WO2017202262A1 - 一种并列型复合纤维 - Google Patents

一种并列型复合纤维 Download PDF

Info

Publication number
WO2017202262A1
WO2017202262A1 PCT/CN2017/085260 CN2017085260W WO2017202262A1 WO 2017202262 A1 WO2017202262 A1 WO 2017202262A1 CN 2017085260 W CN2017085260 W CN 2017085260W WO 2017202262 A1 WO2017202262 A1 WO 2017202262A1
Authority
WO
WIPO (PCT)
Prior art keywords
intrinsic viscosity
spinning
polybutylene terephthalate
fiber
temperature
Prior art date
Application number
PCT/CN2017/085260
Other languages
English (en)
French (fr)
Inventor
范志恒
於朝来
赵锁林
季亚娟
吉宫隆之
Original Assignee
东丽纤维研究所(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610340779.0A external-priority patent/CN107419363A/zh
Priority claimed from CN201610773951.1A external-priority patent/CN107779987A/zh
Application filed by 东丽纤维研究所(中国)有限公司 filed Critical 东丽纤维研究所(中国)有限公司
Priority to JP2018561026A priority Critical patent/JP7043424B2/ja
Priority to CN201780003396.7A priority patent/CN108138379B/zh
Publication of WO2017202262A1 publication Critical patent/WO2017202262A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/32Side-by-side structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent

Definitions

  • the present invention relates to a flexible, side-by-side type composite fiber, and more particularly to a bicomponent elastic fiber containing polybutylene terephthalate.
  • the side-by-side composite fiber is the earliest developed, relatively large-volume, and important composite fiber variety.
  • composite fiber mainly wanted to use chemical fiber to simulate the curling elasticity of natural wool.
  • the cross section of wool differs from other natural fibers in that it consists of two semi-circular, positive and secondary cortically bonded together.
  • the nature and arrangement of the various structural units (microfiber crystalline regions and disordered regions, etc.) of the two parts are different.
  • the secondary cortical contraction is slightly smaller than the positive cortex, thus causing the core to curl around each other or twisting away from each other in the axial direction of the fiber.
  • the side-by-side composite fiber with high natural curl and bulkiness was developed under the imitation of wool keratin fibers.
  • the composite fiber is prepared by: two polymers having different thermal expansion or contraction or wet expansion and contraction, like the two kinds of leather of the sheepskin, are juxtaposed into a single fiber, which is shrunk by heating, so that A spiral three-dimensional curl can be obtained. Since this curl is derived from the intrinsic properties of the fiber, it is different from the curl deformation of the general fiber by externally applying heat and mechanical action, and such curl is permanent.
  • this kind of juxtaposed elastic fiber Since the beginning of the 21st century, this kind of juxtaposed elastic fiber has received more and more attention, and it has gradually occupied a pivotal position in the field of chemical fiber. It has self-crimping properties and can produce a helical three-dimensional crimp based on the different shrinkage of the two components in the composite fiber.
  • the advantage is that the bulkiness is large, the elasticity and the recovery property are good, and the hand feel is excellent.
  • Chinese application CN1962968A discloses a preparation method and application of a PBT/PET three-dimensional crimped fiber, which adopts a PBT polybutylene terephthalate slice having an intrinsic viscosity of 1.00 dl/g and a PET polycondensation having an intrinsic viscosity of 0.64 dl/g.
  • Ethylene terephthalate chips are used as raw materials, PBT is melted at a low temperature and extruded at a high temperature, and PET is extruded at a high temperature and low temperature.
  • the side-by-side composite assembly is used to obtain a parallel fiber winding wire. The wound wire is balanced, bundled, and immersed in oil bath.
  • Chinese patent CN101851812A discloses a side-by-side composite fiber formed of polybutylene terephthalate and polyethylene terephthalate, and the intrinsic viscosity difference between the two is 0.40 to 1.05 dl/g.
  • Elastic fibers having an elastic elongation of 130 to 220% and an elastic recovery of 85% or more are obtained by a separator type parallel spinneret extrusion molding and a hot needle extension false twisting process.
  • the so-called external false twist the obtained elastic elastic fiber has a relatively high elongation, so that the fabric is prone to wrinkle deformation after stretching, although A high elastic recovery rate can be properly restored, but it affects its appearance and limits its use.
  • Chinese patent CN1854355A discloses a side-by-side type composite fiber in which a cationic dye-dyeable copolyester component and a polyethylene terephthalate component are juxtaposed, but the cationic dye in the fiber can dye the copolyester component and The intrinsic viscosity of the polyethylene terephthalate component is not much different, and the difference in viscosity is only 0.02 to 0.10, and the fiber does not have good shrinkage.
  • the object of the present invention is to provide a two-component elastic fiber with moderate elasticity and good elastic recovery rate and a preparation method thereof.
  • a side-by-side type composite fiber comprising polybutylene terephthalate having an intrinsic viscosity of 1.00 to 2.00 dl/g and polyester having an intrinsic viscosity of 0.45 to 0.65 dl/g of 70:30 to 30:70
  • the weight ratio is prepared by the side-by-side composite spinning and the false twisting process; wherein The intrinsic viscosity difference between the polybutylene terephthalate and the polyester is from 0.35 to 1.55 dl/g, and the elastic elongation of the fiber is from 20 to 129%, and the elastic recovery is 65% or more.
  • the polyester is polyethylene terephthalate, and the polybutylene terephthalate has an intrinsic viscosity of 1.00 to 1.80 dl/g; the side-by-side composite fiber The monofilament fineness is 0.45 to 7.00 dtex.
  • the polyester is a cationic dye-dyeable copolyester
  • the polybutylene terephthalate has an intrinsic viscosity of 1.00 to 1.50 dl/g
  • the dyed copolyester contains a structural unit formed of isophthalic acid or a derivative thereof having a sodium sulfonate group, and the structural unit accounts for 0.20 to 1.00% by weight of the cationic dye-dyeable copolyester
  • the isophthalic acid having a sodium sulfonate group or a derivative thereof is sodium isophthalate-5-sulfonate, sodium dimethyl isophthalate-5-sulfonate or ethylene isophthalate Alcohol ester-5-sulfonic acid sodium;
  • the fiber has a color development L value of 16.0 or less after cationic dyeing.
  • the difference in intrinsic viscosity between the polybutylene terephthalate and the polyester is preferably 0.4 to 1.05 dl/g.
  • the invention has the advantages that the conventional polybutylene terephthalate fiber has a limited application range due to the high price of the slice, and the elastic elongation of the single-component polybutylene terephthalate fiber is high.
  • the elastic recovery rate is poor.
  • the use of polybutylene terephthalate in combination with polyester to produce an elastic fiber reduces the cost of the fiber raw material and improves the elastic recovery rate while ensuring a moderate elastic elongation.
  • the crimped yarn is processed by false twisting, one is the natural curl caused by the difference of the two components, which is determined by the fiber structure, and thus is permanent; the second is that the false twisting process gives the fiber physical reinforcement, so that it can obtain more than the stretched yarn. Good elasticity.
  • the elastic fiber produced by the present technology has an elastic elongation of 20 to 129% and an elastic recovery ratio of 65% or more.
  • Fig. 1 is a view showing a circular cross-sectional shape of a side-by-side composite elastic fiber of the present invention.
  • Fig. 2 is a cross-sectional view showing the shape of a double-necked peanut of the side-by-side composite elastic fiber of the present invention.
  • the side-by-side type composite fiber of the present invention comprises polybutylene terephthalate (PBT) having an intrinsic viscosity of 1.00 to 2.00 dl/g and polyester having an intrinsic viscosity of 0.45 to 0.65 dl/g at 70:30.
  • PBT polybutylene terephthalate
  • the weight ratio of ⁇ 30:70 is prepared by side-by-side composite spinning, and the intrinsic viscosity difference between polybutylene terephthalate and polyester is 0.35 to 1.55 dl/g, and the fiber is
  • the elastic elongation is 20 to 129%, and the elastic recovery rate is 65% or more.
  • the polyester has an intrinsic viscosity of 0.45 to 0.65 dl/g because if a polyester having an intrinsic viscosity is combined with polybutylene terephthalate, a side-by-side fiber obtained by melt-knit spinning and The elastic elongation of the fabric obtained by the fiber is poor. If the polyester with low intrinsic viscosity is combined with polybutylene terephthalate, the performance of the parallel fiber obtained by the composite spinning is not improved, and the cost is increased. Spinning properties deteriorate.
  • the polyesters mentioned in this patent include polyethylene terephthalate (PET), polytrimethylene terephthalate (PPT), polybutylene terephthalate (PBT) and their modification. Copolyester.
  • the modified copolymer may be cationic polyethylene terephthalate, flame retardant polyethylene terephthalate, fully matt polyterephthalic acid.
  • Polybutylene terephthalate having an intrinsic viscosity difference from polyester of 0.35 to 1.55 dl/g is selected because the difference in intrinsic viscosity is less than 0.35 dl/g, the fiber elasticity is not significant; the difference in intrinsic viscosity is increased.
  • the intrinsic viscosity difference is preferably 0.35 to 1.55 dl/g, and preferably the intrinsic viscosity difference is 0.40 to 1.05 dl/g.
  • the polybutylene terephthalate used in the present invention has an intrinsic viscosity in the range of 1.00 to 2.00 dl/g. If the intrinsic viscosity of polybutylene terephthalate is more than 2.00 dl/g, it will cause difficulty in melt composite spinning, and the cost of slicing will increase; the intrinsic viscosity of polybutylene terephthalate is less than 1.00 dl/g. In this case, the physical properties of the fiber are affected, and the elasticity of the resulting side-by-side type composite fiber is not remarkable.
  • the polybutylene terephthalate comprises polybutylene terephthalate and copolyesters thereof, such as cationic dyeable polyterephthalic acid. Butylene glycol ester and the like.
  • the weight ratio of polybutylene terephthalate to polyester is selected to be 70:30 to 30:70.
  • the elastic fiber of the present invention has an elastic elongation of 20 to 129% and an elastic recovery ratio of 65% or more from the viewpoint of moderate elasticity.
  • the cross-sectional shape of the elastic fiber of the present invention may be a round shape, a double-nut shape, or the like. Since it is a false twisted processed fiber, it is preferable that the cross-sectional shape is a circular shape.
  • the spinneret of the present invention is a separator type or a rear combined type composite spinneret, a separator type composite spinneret and a separator design by a spinneret hole, and the two-component polymer is bonded after the spinneret hole. It is preferable that the orifice bending effect is lowered, the spinnability is improved, and the fiber cross-sectional shape is circular, and the elasticity and the recovery property are good.
  • the cross-sectional shape of the obtained fiber is a double-nut shape.
  • the diaphragm type composite spinneret is expensive to manufacture, and the cost-combined composite spinneret is better.
  • the polybutylene terephthalate having an intrinsic viscosity of 1.00 to 2.00 dl/g, the polyester intrinsic viscosity of 0.45 to 0.65 dl/g, and the difference in viscosity of the polybutylene terephthalate to the polyester of 0.35 are satisfied. ⁇ 1.55 dl/g, when the weight ratio of polybutylene terephthalate to polyester is 70:30 to 30:70, the elastic elongation of the fiber is 20 to 129%, and the elastic recovery ratio is 65% or more.
