WO2017202104A1 - 一种层层自组装固化亚麻籽油及其复配油脂的方法 - Google Patents

一种层层自组装固化亚麻籽油及其复配油脂的方法 Download PDF

Info

Publication number
WO2017202104A1
WO2017202104A1 PCT/CN2017/075835 CN2017075835W WO2017202104A1 WO 2017202104 A1 WO2017202104 A1 WO 2017202104A1 CN 2017075835 W CN2017075835 W CN 2017075835W WO 2017202104 A1 WO2017202104 A1 WO 2017202104A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
sodium alginate
linseed oil
self
layer
Prior art date
Application number
PCT/CN2017/075835
Other languages
English (en)
French (fr)
Inventor
倪元颖
王宇晓
岳宝
李景明
温馨
李茉
王坤立
郭梦迪
耿娜
Original Assignee
中国农业大学
河北爱度生物科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国农业大学, 河北爱度生物科技股份有限公司 filed Critical 中国农业大学
Priority to AU2017258935A priority Critical patent/AU2017258935A1/en
Publication of WO2017202104A1 publication Critical patent/WO2017202104A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/005Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by ingredients other than fatty acid triglycerides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/02Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by the production or working-up
    • A23D7/04Working-up
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/10Complex coacervation, i.e. interaction of oppositely charged particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • B01J13/206Hardening; drying

