage suppression
JP4154535B2 (ja) ツイスト導波管および無線装置
CN107293283B (zh) 一种声学超表面和声波聚焦装置
WO2008069358A1 (en) Horn array type antenna for dual linear polarization
US20180131067A1 (en) Antenna formed from plates and methods useful in conjunction therewith
JPWO2009004729A1 (ja) 伝送線路変換器
US10164307B2 (en) Waveguide bend formed in a metal block and coupled to a board unit to form a wireless device
JP5566169B2 (ja) アンテナ装置
JP2013110456A (ja) 偏分波器
JP2010028381A (ja) 有極型帯域通過フィルタ
US11271279B2 (en) Dual-mode resonator, filter, and radio frequency unit
JP3891996B2 (ja) 導波管型導波路および高周波モジュール
JP2010087651A (ja) 導波管・ストリップ線路変換器
JPH10126118A (ja) ショートスロット型方向性結合器
JP2009225098A (ja) 導波管結合器
JP7252053B2 (ja) 導波管型分配合成器
JP4687731B2 (ja) 高周波装置
JP2016144113A (ja) 二層ショートスロット結合器、バトラーマトリクス給電回路およびフェイズドアレーアンテナ
JP2010166226A (ja) Tm01モード結合器
JP2009296491A (ja) 導波管接続構造及び半導体装置
JP3013798B2 (ja) 交差線路
CN107016989B (zh) 一种声波透射隔离器
JP2004221718A (ja) 導波管変換器
CN112421196B (zh) 脊间隙波导毫米波交叉过桥结构器件及中心结构模块

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016556330

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903050

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16903050

Country of ref document: EP

Kind code of ref document: A1