WO2017200109A1 - 含窒素化合物を用いた選択的ジスルフィド化試薬、およびジスルフィド含有化合物の製造方法 - Google Patents
含窒素化合物を用いた選択的ジスルフィド化試薬、およびジスルフィド含有化合物の製造方法 Download PDFInfo
- Publication number
- WO2017200109A1 WO2017200109A1 PCT/JP2017/019086 JP2017019086W WO2017200109A1 WO 2017200109 A1 WO2017200109 A1 WO 2017200109A1 JP 2017019086 W JP2017019086 W JP 2017019086W WO 2017200109 A1 WO2017200109 A1 WO 2017200109A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- unsubstituted
- substituted
- nitrogen
- containing compound
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/06—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
- C07K1/08—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using activating agents
- C07K1/086—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using activating agents containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/78—Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
- C07D213/79—Acids; Esters
- C07D213/80—Acids; Esters in position 3
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/02—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length in solution
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/06—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
- C07K1/061—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
Definitions
- the present invention relates to a pyridine derivative that can be used as a selective disulfation reagent for a thiol group (—SH group) contained in an amino acid or a peptide in organic synthesis (particularly peptide synthesis).
- the present invention also relates to a method for producing a disulfide-containing compound using the disulfide reagent.
- a protected peptide sequence containing a protected cysteine (Cys) residue is synthesized by a solid phase method or a liquid phase method, and all protecting groups are once removed.
- a method is known in which a peptide having a free thiol group is obtained by protection, and a disulfide bond (SS bond) is formed in the molecule by using an air oxidation method or an iodine oxidation method.
- the air oxidation method has a problem that it takes a long time to form a disulfide bond.
- the iodine oxidation method is known to cause iodine oxidation with respect to tyrosine, histidine and tryptophan during the reaction, and has a problem that the selectivity is not sufficient.
- disulfide bonds are formed in the molecule using these methods, if the concentration of the free thiol group-containing peptide in the reaction system is too high, disulfide bonds are formed between the molecules and cross-linked isomers are formed.
- Non-Patent Document 3 thallium (III) trifluoroacetate method
- S-protected cysteine sulfoxide method see Non-Patent Document 2
- silyl chloride-sulfoxide The method (see Non-Patent Document 3) has been reported as a reaction for forming a disulfide bond simultaneously with deprotection. It has also been reported that an intermolecular disulfide bond can be easily formed by reacting with a free thiol group using a 3-nitro-2-pyridinesulfenyl group (Npys group) as a protecting group for the thiol group of cysteine. (See Non-Patent Document 4).
- Patent Document 1 a cysteine or a cysteine-containing protected peptide in which a thiol group is protected with an Npys group is reacted with a cysteine or a cysteine-containing protected peptide having a free thiol group to thereby form a disulfide bond formation reaction and a peptide bond.
- a method for producing a disulfide-containing peptide by proceeding with a formation reaction as a sequential reaction has been proposed.
- Npys-Cl 3-nitro-2-pyridinesulfenyl chloride
- Patent Document 1 is based on the premise that after two types of protected peptide sequences are first synthesized, disulfide bond formation and peptide bond formation are performed stepwise, and then further deprotection treatment is performed. . For this reason, there is a problem that the operation is complicated, for example, protection / deprotection processing is required.
- the present invention selectively displaces disulfide bonds with respect to two free thiol groups located in the molecule of an organic compound such as a peptide in a relatively short time by a simple treatment and by a chemically stable technique.
- the purpose is to provide a means that can be introduced.
- the present inventors have intensively studied to solve the above problems.
- the above problems can be solved by using a nitrogen-containing compound having a predetermined chemical structure as a disulfating reagent, and the present invention has been completed.
- most of the nitrogen-containing compounds having the predetermined chemical structure are novel compounds.
- a compound represented by the following chemical formula 1 or a salt thereof is provided as a novel nitrogen-containing compound:
- W is selected from the group consisting of pyridine ring, pyrazine ring, imidazole ring, oxazole ring, thiazole ring, quinoline ring, isoquinoline ring, quinoxaline ring, phenanthroline ring, pteridine ring and azocine ring together with other ring member atoms.
- X is —O— or —NH—.
- Y represents a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C2-C20 alkenyl group, a substituted or unsubstituted C2-C20 alkynyl group, a substituted or unsubstituted C3-C20 cycloalkyl group.
- Z represents a hydrogen atom or an electron-withdrawing substituent present on the nitrogen-containing heterocycle
- p, q and r are each independently 0 or 1
- s represents an integer of 0 to 10
- L 0 and L 1 each independently represent a linker having a chemically stable structure
- a a and A b are each independently —CH ⁇ CH—, —C ⁇ C—, —C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C ( ⁇ O).
- a thiol group disulfide reagent comprising the above-mentioned nitrogen-containing compound or a salt thereof, or any one of the above-mentioned compounds (A) to (H).
- the above compounds (A) to (H) (3-nitro-2-pyridinesulfinic acid derivatives) are known compounds, and it has been conventionally known that the compounds function as a thiol group disulfide reagent. It is not done.
- a compound having two or more free thiol groups in the molecule is brought into contact with the above-mentioned disulfating reagent to form a disulfide bond between the two free thiol groups.
- a method for producing a disulfide-containing compound comprising obtaining a disulfide-containing compound.
- a disulfide bond is selectively bonded to two free thiol groups located in a molecule of an organic compound such as a peptide in a relatively short time by a simple treatment and by a chemically stable technique. Means are provided that can be introduced.
- Example 2-1 when the peptide 4 was synthesized from the peptide 3, HPLC analysis of the reaction system before the addition of the compound 2a (A), 1 hour after the addition (B) and 6 hours after the addition (C) It is a chart which shows a result.
- Example 2-2 when peptide 6 was synthesized from peptide 5, before addition of compound 2a (A), 1 hour after addition (B), 6 hours after addition (C), and 24 hours after addition ( It is a chart which shows the HPLC analysis result of the reaction system of D).
- Example 2-3 when peptide 8 was synthesized from peptide 7, before addition of compound 2a (A), 4 hours after addition (B), 9 hours after addition (C), and 27 hours after addition ( It is a chart which shows the HPLC analysis result of the reaction system of D).
- Example 2-3 when peptide 9 was synthesized from peptide 8, before addition of iodine (A), 2 minutes after addition (B), 1 hour after addition (C), and after HPLC purification (D) It is a chart which shows the HPLC analysis result of this reaction system.
- Example 3-2 when peptide 4 was synthesized from peptide 3 using a solid phase disulfide reagent (compound 11), the reaction started within 3 minutes (A), and 1 hour after the start of reaction (B) It is a chart which shows the HPLC analysis result of the reaction system 3 hours after the reaction start (C).
- Example 5 the results of HPLC analysis of the reaction system before the addition of compound 16a (A), 1 hour after addition (B), and 3 hours after addition (C) when peptide 4 was synthesized from peptide 3 were as follows. It is a chart to show.
- Example 6 the HPLC of the crude product (B) obtained when oxytocin (peptide 4) was synthesized from oxytocin-resin 17 obtained by peptide solid phase synthesis.
- Example 7 mentioned later it is a chart which shows the HPLC analysis result at the time of evaluating the stability of the compound 2a.
- Example 7 mentioned later it is a chart which shows the ⁇ 1 > H NMR analysis result at the time of evaluating the stability of the compound 2a.
- One embodiment of the present invention relates to a novel nitrogen-containing compound, and specifically relates to a nitrogen-containing compound represented by the following chemical formula 1 or a salt thereof.
- W is taken together with other ring members to form a pyridine ring, pyrazine ring, imidazole ring, oxazole ring, thiazole ring, quinoline ring, isoquinoline ring, quinoxaline ring, phenanthroline ring, pteridine ring and azocine ring.
- Forming a nitrogen-containing heterocycle selected from the group consisting of Here, W, together with other ring member atoms, preferably forms a pyridine ring as the nitrogen-containing heterocycle.
- X is —O— or —NH—. Among these, X is preferably —O—.
- Y is a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C2-C20 alkenyl group, a substituted or unsubstituted C2-C20 alkynyl group, a substituted or unsubstituted C3-C20 C20 cycloalkyl group, substituted or unsubstituted C3 to C20 cycloalkenyl group, substituted or unsubstituted C6 to C20 aryl group, substituted or unsubstituted C3 to C20 heteroaryl group, and substituted or unsubstituted electron It is a group selected from the group consisting of monovalent groups derived from an aliphatic heterocyclic ring having an attractive property.
- the “monovalent group derived from an aliphatic heterocyclic ring having an electron-withdrawing property” corresponds to an aliphatic heterocyclic compound having an electron-withdrawing structure, for example, an active ester of a carboxylic acid in peptide synthesis.
- the “monovalent group derived from an aliphatic heterocyclic ring having an electron-withdrawing property” is a substituted or unsubstituted succinimidyl group, maleimidyl group, phthalimidyl group or 5-norbornene-2,3-dicarboxyimidyl group. It is preferable that Y is preferably a substituted or unsubstituted C1-C20 alkyl group or a substituted or unsubstituted C6-C20 aryl group, and preferably a substituted or unsubstituted C1-C20 alkyl group.