Definitions

  • the invention relates to a layer self-assembling curing linseed oil and a method for compounding the same, belonging to the field of oil processing.
  • the content of unsaturated fatty acids in linseed oil is over 90%, among which ⁇ -linolenic acid is the highest (more than 54%), and ⁇ -linolenic acid is n-3 essential fatty acid, which can be converted into EPA and in vivo.
  • DHA has the functions of promoting fetal and infant brain growth and development, enhancing memory, improving immunity, improving and maintaining vision, preventing cerebral thrombosis and myocardial infarction.
  • Studies have shown that the intake of saturated fatty acids is positively correlated with the occurrence of cardiovascular disease. If the intake of essential fatty acids in the n-3 system is insufficient, the animal's learning ability and visual acuity will decrease. At present, there is a lack of n-3 fatty acids in Chinese diet, but saturated fatty acids and n-6 unsaturated fatty acids are ingested more.
  • Flaxseed oil is an excellent raw material for n-3 unsaturated fatty acids. Because of its high content of unsaturated fatty acids, linseed oil is easily oxidized, resulting in undesirable flavor and even harmful substances, which affect the shelf life of linseed oil.
  • the microcapsule embedding technology can well retard and avoid the oxidation of linseed oil during processing, transportation and consumption.
  • the microencapsulation of linseed oil not only facilitates the use, transportation and preservation, but also promotes the development of many convenient foods, such as nutritional fortified milk powder; prevents the oxidation of some unstable food raw materials; reduces or masks bad taste.
  • the commonly used embedding methods include spray drying, emulsion diffusion, interfacial polymerization, complex coagulation, etc., wherein spray drying is applied more because of its simple process.
  • Spray drying mostly uses corn starch, modified starch, whey powder, vegetable protein, gelatin, gum arabic, etc. as wall material or emulsifying material to embed linseed oil. Under the action of hot air, the water evaporates and the wall material is wrapped. The core material is buried to form a microcapsule product.
  • spray drying has problems such as high temperature, multi-adjuvant compounding, sticking, and low embedding rate.
  • Spray drying nozzle temperature is 150 ⁇ 190 ° C, high temperature has an impact on product quality.
  • the object of the present invention is to provide a layer-by-layer self-assembling and curing linseed oil and a method for compounding the same.
  • the invention first prepares microcapsules of oil and fat, and then solidifies with calcium lactate, and finally layers the cured oil gel beads.
  • the layer self-assembly that is, the layer embedding of the oil and fat is realized;
  • the gel beads prepared by the method of the invention have high oil loading rate and can reach 1700-7000%;
  • the embedding rate of the gel beads prepared by the method of the invention is high, Can reach 92 to 99%.
  • the method for self-assembling and solidifying oil and fat provided by the invention comprises the following steps:
  • step (3) of the self-assembled and cured oil-alkali sodium alginate gel beads repeating the step (3) of the self-assembled and cured oil-alkali sodium alginate gel beads to achieve self-assembly and solidification of the oil and fat layer.
  • the oil may be linseed oil, peony seed oil, grape seed oil, camellia oil, peanut oil, germ oil, walnut oil, flax oil, sesame oil, olive oil, deep sea fish oil, garlic oil and ginger oleoresin.
  • the mass ratio of the three can be 40 ⁇ 50 parts: 10-20 parts: 10-20 parts, specifically 45 parts: 15 parts: 15 parts.
  • the aqueous sodium alginate solution may have a concentration of 1.1 to 1.4%, specifically 1.1% or 1.4%;
  • the mass concentration of the chitosan aqueous solution may be 1 to 3%, specifically 1%, 2% or 3%;
  • the calcium lactate aqueous solution may have a mass concentration of 1 to 3%, specifically 1%, 2% or 3%.
  • the volume ratio of the oil and fat to the aqueous sodium alginate solution may be 1:0.5 to 20, specifically 1:2.5;
  • the shearing time can be from 1 to 4 minutes, such as 2 minutes.
  • the particle size of the sodium alginate microcapsule can be adjusted by a high speed shear or homogenizer control.
  • step (2) the oil and fat sodium alginate microcapsules are added to the calcium lactate aqueous solution by using a syringe;
  • the particle size of the cured oil alginate gel beads can be adjusted by adjusting the size of the syringe needle
  • the stirring time may be 5 to 10 min, specifically 5 min.
  • the stirring time may be 5 to 10 min, specifically 5 min;
  • the layered assembly of the microcapsules is achieved by electrostatic adsorption of the chitosan and the sodium alginate, and the calcium lactate is used for curing after assembling each layer of the wall.
  • the step (3) is repeated at least 1 to 2 times.
  • the layer-by-assembly self-assembled and cured oil-alkali sodium gel beads prepared by the present invention may be dried or packaged by low-temperature blast drying for 8 to 10 hours; or after irradiation sterilization, liquid packaging may be carried out.
  • the gel beads prepared by the method of the invention have an oil loading rate of up to 1700-7000%, such as 2900-3100%, and the oil loading rate refers to the core material and the wall of the self-assembling fixed grease gel beads.
  • the gel beads prepared by the method of the invention have an embedding rate of 92-99%, and the embedding rate refers to the mass percentage of the gel beads embedding grease and the added total fat.
  • FIG. 1 is an electron micrograph of a sodium alginate-linseed oil microcapsule prepared in Example 1 of the present invention, wherein FIG. 1(a) to FIG. 1(f) are respectively prepared in the present Example 1)-6) Electron micrograph of linseed oil-sodium alginate microcapsules.
  • FIG. 2 is an electron micrograph of a linseed oil alginate gel bead prepared in Example 2 of the present invention, wherein FIG. 2(a) and FIG. 2(b) are electron micrographs after drying and before drying, respectively.
  • the linseed oil-sodium alginate microcapsules were prepared according to the following six conditions:
  • ALG represents sodium alginate
  • Flaxseed Oil represents linseed oil
  • the PDI in Table 1 represents the polydispersity index, reflecting the stability of the system.
  • the value of PDI should be less than 1, and the smaller the better. It can be seen from the values of PDI in Table 1 that the standard deviation and PDI value of high concentration of sodium alginate are high, indicating that high concentration of sodium alginate makes the system unstable.
  • ZP in Table 1 indicates the potential, and since sodium alginate exhibits a negative charge, the larger the absolute value of the potential, the more stable the system.
  • Fig. 1 The SEM photograph of the linseed oil-alginate microcapsule prepared in this embodiment is shown in Fig. 1, wherein Fig. 1(a) - Fig. 1(f) are respectively prepared in the present example 1)-6) Electron micrograph of linseed oil-sodium alginate microcapsules.
  • the shiny white ball is an unembedded oil droplet, and it can be seen that the linseed oil is almost completely embedded by sodium alginate.
  • the particle size and variation trend of the linseed oil-alginate microcapsules are consistent with those in Table 1.
  • the linseed oil-sodium alginate microcapsules exhibit an irregular strip or sphere and are shaped in relation to the high speed shear of a high speed homogenizer.
  • the concentration of sodium alginate is optimally 1.1 to 1.4%.
  • Example 2 layer self-assembly curing of linseed oil
  • Example 1 The linseed oil-alginate microcapsules prepared in 3) of Example 1 were subjected to layer-by-layer self-assembly curing.