  • the invention also provides two preferred technical solutions.
  • the polyester is polyethylene terephthalate, and the intrinsic viscosity of the polybutylene terephthalate is preferably in the range of 1.00 to 1.80 dl/g.
  • the viscosity of polybutylene terephthalate is too high, the spinnability is deteriorated, and a higher spinning temperature is required for spinning, which may result in deterioration of physical properties of the obtained fiber.
  • the fiber has a monofilament fineness ranging from 0.45 to 7.00 dtex, and the composite fiber in this range has a fineness of 33 dtex to 167 dtex, and the number of single fiber bundles may be from 12 to 72, which can satisfy various uses. .
  • the manufacturing method of the invention A is specifically a polyethylene terephthalate chip having an intrinsic viscosity of 0.45 to 0.65 dl/g, and a polybutylene terephthalate having an intrinsic viscosity of 1.00 to 1.80 dl/g.
  • the alcohol ester was sliced and dried to a moisture content of 100 ppm or less, respectively, and sent to A and B screws for melt extrusion, wherein the polybutylene terephthalate had a melt extrusion temperature of 245 to 285 ° C, and the lower the temperature, the elastic fiber
  • the melt extrusion temperature of polyethylene terephthalate is 275-300 ° C, and then through the metering pump, through the separator type or after the spinning box temperature of 265-295 ° C
  • the combined flow type composite spinneret is extruded and coiled at a speed of 2000-5000 m/min, and then the false twist processing temperature is 170-210 ° C, the false twist processing magnification is 1.20-2.50, and the processing speed is 300- Parallel composite elastic fibers were prepared under the conditions of 800 m/min, false twisted false twist, belt false twist or needle false twist.
  • the side-by-side type composite fiber according to the preferred aspect of the present invention has a degree of elongation of 25% or more, a breaking strength of 2.0 cN/dtex or more, an elastic elongation of 25% to 129%, and an elastic recovery ratio of 65% or more.
  • the polyester is a cationic dye-dyeable copolyester, and the intrinsic viscosity of the polybutylene terephthalate is preferably in the range of 1.00 to 1.50 dl/g.
  • the cationic dye-dyeable copolyester contains a structural unit formed of isophthalic acid having a sodium sulfonate group or a derivative thereof, and the content of the structural unit is preferably a cationic dye-dye copolymerization in terms of sulfur element
  • the ester is 0.20 to 1.00 wt%.
  • the isophthalic acid or a derivative thereof having a sodium sulfonate group preferably sodium isophthalate-5-sulfonate, sodium dimethyl isophthalate-5-sulfonate or ethylene isophthalate Sodium glycol-5-sulfonate.
  • the polyester is a cationic dye-dyeable copolyester
  • the presence of structural units formed from the isophthalic acid having a sodium sulfonate group or a derivative thereof in the polyester segment may lower the polyester Spinnability and fiber properties obtained. Therefore, it is necessary to select a polybutylene terephthalate having a suitable intrinsic viscosity and a cationic dye-dyeable copolyester side-by-side composite spinning at the time of spinning.
  • the preferred intrinsic viscosity of the present invention is Polybutylene terephthalate of 1.00 to 1.50 dl/g is excellent in spinnability and good in physical properties of the obtained fiber.
  • the manufacturing method of the technical scheme B is specifically a cationic dye-dyeable copolyester chip having an intrinsic viscosity of 0.45 to 0.65 dl/g, and an intrinsic viscosity of 1.00 to 1.50 dl/g of polybutylene terephthalate.
  • the extrusion temperature of the cationic dye-dyeable copolyester chips is 265-285 ° C, and the extrusion of polybutylene terephthalate The temperature is 245-285 ° C, and the lower the temperature, the better the elastic properties of the juxtaposed fibers; finally, under the condition of the spinning box temperature of 265-295 ° C, the metering pump measures and extrudes through the parallel-type spinneret.
  • the extension yarn can be made by a one-step method; or the pre-oriented yarn can be prepared at a speed of 2000-5000 m/min, and then subjected to false twist processing to form a side-by-side composite elastic fiber. False processing includes both internal and external drafting.
  • the parallel type composite fiber according to the preferred technical scheme B of the present invention has a degree of elongation of 25% or more, a breaking strength of 2.0 cN/dtex or more, an elastic elongation of 25% to 100%, and an elastic recovery ratio of 65% or more; After the dye is dyed, the color development L value of the fiber is 16.0 or less.
  • the obtained side-by-side type composite fiber was evaluated by the following method.
  • the spinning condition within 2 hours of spinning was evaluated by the following method, and the number of broken wires was marked as ⁇ , the number of broken wires (1 to 3 times) was marked as ⁇ , and the number of broken wires was marked as frequent (four times or more) as ⁇ , where ⁇ and ⁇ were judged to be acceptable.
  • the tensile strength product strength ⁇ (extension) 0.5
  • the strength is the stress/denier of the maximum breaking point during fiber stress-strain stretching (cN/dtex)
  • the elongation is the strain at the maximum breaking point of the fiber. (%).
  • the color tone Lab value of the fabric was measured by cationic dyeing (dye concentration relative to 5 wt% of the fabric).
  • the color developability is characterized by a hue L value. The lower the L value, the better the color development.
  • the method for measuring the elastic elongation and the elastic recovery ratio mentioned in the present specification is measured in accordance with JIS L1090-1992.
  • the bicomponent elastic fiber was prepared by melt method, and polybutylene terephthalate having an intrinsic viscosity of 1.31 dl/g and polyethylene terephthalate having an intrinsic viscosity of 0.51 dl/g were selected for composite spinning. Their intrinsic viscosity difference is 0.80 dl/g. They were respectively dried to have a water content of less than 100 ppm, and the dried polybutylene terephthalate and polyethylene terephthalate were respectively put into a No. 1 and No. 2 spinning box at a weight ratio of 50:50. The spinning temperature was set, the screw temperature of No. 1 extruder was 265 ° C; the screw temperature of No.
  • the wound pre-oriented yarn was subjected to false twisting, and the hot box temperature was 190 ° C, the false twist ratio was set to 1.85, and the elongation speed was 500 m/min.
  • the final DTY variety is 167dtex/48F with a single filament fineness of 3.48dtex.
  • Example 1 The same polymer weight ratio, spinning temperature, spinning speed, yarn type, processing method, processing temperature, and the same as in Example 1 were used. Processing ratio, processing speed, but changing the intrinsic viscosity difference between the two polymers, selecting polybutylene terephthalate having an intrinsic viscosity of 1.50 dl/g and polyethylene terephthalate having an intrinsic viscosity of 0.45 dl/g The diol esters were subjected to composite spinning, and their intrinsic viscosity difference was 1.05 dl/g. The specific values are shown in Table 1.
  • Example 1 Using the same polymer weight ratio, spinning temperature, spinning speed, yarn type, processing method, processing temperature, processing ratio, and processing speed as in Example 1, but changing the intrinsic viscosity difference of the two polymers, the intrinsic viscosity was selected.
  • Polybutylene terephthalate of 1.00 dl/g and polyethylene terephthalate having an intrinsic viscosity of 0.60 dl/g were composite-spun, and their intrinsic viscosity difference was 0.40 dl/g. The specific values are shown in Table 1.
  • the polymer having the same intrinsic viscosity as in Example 1, the spinning temperature, the spinning speed, the yarn type, the processing method, the processing temperature, the processing ratio, and the processing speed were used, but the weight ratio of the two polymers was changed.
  • the weight ratio of polybutylene terephthalate to polyethylene terephthalate was changed from 50:50 to 70:30. The specific values are shown in Table 1.
  • the polymer having the same intrinsic viscosity as in Example 1, the spinning temperature, the spinning speed, the yarn type, the processing method, the processing temperature, the processing ratio, and the processing speed were used, but the weight ratio of the two polymers was changed.
  • the weight ratio of polybutylene terephthalate to polyethylene terephthalate was changed from 50:50 to 30:70. The specific values are shown in Table 2.
  • the polymer having the same intrinsic viscosity as in Example 1, the weight ratio of the polymer, the spinning speed, the type of the original yarn, the processing method, the processing temperature, the processing ratio, the processing speed, but the spinning of the polybutylene terephthalate were changed. Wire temperature and false twist method.
  • the screw temperature of polybutylene terephthalate was lowered from 265 ° C to 245 ° C. The specific values are shown in Table 2.
  • the specific values are shown in Table 2.
  • the polymer having the same intrinsic viscosity as in Example 1, the weight ratio of the polymer, the spinning temperature, the spinning speed, the processing method, the processing temperature, the processing ratio, and the processing speed were changed, but the original yarn variety was changed to 60 dtex/72F, and the final DTY was used.
  • the variety is 33dtex/72F, and the single-filament fineness is 0.46 dtex.
  • the specific values are shown in Table 2.
  • the specific values are shown in Table 3.
  • the hot box temperature increased from 190 ° C to 210 ° C.
  • the specific values are shown in Table 3.
  • the polymer having the same intrinsic viscosity as in Example 1, the weight ratio of the polymer, the spinning temperature, the spinning speed, the type of the raw yarn, the processing method, the processing ratio, and the processing speed were used, but the combined-flow type composite spinneret was used.
  • the fiber section is double peanut. The specific values are shown in Table 3.
  • the intrinsic viscosity was selected. 1.13dl/g of polybutylene terephthalate
  • the diol ester was composite-spun with polyethylene terephthalate having an intrinsic viscosity of 0.68 dl/g, and their intrinsic viscosity difference was 0.63 dl/g.
  • Table 4 The specific values are shown in Table 4.