- it is more preferably an unsubstituted C1-C20 alkyl group, even more preferably an unsubstituted C1-C12 alkyl group, and even more preferably an unsubstituted C1-C8 alkyl group.
- An unsubstituted C1-C4 alkyl group is particularly preferable, and a methyl group is most preferable.
- examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group.
- neopentyl group 1,2-dimethylpropyl group, n-hexyl group, 1,3-dimethylbutyl group, 1-isopropylpropyl group, 1,2-dimethylbutyl group, n-heptyl group, 1,4-dimethyl group Pentyl group, 2-methyl-1-isopropylpropyl group, 1-ethyl-3-methylbutyl group, n-octyl group, 2-ethylhexyl group, 3-methyl-1-isopropylbutyl group, 2-methyl-1-isopropyl group 1-tert-butyl-2-methylpropyl group, n-nonyl group, 3,5,5-trimethylhexyl group and the like.
- examples of the alkenyl group include a vinyl group, an allyl group, an isopropenyl group, a 1-butenyl group, a 2-butenyl group, a 2-methyl-2-propenyl group, a 1-methyl-2-propenyl group, Examples include 2-methyl-1-propenyl group, pentenyl group, 1-hexenyl group, 3,3-dimethyl-1-butenyl group.
- examples of the alkynyl group include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, 3-methyl-1-propynyl group, 2 -Methyl-3-propynyl group, pentynyl group, 1-hexynyl group, 3-methyl-1-butynyl group, 3,3-dimethyl-1-butynyl group and the like.
- examples of the cycloalkyl group include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
- examples of the cycloalkenyl group include a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group, and the like.
- examples of the aryl group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, and a 9-anthracenyl group.
- heteroaryl group examples include 2-thienyl group, 4-pyridyl group, 3-pyridyl group, 2-pyridyl group, 1-pyridyl group, 2-furyl group, 2-pyrimidinyl group, 2- Examples thereof include a benzothiazolyl group, a 1-imidazolyl group, a 1-pyrazolyl group, a benzotriazol-1-yl group, and a 7-azabenzotriazol-1-yl group.
- examples of the substituent that can replace the group include halogen atoms such as fluorine, chlorine, bromine, and iodine, alkyl groups, aryl groups, Alkoxy, aryloxy, alkoxycarbonyl, acyloxy, acyl, alkylsulfanyl, arylsulfanyl, alkylamino, dialkylamino, arylamino, hydroxy, carboxy, formyl, mercapto, sulfo Group, sulfinic acid group, guanidino group, carbamoyl group, thiol group, thioether group, mesyl group, p-toluenesulfonyl group, amino group, nitro group, cyano group, trifluoromethyl group, trichloromethyl group, trimethylsilyl group, phosphinico group Phosphono groups, etc.
- halogen atoms such as fluorine, chlorine, bromine, and i
- substituents may also be further substituted with a halogen atom, alkyl group, aryl group, alkoxy group, hydroxy group, carboxy group, amino group, nitro group, cyano group or the like. However, substitution that is included in the same definition as the group before substitution after substitution is not considered.
- Z represents a hydrogen atom or an electron-withdrawing substituent present on the nitrogen-containing heterocycle, and among them, an electron-withdrawing substituent is preferable.
- the electron-withdrawing substituent for example, nitro group, trifluoromethyl group, halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), acetyl group, methanesulfonyl group, trifluoroacetyl group, Examples thereof include a trifluoromethanesulfonyl group and a cyano group.
- a nitro group, a trifluoromethyl group or a halogen atom is preferable, and a nitro group is most preferable.
- p is 0 or 1.
- L 0 is not present and A a or A b or R is directly bonded to the nitrogen-containing heterocyclic ring, and when p is 1, L 0 is present.
- r is 0 or 1. r is absent A b when the 0, r is A b is present at 1.
- s is an integer of 0 to 10. when s is 0 [(A a) - (L 1) q] is absent, s is when an integer of 1 ⁇ 10 [(A a) - (L 1) q] are present the s repeated . Note that s is preferably 0 to 5, and more preferably 0 or 1.
- L 0 and L 1 each independently represent a linker having a chemically stable structure.
- the specific structure of such a linker is not particularly limited, and examples thereof include a substituted or unsubstituted C1-C20 alkylene group, a substituted or unsubstituted C2-C20 alkenylene group, a substituted or unsubstituted C2-C20.
- L 0 and L 1 are groups represented by the following chemical formula (a):
- R a represents a substituted or unsubstituted C1-C15 alkylene group, preferably a C1-C8 alkylene group, more preferably a C1-C4 alkylene group, Particularly preferred is a C1-C2 alkylene group, and most preferred is a C2 alkylene group (especially an ethylene group).
- L 0 and L 1 are preferably C1-C6 alkylene groups (particularly ethylene groups), polyoxyalkylene groups having a molecular weight of 100 to 1000, or groups represented by the above chemical formula (a).
- a a and A b are each independently —CH ⁇ CH—, —C ⁇ C—, —C ( ⁇ O) —, —C ( ⁇ O) —O—. , —O—C ( ⁇ O) —, —O—, C1 to C20 oxyalkylene, C1 to C20 alkyleneoxy, —C ( ⁇ O) —NH—, —NH—C ( ⁇ O) —, — NH—C ( ⁇ O) —NH—, a group selected from the group consisting of hydrazine, triazole, sulfone, sulfoxide, sulfonic acid ester, sulfonamide, sulfinic acid ester, sulfinamide, piperidine and dioxane.
- a a and A b —C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—, C1-C20 oxyalkylene, C1-C20 alkyleneoxy, —O —C ( ⁇ O) —, —C ( ⁇ O) —NH— or —NH—C ( ⁇ O) — is used.
- R is a hydrogen atom, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C2-C20 alkenyl group, a substituted or unsubstituted C2-C20 alkynyl group, substituted or unsubstituted A C3-C20 cycloalkyl group, a substituted or unsubstituted C3-C20 cycloalkenyl group, a substituted or unsubstituted C6-C20 aryl group, a substituted or unsubstituted C3-C20 heteroaryl group, an amino group, Hydroxy group or polymer carrier.
- the polymer carrier as R is typically a polymer carrier used for solid phase synthesis.
- Such polymer carriers are, for example, from the group consisting of polystyrene, polypropylene, polyethylene, polyether, polyvinyl chloride, dextran, acrylamide, polyethylene glycol, copolymers and cross-linked products thereof, magnetic beads, and combinations thereof. Selected.
- the polymer carrier is more preferably polystyrene, polyethylene glycol, and a crosslinked product of polyethylene glycol.
- These polymeric carriers, adjacent groups e.g., A, etc. b or L 1
- the shape of the polymer carrier is not particularly limited, but a spherical shape is more preferable.
- the average particle size of the polymer carrier is preferably 100 to 400 mesh.
- Such a polymer carrier is commercially available.
- an aminomethyl-Chemmatrix (registered trademark) resin manufactured by Sigma-Aldrich is known as a polymer carrier comprising a polyethylene glycol crosslinked product.
- Examples of the polymer carrier made of polystyrene resin include resins described on pages 283 to 295 of Sequel / Development of pharmaceuticals (Volume 14, Peptide Synthesis) (Yodogawa Shoten).
- chloromethylated (Merfield) resin aminomethyl resin
- Wang resin Pam resin
- Rink acid resin Rink amide resin
- oxime resin 4-methylbenzhydrylamine resin
- PAL resin 2-chloro
- 2-chloro Examples include trityl chloride resin.
- the nitrogen-containing compound represented by Chemical Formula 1 according to the present invention may be in the form of a salt.
- such salts can be formed between the anion and a positively charged substituent (eg, an amino group) on the compound described above.
- suitable anions include chloride, bromide, iodide, sulfate, nitrate, phosphate, citrate, methanesulfonate, trifluoroacetate, acetate, malate, tosylate. , Tartrate, fumarate, glutamate, glucuronate, lactate, glutarate, maleate, and the like.
- salts can be formed between cations and negatively charged substituents (eg, carboxyl groups) on the compounds described above.
- suitable cations include sodium ions, potassium ions, magnesium ions, calcium ions, and ammonium cations such as tetramethylammonium ions.
- the above-mentioned compounds include those salts containing a quaternary nitrogen atom.
- W, X, Y, Z, p, L 0 and A a are as defined above.
- R is other than “amino group, hydroxy group, polymer carrier”, that is, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C2-C20 alkenyl group.
- R is preferably a substituted or unsubstituted C1-C20 alkyl group or a substituted or unsubstituted C6-C20 aryl group, and is preferably a substituted or unsubstituted C1-C20 alkyl group. More preferably an unsubstituted C1-C20 alkyl group, even more preferably an unsubstituted C1-C12 alkyl group, and an unsubstituted C1-C8 alkyl group. Even more preferred is an unsubstituted C1-C4 alkyl group, most preferred is a methyl group.
- a a is —C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C ( ⁇ O) —, —O—, —C ( ⁇ O) —.
- p may be 1 be zero, preferably p is 0 (i.e., L 0 is coupled to A a direct said aromatic heterocycles in the absence Preferably).