  • the linseed oil-sodium alginate microcapsules were sucked into a 2 wt% aqueous calcium lactate solution by a syringe, and magnetically stirred for 5 minutes to obtain a solidified linseed oil alginate gel beads.
  • step b) repeating step a) twice with a layer of self-assembled and cured linseed oil alginate gel beads to achieve layer-by-layer self-assembly and solidification of linseed oil to obtain linseed oil alginate gel beads.
  • FIG. 2 An electron micrograph of the linseed oil alginate gel beads prepared in this embodiment is shown in Fig. 2, wherein Fig. 2(a) and Fig. 2(b) are electron micrographs after drying and before drying, respectively. It can be seen that there is no oil slick or grease oozing out on the surface before and after drying.
  • the dried gel beads have a particle size of 0.8 to 1.5 mm, and the undried gel beads have a size of 1.5 to 2.5 mm.
  • the linseed oil alginate gel beads prepared in this example had an oil loading rate of 3010% and an embedding rate of 92%.
  • Example 3 layer self-assembly curing of linseed oil
  • Example 1 The linseed oil-alginate microcapsules prepared in 3) of Example 1 were subjected to layer-by-layer self-assembly curing.
  • the linseed oil-sodium alginate microcapsules were aspirated with a syringe and added to a 1 wt% aqueous solution of calcium lactate, and magnetically stirred for 5 minutes to obtain a solidified linseed oil alginate gel beads.
  • step b) repeating step a) once a layer of self-assembled and solidified linseed oil alginate gel beads to achieve layer-by-layer self-assembly and solidification of linseed oil to obtain linseed oil alginate gel beads.
  • the linseed oil alginate gel beads prepared in this example had an oil loading rate of 3100% and an embedding rate of 97%.
  • Example 4 layer self-assembly curing of linseed oil
  • Example 1 The linseed oil-alginate microcapsules prepared in 3) of Example 1 were subjected to layer-by-layer self-assembly.
  • the linseed oil-sodium alginate microcapsules were sucked into a 3 wt% aqueous calcium lactate solution by a syringe, and magnetically stirred for 5 minutes to obtain a solidified linseed oil alginate gel beads.
  • step b) repeating step a) twice with a layer of self-assembled and cured linseed oil alginate gel beads to achieve layer-by-layer self-assembly and solidification of linseed oil to obtain linseed oil alginate gel beads.
  • the linseed oil alginate gel beads prepared in this example had an oil loading rate of 3000% and an embedding rate of 95%.
  • Example 1 The linseed oil-alginate microcapsules prepared in 4) of Example 1 were subjected to layer-by-layer self-assembly.
  • the linseed oil-sodium alginate microcapsules were sucked into a 2 wt% aqueous calcium lactate solution by a syringe, and magnetically stirred for 5 minutes to obtain a solidified linseed oil alginate gel beads.
  • the cured linseed oil pellet prepared in the step (1) is placed in a 2 wt% aqueous solution of chitosan Medium magnetic stirring for 5 min. After taking out, it was placed in a 1.4 wt% sodium alginate solution and magnetically stirred for 10 min. Finally, the pellet was placed in a 2 wt% calcium lactate aqueous solution and magnetically stirred for 5 min to obtain a self-assembled and solidified linseed oil alginate gel bead.
  • step b) repeating step a) once a layer of self-assembled and solidified linseed oil alginate gel beads to achieve layer-by-layer self-assembly and solidification of linseed oil to obtain linseed oil alginate gel beads.
  • the oil loading rate of the linseed oil alginate gel beads prepared in this example was 2910%.
  • Example 6 layer self-assembly curing of linseed oil
  • Example 1 The linseed oil-alginate microcapsules prepared in 4) of Example 1 were subjected to layer-by-layer self-assembly.
  • the linseed oil-sodium alginate microcapsules were aspirated with a syringe and added to a 1 wt% aqueous solution of calcium lactate, and magnetically stirred for 5 minutes to obtain a solidified linseed oil alginate gel beads.
  • the solidified linseed oil pellet prepared in the step (1) was placed in a 1 wt% aqueous solution of chitosan and magnetically stirred for 5 min. After taking out, it was placed in a 1.4 wt% sodium alginate solution and magnetically stirred for 10 min. Finally, the pellet was placed in a 1 wt% calcium lactate aqueous solution and magnetically stirred for 5 min to obtain a self-assembled and solidified linseed oil alginate gel bead.
  • step b) repeating step a) twice with a layer of self-assembled and cured linseed oil alginate gel beads to achieve layer-by-layer self-assembly and solidification of linseed oil to obtain linseed oil alginate gel beads.
  • the oil loading rate of the linseed oil alginate gel beads prepared in this example was 2890%, and the embedding rate was 94%.
  • Example 1 The linseed oil-alginate microcapsules prepared in 4) of Example 1 were subjected to layer-by-layer self-assembly.
  • the linseed oil-sodium alginate microcapsules were sucked into a 3 wt% aqueous calcium lactate solution by a syringe, and magnetically stirred for 5 minutes to obtain a solidified linseed oil alginate gel beads.
  • the solidified linseed oil pellet prepared in the step (1) was placed in a 3 wt% aqueous solution of chitosan and magnetically stirred for 5 min. After taking out, it was placed in a 1.4 wt% sodium alginate solution and magnetically stirred for 10 min. Finally, the pellet was placed in a 3 wt% calcium lactate aqueous solution and magnetically stirred for 5 min to obtain a self-assembled and solidified linseed oil alginate gel bead.
  • step b) repeating step a) twice with a layer of self-assembled and cured linseed oil alginate gel beads to achieve layer-by-layer self-assembly and solidification of linseed oil to obtain linseed oil alginate gel beads.
  • the linseed oil alginate gel beads prepared in this example had an oil loading rate of 2900% and an embedding rate of 95%.
  • Example 8 layer self-assembly curing of linseed oil compound grease
  • composition of the linseed oil compound fat is: linseed oil, peony seed oil and grape seed oil, the mass ratio of the three is 45 parts: 15 parts: 15 parts.
  • the linseed oil compounded fat sodium alginate microcapsules were added by syringe to the 3 wt% calcium lactate aqueous solution, and magnetically stirred for 5 min to obtain a cured linseed oil compounded fat sodium alginate gel beads.
  • step b) repeating step a) twice with a layer of self-assembled and cured linseed oil compounded with sodium alginate gel beads to achieve layer-by-layer self-assembly and solidification of linseed oil, and obtaining linseed oil compounding fat alginic acid Sodium gel beads.
  • the oil loading rate of the linseed oil compounded fat sodium alginate gel beads prepared in this example was 3100%, and the embedding rate was 99%.
  • the embedding material used in the method of the invention comprises sodium alginate, chitosan and calcium lactate, and does not contain emulsifiers such as Tween and Span which are commonly used in the prior art, and they are all additives for safety comparison, and the utilization degree is utilized. high.
  • the oil-bearing rate of the gel beads prepared by the invention is high, and the oil loading rate of the microcapsules of the invention is as high as 1700-7000% according to the mass ratio of the core materials to the wall materials.
  • the embedding rate of the gel beads prepared by the invention is high, and the embedding rate of the microcapsules of the invention is as high as 92 to 99% according to the mass ratio of the entrapped oil to the total fat added.
  • the method of the present invention can be carried out at room temperature, and the temperature is lower than that of the spray drying method, thereby saving costs.
  • the method of the invention can not only embed linseed oil, but also embed other oils or compound embedding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