  • the polymer having the same intrinsic viscosity as in Example 1, the weight ratio of the polymer, the spinning temperature, the spinning speed, the type of the raw yarn, the processing temperature, the processing ratio, and the processing speed were changed, but the processing method was changed, and the hot needle was used for processing.
  • the hot box was used, and the temperature of the hot box was the same as in Example 1, and it was 190 °C.
  • the specific values are shown in Table 4.
  • Example 1 Example 2 Example 3
  • Example 4 POY variety - 300dtex-48F 300dtex-48F 300dtex-48F 300dtex-48F 300dtex-48F PBT intrinsic viscosity Dl/g 1.31 1.50 1.00 1.31 PET intrinsic viscosity Dl/g 0.51 0.45 0.60 0.51 Intrinsic viscosity difference Dl/g 0.80 1.05 0.40 0.80
  • PBT/PET mass ratio 50/50 50/50 50/50 70/30 PBT spinning temperature °C 265 265 265 265 PET spinning temperature °C 285 285 285 285 285 285
  • Example 5 Example 6
  • Example 7 Example 8 POY variety - 300dtex-48F 300dtex-48F 200dtex-48F 60dtex-72F
  • Example 10 Example 11 POY variety - 300dtex-24F 300dtex-48F 300dtex-48F PBT intrinsic viscosity Dl/g 1.31 1.31 1.31 PET intrinsic viscosity Dl/g 0.51 0.51 0.51 Intrinsic viscosity difference Dl/g 0.80 0.80 0.80 PBT/PET mass ratio - 50/50 50/50 50/50 PBT spinning temperature °C 265 265 265 PET spinning temperature °C 285 285 285 Spinning speed m/min 2500 2500 2500 DTY variety - 167dtex-24F 167dtex-48F 167dtex-48F Monofilament fineness Dtex 6.96 3.48 3.48 DTY rate - 1.85 1.85 1.85 False test - Pin type Fake Fake Hot box temperature °C 190 210 210 Processing speed m/min 500 500 500 DTY intensity cN/dtex 3.15 3.22 3.16 DTY elongation % 21.7 22.8 24.5 DTY elastic e
  • Comparative example 1 Comparative example 2 POY variety - 300dtex-48F 300dtex-48F PBT intrinsic viscosity Dl/g 1.31 1.31 PET intrinsic viscosity Dl/g 0.68 0.51 Intrinsic viscosity difference Dl/g 0.63 0.80 PBT/PET mass ratio - 50/50 50/50 PBT spinning temperature °C 265 265 PET spinning temperature °C 285 285 Spinning speed m/min 2500 2500 DTY variety - 167dtex-48F 167dtex-48F Monofilament fineness Dtex 3.48 3.48 DTY rate - 1.85 1.85 False test - Fake Fake Hot box temperature °C 190 190 Processing speed m/min 500 500 DTY intensity cN/dtex 3.23 3.35 DTY elongation % 23.4 24.1 DTY elastic elongation % 10.0 70.0 DTY elastic recovery rate % 98.0 85.0 Section shape Round Round Round
  • the side-by-side type composite fiber was prepared by melt method, and polybutylene terephthalate (PBT) having an intrinsic viscosity of 1.10 dl/g was selected to be dyed with a cationic dye having an intrinsic viscosity of 0.50 dl/g and an S element content of 0.40% by weight.
  • PBT polybutylene terephthalate
  • the polyester was subjected to composite spinning, and their intrinsic viscosity difference was dl/g of 0.60.
  • Each of them was dried to have a water content of less than 80 ppm, and the dried polybutylene terephthalate and the cationic dye-dyeable copolyester were respectively introduced into A and B screws at a weight ratio of 50:50 to be extruded.
  • the A screw temperature was 260 ° C
  • the B screw temperature was 270 ° C
  • the spinning box temperature was 275 ° C.
  • Spinning was performed using a side-by-side spinneret.
  • the winding speed was set to 2,500 m/min, and a pre-oriented yarn of a variety of 150T-24f was obtained.
  • the rolled pre-oriented yarn is subjected to false twisting processing, the temperature of the false twisting needle is 90 ° C, the temperature of the hot box is 150 ° C, the stretching ratio of the hot needle is 1.60 times, the stretching ratio of the hot box is 1.0 times, and the total stretching ratio is 1.60 times.
  • the processing speed is 500 m/min.
  • the final DTY variety is 84T-24f.
  • Polybutylene terephthalate having an intrinsic viscosity of 1.25 dl/g, a cationic dye-dyeable copolyester having an intrinsic viscosity of 0.65 dl/g, and other composite spinning as in Example 12 were selected. The specific values are shown in Table 5.
  • Polybutylene terephthalate having an intrinsic viscosity of 1.20 dl/g, a cationic dye-dyeable copolyester having an intrinsic viscosity of 0.60 dl/g, and other composite spinning as in Example 12 were selected. The specific values are shown in Table 5.
  • Polybutylene terephthalate having an intrinsic viscosity of 1.00 dl/g, a cationic dye-dyeable copolyester having an intrinsic viscosity of 0.40 dl/g, and other composite spinning as in Example 12 were selected. The specific values are shown in Table 5.
  • Polybutylene terephthalate having an intrinsic viscosity of 1.30 dl/g, a cationic dye-dyeable copolyester having an intrinsic viscosity of 0.70 dl/g, and other composite spinning as in Example 12 were selected. The specific values are shown in Table 5.
  • the side-by-side type composite fiber was prepared by melt method, and a polybutylene terephthalate having an intrinsic viscosity of 1.05 dl/g and a cationic dye-dyeable copolyester having an intrinsic viscosity of 0.60 dl/g and an S element content of 0.40% by weight were selected.
  • the composite spinning was carried out, and their intrinsic viscosity difference was dl/g of 0.45.
  • Each of them was dried to have a water content of less than 80 ppm, and the dried polybutylene terephthalate and the cationic dye-dyeable copolyester were respectively introduced into A and B screws at a weight ratio of 50:50 to be extruded.
  • the A screw temperature was 260 ° C
  • the B screw temperature was 275 ° C
  • the spinning box temperature was 280 ° C.
  • Spinning was performed using a side-by-side spinneret.
  • the winding speed was set to 2,500 m/min, and a pre-oriented yarn of a variety of 150T-24f was obtained.
  • the rolled pre-oriented yarn is subjected to false twisting processing, the temperature of the false twisting needle is 90 ° C, the temperature of the hot box is 150 ° C, the stretching ratio of the hot needle is 1.60 times, the stretching ratio of the hot box is 1.0 times, and the total stretching ratio is 1.60 times.
  • the processing speed is 500 m/min.
  • the final DTY variety is 84T-24f.
  • Polybutylene terephthalate having an intrinsic viscosity of 0.90 dl/g, a cationic dye-dyeable copolyester having an intrinsic viscosity of 0.50 dl/g, a screw temperature of 260 ° C, and a B screw of 270 ° C were selected.
  • the cabinet temperature is 270 °C.
  • Other composite spinning was carried out as in Example 15. The specific values are shown in Table 6.
  • the composite weight ratio of polybutylene terephthalate to cationic dye-dyeable copolyester was 70:30, and other composite spinning was carried out in the same manner as in Example 12. The specific values are shown in Table 7.
  • the composite weight ratio of polybutylene terephthalate to cationic dye-dyeable copolyester is 30:70, and the other is the same as in Example 12.
  • Composite spinning. The specific values are shown in Table 7.
  • the composite weight ratio of polybutylene terephthalate to cationic dye-dyeable copolyester was 80:20, and other composite spinning was carried out in the same manner as in Example 12. The specific values are shown in Table 7.
  • the composite weight ratio of polybutylene terephthalate to cationic dye-dyeable copolyester was 20:80, and other composite spinning was carried out in the same manner as in Example 12. The specific values are shown in Table 7.
  • the side-by-side type composite fiber was prepared by melt method, and a polybutylene terephthalate having an intrinsic viscosity of 1.10 dl/g and a cationic dye-dyeable copolyester having an intrinsic viscosity of 0.50 dl/g and an S element content of 0.20% by weight were selected.
  • the composite spinning was carried out, and their intrinsic viscosity difference was dl/g of 0.60.
  • Each of them was dried to have a water content of less than 80 ppm, and the dried polybutylene terephthalate and the cationic dye-dyeable copolyester were respectively introduced into A and B screws at a weight ratio of 50:50 to be extruded.
  • the A screw temperature was 260 ° C
  • the B screw temperature was 270 ° C
  • the spinning box temperature was 275 ° C.
  • Spinning was performed using a side-by-side spinneret. Set the take-up speed to 2500m/min, and get a variety of 150T-24f Oriented silk. The specific values are shown in Table 8.
  • the copolyester was dyed with a cationic dye having a S element content of 0.90% by weight, and the other was subjected to the composite spinning as in Example 20.
  • the specific values are shown in Table 8.
  • the bicomponent elastic fiber was prepared by melt method, and polybutylene terephthalate having an intrinsic viscosity of 1.8 dl/g and polyethylene terephthalate having an intrinsic viscosity of 0.51 dl/g were selected for composite spinning. Their intrinsic viscosity difference is 1.29 dl/g. They were respectively dried to have a water content of less than 100 ppm, and the dried polybutylene terephthalate and polyethylene terephthalate were respectively put into a No. 1 and No. 2 spinning box at a weight ratio of 50:50. The spinning temperature was set, the screw temperature of No. 1 extruder was 265 ° C; the screw temperature of No.
  • the wound pre-oriented yarn was subjected to false twisting, and the hot box temperature was 190 ° C, the false twist ratio was set to 1.80, and the elongation speed was 500 m/min.
  • the final DTY variety is 167dtex/48F with a single filament fineness of 3.48dtex.
  • the bicomponent elastic fiber was prepared by melt method, and polybutylene terephthalate having an intrinsic viscosity of 2.0 dl/g and polyethylene terephthalate having an intrinsic viscosity of 0.51 dl/g were selected for composite spinning. Others are as in Example 22, and the specific values are shown in Table 9.
  • the bicomponent elastic fiber was prepared by melt method, and polybutylene terephthalate having an intrinsic viscosity of 1.31 dl/g and polyethylene terephthalate having an intrinsic viscosity of 0.51 dl/g were selected for composite spinning. Their intrinsic viscosity difference is 0.80 dl/g. They were respectively dried to have a water content of less than 100 ppm, and the dried polybutylene terephthalate and polyethylene terephthalate were respectively put into a No. 1 and No. 2 spinning box at a weight ratio of 50:50. The spinning temperature was set, the screw temperature of No. 1 extruder was 265 ° C; the screw temperature of No.
  • the pre-oriented yarn of the winding is subjected to false twisting, and the temperature of the hot needle after feeding the wire roller on the false twisting machine is set to 80 ° C, the temperature of the hot box is 190 ° C, and the stretching ratio at the hot needle is set to 1.85.
  • the stretching ratio at the position was set to 1.0, the total stretching ratio was 1.85, and the stretching speed was 500 m/min.
  • the final DTY variety is 167dtex/48F with a single filament fineness of 3.48dtex.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Multicomponent Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