- W, X, Y, Z, p, L 0 and A a are as defined for Chemical Formula 1 as in Chemical Formula 2 above.
- R is a polymer carrier.
- symbol (substituent) is the same as that mentioned above about Chemical formula 1.
- a preferred form of R that is a polymer carrier is a polyethylene glycol cross-linked product (for example, aminomethyl Chemmatrix (registered trademark) resin).
- a a is preferably —C ( ⁇ O) —NH—.
- p may be 0 and a be 1, but preferably p is 0 (i.e., L 0 is A a is bonded directly to the aromatic heterocyclic ring in the absence Preferably).
- An example of a preferable compound in the present embodiment is the following compound 11.
- R that is a polymer carrier
- a a is preferably —C ( ⁇ O) —O—.
- p may be 1 be zero, preferably p is 0 (i.e., L 0 is coupled to A a direct said aromatic heterocycles in the absence Preferably).
- An example of a preferable compound in the present embodiment is the following compound 12.
- W, X, Y, Z, p, L 0 , L 1 , A a and A b are as defined for the chemical formula 1.
- R is a polymer carrier.
- symbol (substituent) is the same as that mentioned above about Chemical formula 1.
- a a and A b are —C ( ⁇ O) —NH—
- L 1 is an alkylene group of C1 to C20
- R which is a polymer carrier is a polyethylene glycol crosslinked product (for example, aminomethyl Chemmatrix (registered trademark) resin) is preferable.
- p may be 1 be zero, preferably p is 0 (i.e., L 0 is coupled to A a direct said aromatic heterocycles in the absence Preferably).
- An example of a preferable compound in the present embodiment is the following compound 13 (in compound 13, L 1 is a C5 alkylene group (pentamethylene group)).
- the starting material in the production method according to this embodiment is a compound represented by the following chemical formula 5.
- W, Z, p, q, r, s, L 0 , L 1 , A a and A b are as defined for the chemical formula 1.
- R ′′ is a leaving group.
- the compound represented by Chemical Formula 5 can be synthesized, for example, according to the description in International Publication No. 2015/050199 pamphlet.
- the starting material (compound represented by the chemical formula 5) prepared above is used as a halogen simple substance or a halogen generating reagent (for example, sulfuryl chloride, chlorine gas, phosphorus oxychloride, phosphorus pentachloride, bromine, Fluorinated alkylpyridine, fluorinated quinuclidine or iodine).
- a halogen simple substance or a halogen generating reagent for example, sulfuryl chloride, chlorine gas, phosphorus oxychloride, phosphorus pentachloride, bromine, Fluorinated alkylpyridine, fluorinated quinuclidine or iodine.
- W, Z, p, q, r, s, L 0 , L 1 , A a and A b are as defined for Chemical Formula 1.
- Hal represents a halogen atom selected from fluorine, chlorine, bromine or iodine.
- a halogen generating reagent such as pyridine and sulfuryl chloride is added to the compound represented by the chemical formula 5, and 1 to 2 Stir for about 2 hours. Thereafter, the reaction solution can be distilled off under reduced pressure and azeotroped with hexane or the like.
- R is a polymer carrier, it is preferable to swell the compound represented by Chemical Formula 5 with a solvent in advance before the reaction.
- the compound represented by Chemical Formula 6 obtained above is represented by Y—OH (Y is as defined for Chemical Formula 1) under basic conditions. React with alcohol. Thereby, the compound represented by following Chemical formula 7 is obtained (process (II)).
- W, Y, Z, p, q, r, s, L 0 , L 1 , A a and A b are as defined for the chemical formula 1.
- the compound represented by the chemical formula 7 corresponds to a compound in which X is —O— in the chemical formula 1.
- step (I) When the reaction is performed in step (I), for example, the compound represented by compound 6 obtained above is dissolved in an alcohol represented by Y—OH.
- Y-O - acts alkoxide ion as a nucleophile represented by, Hal - nucleophilic substitution reactions halide ion is desorbed represented by sulfur Progress on atoms.
- the compound represented by the chemical formula 7 is generated.
- the type of base to be added is not particularly limited, but a lower nucleophilic base such as N, N-diisopropylethylamine (DIPEA; Hunig base) is preferably used because it has a lower nucleophilicity.
- DIPEA N-diisopropylethylamine
- the method for producing the compound according to the present invention has been described by taking the compound in which X is —O— in the above Chemical Formula 1 (the compound represented by Chemical Formula 7) as an example. If there is, it can be manufactured appropriately.
- the compound represented by the chemical formula 6 obtained above is reacted with an amine represented by Y—NH 2 in a suitable organic solvent. By the same reaction mechanism, production is possible.
- the nitrogen-containing compound (or salt thereof) of the present invention described above has a function as a disulfating reagent. It was also found that the nitrogen-containing compound according to the present invention is chemically extremely stable so that it can be stored at room temperature (25 ° C.). Furthermore, by using the nitrogen-containing compound according to the present invention as a disulfide reagent, two free molecules located in the molecule of an organic compound such as a peptide can be obtained in a short time by a simple treatment and by a chemically stable method.
- the use as a disulfide reagent is novel also about the compound which satisfy
- An example of a preferable disulfating reagent in the present embodiment is one containing any one of the following compounds 14a to 14j as an active ingredient.
- R is a polymer carrier used in the solid phase synthesis method in Chemical Formula 1 described above, a nitrogen-containing compound having disulfation activity can be immobilized on the polymer carrier used in the solid phase synthesis method. . Therefore, in this case, it can be used as a solid-phase-supported reagent that selectively acts on two free thiol groups located in the molecule of an organic compound such as a peptide.
- Still another embodiment of the present invention has two or more free thiol groups in the molecule using the above-described nitrogen-containing compound according to the present invention as a disulfide reagent (preferably, a solid-supported disulfide reagent).
- the present invention relates to a method for introducing a disulfide bond (—S—S—) into a compound.
- a compound having two or more free thiol groups in the molecule is brought into contact with the above-described disulfide reagent comprising the nitrogen-containing compound (or a salt thereof) according to the present invention.
- It is a manufacturing method of a disulfide containing compound including forming a disulfide bond between two said free thiol groups, and obtaining a disulfide containing compound.
- the structure of the “compound having two or more free thiol groups in the molecule” which is a target for introducing a disulfide bond is not particularly limited.
- the “compound having two or more free thiol groups in the molecule” include amino acid residue-containing compounds such as amino acids and peptides (oligopeptides, polypeptides (including antibodies and other proteins)), and polymers. Examples thereof include compounds, low molecular weight compounds, and derivatives containing their isotopes.
- the peptide When the “compound having two or more free thiol groups in the molecule” is a peptide, the peptide may be naturally derived or may be artificially synthesized. When the peptide is artificially synthesized, the synthesis method is not particularly limited, and conventionally known knowledge can be appropriately referred to. As an artificial peptide synthesis method, a “solid phase synthesis method” and a “liquid phase synthesis method” are known, and in the case of a solid phase synthesis method, an Fmoc method and a Boc method are further known. When the “compound having two or more free thiol groups in the molecule” is a peptide, the peptide may be synthesized by any method. The solid phase synthesis method will be briefly described as an example.
- beads of polystyrene polymer gel having a diameter of about 0.1 mm whose surface is modified with an amino group are used as a solid phase, and N, N′-diisopropyl is used as a condensing agent.
- Carbodiimide is used.
- racemization can be suppressed while improving the reaction rate.
- the amino group of the C-terminal amino acid is protected with an Fmoc group or a Boc group to form a peptide bond with the amino group of the polystyrene polymer gel.
- the solid phase is thoroughly washed with a solvent, and the remaining reagents and amino acids are washed and removed.
- a peptide is synthesized on a solid phase by sequentially repeating the same reaction using an amino acid whose amino group is Fmoc group or Boc group protected. Finally, by digesting the solid phase with trifluoroacetic acid (TFA), the peptide can be separated from the solid phase and the peptide can be synthesized.
- TFA trifluoroacetic acid
- the “compound having two or more free thiol groups in the molecule” to be a target for introducing a disulfide bond by the above-described method is “a compound having two free thiol groups in the molecule”. According to such a form, a disulfide bond can be formed between the two free thiol groups of the “compound having two free thiol groups in the molecule”, and the desired disulfide-containing compound can be produced in a high yield. It can be produced with high purity.
- the target for introducing a disulfide bond is a “compound having two free thiol groups in the molecule”
- the compound is a peptide
- the cysteine residue or cysteine amide residue is changed to 3
- Such introduction of a protecting group can be usually achieved by introducing an amino acid having a thiol group protected at a desired position during the synthesis of a peptide as described above.
- Examples of the protecting group for the thiol group in the “amino acid in which the thiol group is protected” used in peptide synthesis in such a method include, for example, t-butyl group, trityl group, benzhydryl group, benzyl group, methyl group, and the like.
- Benzyl group dimethylbenzyl group, trimethylbenzyl group, methoxybenzyl group, dimethoxybenzyl group, trimethoxybenzyl group, nitrobenzyl group, acetamidomethyl group, 9-fluorenylmethyl group, carbonylbenzyloxy group, diphenylbenzyl group, ethyl
- a carbamoyl group, a picolyl group, a sulfonyl group or a salt thereof may be mentioned.