公开了一种层层自组装固化亚麻籽油及其复配油脂,并公开了其制备方法。该方法包括如下步骤:(1)将油脂分散于海藻酸钠水溶液中,经剪切或均质得到油脂海藻酸钠微胶囊;(2)将油脂海藻酸钠微胶囊加入至乳酸钙水溶液中,经搅拌得到固化的油脂海藻酸钠凝胶珠;(3)将固化的油脂海藻酸钠凝胶珠依次加入壳聚糖水溶液、海藻酸钠水溶液和乳酸钙水溶液中,并经依次搅拌,得到一层自组装固化的油脂海藻酸钠凝胶珠;(4)将一层自组装固化的油脂海藻酸钠凝胶珠重复步骤(3),即实现对油脂的层层自组装固化。所得微胶囊的载油率高达1700~7000%。

Description

一种层层自组装固化亚麻籽油及其复配油脂的方法 技术领域
本发明涉及一种层层自组装固化亚麻籽油及其复配油脂的方法,属于油脂加工领域。
背景技术
亚麻籽油中不饱和脂肪酸含量高达90%以上,其中以α-亚麻酸含量最高(有的品种超过54%),α-亚麻酸为n-3系人体必需脂肪酸,在体内可转化为EPA和DHA,具有促进胎儿和婴儿大脑生长发育,增强记忆力,提高免疫力,改善和维持视力,预防脑血栓和心肌梗塞等生理功能。研究表明,饱和脂肪酸的摄入与心血管疾病的发生呈正相关,如果n-3系必需脂肪酸摄入量不足,则动物学习能力和视觉敏锐度均会下降。目前中国膳食中缺少n-3系脂肪酸,但是饱和脂肪酸及n-6系不饱和脂肪酸摄入较多。
亚麻籽油作为优良的n-3系不饱和脂肪酸原料,因其中的不饱和脂肪酸含量过高,导致亚麻籽油容易氧化,从而产生不良的风味甚至有害物质,影响亚麻籽油的货架期。通过微胶囊包埋技术可以很好地延缓及避免亚麻籽油在加工、运输、消费过程中的氧化。亚麻籽油的微胶囊化不但利于使用、运输、保存,还能促成许多方便食品的开发,如营养强化奶粉等;防止某些不稳定的食品原辅料氧化变质;降低或掩盖不良味道等。
目前常用的包埋方法有喷雾干燥、乳液扩散、界面聚合、复凝聚等,其中喷雾干燥因其工艺简单,因而应用较多。喷雾干燥多是采用玉米淀粉、变性淀粉、乳清粉、植物蛋白、明胶、阿拉伯胶等作为壁材或乳化材料包埋亚麻籽油,乳状液在热气流的作用下,水分蒸发,壁材包埋芯材,形成微胶囊产品。但是喷雾干燥存在高温、多辅料复配、粘壁、包埋率低的等问题。喷雾干燥喷嘴温度在150~190℃,高温对产品品质产生影响。同时很多喷雾设备收集瓶温度也在60℃以上,使得亚麻籽油微胶囊制备过程中依然长期高温接触。其他的一些包埋方法为了壁材和芯材的充分乳化,制备过程往往使用大量的合成乳化剂tween、span等,目前乳化剂的安全性问题也引起了一些学者的关注。因此需要提供一种新的油脂的包埋方 法。
发明内容
本发明的目的是提供一种层层自组装固化亚麻籽油及其复配油脂的方法,本发明首先制备油脂的微胶囊,然后利用乳酸钙进行固化,最后对固化的油脂凝胶珠进行层层自组装,即实现了对油脂的层层包埋;本发明方法制备的凝胶珠的载油率高,可以达到1700~7000%;本发明方法制备的凝胶珠的包埋率高,可以达到92~99%。
本发明提供的层层自组装固化油脂的方法,包括如下步骤:
(1)将油脂分散于海藻酸钠水溶液中,经高速剪切或均质得到油脂海藻酸钠微胶囊;
(2)将所述油脂海藻酸钠微胶囊加入至乳酸钙水溶液中,经搅拌,得到固化的油脂海藻酸钠凝胶珠;
(3)将所述固化的油脂海藻酸钠凝胶珠依次加入至壳聚糖水溶液、所述海藻酸钠水溶液和所述乳酸钙水溶液中,并经依次搅拌,得到一层自组装固化的油脂海藻酸钠凝胶珠;
(4)将所述一层自组装固化的油脂海藻酸钠凝胶珠重复步骤(3),即实现对油脂的层层自组装固化。
上述的方法中,所述油脂可为亚麻籽油、牡丹籽油、葡萄籽油、山茶油、花生油、胚芽油、核桃油、胡麻油、芝麻油、橄榄油、深海鱼油、大蒜精油和姜油树脂中至少一种,如单独对亚麻籽油进行包埋处理,或对亚麻籽油、牡丹籽油和葡萄籽油三者的复配物进行包埋处理,三者的质量份数比可为40~50份:10~20份:10~20份,具体如45份:15份:15份。
上述的方法中,所述海藻酸钠水溶液的质量浓度可为1.1~1.4%,具体可为1.1%或1.4%;
所述壳聚糖水溶液的质量浓度可为1~3%,具体可为1%、2%或3%;
所述乳酸钙水溶液的质量浓度可为1~3%,具体可为1%、2%或3%。
上述的方法中,步骤(1)中,所述油脂与所述海藻酸钠水溶液的体积比可为1:0.5~20,具体可为1:2.5;
所述剪切的时间可为1~4min,如2min。
所述海藻酸钠微胶囊的粒径大小可以通过高速剪切机或均质机进行调 控。
上述的方法中,步骤(2)中,采用注射器将所述油脂海藻酸钠微胶囊加入至所述乳酸钙水溶液中;
所述固化的油脂海藻酸钠凝胶珠的粒径大小可调整所述注射器针头的大小进行制备;
所述搅拌的时间可为5~10min,具体可为5min。
上述的方法中,步骤(3)中,所述搅拌的时间可为5~10min,具体可为5min;
该步骤利用所述壳聚糖与所述海藻酸钠的静电吸附作用实现对微胶囊的层层组装,并在组装上每一层壁后采用所述乳酸钙进行固化。
上述的方法中,步骤(4)中,重复步骤(3)至少1~2次。
可将本发明制备的层层自组装固化的油脂海藻酸钠凝胶珠进行干燥或包装:低温鼓风干燥8~10小时;或者辐照灭菌后,将进行液态包装。