本发明公开了一种并列型复合纤维,该纤维由特性粘度为1.00~2.00dl/g的聚对苯二甲酸丁二醇酯与特性粘度为0.45~0.65dl/g的聚酯以70∶30~30:70的重量比进行并列复合纺丝后经假捻加工制得,其中,聚对苯二甲酸丁二醇酯与聚酯的特性粘度差为0.35~1.55dl/g,并且该纤维的弹性伸长率为20~129%,弹性回复率在65%以上。

Description

一种并列型复合纤维 技术领域
本发明涉及一种弹性好的并列型复合纤维,特别涉及一种含聚对苯二甲酸丁二醇酯的双组分弹性纤维。
背景技术
并列型复合纤维是开发最早、产量较大、比较重要的复合纤维品种,最初人们在研究、开发复合纤维时,主要想用化学纤维模拟天然羊毛的卷曲性弹性。随着人们对微观结构的不断深入,发现羊毛的横截面与其它天然纤维不同,它是由近似为两个半圆形、彼此紧密粘合在一起的正皮质和仲皮质构成的。这两部分的各种结构单元(微纤结晶区和无序区等)的性质和排列是不同的。在干燥状态仲皮质收缩比正皮质略小,因此造成沿纤维轴向互相环绕或互相扭去,而呈现螺旋状的主体卷曲。具有高度自然卷曲和膨松性的并列型复合纤维正是在羊毛类角朊纤维的仿生启示下研制成功的。这种复合纤维的制法是:将热胀缩性或湿胀缩性不同的两种聚合物,像羊皮的两种皮质那样,并列地纺成一根单纤维,通过加热使之收缩,这样就可以得到螺旋状的立体卷曲。由于这种卷曲出自纤维的内在性质,因而与一般纤维通过外部施加热和机械作用形成的卷曲形变不同,这种卷曲是永久性的。
进入21世纪以来,这种并列弹性纤维受到人们越来越多的关注,在化纤领域也逐渐占据了举足轻重的位置。它具有自卷曲性能,基于复合纤维中两组分不同的收缩性,可以产生呈螺旋状的三维卷曲。其优点是膨松度大,弹性和回复性好,手感优良。
中国申请CN1962968A公开了一种PBT/PET三维卷曲纤维的制备方法及应用,采用特性粘度为1.00dl/g的PBT聚对苯二甲酸丁二醇酯切片和特性粘度为0.64dl/g的PET聚对苯二甲酸乙二醇酯切片为原料,PBT低温熔融高温挤出,PET高温熔融低温挤出,通过并列型复合组件得到并列纤维卷绕丝,卷绕丝经平衡、集束、浸油水浴拉伸,上油、切断和松弛热定型得到PBT/PET三维卷曲纤维。通过这两种特性粘度的PBT与PET组合,经过延伸切断得到的弹性纤维,但是由于特性粘度差较小,且PET特性粘度大,纤维的潜在收缩率不高,延伸后不能获得较高的弹性伸长率及弹性回复率。
中国专利CN101851812A公开了一种由聚对苯二甲酸丁二醇酯和聚对苯二甲酸乙二醇酯形成的并列复合纤维,且两者之间的特性粘度差为0.40~1.05dl/g,通过隔板型并列喷丝板挤出成型、热针延伸假捻加工得到弹性伸长率为130~220%、弹性回复率在85%以上的弹性纤维。但由于该申请使用的是热针延伸假捻加工,即所谓的外假捻,得到的弹性弹性纤维其伸长率相对过高,从而其织物拉伸后易出现皱褶变形,虽因有较高的弹性回复率可适当回复,但影响其外观,限制了其使用范围。
中国专利CN1854355A公开了一种阳离子染料可染共聚酯组分与聚对苯二甲酸乙二醇酯组分并列复合的并列型复合纤维,但是该纤维中阳离子染料可染共聚酯组分和聚对苯二甲酸乙二醇酯组分的特性粘度相差不大,粘度差仅有0.02~0.10,纤维不具备良好的收缩性。
发明内容
本发明的目的在于提供一种弹性适中、弹性回复率好的双组分弹性纤维及其制备方法。
本发明的技术解决方案是:
一种并列型复合纤维,该纤维由特性粘度为1.00~2.00dl/g的聚对苯二甲酸丁二醇酯与特性粘度为0.45~0.65dl/g的聚酯以70∶30~30∶70的重量比进行并列复合纺丝后经假捻加工制得;其中, 聚对苯二甲酸丁二醇酯与聚酯的特性粘度差为0.35~1.55dl/g,并且该纤维的弹性伸长率为20~129%,弹性回复率在65%以上。
一种优选的技术方案为,所述的聚酯为聚对苯二甲酸乙二醇酯,所述聚对苯二甲酸丁二醇酯的特性粘度为1.00~1.80dl/g;并列型复合纤维的单丝纤度为0.45~7.00dtex。
另一种优选的技术方案为,所述的聚酯为阳离子染料可染共聚酯,所述聚对苯二甲酸丁二醇酯的特性粘度为1.00~1.50dl/g;所述阳离子染料可染共聚酯中含有由带有磺酸钠基团的间苯二甲酸或其衍生物形成的结构单元,以硫元素计该结构单元占阳离子染料可染共聚酯的0.20~1.00wt%;所述带有磺酸钠基团的间苯二甲酸或其衍生物为间苯二甲酸-5-磺酸钠、间苯二甲酸二甲酯-5-磺酸钠或间苯二甲酸乙二醇酯-5-磺酸钠;该纤维经阳离子染色之后,发色性L值在16.0以下。
所述聚对苯二甲酸丁二醇酯与聚酯的特性粘度差优选0.4~1.05dl/g。
本发明的优点是:常规聚对苯二甲酸丁二醇酯纤维由于切片价格较高,因而适用范围受到限制,而且单成分聚对苯二甲酸丁二醇酯纤维的弹性伸长率较高,但弹性回复率较差。使用聚对苯二甲酸丁二醇酯与聚酯组合来制造弹性纤维,纤维原料成本下降,在保证弹性伸长率适中的情况下,提高了弹性回复率。对卷曲丝采用假捻加工,一是两组分粘度差产生的自然卷曲,它是纤维结构决定的,因而具有永久性;二是假捻加工给纤维物理加弹,因而可以获得比延伸丝更好的弹性。通过本技术生产的弹性纤维的弹性伸长率为20~129%,弹性回复率在65%以上。
附图说明
图1是本发明并列复合型弹性纤维的圆形截面形状图。
图2是本发明并列复合型弹性纤维的双仁花生形截面形状图。
具体实施方式
本发明的并列型复合纤维,该纤维由特性粘度为1.00~2.00dl/g的聚对苯二甲酸丁二醇酯(PBT)与特性粘度为0.45~0.65dl/g的聚酯以70∶30~30∶70的重量比进行并列复合纺丝后经假捻加工制得;其中,聚对苯二甲酸丁二醇酯与聚酯的特性粘度差为0.35~1.55dl/g,并且该纤维的弹性伸长率为20~129%,弹性回复率在65%以上。
选用聚酯的特性粘度为0.45~0.65dl/g,这是因为如果采用特性粘度过高的聚酯与聚对苯二甲酸丁二醇酯组合,经熔融复合纺丝得到的并列纤维及由该纤维得到的织物弹性伸长率较差,如果采用特性粘度过低的聚酯与聚对苯二甲酸丁二醇酯组合,则通过复合纺丝得到的并列纤维性能提升不高,且成本提高,纺丝性变差。本专利所提及的聚酯包括聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丙二醇酯(PPT)、聚对苯二甲酸丁二醇酯(PBT)以及它们的改性共聚酯。以聚对苯二甲酸乙二醇酯举例,它的改性共聚物可以是阳离子聚对苯二甲酸乙二醇酯、难燃聚对苯二甲酸乙二醇酯、全消光聚对苯二甲酸乙二醇酯等公知的添加了共聚成分改性或者共混改性的聚对苯二甲酸乙二醇酯。
选用与聚酯的特性粘度差为0.35~1.55dl/g的聚对苯二甲酸丁二醇酯,这是因为特性粘度差低于0.35dl/g,则纤维弹性不明显;特性粘度差增大,则弹性性能提高,当粘度差高于1.55dl/g之后,弹性性能提高程度降低,且高粘度差会导致纺丝性变差,喷丝板孔口弯曲效应变大,纺丝困难,因此选择特性粘度差为0.35~1.55dl/g较合适,优选特性粘度差为0.40~1.05dl/g。
本发明采用的聚对苯二甲酸丁二醇酯的特性粘度范围为1.00~2.00dl/g。聚对苯二甲酸丁二醇酯的特性粘度大于2.00dl/g的话,会导致熔融复合纺丝困难,且切片成本会增加;聚对苯二甲酸丁二醇酯的特性粘度小于1.00dl/g的话,则会影响纤维物性,所得并列型复合纤维的弹性也不明显。所述的聚对苯二甲酸丁二醇酯包括聚对苯二甲酸丁二醇酯及其共聚酯,如阳离子可染型聚对苯二甲酸 丁二醇酯等。
为了考虑本发明并列型复合纤维的成本以及弹性性能,选择聚对苯二甲酸丁二醇酯与聚酯的重量比例为70:30~30:70。
从弹性适中的角度考虑,本发明的弹性纤维的弹性伸长率为20~129%,弹性回复率在65%以上。
本发明的弹性纤维截面形状可以为圆形、双仁花生形等。因为是假捻加工纤维,所以优选截面形状为圆形。本发明的喷丝板为隔板型或后合流型复合喷丝板,隔板型复合喷丝板且因喷丝孔带有隔板设计,两组分聚合物在喷丝孔后粘结,孔口弯曲效应降低,纺丝性提高,且其纤维截面形状为圆形,弹性及回复性好,因而优选。后合流型复合喷丝板,所得到的纤维截面形状为双仁花生形。相对于后合流型复合喷丝板,隔板型复合喷丝板的制造价格要贵,成本方面后合流型复合喷丝板要好。
在满足本发明上述聚对苯二甲酸丁二醇酯特性粘度1.00~2.00dl/g、聚酯特性粘度0.45~0.65dl/g、聚对苯二甲酸丁二醇酯与聚酯的粘度差0.35~1.55dl/g、聚对苯二甲酸丁二醇酯与聚酯的重量比70∶30~30∶70、纤维的弹性伸长率20~129%、弹性回复率65%以上的情况下,本发明还提供两个优选的技术方案。
优选技术方案A:
所述聚酯为聚对苯二甲酸乙二醇酯,此时所述聚对苯二甲酸丁二醇酯的特性粘度优选在1.00~1.80dl/g的范围内为宜。当聚对苯二甲酸丁二醇酯的粘度过高,可纺性变差,需要更高的纺丝温度进行纺丝,从而会导致所得纤维物性变差。
由于需求与用途的差异,优选纤维的单丝纤度范围为0.45~7.00dtex,在此范围的复合纤维,纤度由33dtex至167dtex,单束纤维根数可由12根至72根,可满足多种用途。
优选技术方案A的制造方法,具体是将特性粘度为0.45~0.65dl/g的聚对苯二甲酸乙二醇酯切片,以及特性粘度为1.00~1.80dl/g的聚对苯二甲酸丁二醇酯切片,分别干燥至水分100ppm以下,分别送入A和B螺杆熔融挤出,其中聚对苯二甲酸丁二醇酯的熔融挤出温度为245~285℃,且温度越低,弹性纤维弹性性能越好;聚对苯二甲酸乙二醇酯的熔融挤出温度为275~300℃,然后在265~295℃的纺丝箱体温度条件下,通过计量泵,经隔板型或后合流型复合喷丝板挤出成型,在速度为2000~5000m/min的条件下卷取,然后在假捻加工温度为170~210℃,假捻加工倍率为1.20~2.50,加工速度为300~800m/min,假捻盘假捻、皮带假捻或针式假捻的条件下制得并列复合型弹性纤维。
本发明优选技术方案A所述的并列型复合纤维伸度在25%以上,断裂强度在2.0cN/dtex以上,弹性伸长率为25%~129%,弹性回复率在65%以上。
优选技术方案B:
所述聚酯为阳离子染料可染共聚酯,此时所述聚对苯二甲酸丁二醇酯的特性粘度优选在1.00~1.50dl/g的范围内为宜。
所述阳离子染料可染共聚酯中含有由带有磺酸钠基团的间苯二甲酸或其衍生物形成的结构单元,该结构单元的含量优选以硫元素计占阳离子染料可染共聚酯的0.20~1.00wt%。当阳离子染料可染共聚酯中该结构单元的含量太小时,所得并列型复合纤维不具有阳离子可染性;当阳离子染料可染共聚酯中该结构单元的含量太高时,所得并列型复合纤维物性下降,实际应用差。为了使并列型复合纤维获得理想的阳离子可染特性,更优选其含量以硫元素计占阳离子染料可染共聚酯的0.25%~0.80wt%。