- disulfation manufacturing a disulfide-containing compound
- the disulfide reagent according to the present invention is a solid phase supported disulfide reagent.
- a “compound having two (or more) free thiol groups in the molecule”, which is a target for introducing a disulfide bond, is dissolved in a solvent.
- the compound is dissolved in water or an organic solvent containing 1% (v / v) or more of water.
- the pH at this time is preferably near neutral, and is preferably 6.5 to 8.5.
- it can replace with water and a buffer solution can be used and you may use it combining any of water, a buffer solution, and an organic solvent.
- an organic solvent miscible with water is preferable, and examples thereof include acetonitrile, dimethylformamide, acetone, dimethyl sulfoxide, alcohol, tetrahydrofuran, 1,4-dioxane and the like.
- the solution of “compound having two (or more) free thiol groups in the molecule” prepared above is mixed with the solid-supported disulfide reagent according to the present invention.
- the solid phase supported disulfide reagent according to the present invention may be added to the container containing the solution, or the solution may be added to the container containing the solid phase supported disulfide reagent according to the present invention.
- the form and material of a container are not limited, Preferably it is a stirrable container with a filter for filtration, such as a tube with a filter. Mixing may be carried out while the container is left standing, but it is preferable to carry out mixing by shaking, stirring with a shaker for solid phase synthesis, a magnetic stirrer, a vortex mixer, a three-one motor or the like.
- the reaction can be carried out usually in 5 minutes to 2 hours depending on the reaction caused by the above mixing.
- the addition amount of the solid phase supported disulfide reagent according to the present invention used in this reaction may be increased or decreased depending on the amount of “compound having two (or more) free thiol groups in the molecule”.
- Completion of the reaction may be judged based on a general analytical method for consumption of “compound having two (or more) free thiol groups in the molecule” in the solution.
- applicable analytical methods include HPLC, NMR, TLC, IR, MS spectrum, titration and the like.
- the raw material compound is a peptide containing three or more cysteine residues or cysteine amide residues, and at least one thiol group of the cysteine residue or cysteine amide residue is protected with a protecting group
- a conventionally known technique can be used as such a deprotection technique.
- a disulfide bond can be further introduced between the deprotected thiol groups simultaneously with the deprotection of the thiol groups (Example 2 described later).
- -3 see “Synthesis of ⁇ -conotoxin ImI”.
- the compound in which the “compound having a free thiol group” is changed as the reaction proceeds is separated by filtration, and a disulfide-containing compound is obtained in the filtrate.
- the filtration does not depend on the equipment used or the filtration technique. Examples of the instrument include filter paper, glass fiber, filter aid, filter cloth, membrane filter, and glass filter.
- filtration methods include natural filtration, suction filtration, centrifugation, decantation, and the like, and can be appropriately selected depending on the application and reaction scale.
- the separation operation of the product and the disulfide reagent can be simplified as filtration by forming the disulfide reagent in the form of a solid phase reagent comprising a nitrogen-containing compound in a form solidified on a polymer carrier. This is possible only by simple operation. Therefore, it can be said that the disulfide reagent according to the present invention, particularly in the form of a solid phase reagent, is an invention having an extremely high advantage in the technical field of organic synthesis (particularly peptide synthesis).
- Example 1 As an example of the compound of the present invention, synthesis examples of compounds 2a to 2i are shown below.
- Compound 1b was synthesized in the same manner as Compound 2a using Compound 1 (100 mg, 0.329 mmol) and n-butanol (6 mL) (yellow solid, 72.3 mg, 77% for 2 steps).
- Compound 1c was synthesized using Compound 1 (100 mg, 0.329 mmol) and 2-propanol (6 mL) in the same manner as Compound 2a (yellow solid, 25.4 mg, 2 steps 29%).
- Compound 2d was synthesized in the same manner as Compound 2a using Compound 1 (200 mg, 0.329 mmol) and t-butyl alcohol (3 mL) (yellow solid, 38.0 mg, 2 steps 20%). .
- Compound 1e was synthesized in the same manner as Compound 2a using Compound 1 (100 mg, 0.329 mmol) and benzyl alcohol (6 mL) (yellow solid, 84.9 mg, 81% for 2 steps).
- Compound 2g was synthesized in the same manner as Compound 2f using Compound 1 (100 mg, 0.328 mmol) and o-methoxyphenol (0.328 mmol) (yellow viscous substance, 12.9 mg, 2 steps) 12%).
- Compound 2h was synthesized in the same manner as Compound 2f using Compound 1 (100 mg, 0.328 mmol) and p-bromobenzyl alcohol (61.3 mg, 0.328 mmol) (yellow solid, 65. 1 mg, 50% for 2 steps).
- the obtained residue was dissolved in 1,2-dichloroethane (1 mL), and protected from light at room temperature in the presence of 1-hydroxybenzotriazole (HOBt ⁇ H 2 O, 49 mg, 0.32 mmol) and pyridine (0.1 mL, 1.29 mmol) was added and stirred at the same temperature for 30 minutes.
- the reaction solution was evaporated under reduced pressure, and the resulting residue was diluted with chloroform, washed with 5% aqueous citric acid solution, water and saturated brine, and dried over Na 2 SO 4 .
- Example 2 A disulfide-containing peptide was synthesized by forming a disulfide bond in the molecule of a peptide having two free thiol groups using the nitrogen-containing compound according to the present invention synthesized above as a selective disulfating agent.
- Example 2-1 (a): Synthesis of Oxytocin Using Compound 2a According to the following scheme, a pair of disulfide bonds (N-terminal side) was formed in the molecule using Compound 2a synthesized above as a selective disulfating agent.
- oxytocin (peptide 4), which is a nonapeptide (9 amino acids) having the first and sixth cysteine residues).
- the peptide chain was elongated by the Fmoc-solid phase peptide synthesis method.
- TFA H 2 O: triisopropylsilane: 1,2-ethanedithiol (94: 2.5: 1.0: 2.5 (volume ratio), 10 mL) was added, and the mixture was stirred at room temperature for 3 hours. After the reaction solution was filtered and TFA was removed, ether was added to precipitate the peptide.
- the disulfide can be introduced into the peptide molecule in a short time by a very simple treatment and in a chemically stable manner. It has been shown that it is possible to synthesize disulfide-containing peptides by introducing bonds.
- the presumed reaction mechanism in which a disulfide bond is introduced in this example is as follows.
- Oxytocin (peptide 4) was synthesized by the method. Then, the synthesis of oxytocin (peptide 4) was confirmed by analyzing the fraction detected as the main peak by TOF-MS in the same manner as described above.
- Example 2-1 (c) Synthesis of oxytocin using compound 2c The same as Example 2-1 (a) described above, except that compound 2c was used as the selective disulfating agent instead of compound 2a.
- Oxytocin (peptide 4) was synthesized by the method. Then, the synthesis of oxytocin (peptide 4) was confirmed by analyzing the fraction detected as the main peak by TOF-MS in the same manner as described above.
- Example 2-1 (d) Synthesis of oxytocin using compound 2d The same as Example 2-1 (a) described above, except that compound 2d was used as the selective disulfating agent instead of compound 2a.
- Oxytocin (peptide 4) was synthesized by the method. Then, the synthesis of oxytocin (peptide 4) was confirmed by analyzing the fraction detected as the main peak by TOF-MS in the same manner as described above.
- Example 2-1 (a) to Example 2-1 (d) analysis of the reaction solution after 1 hour, 3 hours and 6 hours after the addition of the selective disulfating agent by HPLC was used to measure the yield of oxytocin (peptide 4). The results are shown in Table 1 below.
- Example 2-2 Synthesis of Human Atrial Natriuretic Peptide (Human ANP) (Peptide 6) According to the following scheme, a pair of disulfide bonds (in the 7th and 23rd cysteine residues from the N-terminal side) was formed in the molecule. ) was synthesized as a human atrial natriuretic peptide (human ANP) (peptide 6).
- the disulfide reagent comprising the nitrogen-containing compound (or salt thereof) according to the present invention introduces a disulfide bond into the molecule and contains disulfide even if a relatively large polypeptide of 28 amino acids is used as a raw material. It can be seen that it is possible to synthesize peptides.
- Example 2-3 Synthesis of ⁇ -conotoxin ImI (peptide 9) According to the following scheme, two pairs of disulfide bonds (between the 1st and 10th cysteine residues from the N-terminal side and the 5th and 11th in the molecule) ⁇ -conotoxin ImI (peptide 9), which is a polypeptide (between 12 th cysteine residues) (12 amino acids), was synthesized.
- the thiol groups of the 3rd and 12th cysteine residues from the N-terminal side of peptide 7 are protected with an N- (acetyl) aminomethyl group (Acm group), and this Acm group is selectively oxidized by iodine oxidation. Can be deprotected.
- the nitrogen-containing compound (or a salt thereof) according to the present invention is disulfidated. It can be seen that the method for producing a disulfide-containing peptide used as a reagent provides an extremely powerful synthetic means.
- Example 3 Forming a disulfide bond in the molecule of a peptide having two free thiol groups using the nitrogen-containing compound according to the present invention synthesized above as a selective disulfating agent on a polymer carrier. was used to synthesize disulfide-containing peptides.