本发明方法制备得到的凝胶珠,其载油率高达1700~7000%,如2900~3100%,所述载油率指的是所述层层自组装固定油脂凝胶珠的芯材与壁材的质量百分比,所述芯材指的是所述油脂,所述壁材指的是包埋所述油脂的层层自组装层。
本发明方法制备得到的凝胶珠,其包埋率高达92~99%,所述包埋率指的是所述凝胶珠包埋的油脂与加入的总油脂的质量百分比。
附图说明
图1为本发明实施例1制备的海藻酸钠-亚麻籽油微胶囊的电镜照片,其中,图1(a)-图1(f)分别为本实施例中1)-6)所制备的亚麻籽油-海藻酸钠微胶囊的电镜照片。
图2为本发明实施例2制备的亚麻籽油海藻酸钠凝胶珠的电镜照片,其中,图2(a)和图2(b)分别为干燥后和干燥前的电镜照片。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径 得到。
实施例1、海藻酸钠浓度的考察
分别按照下述6种条件制备亚麻籽油-海藻酸钠微胶囊:
1)取20mL0.5wt%的海藻酸钠水溶液,加入8mL亚麻籽油,15000r/min剪切2min后,得到亚麻籽油海藻酸钠微胶囊。
2)取20mL0.8wt%的海藻酸钠水溶液,加入8mL亚麻籽油,15000r/min剪切2min后,得到亚麻籽油海藻酸钠微胶囊。
3)取20mL1.1wt%的海藻酸钠水溶液,加入8mL亚麻籽油,15000r/min剪切2min后,得到亚麻籽油海藻酸钠微胶囊。
4)取20mL1.4wt%的海藻酸钠水溶液,加入8mL亚麻籽油,15000r/min剪切2min后,得到亚麻籽油海藻酸钠微胶囊。
5)取20mL1.7wt%的海藻酸钠水溶液,加入8mL亚麻籽油,15000r/min剪切2min后,得到亚麻籽油海藻酸钠微胶囊。
6)取20mL2.0wt%的海藻酸钠水溶液,加入8mL亚麻籽油,15000r/min剪切2min后,得到亚麻籽油海藻酸钠微胶囊。
本实施例制备的亚麻籽油-海藻酸钠微胶囊的粒径大小以及电位如表1中所示。
表1亚麻籽油-海藻酸钠微胶囊的粒径和电位
Figure PCTCN2017075835-appb-000001
表1中,ALG表示海藻酸钠,Flaxseed Oil表示亚麻籽油。
由表1中的粒径的数值(Z-Ave d.nm)变化可以看出,随着海藻酸钠的浓度提高,亚麻籽油-海藻酸钠微胶囊的粒径越来越大。但是因为2wt%的海藻酸钠水溶液的粘度太高,无法将亚麻籽油包埋,分层严重。而因为0.5wt%的海藻酸钠浓度过低,油的含量过高,包埋的微胶囊从水相分离,尽管可以将油包埋,但是低浓度的海藻酸钠无法与乳酸钙形成凝胶珠。因此可以看出,低浓度与高浓度的海藻酸钠均不适宜。
表1中的PDI表示多分散指数,反映了系统的稳定性,PDI的值应低于1,且越小越好。从表1中PDI的数值可以看出,高浓度的海藻酸钠的标准差及PDI值均较高,说明高浓度的海藻酸钠反而使得体系不稳定。
表1中的ZP表示电位,由于海藻酸钠呈现负电性,因此电位的绝对值越大,体系越稳定。
本实施例制备的亚麻籽油-海藻酸钠微胶囊的电镜照片如图1所示,其中,图1(a)-图1(f)分别为本实施例中1)-6)所制备的亚麻籽油-海藻酸钠微胶囊的电镜照片。
图1中,发亮的白球为未包埋的油滴,可见亚麻籽油几乎被海藻酸钠包埋。从图1中可以看出,亚麻籽油-海藻酸钠微胶囊的粒径大小以及变化趋势与表1中一致。亚麻籽油-海藻酸钠微胶囊呈现不规则的长条或球形,其外形与高速匀浆机的高速剪切有关。
综合上述结论,确定海藻酸钠的浓度最优为1.1~1.4%。
实施例2、对亚麻籽油的层层自组装固化
对实施例1中3)制备的亚麻籽油-海藻酸钠微胶囊进行层层自组装固化。
(1)微胶囊的固化
用注射器吸取亚麻籽油-海藻酸钠微胶囊加入到2wt%的乳酸钙水溶液中,磁力搅拌5min,得到固化的亚麻籽油海藻酸钠凝胶珠。
(3)层层自组装
a)将步骤(1)制备的固化的亚麻籽油小球置于2wt%的壳聚糖水溶液中,磁力搅拌5min。取出后置于1.1wt%的海藻酸钠溶液中,磁力搅拌5min。最后将小球置于2wt%的乳酸钙水溶液中,磁力搅拌5min,得到一层自组装固化的亚麻籽油海藻酸钠凝胶珠。
b)将一层自组装固化的亚麻籽油海藻酸钠凝胶珠重复步骤a)2次,即实现对亚麻籽油的层层自组装固化,得到亚麻籽油海藻酸钠凝胶珠。
本实施例制备的亚麻籽油海藻酸钠凝胶珠的电镜照片如图2所示,其中,图2(a)和图2(b)分别为干燥后和干燥前的电镜照片,由该图可以看出,干燥前后,其表面均无浮油或油脂渗出。干燥后的凝胶珠粒径大小为0.8~1.5mm,未干燥的凝胶珠大小为1.5~2.5mm。
本实施例制备的亚麻籽油海藻酸钠凝胶珠的载油率为3010%,包埋率为92%。
实施例3、对亚麻籽油的层层自组装固化
对实施例1中3)制备的亚麻籽油-海藻酸钠微胶囊进行层层自组装固化。
(1)微胶囊的固化
用注射器吸取亚麻籽油-海藻酸钠微胶囊加入到1wt%的乳酸钙水溶液中,磁力搅拌5min,得到固化的亚麻籽油海藻酸钠凝胶珠。
(3)层层自组装
a)将步骤(1)制备的固化的亚麻籽油小球置于1wt%的壳聚糖水溶液中,磁力搅拌5min。取出后置于1.1wt%的海藻酸钠溶液中,磁力搅拌5min。最后将小球置于1wt%的乳酸钙水溶液中,磁力搅拌5min,得到一层自组装固化的亚麻籽油海藻酸钠凝胶珠。
b)将一层自组装固化的亚麻籽油海藻酸钠凝胶珠重复步骤a)1次,即实现对亚麻籽油的层层自组装固化,得到亚麻籽油海藻酸钠凝胶珠。