所述带有磺酸钠基团的间苯二甲酸或其衍生物,优选间苯二甲酸-5-磺酸钠、间苯二甲酸二甲酯-5-磺酸钠或间苯二甲酸乙二醇酯-5-磺酸钠。
当所述聚酯为阳离子染料可染共聚酯时,由于聚酯链段中由带有磺酸钠基团的间苯二甲酸或其衍生物形成的结构单元的存在,会降低聚酯的可纺性以及所得纤维物性。因此,需要在纺丝时选取合适特性粘度的聚对苯二甲酸丁二醇酯与阳离子染料可染共聚酯并列复合纺丝。本发明优选特性粘度为 1.00~1.50dl/g的聚对苯二甲酸丁二醇酯,可纺丝性优良并且所得纤维的物性良好。
优选技术方案B的制造方法,具体是将特性粘度为0.45~0.65dl/g的阳离子染料可染共聚酯切片,以及特性粘度为1.00~1.50dl/g聚对苯二甲酸丁二醇酯切片,分别干燥至水分80ppm以下;然后分别送入A和B螺杆熔融挤出,其中阳离子染料可染共聚酯切片的挤出温度为265~285℃,聚对苯二甲酸丁二醇酯的挤出温度245~285℃,且温度越低,并列纤维的弹性性能越好;最后在265~295℃的纺丝箱体温度条件下,通过计量泵计量,经过并列型喷丝板挤出成型。在制备过程中,可以通过一步法制成延伸丝;也可以先在速度为2000~5000m/min的条件下制成预取向丝,再对其进行假捻加工制成并列型复合弹性纤维。假捻加工包括内牵伸和外牵伸。
本发明优选技术方案B所述的并列型复合纤维伸度在25%以上,断裂强度在2.0cN/dtex以上,弹性伸长率为25%~100%,弹性回复率在65%以上;经阳离子染料染色后,纤维的发色性L值在16.0以下。
在本发明中,对所得到的并列型复合纤维用以下方法进行评价。
(1)纺丝性
对纺丝2小时内的纺丝情况通过下列方法进行评价,无断丝的记为○,有少量断丝(1~3次)的记为△,断丝频繁(4次以上)的记为×,其中○和△判定为合格。
(2)纤维的强度、伸度、强伸度积
按照国标GB14344进行测试,强伸度积=强度×(伸度)0.5,强度为纤维应力-应变拉伸时最大破断点的应力/纤度(cN/dtex),伸度为纤维最大破断点的应变(%)。分别取10个样品进行测试,最终结果取平均值。
(3)阳离子染料可染共聚酯中的硫元素含量测定
将6g阳离子染料可染共聚酯压成片状,用荧光X线分析装置(理学电气公司制造的X线分析装置3270型)测定它的强度,用已知金属含量的样品事先作成的检测线进行换算。
(4)发色性
将纱线织成筒编物后,经过阳离子染色加工(染料浓度相对于织物5wt%),测定织物的色调Lab值。发色性以色调L值来表征。L值越低,发色性越好。
(5)特性粘度(dl/g)
用邻氯苯酚作熔剂,10ml中溶解0.8g聚合物,25℃下用科学社制的自动粘度测定装置进行测定。
(6)弹性伸长率以及弹性回复率
本说明书中提及的弹性伸长率、弹性回复率测定方法参照JIS L1090-1992标准测定。
下面结合实施例对本发明做进一步说明。
实施例1
熔融法制备双组分弹性纤维,选取特性粘度为1.31dl/g的聚对苯二甲酸丁二醇酯与特性粘度为0.51dl/g的聚对苯二甲酸乙二醇酯进行复合纺丝,它们的特性粘度差为0.80dl/g。分别干燥,使其水分小于100ppm,将干燥后的聚对苯二甲酸丁二醇酯与聚对苯二甲酸乙二醇酯以50∶50的重量比分别投入1号/2号纺丝箱。设定纺丝温度,1号挤出机螺杆温度265℃;2号纺丝机螺杆温度285℃;纺丝箱体温度为270℃。使用并列型喷丝板进行纺出,设定卷绕速度为2500m/min,控制原丝品种300dtex/48F。
对卷绕好的预取向丝进行假捻盘假捻加工,热箱温度190℃,假捻倍率设定1.85,延伸速度500m/min。最终的DTY品种167dtex/48F,单丝纤度为3.48dtex。
测定假捻后的DTY丝强度、伸度、弹性伸长率、弹性回复率。具体数值见表1。
实施例2
采用与实施例1相同的聚合物重量比、纺丝温度、纺丝速度、原丝品种、加工方式、加工温度、 加工倍率、加工速度,但改变两种聚合物的特性粘度差,选取特性粘度为1.50dl/g的聚对苯二甲酸丁二醇酯与特性粘度为0.45dl/g的聚对苯二甲酸乙二醇酯进行复合纺丝,它们的特性粘度差为1.05dl/g。具体数值见表1。
实施例3
采用与实施例1相同的聚合物重量比、纺丝温度、纺丝速度、原丝品种、加工方式、加工温度、加工倍率、加工速度,但改变两种聚合物的特性粘度差,选取特性粘度为1.00dl/g的聚对苯二甲酸丁二醇酯与特性粘度为0.60dl/g的聚对苯二甲酸乙二醇酯进行复合纺丝,它们的特性粘度差为0.40dl/g。具体数值见表1。
实施例4
采用与实施例1相同特性粘度的聚合物、纺丝温度、纺丝速度、原丝品种、加工方式、加工温度、加工倍率、加工速度,但改变两种聚合物的重量比。聚对苯二甲酸丁二醇酯与聚对苯二甲酸乙二醇酯的重量比有50∶50变为70∶30。具体数值见表1。
实施例5
采用与实施例1相同特性粘度的聚合物、纺丝温度、纺丝速度、原丝品种、加工方式、加工温度、加工倍率、加工速度,但改变两种聚合物的重量比。聚对苯二甲酸丁二醇酯与聚对苯二甲酸乙二醇酯的重量比有50∶50变为30∶70。具体数值见表2。
实施例6
采用与实施例1相同特性粘度的聚合物、聚合物重量比、纺丝速度、原丝品种、加工方式、加工温度、加工倍率、加工速度,但改变聚对苯二甲酸丁二醇酯的纺丝温度和假捻方式。聚对苯二甲酸丁二醇酯的螺杆温度由265℃降低为245℃。具体数值见表2。
实施例7
采用与实施例1相同特性粘度的聚合物、聚合物重量比、纺丝温度、加工方式、加工温度、加工速度,但改变纺丝速度。纺丝速度由2500m/min上升为4000m/min。原丝品种相应变为200dtex/48F,倍率变为1.20,最终的DTY品种仍为167dtex/48F。具体数值见表2。
实施例8
采用与实施例1相同特性粘度的聚合物、聚合物重量比、纺丝温度、纺丝速度、加工方式、加工温度、加工倍率、加工速度,但改变原丝品种为60dtex/72F,最终的DTY品种33dtex/72F,单丝纤度为0.46dtex。具体数值见表2。
实施例9
采用与实施例1相同特性粘度的聚合物、聚合物重量比、纺丝温度、纺丝速度、加工方式、加工温度、加工倍率、加工速度,但改变假捻方式,改变原丝品种为300dtex/24F,最终的DTY品种167dtex/24F,单丝纤度为6.96dtex。具体数值见表3。
实施例10
采用与实施例1相同特性粘度的聚合物、聚合物重量比、纺丝温度、纺丝速度、原丝品种、加工方式、加工倍率、加工速度,但改变加工温度。热箱温度由190℃上升为210℃。具体数值见表3。
实施例11
采用与实施例1相同特性粘度的聚合物、聚合物重量比、纺丝温度、纺丝速度、原丝品种、加工方式、加工倍率、加工速度,但使用后合流型复合喷丝板。纤维断面为双花生仁形。具体数值见表3。
比较例1
采用与实施例1相同的聚合物重量比、纺丝温度、纺丝速度、原丝品种、加工方式、加工温度、加工倍率、加工速度,但改变两种聚合物的特性粘度差,选取特性粘度为1.31dl/g的聚对苯二甲酸丁 二醇酯与特性粘度为0.68dl/g的聚对苯二甲酸乙二醇酯进行复合纺丝,它们的特性粘度差为0.63dl/g。具体数值见表4。
比较例2
采用与实施例1相同特性粘度的聚合物、聚合物重量比、纺丝温度、纺丝速度、原丝品种、加工温度、加工倍率、加工速度,但改变加工方式,采用热针进行加工,也使用热箱,热箱温度与实施例1相同,为190℃。具体数值见表4。
表1
项目 单位 实施例1 实施例2 实施例3 实施例4
POY品种 - 300dtex-48F 300dtex-48F 300dtex-48F 300dtex-48F
PBT特性粘度 dl/g 1.31 1.50 1.00 1.31
PET特性粘度 dl/g 0.51 0.45 0.60 0.51
特性粘度差 dl/g 0.80 1.05 0.40 0.80
PBT/PET质量比 - 50/50 50/50 50/50 70/30
PBT纺丝温度 265 265 265 265
PET纺丝温度 285 285 285 285
纺丝速度 m/min 2500 2500 2500 2500
DTY品种 - 167dtex-48F 167dtex-48F 167dtex-48F 167dtex-48F
单丝纤度 dtex 3.48 3.48 3.48 3.48
DTY倍率 - 1.85 1.85 1.85 1.85
假捻方式 - 假捻盘 假捻盘 假捻盘 假捻盘
热箱温度 190 190 190 190
加工速度 m/min 500 500 500 500
DTY强度 cN/dtex 3.32 3.02 3.61 3.54
DTY伸度 22.6 20.4 21.9 19.7
DTY弹性伸长率 65.0 80.0 40.0 50.0
DTY弹性回复率 88.0 85.0 92.0 90.0
截面形状 - 圆形 圆形 圆形 圆形
表2
项目 单位 实施例5 实施例6 实施例7 实施例8
POY品种 - 300dtex-48F 300dtex-48F 200dtex-48F 60dtex-72F
PBT特性粘度 dl/g 1.31 1.31 1.31 1.31
PET特性粘度 dl/g 0.51 0.51 0.51 0.51
特性粘度差 dl/g 0.80 0.80 0.80 0.80
PBT/PET质量比 - 30/70 50/50 50/50 50/50
PBT纺丝温度 265 245 265 265
PET纺丝温度 285 285 285 285
纺丝速度 m/min 2500 2500 4000 2500
DTY品种 - 167dtex-48F 167dtex-48F 167dtex-48F 33dtex-72F
单丝纤度 dtex 3.48 3.48 3.48 0.46
DTY倍率 - 1.85 1.85 1.20 1.85
假捻方式 - 假捻盘 皮圈 假捻盘 假捻盘
热箱温度 190 190 190 190
加工速度 m/min 500 500 500 500
DTY强度 cN/dtex 3.18 3.41 3.30 3.74
DTY伸度 22.2 20.7 23.5 20.7
DTY弹性伸长率 45.0 65.0 55.0 60.0
DTY弹性回复率 91.0 87.0 92.0 85.0
截面形状   圆形 圆形 圆形 圆形
表3
项目 单位 实施例9 实施例10 实施例11