- Example 3-1 Synthesis of Solid-Phase Disulfide Reagent (Compound 11) A nitrogen-containing compound (Compound 11) in which R in Chemical Formula 1 is a polymer carrier (polyethylene glycol crosslinked product) was synthesized according to the following scheme.
- Example 3-2 Synthesis of Oxytocin (Peptide 4) Using Immobilized Disulfide Reagent (Compound 11) According to the following scheme, Example 2-1 was conducted using Compound 11 as an immobilized disulfide reagent. Oxytocin (peptide 4) was synthesized from peptide 3 by the same method as in (a).
- disulfide reagent used in this example is a solid phase reagent, it is recovered by filtration of the reaction solution and does not appear as a peak in the HPLC chart. In this way, disulfide-containing peptides can be produced in a high yield in a very short time by using a solid-phased reagent consisting of a nitrogen-containing compound in the form of a solid-phased polymer support. It is.
- the separation operation of the product and the disulfide reagent can be performed only by a simple operation of filtration. Therefore, it can be said that the disulfide reagent according to the present invention, particularly in the form of a solid phase reagent, is an invention having an extremely high advantage in the technical field of organic synthesis (particularly peptide synthesis).
- Example 4 As an example of the compound of the present invention, synthesis examples of compounds 16a to 16j are shown below.
- N, N-diisopropylethylamine (2.72 mL, 18.9 mmol) was added to a methanol (150 mL) solution of Npys-Cl (2.4 g, 12.6 mmol) under ice-cooling and stirring at room temperature. Stir for 3 hours. The reaction solution was evaporated under reduced pressure, and the resulting residue was diluted with chloroform, washed with 10% aqueous citric acid solution, water and saturated brine, and dried over Na 2 SO 4 .
- Npys-Cl 50 mg, 0.26 mmol
- 1,2-dichloroethane 0.8 mL
- benzyl alcohol 28.4 mg, 0.26 mmol
- N, N-diisopropylethylamine 174 ⁇ L, 1.04 mmol
- the reaction solution was evaporated under reduced pressure, and the resulting residue was diluted with chloroform, washed with 5% aqueous citric acid solution, water and saturated brine, and dried over Na 2 SO 4 .
- Example 5 Synthesis of Oxytocin Using Compound 16a
- Oxytocin (peptide 4) was synthesized.
- disulfide reagents consisting of nitrogen-containing compounds (or their salts) that do not have an ester structure can also be used to introduce disulfide bonds into peptide molecules in a short time and using a chemically stable method.
- disulfide-containing peptides can be synthesized.
- Example 6 A disulfide-containing peptide was synthesized by forming a disulfide bond between two free thiol groups of a peptide supported on a resin using the nitrogen-containing compound according to the present invention synthesized above as a selective disulfating agent.
- a selective disulfating reagent comprising a nitrogen-containing compound (or a salt thereof) can synthesize a disulfide-containing peptide by forming a disulfide bond between two free thiol groups of the peptide supported on the resin. It was shown that there is.
- Example 7 Stability evaluation of compound 2a
- 1 H NMR analysis charts are shown in FIGS. 9 and 10, respectively.
- Example 8 (Confirmation of presence or absence of side reaction by compound 2a) As a side reaction of iodine oxidation, iodination reaction on the side chains of tryptophan, tyrosine and histidine has been reported (B. Kamber, et al., Helv. Chim. Acta. 1980, 899-915.). Then, the presence or absence of the side reaction of the compound 2a which is the nitrogen-containing compound of the present invention was confirmed by the same method as in the above paper.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pyridine Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Peptides Or Proteins (AREA)
Abstract
【課題】簡便な処理によって短時間に、かつ、化学的に安定な手法により、ペプチド等の有機化合物の分子内に位置する2つの遊離チオール基に対して選択的にジスルフィド結合を導入しうる手段を提供する。 【解決手段】下記化学式1で表される含窒素化合物またはその塩: 化学式1中の符号は、明細書において定義されている通りである。
Description
本発明は、有機合成(特に、ペプチド合成等)において、アミノ酸またはペプチド等に含まれるチオール基(-SH基)の選択的ジスルフィド化試薬として使用可能なピリジン誘導体に関する。また、本発明は、当該ジスルフィド化試薬を用いるジスルフィド含有化合物の製造方法に関する。
従来、ジスルフィド結合(S-S結合)含有ペプチドの合成方法として、固相法または液相法により、保護されたシステイン(Cys)残基を含む保護ペプチドシーケンスを合成し、全保護基を一旦脱保護することにより遊離のチオール基を有するペプチドを得て、さらに空気酸化法またはヨウ素酸化法を用いて分子内にジスルフィド結合(S-S結合)を形成する方法が知られている。
しかしながら、空気酸化法はジスルフィド結合の形成に長時間を必要とするという問題点がある。また、ヨウ素酸化法は反応時にチロシン、ヒスチジンおよびトリプトファンに対してもヨウ素酸化が起こることが知られており、選択性が十分ではないという問題がある。また、これらの方法を用いて分子内にジスルフィド結合を形成させる際、反応系内における遊離チオール基含有ペプチドの濃度が高すぎると、分子間でジスルフィド結合が形成されて架橋異性体が生成してしまい、所望のジスルフィド含有ペプチドの収率が低下するばかりか、所望のペプチドを架橋異性体から分離精製する操作が必要となるという問題もあり、さらに、一般に高希釈下に反応を行う必要があるという問題もある。