本实施例制备的亚麻籽油海藻酸钠凝胶珠的载油率为3100%,包埋率为97%。
实施例4、对亚麻籽油的层层自组装固化
对实施例1中3)制备的亚麻籽油-海藻酸钠微胶囊进行层层自组装。
(1)微胶囊的固化
用注射器吸取亚麻籽油-海藻酸钠微胶囊加入到3wt%的乳酸钙水溶液中,磁力搅拌5min,得到固化的亚麻籽油海藻酸钠凝胶珠。
(3)层层自组装
a)将步骤(1)制备的固化的亚麻籽油小球置于3wt%的壳聚糖水溶液中,磁力搅拌5min。取出后置于1.1wt%的海藻酸钠溶液中,磁力搅拌5min。最后将小球置于3wt%的乳酸钙水溶液中,磁力搅拌5min,得到一层自组装固化的亚麻籽油海藻酸钠凝胶珠。
b)将一层自组装固化的亚麻籽油海藻酸钠凝胶珠重复步骤a)2次,即实现对亚麻籽油的层层自组装固化,得到亚麻籽油海藻酸钠凝胶珠。
本实施例制备的亚麻籽油海藻酸钠凝胶珠的载油率为3000%,包埋率为95%。
实施例5、对亚麻籽油的层层自组装固化
对实施例1中4)制备的亚麻籽油-海藻酸钠微胶囊进行层层自组装。
(1)微胶囊的固化
用注射器吸取亚麻籽油-海藻酸钠微胶囊加入到2wt%的乳酸钙水溶液中,磁力搅拌5min,得到固化的亚麻籽油海藻酸钠凝胶珠。
(3)层层自组装
将步骤(1)制备的固化的亚麻籽油小球置于2wt%的壳聚糖水溶液 中,磁力搅拌5min。取出后置于1.4wt%的海藻酸钠溶液中,磁力搅拌10min。最后将小球置于2wt%的乳酸钙水溶液中,磁力搅拌5min,得到一层自组装固化的亚麻籽油海藻酸钠凝胶珠。
b)将一层自组装固化的亚麻籽油海藻酸钠凝胶珠重复步骤a)1次,即实现对亚麻籽油的层层自组装固化,得到亚麻籽油海藻酸钠凝胶珠。
本实施例制备的亚麻籽油海藻酸钠凝胶珠的载油率为2910%。
实施例6、对亚麻籽油的层层自组装固化
对实施例1中4)制备的亚麻籽油-海藻酸钠微胶囊进行层层自组装。
(1)微胶囊的固化
用注射器吸取亚麻籽油-海藻酸钠微胶囊加入到1wt%的乳酸钙水溶液中,磁力搅拌5min,得到固化的亚麻籽油海藻酸钠凝胶珠。
(3)层层自组装
将步骤(1)制备的固化的亚麻籽油小球置于1wt%的壳聚糖水溶液中,磁力搅拌5min。取出后置于1.4wt%的海藻酸钠溶液中,磁力搅拌10min。最后将小球置于1wt%的乳酸钙水溶液中,磁力搅拌5min,得到一层自组装固化的亚麻籽油海藻酸钠凝胶珠。
b)将一层自组装固化的亚麻籽油海藻酸钠凝胶珠重复步骤a)2次,即实现对亚麻籽油的层层自组装固化,得到亚麻籽油海藻酸钠凝胶珠。
本实施例制备的亚麻籽油海藻酸钠凝胶珠的载油率为2890%,包埋率为94%。
实施例7、对亚麻籽油的层层自组装固化
对实施例1中4)制备的亚麻籽油-海藻酸钠微胶囊进行层层自组装。
(1)微胶囊的固化
用注射器吸取亚麻籽油-海藻酸钠微胶囊加入到3wt%的乳酸钙水溶液中,磁力搅拌5min,得到固化的亚麻籽油海藻酸钠凝胶珠。
(3)层层自组装
将步骤(1)制备的固化的亚麻籽油小球置于3wt%的壳聚糖水溶液中,磁力搅拌5min。取出后置于1.4wt%的海藻酸钠溶液中,磁力搅拌10min。最后将小球置于3wt%的乳酸钙水溶液中,磁力搅拌5min,得到一层自组装固化的亚麻籽油海藻酸钠凝胶珠。
b)将一层自组装固化的亚麻籽油海藻酸钠凝胶珠重复步骤a)2次,即实现对亚麻籽油的层层自组装固化,得到亚麻籽油海藻酸钠凝胶珠。
本实施例制备的亚麻籽油海藻酸钠凝胶珠的载油率为2900%,包埋率为95%。
实施例8、对亚麻籽油复配油脂的层层自组装固化
(1)微胶囊的制备
取20mL1.1wt%的海藻酸钠水溶液,加入8mL亚麻籽油复配油脂中,15000r/min剪切2min后,得到亚麻籽油复配油脂海藻酸钠微胶囊。
亚麻籽油复配油脂的组成为:亚麻籽油、牡丹籽油和葡萄籽油,三者的质量份数比为45份:15份:15份。
(2)微胶囊的固化
用注射器吸取亚麻籽油复配油脂海藻酸钠微胶囊加入到3wt%的乳酸钙水溶液中,磁力搅拌5min,得到固化的亚麻籽油复配油脂海藻酸钠凝胶珠。
(3)层层自组装
a)将步骤(1)制备的固化的亚麻籽油复配油脂小球置于3wt%的壳聚糖水溶液中,磁力搅拌5min。取出后置于1.1wt%的海藻酸钠溶液中,磁力搅拌5min。最后将小球置于3wt%的乳酸钙水溶液中,磁力搅拌5min,得到一层自组装固化的亚麻籽油复配油脂海藻酸钠凝胶珠。
b)将一层自组装固化的亚麻籽油复配油脂海藻酸钠凝胶珠重复步骤a)2次,即实现对亚麻籽油的层层自组装固化,得到亚麻籽油复配油脂海藻酸钠凝胶珠。
本实施例制备的亚麻籽油复配油脂海藻酸钠凝胶珠的载油率为3100%,包埋率为99%。
工业应用
本发明具有如下有益效果:
1、本发明方法采用的包埋材料包括海藻酸钠、壳聚糖和乳酸钙,而不含现有技术中常用的Tween、Span等乳化剂,它们均是安全性比较的添加剂,并且利用度高。
2、本发明制备的凝胶珠的载油率高,按照芯材占壁材的质量比计算,本发明微胶囊的载油率高达1700~7000%。
3、本发明制备的凝胶珠的包埋率高,按照包埋的油脂占加入的总油脂质量比计算,本发明微胶囊的包埋率高达92~99%。
4、本发明方法在常温下即可进行,相比喷雾干燥的方式,温度更低,因此节省成本。
5、本发明方法不但可以包埋亚麻籽油,还可以包埋其他油脂或者复配包埋。