POY品种 - 300dtex-24F 300dtex-48F 300dtex-48F
PBT特性粘度 dl/g 1.31 1.31 1.31
PET特性粘度 dl/g 0.51 0.51 0.51
特性粘度差 dl/g 0.80 0.80 0.80
PBT/PET质量比 - 50/50 50/50 50/50
PBT纺丝温度 265 265 265
PET纺丝温度 285 285 285
纺丝速度 m/min 2500 2500 2500
DTY品种 - 167dtex-24F 167dtex-48F 167dtex-48F
单丝纤度 dtex 6.96 3.48 3.48
DTY倍率 - 1.85 1.85 1.85
假捻方式 - 针式 假捻盘 假捻盘
热箱温度 190 210 210
加工速度 m/min 500 500 500
DTY强度 cN/dtex 3.15 3.22 3.16
DTY伸度 21.7 22.8 24.5
DTY弹性伸长率 63.0 75.0 68.0
DTY弹性回复率 89.0 86.0 83.0
截面形状   圆形 圆形 双花生仁形
表4
项目 单位 比较例1 比较例2
POY品种 - 300dtex-48F 300dtex-48F
PBT特性粘度 dl/g 1.31 1.31
PET特性粘度 dl/g 0.68 0.51
特性粘度差 dl/g 0.63 0.80
PBT/PET质量比 - 50/50 50/50
PBT纺丝温度 265 265
PET纺丝温度 285 285
纺丝速度 m/min 2500 2500
DTY品种 - 167dtex-48F 167dtex-48F
单丝纤度 dtex 3.48 3.48
DTY倍率 - 1.85 1.85
假捻方式 - 假捻盘 假捻盘
热箱温度 190 190
加工速度 m/min 500 500
DTY强度 cN/dtex 3.23 3.35
DTY伸度 23.4 24.1
DTY弹性伸长率 10.0 70.0
DTY弹性回复率 98.0 85.0
截面形状   圆形 圆形
实施例12
熔融法制备并列型复合纤维,选取特性粘度为1.10dl/g的聚对苯二甲酸丁二醇酯(PBT)与特性粘度为0.50dl/g、S元素含量0.40wt%的阳离子染料可染共聚酯进行复合纺丝,它们特性粘度差为0.60的dl/g。分别干燥使其水分小于80ppm,将干燥后的聚对苯二甲酸丁二醇酯与阳离子染料可染共聚酯以50:50的重量比分别投入A、B螺杆进行挤出。A螺杆温度为260℃,B螺杆温度为270℃,纺丝箱体温度为275℃。使用并列型喷丝板进行纺出。设定卷取速度为2500m/min,得到品种为150T-24f的预取向丝。
将卷好的预取向丝进行假捻加工,假捻热针温度为90℃,热箱温度为150℃,热针处延伸倍率为1.60倍,热箱处延伸倍率为1.0倍,总延伸倍率为1.60倍。加工速度为500m/min。最终DTY品种为84T-24f。
测定所得到的DTY物性,具体数值见表5。
实施例13
选取特性粘度为1.25dl/g的聚对苯二甲酸丁二醇酯,特性粘度为0.65dl/g的阳离子染料可染共聚酯,其他同实施例12进行复合纺丝。具体数值见表5。
实施例14
选取特性粘度为1.20dl/g的聚对苯二甲酸丁二醇酯,特性粘度为0.60dl/g的阳离子染料可染共聚酯,其他同实施例12进行复合纺丝。具体数值见表5。
比较例3
选取特性粘度为1.00dl/g的聚对苯二甲酸丁二醇酯,特性粘度为0.40dl/g的阳离子染料可染共聚酯,其他同实施例12进行复合纺丝。具体数值见表5。
比较例4
选取特性粘度为1.30dl/g的聚对苯二甲酸丁二醇酯,特性粘度为0.70dl/g的阳离子染料可染共聚酯,其他同实施例12进行复合纺丝。具体数值见表5。
表5
Figure PCTCN2017085260-appb-000001
实施例15
熔融法制备并列型复合纤维,选取特性粘度为1.05dl/g的聚对苯二甲酸丁二醇酯与特性粘度为0.60dl/g、S元素含量为0.40wt%的阳离子染料可染共聚酯进行复合纺丝,它们特性粘度差为0.45的dl/g。分别干燥使其水分小于80ppm,将干燥后的聚对苯二甲酸丁二醇酯与阳离子染料可染共聚酯以50:50的重量比分别投入A、B螺杆进行挤出。A螺杆温度为260℃,B螺杆温度为275℃,纺丝箱体温度为280℃。使用并列型喷丝板进行纺出。设定卷取速度为2500m/min,得到品种为150T-24f的预取向丝。
将卷好的预取向丝进行假捻加工,假捻热针温度为90℃,热箱温度为150℃,热针处延伸倍率为1.60倍,热箱处延伸倍率为1.0倍,总延伸倍率为1.60倍。加工速度为500m/min。最终DTY品种为84T-24f。
测定所得到的DTY物性,具体数值见表6。
实施例16
选取特性粘度为1.30dl/g的聚对苯二甲酸丁二醇酯,特性粘度为0.50dl/g的阳离子染料可染共聚酯,A螺杆温度为280℃,B螺杆为270℃,纺丝箱体温度为280℃。其他同实施例15进行复合纺丝。具体数值见表6。
实施例17
选取特性粘度为1.55dl/g的聚对苯二甲酸丁二醇酯,特性粘度为0.45dl/g的阳离子染料可染共聚酯,A螺杆温度为285℃,B螺杆为270℃,纺丝箱体温度为285℃。其他同实施例15进行复合纺丝。具体数值见表6。
比较例5
选取特性粘度为0.90dl/g的聚对苯二甲酸丁二醇酯,特性粘度为0.50dl/g的阳离子染料可染共聚酯,A螺杆温度为260℃,B螺杆为270℃,纺丝箱体温度为270℃。其他同实施例15进行复合纺丝。具体数值见表6。
表6
Figure PCTCN2017085260-appb-000002
实施例18
聚对苯二甲酸丁二醇酯与阳离子染料可染共聚酯的复合重量比为70:30,其他同实施例12进行复合纺丝。具体数值见表7。
实施例19
聚对苯二甲酸丁二醇酯与阳离子染料可染共聚酯的复合重量比为30:70,其他同实施例12进行 复合纺丝。具体数值见表7。
比较例6
聚对苯二甲酸丁二醇酯与阳离子染料可染共聚酯的复合重量比为80:20,其他同实施例12进行复合纺丝。具体数值见表7。
比较例7
聚对苯二甲酸丁二醇酯与阳离子染料可染共聚酯的复合重量比为20:80,其他同实施例12进行复合纺丝。具体数值见表7。
表7
Figure PCTCN2017085260-appb-000003
实施例20
熔融法制备并列型复合纤维,选取特性粘度为1.10dl/g的聚对苯二甲酸丁二醇酯与特性粘度为0.50dl/g、S元素含量为0.20wt%的阳离子染料可染共聚酯进行复合纺丝,它们特性粘度差为0.60的dl/g。分别干燥使其水分小于80ppm,将干燥后的聚对苯二甲酸丁二醇酯与阳离子染料可染共聚酯以50:50的重量比分别投入A、B螺杆进行挤出。A螺杆温度为260℃,B螺杆温度为270℃,纺丝箱体温度为275℃。使用并列型喷丝板进行纺出。设定卷取速度为2500m/min,得到品种为150T-24f的预 取向丝。具体数值见表8。
实施例21
选用S元素含量为0.90wt%的阳离子染料可染共聚酯,其他同实施例20进行复合纺丝。具体数值见表8。
表8
Figure PCTCN2017085260-appb-000004
实施例22
熔融法制备双组分弹性纤维,选取特性粘度为1.8dl/g的聚对苯二甲酸丁二醇酯与特性粘度为0.51dl/g的聚对苯二甲酸乙二醇酯进行复合纺丝,它们的特性粘度差为1.29dl/g。分别干燥,使其水分小于100ppm,将干燥后的聚对苯二甲酸丁二醇酯与聚对苯二甲酸乙二醇酯以50∶50的重量比分别投入1号/2号纺丝箱。设定纺丝温度,1号挤出机螺杆温度265℃;2号纺丝机螺杆温度285℃;纺丝箱体温度为285℃。使用并列型喷丝板进行纺出,设定卷绕速度为2500m/min,控制原丝品种300dtex/48F。
对卷绕好的预取向丝进行假捻盘假捻加工,热箱温度190℃,假捻倍率设定1.80,延伸速度500m/min。最终的DTY品种167dtex/48F,单丝纤度为3.48dtex。
测定假捻后的DTY丝强度、伸度、弹性伸长率、弹性回复率。具体数值见表9。
实施例23
熔融法制备双组分弹性纤维,选取特性粘度为2.0dl/g的聚对苯二甲酸丁二醇酯与特性粘度为0.51dl/g的聚对苯二甲酸乙二醇酯进行复合纺丝,其他如实施例22,具体数值见表9。
比较例8
融法制备双组分弹性纤维,选取特性粘度为1.31dl/g的聚对苯二甲酸丁二醇酯与特性粘度为0.51dl/g的聚对苯二甲酸乙二醇酯进行复合纺丝,它们的特性粘度差为0.80dl/g。分别干燥,使其水分小于100ppm,将干燥后的聚对苯二甲酸丁二醇酯与聚对苯二甲酸乙二醇酯以50∶50的重量比分别投入1号/2号纺丝箱。设定纺丝温度,1号挤出机螺杆温度265℃;2号纺丝机螺杆温度285℃;纺丝箱体温度为270℃。使用并列型喷丝板进行纺出,设定卷绕速度为2500m/min,控制原丝品种300dtex/48F。
对卷绕好的预取向丝进行假捻盘假捻加工,假捻机上喂丝罗拉后的热针温度设定80℃,热箱温度190℃,热针处的延伸倍率设定1.85,热箱处的延伸倍率设定1.0,总延伸倍率为1.85,延伸速度500m/min。最终的DTY品种167dtex/48F,单丝纤度为3.48dtex。
测定假捻后的DTY丝强度、伸度、弹性伸长率、弹性回复率。具体数值见表9。
表9
项目 单位 实施例22 实施例23 比较例8
POY品种 - 300dtex-48F 300dtex-48F 300dtex-48F
PBT特性粘度 dl/g 1.80 2.00 1.31
PET特性粘度 dl/g 0.51 0.51 0.51
特性粘度差 dl/g 1.29 1.49 0.80
PBT/PET质量比 - 50/50 50/50 50/50
PBT纺丝温度 265 265 265
PET纺丝温度 285 285 285
纺丝速度 m/min 2500 2500 2500
DTY品种 - 167dtex-48F 167dtex-48F 167dtex-48F
单丝纤度 dtex 3.48 3.48 3.48
DTY倍率(热针/热箱) - 1.85 1.85 1.85/1.0
假捻方式 - 假捻盘 假捻盘 外牵伸
热针/热箱温度 无/190 无/190 80/190
加工速度 m/min 500 500 500
DTY强度 cN/dtex 3.45 3.60 3.30
DTY伸度 21.0 20.4 22.6
DTY弹性伸长率 120 129 187.5
DTY弹性回复率 90.0 93.0 90.2
截面形状 - 圆形 圆形 圆形