その他、ジスルフィド結合を化学的に形成させる方法として、タリウム(III)トリフルオロアセテート法(非特許文献1を参照)、S-保護システインスルホキシド法(非特許文献2を参照)、およびシリルクロライド-スルホキシド法(非特許文献3を参照)が脱保護と同時にジスルフィド結合を形成させる反応として報告されている。また、システインのチオール基の保護基として3-ニトロ-2-ピリジンスルフェニル基(Npys基)を用い、遊離のチオール基と反応させることにより容易に分子間ジスルフィド結合を形成できることも報告されている(非特許文献4を参照)。
さらに、特許文献1には、チオール基をNpys基で保護したシステインまたはシステイン含有保護ペプチドを遊離のチオール基を有するシステインまたはシステイン含有保護ペプチドと反応させることにより、ジスルフィド結合の形成反応とペプチド結合の形成反応とを逐次反応として進行させて、ジスルフィド含有ペプチドを製造する方法が提案されている。
J. Chem. Soc., Chem. Commun., 1987, 163-164
J. Chem. Soc., Chem. Commun., 1987, 1676-1678
J. Chem. Soc., Chem. Commun., 1991, 167-168
Chemistry Letters, 1982, 921-924
しかしながら、特許文献1に記載の方法においてチオール基を保護するためのNpys基の導入に用いられる試薬である3-ニトロ-2-ピリジンスルフェニルクロライド(Npys-Cl)は反応性に富み化学的に不安定な化合物であることから、チオール基のみならず種々の官能基(アミノ基、水酸基など)と反応するという問題がある。ここで、文献(Heterocycles,Vol.15,No.2,1981)には、3-ニトロ-2-ピリジンスルフェニルハライドに関して、「They have been found to be extraordinarily stable solids that can be safely stored at least one year in a refrigerator.」との記載がある。しかしながら、実際にはその反応性の高さから、上記化合物を室温で保存することはできず、また保存中に湿気(水分)などで分解したり、アルコールやアミンなどを含む溶液やわずかに塩基性の溶液においても不安定であるなど、実際の保存は容易ではない。さらに、特許文献1に記載の方法は、2種の保護ペプチドシーケンスをまず合成した後にジスルフィド結合の形成とペプチド結合の形成とを段階的に行い、その後さらに脱保護処理を施すことを前提としている。このため、保護・脱保護の処理が必要となるなど、操作が煩雑であるという問題もある。
そこで本発明は、簡便な処理によって比較的短時間に、かつ、化学的に安定な手法により、ペプチド等の有機化合物の分子内に位置する2つの遊離チオール基に対して選択的にジスルフィド結合を導入しうる手段を提供することを目的とする。
本発明者らは、上記課題を解決すべく鋭意検討を行った。その過程で、驚くべきことに、所定の化学構造を有する含窒素化合物をジスルフィド化試薬として用いることで上記課題が解決されうることを見出し、本発明を完成させるに至った。なお、上記所定の化学構造を有する含窒素化合物の大部分は新規な化合物である。
すなわち、本発明の一形態によれば、新規な含窒素化合物として、下記化学式1で表される化合物またはその塩が提供される:
化学式1において、
Wは、他の環員原子と一緒になって、ピリジン環、ピラジン環、イミダゾール環、オキサゾール環、チアゾール環、キノリン環、イソキノリン環、キノキサリン環、フェナントロリン環、プテリジン環およびアゾシン環からなる群から選択される含窒素複素環を形成し、
Xは、-O-または-NH-であり、
Yは、置換もしくは非置換のC1~C20のアルキル基、置換もしくは非置換のC2~C20のアルケニル基、置換もしくは非置換のC2~C20のアルキニル基、置換もしくは非置換のC3~C20のシクロアルキル基、置換もしくは非置換のC3~C20のシクロアルケニル基、置換もしくは非置換のC6~C20のアリール基、置換もしくは非置換のC3~C20のヘテロアリール基および置換もしくは非置換の電子吸引性を有する脂肪族ヘテロ環由来の1価の基からなる群から選択される基であり、
Zは、前記含窒素複素環上に存在する水素原子または電子吸引性の置換基を表し、
p、qおよびrは、それぞれ独立して、0または1であり、
sは、0~10の整数を表し、
L0およびL1は、それぞれ独立して、化学的に安定な構造を有するリンカーを表し、
AaおよびAbは、それぞれ独立して、-CH=CH-、-C≡C-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-O-、C1~C20のオキシアルキレン、C1~C20のアルキレンオキシ、-C(=O)-NH-、-NH-C(=O)-、-NH-C(=O)-NH-、ヒドラジン、トリアゾール、スルホン、スルホキシド、スルホン酸エステル、スルホンアミド、スルフィン酸エステル、スルフィンアミド、ピペリジンおよびジオキサンからなる群から選択される基であり、
sは、0~10の整数を表し、
Rは、水素原子、置換もしくは非置換のC1~C20のアルキル基、置換もしくは非置換のC2~C20のアルケニル基、置換もしくは非置換のC2~C20のアルキニル基、置換もしくは非置換のC3~C20のシクロアルキル基、置換もしくは非置換のC3~C20のシクロアルケニル基、置換もしくは非置換のC6~C20のアリール基、置換もしくは非置換のC3~C20のヘテロアリール基、アミノ基、ヒドロキシ基、または高分子担体である;
ただし、上記窒素含有化合物の範囲からは、以下の化合物を除くものとする:
(A)3-ニトロ-2-ピリジンスルフィン酸メチル
(B)3-ニトロ-2-ピリジンスルフィン酸エチル
(C)3-ニトロ-2-ピリジンスルフィン酸N,N-ジエチルアミノエチル
(D)N-(3’-ニトロ-2’-ピリジンスルフェニルオキシ)-5-ノルボルネン-2,3-ジカルボキシイミド
(E)(S)-((tert-ブトキシカルボニル)アミノ)-3-(((3-ニトロピリジン-2-イル)チオ)オキシ)プロパン酸
(F)(2S,3R)-2-(((ベンジルオキシ)カルボニル)アミノ)-3-(((3-ニトロピリジン-2-イル)チオ)オキシ)ブタン酸
(G)4-((((3-ニトロピリジン-2-イル)チオ)オキシ)メチル)安息香酸
(H)(S)-2-(((3-ニトロピリジン-2-イル)チオ)オキシ)-3-フェニルプロパン酸。
Wは、他の環員原子と一緒になって、ピリジン環、ピラジン環、イミダゾール環、オキサゾール環、チアゾール環、キノリン環、イソキノリン環、キノキサリン環、フェナントロリン環、プテリジン環およびアゾシン環からなる群から選択される含窒素複素環を形成し、
Xは、-O-または-NH-であり、
Yは、置換もしくは非置換のC1~C20のアルキル基、置換もしくは非置換のC2~C20のアルケニル基、置換もしくは非置換のC2~C20のアルキニル基、置換もしくは非置換のC3~C20のシクロアルキル基、置換もしくは非置換のC3~C20のシクロアルケニル基、置換もしくは非置換のC6~C20のアリール基、置換もしくは非置換のC3~C20のヘテロアリール基および置換もしくは非置換の電子吸引性を有する脂肪族ヘテロ環由来の1価の基からなる群から選択される基であり、
Zは、前記含窒素複素環上に存在する水素原子または電子吸引性の置換基を表し、
p、qおよびrは、それぞれ独立して、0または1であり、
sは、0~10の整数を表し、
L0およびL1は、それぞれ独立して、化学的に安定な構造を有するリンカーを表し、
AaおよびAbは、それぞれ独立して、-CH=CH-、-C≡C-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-O-、C1~C20のオキシアルキレン、C1~C20のアルキレンオキシ、-C(=O)-NH-、-NH-C(=O)-、-NH-C(=O)-NH-、ヒドラジン、トリアゾール、スルホン、スルホキシド、スルホン酸エステル、スルホンアミド、スルフィン酸エステル、スルフィンアミド、ピペリジンおよびジオキサンからなる群から選択される基であり、
sは、0~10の整数を表し、
Rは、水素原子、置換もしくは非置換のC1~C20のアルキル基、置換もしくは非置換のC2~C20のアルケニル基、置換もしくは非置換のC2~C20のアルキニル基、置換もしくは非置換のC3~C20のシクロアルキル基、置換もしくは非置換のC3~C20のシクロアルケニル基、置換もしくは非置換のC6~C20のアリール基、置換もしくは非置換のC3~C20のヘテロアリール基、アミノ基、ヒドロキシ基、または高分子担体である;
ただし、上記窒素含有化合物の範囲からは、以下の化合物を除くものとする:
(A)3-ニトロ-2-ピリジンスルフィン酸メチル
(B)3-ニトロ-2-ピリジンスルフィン酸エチル
(C)3-ニトロ-2-ピリジンスルフィン酸N,N-ジエチルアミノエチル
(D)N-(3’-ニトロ-2’-ピリジンスルフェニルオキシ)-5-ノルボルネン-2,3-ジカルボキシイミド
(E)(S)-((tert-ブトキシカルボニル)アミノ)-3-(((3-ニトロピリジン-2-イル)チオ)オキシ)プロパン酸
(F)(2S,3R)-2-(((ベンジルオキシ)カルボニル)アミノ)-3-(((3-ニトロピリジン-2-イル)チオ)オキシ)ブタン酸
(G)4-((((3-ニトロピリジン-2-イル)チオ)オキシ)メチル)安息香酸
(H)(S)-2-(((3-ニトロピリジン-2-イル)チオ)オキシ)-3-フェニルプロパン酸。
また、本発明の他の形態によれば、上述した含窒素化合物またはその塩、あるいは、上記の化合物(A)~(H)のいずれかからなる、チオール基のジスルフィド化試薬が提供される。ここで、上記(A)~(H)の化合物(3-ニトロ-2-ピリジンスルフィン酸誘導体)は公知の化合物であるが、当該化合物がチオール基のジスルフィド化試薬として機能することについては従来知られていない。
また、本発明のさらに他の形態によれば、分子内に2つ以上の遊離チオール基を有する化合物を、上述したジスルフィド化試薬と接触させ、2つの前記遊離チオール基の間でジスルフィド結合を形成させてジスルフィド含有化合物を得ることを含む、ジスルフィド含有化合物の製造方法が提供される。
また、本発明のさらに他の形態によれば、上述した含窒素化合物またはその塩の製造方法が提供される。
本発明によれば、簡便な処理によって比較的短時間に、かつ、化学的に安定な手法により、ペプチド等の有機化合物の分子内に位置する2つの遊離チオール基に対して選択的にジスルフィド結合を導入しうる手段が提供される。