Claims (10)

  1. 一种层层自组装固化亚麻籽油及其复配油脂的方法,包括如下步骤:
    (1)将油脂分散于海藻酸钠水溶液中,经剪切或均质得到油脂海藻酸钠微胶囊;
    (2)将所述油脂海藻酸钠微胶囊加入至乳酸钙水溶液中,经搅拌,得到固化的油脂海藻酸钠凝胶珠;
    (3)将所述固化的油脂海藻酸钠凝胶珠依次加入至壳聚糖水溶液、所述海藻酸钠水溶液和所述乳酸钙水溶液中,并经依次搅拌,得到一层自组装固化的油脂海藻酸钠凝胶珠;
    (4)将所述一层自组装固化的油脂海藻酸钠凝胶珠重复步骤(3),即实现对油脂的层层自组装固化。
  2. 根据权利要求1所述的方法,其特征在于:所述油脂为亚麻籽油、牡丹籽油、葡萄籽油、山茶油、花生油、胚芽油、核桃油、胡麻油、芝麻油、橄榄油、深海鱼油、大蒜精油和姜油树脂中至少一种。
  3. 根据权利要求1或2所述的方法,其特征在于:所述海藻酸钠水溶液的质量浓度为1.1~1.4%;
    所述壳聚糖水溶液的质量浓度为1~3%;
    所述乳酸钙水溶液的质量浓度为1~3%。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于:步骤(1)中,所述油脂与所述海藻酸钠水溶液的体积比为1:0.5~20;
    所述剪切的时间为1~4min。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于:步骤(2)中,采用注射器将所述油脂海藻酸钠微胶囊加入至所述乳酸钙水溶液中;
    所述搅拌的时间为5~10min。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于:步骤(3)中,所述搅拌的时间为5~10min。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于:步骤(4)中,重复步骤(3)至少1~2次。
  8. 权利要求1-7中任一项所述方法制备的凝胶珠。
  9. 根据权利要求8所述的凝胶珠,其特征在于:所述凝胶珠的载油率为1700~7000%,所述载油率指的是所述凝胶珠的芯材与壁材的质量百分比。
  10. 根据权利要求8所述的凝胶珠,其特征在于:所述凝胶珠的包埋率为92~99%,所述包埋率指的是被所述凝胶珠包埋的油脂与加入的总油脂的质量百分比。
PCT/CN2017/075835 2016-05-23 2017-03-07 一种层层自组装固化亚麻籽油及其复配油脂的方法 WO2017202104A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2017258935A AU2017258935A1 (en) 2016-05-23 2017-03-07 Method of layer-by-layer self-assembly immobilizing flaxseed oil and composite oil thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610344195.0A CN106035739B (zh) 2016-05-23 2016-05-23 一种层层自组装固化亚麻籽油及其复配油脂的方法
CN201610344195.0 2016-05-23

Publications (1)

Publication Number Publication Date
WO2017202104A1 true WO2017202104A1 (zh) 2017-11-30

Family

ID=57177443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075835 WO2017202104A1 (zh) 2016-05-23 2017-03-07 一种层层自组装固化亚麻籽油及其复配油脂的方法

Country Status (3)