Claims (8)

  1. 一种并列型复合纤维,其特征在于:该纤维由特性粘度为1.00~2.00dl/g的聚对苯二甲酸丁二醇酯与特性粘度为0.45~0.65dl/g的聚酯以70∶30~30∶70的重量比进行并列复合纺丝后经假捻加工制得;其中,聚对苯二甲酸丁二醇酯与聚酯的特性粘度差为0.35~1.55dl/g,并且该纤维的弹性伸长率为20~129%,弹性回复率在65%以上。
  2. 根据权利要求1所述的并列型复合纤维,其特征在于:所述聚酯为聚对苯二甲酸乙二醇酯,所述聚对苯二甲酸丁二醇酯的特性粘度为1.00~1.80dl/g。
  3. 根据权利要求2所述的并列型复合纤维,其特征在于:该纤维的单丝纤度为0.45~7.00dtex。
  4. 根据权利要求1所述的并列型复合纤维,其特征在于:所述聚酯为阳离子染料可染共聚酯,所述聚对苯二甲酸丁二醇酯的特性粘度为1.00~1.50dl/g。
  5. 根据权利要求4所述的并列型复合纤维,其特征在于:所述阳离子染料可染共聚酯中含有由带有磺酸钠基团的间苯二甲酸或其衍生物形成的结构单元,以硫元素计该结构单元占阳离子染料可染共聚酯的0.20~1.00wt%。
  6. 根据权利要求5所述的并列型复合纤维,其特征在于:所述带有磺酸钠基团的间苯二甲酸或其衍生物为间苯二甲酸-5-磺酸钠、间苯二甲酸二甲酯-5-磺酸钠或间苯二甲酸乙二醇酯-5-磺酸钠。
  7. 根据权利要求4所述的并列型复合纤维,其特征在于:该纤维经阳离子染色之后,发色性L值在16.0以下。
  8. 根据权利要求1~7任一项所述的并列型复合纤维,其特征在于:所述聚对苯二甲酸丁二醇酯与聚酯的特性粘度差为0.4~1.05dl/g。
PCT/CN2017/085260 2016-05-23 2017-05-22 一种并列型复合纤维 WO2017202262A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018561026A JP7043424B2 (ja) 2016-05-23 2017-05-22 サイド型複合繊維
CN201780003396.7A CN108138379B (zh) 2016-05-23 2017-05-22 一种并列型复合纤维

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610340779.0 2016-05-23
CN201610340779.0A CN107419363A (zh) 2016-05-23 2016-05-23 一种并列型复合纤维
CN201610773951.1A CN107779987A (zh) 2016-08-31 2016-08-31 一种并列复合型弹性纤维及其制造方法
CN201610773951.1 2016-08-31

Publications (1)

Publication Number Publication Date
WO2017202262A1 true WO2017202262A1 (zh) 2017-11-30

Family

ID=60412109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085260 WO2017202262A1 (zh) 2016-05-23 2017-05-22 一种并列型复合纤维

Country Status (4)

Country Link
JP (1) JP7043424B2 (zh)
CN (1) CN108138379B (zh)
TW (1) TW201835401A (zh)
WO (1) WO2017202262A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022536095A (ja) * 2019-06-04 2022-08-12 東レ尖端素材株式会社 伸縮性に優れたポリエステル複合繊維及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI760130B (zh) * 2021-03-05 2022-04-01 新光合成纖維股份有限公司 高染色牢度雙組份複合纖維、紗線及該紗線所製得之織物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0084203A1 (en) * 1982-01-15 1983-07-27 Toray Industries, Inc. Ultra-fine sheath-core composite fibers and composite sheets made thereof
WO2002000974A1 (en) * 2000-06-28 2002-01-03 General Electric Company Process to prepare melt-colored polymeric fibers
CN1537184A (zh) * 2002-05-02 2004-10-13 ������ά��ʽ���� 聚酯共轭长丝粗细节花式纱织物及其生产方法
CN1772984A (zh) * 2004-11-10 2006-05-17 新光合成纤维股份有限公司 自发卷缩性复合纤维及其制造方法
CN101718008A (zh) * 2009-05-06 2010-06-02 上海贵达科技有限公司 一种高性能聚酯复合弹性纤维及其制造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345423A (en) * 1976-10-01 1978-04-24 Teijin Ltd Crimpable composite fibers
JPS58169514A (ja) * 1982-03-26 1983-10-06 Teijin Ltd ポリエステル複合捲縮糸条
JPH1143824A (ja) * 1997-07-24 1999-02-16 Kuraray Co Ltd ポリブチレンテレフタレート系複合繊維及びその製造方法
CN1059719C (zh) * 1998-09-07 2000-12-20 东华大学 并列双组份复合多孔型中空立体卷曲纤维
CN1854355A (zh) * 2005-04-26 2006-11-01 东丽纤维研究所(中国)有限公司 并列型复合纤维及生产方法
CN1876917A (zh) * 2005-06-09 2006-12-13 东丽纤维研究所(中国)有限公司 阳离子染料可染的弹性织物
CN101165244A (zh) * 2006-10-20 2008-04-23 东丽纤维研究所(中国)有限公司 阳离子可染粗细节纱线的织物
CN1962968A (zh) * 2006-11-17 2007-05-16 东华大学 一种pbt/pet三维卷曲纤维的制备方法及应用
CN101929001A (zh) * 2009-08-24 2010-12-29 江苏鹰翔化纤股份有限公司 Pet pbs并列纤维
CN101851812B (zh) * 2009-12-18 2012-07-04 东丽纤维研究所(中国)有限公司 一种并列复合型弹性纤维及其制造方法
JP5599686B2 (ja) 2010-09-30 2014-10-01 ユニチカトレーディング株式会社 ポリエステル潜在捲縮加工糸及びその製造方法
CN107419363A (zh) * 2016-05-23 2017-12-01 东丽纤维研究所(中国)有限公司 一种并列型复合纤维
CN107779987A (zh) * 2016-08-31 2018-03-09 东丽纤维研究所(中国)有限公司 一种并列复合型弹性纤维及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0084203A1 (en) * 1982-01-15 1983-07-27 Toray Industries, Inc. Ultra-fine sheath-core composite fibers and composite sheets made thereof
WO2002000974A1 (en) * 2000-06-28 2002-01-03 General Electric Company Process to prepare melt-colored polymeric fibers
CN1537184A (zh) * 2002-05-02 2004-10-13 ������ά��ʽ���� 聚酯共轭长丝粗细节花式纱织物及其生产方法
CN1772984A (zh) * 2004-11-10 2006-05-17 新光合成纤维股份有限公司 自发卷缩性复合纤维及其制造方法
CN101718008A (zh) * 2009-05-06 2010-06-02 上海贵达科技有限公司 一种高性能聚酯复合弹性纤维及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022536095A (ja) * 2019-06-04 2022-08-12 東レ尖端素材株式会社 伸縮性に優れたポリエステル複合繊維及びその製造方法
JP7320081B2 (ja) 2019-06-04 2023-08-02 東レ尖端素材株式会社 伸縮性に優れたポリエステル複合繊維及びその製造方法

Also Published As

Publication number Publication date
JP7043424B2 (ja) 2022-03-29
JP2019516878A (ja) 2019-06-20
CN108138379B (zh) 2021-01-01
TW201835401A (zh) 2018-10-01
CN108138379A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
CN101851812B (zh) 一种并列复合型弹性纤维及其制造方法
WO2021135083A1 (zh) 一种仿棉聚酯纤维及其制备方法
CN107419363A (zh) 一种并列型复合纤维
WO2017202262A1 (zh) 一种并列型复合纤维
TW200424376A (en) Polyester conjugated yarn with high self-crimping properties and method of producing the same
WO2021073551A1 (zh) 一种复合纱线及由其制得的面料
TW201012991A (en) Fine denier partially oriented bicomponent fibers and flat and textured yarns for use in apparel
KR100700796B1 (ko) 자발 고권축 폴리에스테르 복합 단섬유, 및 이를 포함하는방적사 및 부직포
CN112941687A (zh) 一种超弹环保仿棉纱及其生产工艺与织物
KR20100070202A (ko) 염색성이 개선된 고신축 폴리에스테르 복합섬유 및 이의 제조방법
KR101043884B1 (ko) 폴리에스테르계 잠재권축성 복합섬유의 제조방법 및 상기방법으로 제조된 복합섬유
JPH1072732A (ja) ポリエステル系仮撚加工糸の製造方法
JP2820966B2 (ja) 複合繊維及びその製造方法
JP5003632B2 (ja) 仮ヨリ糸
JPH04327214A (ja) 複合繊維
JP3501012B2 (ja) 複合糸およびその複合糸からなる織編物
JP4956908B2 (ja) ポリマーアロイ繊維を含む混繊糸または混紡糸または織編物
JP2007046212A (ja) 複合糸、およびこれを含む布帛製品
JP2015067930A (ja) 飾り糸及びその製造方法
JP2007321319A (ja) 長短複合紡績糸およびそれからなる布帛
JP3835579B2 (ja) 複合微細捲縮付与軽量ポリエステル混繊糸
KR20240108414A (ko) 복합 섬유, 멀티 필라멘트 및 섬유 제품
JP3863286B2 (ja) ポリエステル特殊捲縮糸及びその製造方法
CN112981628A (zh) 一种高卷曲单成分纤维及其制备方法
JP2005194661A (ja) ポリエステル混繊糸

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018561026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802108

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802108

Country of ref document: EP

Kind code of ref document: A1