以下、本発明の実施形態を説明する。
本発明の一形態は、新規な含窒素化合物に関し、具体的には、下記化学式1で表される含窒素化合物またはその塩に関する。
化学式1において、Wは、他の環員原子と一緒になって、ピリジン環、ピラジン環、イミダゾール環、オキサゾール環、チアゾール環、キノリン環、イソキノリン環、キノキサリン環、フェナントロリン環、プテリジン環およびアゾシン環からなる群から選択される含窒素複素環を形成する。ここで、Wは、他の環員原子と一緒になって、前記含窒素複素環としてのピリジン環を形成することが好ましい。
化学式1において、Xは、-O-または-NH-である。なかでも、Xは-O-であることが好ましい。
化学式1において、Yは、置換もしくは非置換のC1~C20のアルキル基、置換もしくは非置換のC2~C20のアルケニル基、置換もしくは非置換のC2~C20のアルキニル基、置換もしくは非置換のC3~C20のシクロアルキル基、置換もしくは非置換のC3~C20のシクロアルケニル基、置換もしくは非置換のC6~C20のアリール基、置換もしくは非置換のC3~C20のヘテロアリール基および置換もしくは非置換の電子吸引性を有する脂肪族ヘテロ環由来の1価の基からなる群から選択される基である。ここで、「電子吸引性を有する脂肪族ヘテロ環由来の1価の基」は、電子吸引性構造を有する脂肪族ヘテロ環化合物などに相当するものとして、例えば、ペプチド合成におけるカルボン酸の活性エステルを形成するアルコールからヒドロキシ基を除いた1価の基が挙げられる。より詳細には、続・医薬品の開発(第14巻、ペプチド合成)(廣川書店)の第164~173頁の表5.7~5.11に記載されている1価の基、または当該頁に記載されている化合物由来の1価の基が挙げられる。なお、これらの基の具体例は、以下の通りである。
なかでも、「電子吸引性を有する脂肪族ヘテロ環由来の1価の基」は、置換または非置換の、スクシンイミジル基、マレイミジル基、フタルイミジル基または5-ノルボルネン-2,3-ジカルボキシイミジル基であることが好ましい。また、Yは、置換もしくは非置換のC1~C20のアルキル基、または置換もしくは非置換のC6~C20のアリール基であることが好ましく、置換もしくは非置換のC1~C20のアルキル基であることがより好ましく、非置換のC1~C20のアルキル基であることがさらに好ましく、非置換のC1~C12のアルキル基であることがいっそう好ましく、非置換のC1~C8のアルキル基であることがさらにより好ましく、非置換のC1~C4のアルキル基であることが特に好ましく、メチル基であることが最も好ましい。
本明細書において、アルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、1,2-ジメチルプロピル基、n-ヘキシル基、1,3-ジメチルブチル基、1-イソプロピルプロピル基、1,2-ジメチルブチル基、n-ヘプチル基、1,4-ジメチルペンチル基、2-メチル-1-イソプロピルプロピル基、1-エチル-3-メチルブチル基、n-オクチル基、2-エチルヘキシル基、3-メチル-1-イソプロピルブチル基、2-メチル-1-イソプロピル基、1-tert-ブチル-2-メチルプロピル基、n-ノニル基、3,5,5-トリメチルヘキシル基などが挙げられる。
本明細書において、アルケニル基の例としては、ビニル基、アリル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、2-メチル-2-プロペニル基、1-メチル-2-プロペニル基、2-メチル-1-プロペニル基、ペンテニル基、1-ヘキセニル基、3,3-ジメチル-1-ブテニル基などが挙げられる。
本明細書において、アルキニル基の例としては、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、3-メチル-1-プロピニル基、2-メチル-3-プロピニル基、ペンチニル基、1-ヘキシニル基、3-メチル-1-ブチニル基、3,3-ジメチル-1-ブチニル基などが挙げられる。
本明細書において、シクロアルキル基の例としては、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基などが挙げられる。
本明細書において、シクロアルケニル基の例としては、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。
本明細書において、アリール基の例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基などが挙げられる。
本明細書において、ヘテロアリール基の例としては、2-チエニル基、4-ピリジル基、3-ピリジル基、2-ピリジル基、1-ピリジル基、2-フリル基、2-ピリミジニル基、2-ベンゾチアゾリル基、1-イミダゾリル基、1-ピラゾリル基、ベンゾトリアゾール-1-イル基、7-アザベンゾトリアゾール-1-イル基などが挙げられる。
また、本明細書において、ある基が「置換されている」という場合、当該基を置換しうる置換基としては、例えば、フッ素、塩素、臭素、ヨウ素などのハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アシルオキシ基、アシル基、アルキルスルファニル基、アリールスルファニル基、アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、ヒドロキシ基、カルボキシ基、ホルミル基、メルカプト基、スルホ基、スルフィン酸基、グアニジノ基、カルバモイル基、チオール基、チオエーテル基、メシル基、p-トルエンスルホニル基、アミノ基、ニトロ基、シアノ基、トリフルオロメチル基、トリクロロメチル基、トリメチルシリル基、ホスフィニコ基、ホスホノ基などが挙げられる。これらの置換基もまた、ハロゲン原子、アルキル基、アリール基、アルコキシ基、ヒドロキシ基、カルボキシ基、アミノ基、ニトロ基、シアノ基などによってさらに置換されていてもよい。ただし、置換された後の基が置換される前の基と同じ定義に含まれるような置換は考えないものとする。
化学式1において、Zは、前記含窒素複素環上に存在する水素原子または電子吸引性の置換基を表し、なかでも、電子吸引性の置換基であることが好ましい。ここで、電子吸引性の置換基としては、例えば、ニトロ基、トリフルオロメチル基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アセチル基、メタンスルホニル基、トリフルオロアセチル基、トリフルオロメタンスルホニル基、シアノ基などが挙げられる。なかでも、ニトロ基、トリフルオロメチル基またはハロゲン原子が好ましく、ニトロ基が最も好ましい。
化学式1において、pは、0または1である。pが0のときにはL0は存在せずにAaまたはAbまたはRが直接含窒素複素環に結合し、pが1のときにはL0が存在する。
化学式1において、qは、0または1である。qが0のときにはL1は存在せず、qが1のときにはL1が存在する。
化学式1において、rは、0または1である。rが0のときにはAbは存在せず、rが1のときにはAbが存在する。
化学式1において、sは、0~10の整数である。sが0のときには[(Aa)-(L1)q]が存在せず、sが1~10の整数のときには[(Aa)-(L1)q]がs個繰り返して存在する。なお、sは好ましくは0~5であり、より好ましくは0または1である。
L0およびL1は、存在する場合にはそれぞれ独立して、化学的に安定な構造を有するリンカーを表す。このようなリンカーの具体的な構造について特に制限はないが、例えば、置換または非置換のC1~C20のアルキレン基、置換または非置換のC2~C20のアルケニレン基、置換または非置換のC2~C20のアルキニレン基、置換または非置換のC3~C20のシクロアルキレン基、置換または非置換のC3~C20のシクロアルケニレン基、置換または非置換のC6~C20のアリーレン基、置換または非置換のC3~C20のヘテロアリーレン基、-NH-、-O-、-S-、-C(=O)-NH-、-NH-C(=O)-、-O-、-C(=O)-O-、-O-C(=O)-、-S-、-C(=O)-、ポリオキシアルキレン基が挙げられる。また、L0およびL1は、下記化学式(a)で表される基:
であってもよい。ここで、化学式(a)において、Raは、置換または非置換のC1~C15のアルキレン基を表し、好ましくはC1~C8のアルキレン基を表し、より好ましくはC1~C4のアルキレン基を表し、特に好ましくはC1~C2のアルキレン基を表し、最も好ましくはC2のアルキレン基(特にはエチレン基)を表す。L0およびL1として好ましくは、C1-C6のアルキレン基(特にはエチレン基)、分子量100~1000のポリオキシアルキレン基、または上記化学式(a)で表される基が用いられる。
化学式1において、AaおよびAbは、存在する場合にはそれぞれ独立して、-CH=CH-、-C≡C-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-O-、C1~C20のオキシアルキレン、C1~C20のアルキレンオキシ、-C(=O)-NH-、-NH-C(=O)-、-NH-C(=O)-NH-、ヒドラジン、トリアゾール、スルホン、スルホキシド、スルホン酸エステル、スルホンアミド、スルフィン酸エステル、スルフィンアミド、ピペリジンおよびジオキサンからなる群から選択される基である。なかでも、AaおよびAbとして好ましくは、-C(=O)-、-C(=O)-O-、-O-、C1~C20のオキシアルキレン、C1~C20のアルキレンオキシ、-O-C(=O)-、-C(=O)-NH-または-NH-C(=O)-が用いられる。
化学式1において、Rは、水素原子、置換もしくは非置換のC1~C20のアルキル基、置換もしくは非置換のC2~C20のアルケニル基、置換もしくは非置換のC2~C20のアルキニル基、置換もしくは非置換のC3~C20のシクロアルキル基、置換もしくは非置換のC3~C20のシクロアルケニル基、置換もしくは非置換のC6~C20のアリール基、置換もしくは非置換のC3~C20のヘテロアリール基、アミノ基、ヒドロキシ基または高分子担体である。Rとしての高分子担体は、典型的には、固相合成法に用いられる高分子担体である。このような高分子担体は、例えば、ポリスチレン、ポリプロピレン、ポリエチレン、ポリエーテル、ポリ塩化ビニル、デキストラン、アクリルアミド、ポリエチレングリコール、これらの共重合体および架橋体、磁性ビーズ、並びにこれらの組み合わせからなる群から選択される。当該高分子担体は、より好ましくはポリスチレン、ポリエチレングリコール、およびポリエチレングリコールの架橋体である。これらの高分子担体は、隣接する基(例えば、AbやL1など)との間でメチル基などのアルキル基などを介して結合していてもよい。なお、高分子担体の形状については特に制限はないが、球状がより好ましく、この際、高分子担体の平均粒径は、好ましくは100~400meshである。このような高分子担体は市販されており、例えば、ポリエチレングリコール架橋体からなる高分子担体としては、シグマ-アルドリッチ社製のアミノメチル-ChemMatrix(登録商標)樹脂が知られている。また、ポリスチレン樹脂からなる高分子担体としては、続・医薬品の開発(第14巻、ペプチド合成)(廣川書店)の第283~295頁に記載されているような樹脂が挙げられる。具体的には、例えば、クロロメチル化(Merrifield)樹脂、アミノメチル樹脂、Wang樹脂、Pam樹脂、Rink acid樹脂、Rinkアミド樹脂、オキシム樹脂、4-メチルベンズヒドリルアミン樹脂、PAL樹脂、2-クロロトリチルクロライド樹脂などが挙げられる。