Country Link
CN (1) CN106035739B (zh)
AU (2) AU2017101823A4 (zh)
WO (1) WO2017202104A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108902356A (zh) * 2018-07-26 2018-11-30 广州利众生物科技有限公司 一种亚麻籽油、亚麻籽胶植脂末及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106035739B (zh) * 2016-05-23 2019-05-17 中国农业大学 一种层层自组装固化亚麻籽油及其复配油脂的方法
CN106732218A (zh) * 2016-12-05 2017-05-31 中山大学惠州研究院 一种壳核香料香精微胶囊及其制备方法
CN108420043A (zh) * 2018-01-29 2018-08-21 湖北工业大学 海藻酸钠提高天然油脂体分散性及其在沙拉汁中的应用
CN111480848A (zh) * 2020-05-07 2020-08-04 河北东康乳业有限公司 一种高包埋率多层壁材脂肪粉的制备方法
CN111802643B (zh) * 2020-07-13 2023-04-28 沈阳师范大学 一种基于超分子油脂凝胶的薄荷油粉末油脂的制备方法
CN113527717B (zh) * 2021-07-28 2023-04-28 青岛农业大学 一种淀粉乳液凝胶珠及其制备方法和应用
CN117414338B (zh) * 2023-10-09 2024-09-27 锦州本天药业有限公司 一种复方氯已定撒粉的制备工艺及其工艺生产线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101125133A (zh) * 2007-09-27 2008-02-20 武汉麦可得生物技术有限公司 一种不饱和脂肪酸微胶囊的制备工艺及应用
CA2447181C (fr) * 2001-05-16 2011-02-22 Mainelab Microcapsules a base de proteines vegetales
CN103404955A (zh) * 2013-06-28 2013-11-27 大连医诺生物有限公司 一种多层包埋微粒的制备方法及装备
CN104209072A (zh) * 2014-09-05 2014-12-17 南京泽朗生物科技有限公司 一种玉米亚油酸微胶囊的制备方法
CN106035739A (zh) * 2016-05-23 2016-10-26 中国农业大学 一种层层自组装固化亚麻籽油及其复配油脂的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102653704A (zh) * 2011-03-04 2012-09-05 上海爱普植物科技有限公司 一种以海藻酸钙为壁材的薄荷香精微小软胶囊制备方法
CN102274280B (zh) * 2011-08-10 2013-03-06 华南农业大学 一种广藿香油微胶囊及其制备方法与应用
CN103432970A (zh) * 2013-08-30 2013-12-11 黑龙江大学 一种复凝聚法制备有机-无机复合微囊的方法
CN103548995B (zh) * 2013-11-06 2015-04-01 嘉应学院 一种山苍子油微胶囊及其制备方法
CN104745566A (zh) * 2015-03-11 2015-07-01 上海应用技术学院 一种乳酸菌的固定化胶囊及其制备方法和应用
CN105165911B (zh) * 2015-07-14 2018-08-10 浙江理工大学 荆芥精油纳米驱蚊微胶囊的制备方法
CN105063118A (zh) * 2015-07-19 2015-11-18 聊城大学 一种添加亚油酸缓释微囊提高利普斯他汀发酵单位的方法
CN105533691B (zh) * 2015-12-15 2019-01-29 中国疾病预防控制中心营养与健康所 一种微纳米级鱼油/藻油微胶囊及其制备工艺
CN105533750A (zh) * 2016-01-13 2016-05-04 吉林大学 一种林蛙油微胶囊及其制备方法
CN105853391B (zh) * 2016-04-25 2019-12-10 东华大学 一种海藻酸钠/壳聚糖/五倍子外用抗菌微胶囊的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2447181C (fr) * 2001-05-16 2011-02-22 Mainelab Microcapsules a base de proteines vegetales
CN101125133A (zh) * 2007-09-27 2008-02-20 武汉麦可得生物技术有限公司 一种不饱和脂肪酸微胶囊的制备工艺及应用
CN103404955A (zh) * 2013-06-28 2013-11-27 大连医诺生物有限公司 一种多层包埋微粒的制备方法及装备
CN104209072A (zh) * 2014-09-05 2014-12-17 南京泽朗生物科技有限公司 一种玉米亚油酸微胶囊的制备方法
CN106035739A (zh) * 2016-05-23 2016-10-26 中国农业大学 一种层层自组装固化亚麻籽油及其复配油脂的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108902356A (zh) * 2018-07-26 2018-11-30 广州利众生物科技有限公司 一种亚麻籽油、亚麻籽胶植脂末及其制备方法

Also Published As

Publication number Publication date
AU2017258935A1 (en) 2017-12-07
AU2017101823A4 (en) 2019-05-09
AU2017258935A2 (en) 2018-02-01
CN106035739A (zh) 2016-10-26
CN106035739B (zh) 2019-05-17

Similar Documents

Publication Publication Date Title
WO2017202104A1 (zh) 一种层层自组装固化亚麻籽油及其复配油脂的方法
KR101175774B1 (ko) 다중 쉘을 갖는 마이크로캡슐 및 이의 제조 방법
US6969530B1 (en) Microcapsules and emulsions containing low bloom gelatin and methods of making and using thereof
US8034450B2 (en) Microcapsules and emulsions containing low bloom gelatin and methods of making and using thereof
AU2007238985B2 (en) Emulsions and microcapsules with substances having low interfacial tension, methods of making and using thereof
AU2008205325B2 (en) Vegetarian microcapsules
CN110522061B (zh) 一种微胶囊及其制备方法
JP2007503293A (ja) マイクロカプセル
CN105533691A (zh) 一种新型微纳米级鱼油/藻油微胶囊及其制备工艺
WO2011159665A1 (en) Encapsulated salts and use in high acid beverages
CN103340398B (zh) 一种以食用菌超微细粉为主要壁材的鱼油微胶囊产品的生产方法
Hu et al. Edible polysaccharide-based oleogels and novel emulsion gels as fat analogues: A review
CN105852131B (zh) 制备符合有机食品加工标准的鱼油微胶囊的方法
Koirala et al. Nano-engineered edible films and coatings for seafood products
Okonkwo et al. Application of biogels for bioactives delivery: Recent developments and future research insights
Zhu et al. Gel‐type emulsified muscle products: Mechanisms, affecting factors, and applications
JP2617107B2 (ja) 耐熱性マイクロカプセルの製造方法
KR100991677B1 (ko) 향신료를 함유하는 점성 소금 및 그 제조방법
JP2006050946A (ja) ペクチンを壁材とするマイクロカプセル
JP2008035730A (ja) 被覆粒子含有組成物及びその製造方法
Kumar et al. Recent trends in the encapsulation of functional lipids: comprehensive review
CN117530441A (zh) 一种食品级海藻酸钠/季铵化壳聚糖运载姜黄素纳米乳液的制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017258935

Country of ref document: AU

Date of ref document: 20170307

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17801954

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17801954

Country of ref document: EP

Kind code of ref document: A1