なお、本発明に係る化学式1の含窒素化合物は、塩の形態であってもよい。例えば、このような塩は、上述した化合物上に、アニオンと正に帯電した置換基(例えば、アミノ基)との間で形成されうる。この際、適切なアニオンとしては、塩化物、臭化物、ヨウ化物、硫酸塩、硝酸塩、リン酸塩、クエン酸塩、メタンスルホン酸塩、トリフルオロ酢酸塩、酢酸塩、リンゴ酸塩、トシル酸塩、酒石酸塩、フマル酸塩(fumurate)、グルタミン酸塩、グルクロン酸塩、乳酸塩、グルタル酸塩、およびマレイン酸塩などが挙げられる。同様に、このような塩は、上述した化合物上で、カチオンと負に帯電した置換基(例えば、カルボキシル基)との間で形成されうる。この際、適切なカチオンとしては、ナトリウムイオン、カリウムイオン、マグネシウムイオン、カルシウムイオン、およびテトラメチルアンモニウムイオンのようなアンモニウムカチオンが挙げられる。上述した化合物には、4級窒素原子を含むこれらの塩も含まれる。
本発明の一形態に係る新規な含窒素化合物またはその塩の概念からは、以下の化合物は除かれている(すなわち、以下の化合物は公知の化合物である)。
(A)3-ニトロ-2-ピリジンスルフィン酸メチル
(B)3-ニトロ-2-ピリジンスルフィン酸エチル
(C)3-ニトロ-2-ピリジンスルフィン酸N,N-ジエチルアミノエチル
(D)N-(3’-ニトロ-2’-ピリジンスルフェニルオキシ)-5-ノルボルネン-2,3ジカルボキシイミド
(E)(S)-((tert-ブトキシカルボニル)アミノ)-3-(((3-ニトロピリジン-2-イル)チオ)オキシ)プロパン酸
(F)(2S,3R)-2-(((ベンジルオキシ)カルボニル)アミノ)-3-(((3-ニトロピリジン-2-イル)チオ)オキシ)ブタン酸
(G)4-((((3-ニトロピリジン-2-イル)チオ)オキシ)メチル)安息香酸
(H)(S)-2-(((3-ニトロピリジン-2-イル)チオ)オキシ)-3-フェニルプロパン酸。
(A)3-ニトロ-2-ピリジンスルフィン酸メチル
(B)3-ニトロ-2-ピリジンスルフィン酸エチル
(C)3-ニトロ-2-ピリジンスルフィン酸N,N-ジエチルアミノエチル
(D)N-(3’-ニトロ-2’-ピリジンスルフェニルオキシ)-5-ノルボルネン-2,3ジカルボキシイミド
(E)(S)-((tert-ブトキシカルボニル)アミノ)-3-(((3-ニトロピリジン-2-イル)チオ)オキシ)プロパン酸
(F)(2S,3R)-2-(((ベンジルオキシ)カルボニル)アミノ)-3-(((3-ニトロピリジン-2-イル)チオ)オキシ)ブタン酸
(G)4-((((3-ニトロピリジン-2-イル)チオ)オキシ)メチル)安息香酸
(H)(S)-2-(((3-ニトロピリジン-2-イル)チオ)オキシ)-3-フェニルプロパン酸。
なお、これらの化合物(A)~(H)はいずれも、上記化学式1においてp=0、s=0、r=0を満たし、かつ、Rが水素原子である化合物に相当する。本形態に係る含窒素化合物またはその塩は、上記化学式1において、「p=0、s=0、r=0、かつ、R=水素原子」の条件を満たすものではないことが好ましい。
以下では、本発明に係る化学式1の含窒素化合物について、いくつかの好ましい実施形態を説明するが、本発明の技術的範囲は以下の形態のみには限定されない。
(第1の好ましい実施形態)
本発明に係る化学式1の含窒素化合物についての第1の好ましい実施形態は、qが0であり、rが0であり、sが1である。これにより、化学式1の化合物は、下記化学式2で表される。
本発明に係る化学式1の含窒素化合物についての第1の好ましい実施形態は、qが0であり、rが0であり、sが1である。これにより、化学式1の化合物は、下記化学式2で表される。
そして、化学式2において、
W、X、Y、Z、p、L0およびAaは、上記で定義した通りである。
W、X、Y、Z、p、L0およびAaは、上記で定義した通りである。
また、本実施形態において、Rは、「アミノ基、ヒドロキシ基、高分子担体」以外のもの、すなわち、置換もしくは非置換のC1~C20のアルキル基、置換もしくは非置換のC2~C20のアルケニル基、置換もしくは非置換のC2~C20のアルキニル基、置換もしくは非置換のC3~C20のシクロアルキル基、置換もしくは非置換のC3~C20のシクロアルケニル基、置換もしくは非置換のC6~C20のアリール基、または置換もしくは非置換のC3~C20のヘテロアリール基である。
本実施形態においても、各符号(置換基)の好ましい形態は化学式1について上述したのと同様である。ただし、本実施形態において、Rは、置換もしくは非置換のC1~C20のアルキル基、または置換もしくは非置換のC6~C20のアリール基であることが好ましく、置換もしくは非置換のC1~C20のアルキル基であることがより好ましく、非置換のC1~C20のアルキル基であることがさらに好ましく、非置換のC1~C12のアルキル基であることがいっそう好ましく、非置換のC1~C8のアルキル基であることがさらにより好ましく、非置換のC1~C4のアルキル基であることが特に好ましく、メチル基であることが最も好ましい。
さらに、本実施形態において、Aaは、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-O-、-C(=O)-NH-および-NH-C(=O)-からなる群から選択される基であることが好ましく、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-および-NH-C(=O)-からなる群から選択される基であることがより好ましく、-C(=O)-O-または-O-C(=O)-であることが特に好ましく、-C(=O)-O-であることが最も好ましい。
また、本実施形態において、pは0であっても1であってもよいが、好ましくはpは0である(すなわち、L0は存在せずにAaが直接上記芳香族複素環に結合していることが好ましい)。
本実施形態に係る化合物の例を挙げると、以下の通りである。
(第2の好ましい実施形態)
本発明に係る化学式1の含窒素化合物についての第2の好ましい実施形態は、qが0であり、rが0であり、sが1である。これにより、化学式1の化合物は、上記化学式2と同様、下記化学式3で表される。
本発明に係る化学式1の含窒素化合物についての第2の好ましい実施形態は、qが0であり、rが0であり、sが1である。これにより、化学式1の化合物は、上記化学式2と同様、下記化学式3で表される。
そして、化学式3において、W、X、Y、Z、p、L0およびAaは、上記化学式2と同様、前記化学式1について定義した通りである。一方、本実施形態において、Rは、高分子担体である。ここで、本実施形態においても、各符号(置換基)の好ましい形態は化学式1について上述したのと同様である。
ただし、本実施形態において、高分子担体であるRの好ましい一形態はポリエチレングリコール架橋体(例えば、アミノメチルChemMatrix(登録商標)樹脂)である。この場合、Aaは、-C(=O)-NH-であることが好ましい。そして、この場合において、pは0であっても1であってもよいが、好ましくはpは0である(すなわち、L0は存在せずにAaが直接上記芳香族複素環に結合していることが好ましい)。本実施形態における好ましい化合物の一例は、以下の化合物11である。
同様に、本実施形態において、高分子担体であるRの好ましい他の形態はポリスチレン樹脂である。この場合、Aaは、-C(=O)-O-であることが好ましい。そして、この場合においても、pは0であっても1であってもよいが、好ましくはpは0である(すなわち、L0は存在せずにAaが直接上記芳香族複素環に結合していることが好ましい)。本実施形態における好ましい化合物の一例は、以下の化合物12である。
(第3の好ましい実施形態)
本発明に係る化学式1の含窒素化合物についての第3の好ましい実施形態は、qが1であり、rが1であり、sが1である。これにより、化学式1の化合物は、下記化学式4で表される。
本発明に係る化学式1の含窒素化合物についての第3の好ましい実施形態は、qが1であり、rが1であり、sが1である。これにより、化学式1の化合物は、下記化学式4で表される。
そして、化学式4において、W、X、Y、Z、p、L0、L1、AaおよびAbは、前記化学式1について定義した通りである。一方、本実施形態において、Rは、高分子担体である。ここで、本実施形態においても、各符号(置換基)の好ましい形態は化学式1について上述したのと同様である。
ただし、本実施形態においては、AaおよびAbが-C(=O)-NH-であり、L1がC1~C20のアルキレン基であり、高分子担体であるRがポリエチレングリコール架橋体(例えば、アミノメチルChemMatrix(登録商標)樹脂)であることが好ましい。そして、この場合においても、pは0であっても1であってもよいが、好ましくはpは0である(すなわち、L0は存在せずにAaが直接上記芳香族複素環に結合していることが好ましい)。本実施形態における好ましい化合物の一例は、以下の化合物13である(化合物13において、L1はC5のアルキレン基(ペンタメチレン基)である)。
以上、本発明に係る化学式1の含窒素化合物について好ましい実施形態をいくつか説明したが、本発明に係る化学式1の化合物はこれら以外のものであってももちろんよい。上述した実施形態には包含されない化合物の例としては、例えば、以下の化合物14および化合物15があるがこれには限定されない。
(本発明の化合物の製造方法)
本発明に係る含窒素化合物の製造方法について特に制限はない。当業者であれば、後述する実施例の欄の記載に基づき、本願の出願時における技術常識を参酌して、本発明に係る化合物を製造することが可能である。以下では、本発明に係る化合物のうち、上記化学式1においてXが-O-である化合物を例に挙げて、その製造方法を説明する。
本発明に係る含窒素化合物の製造方法について特に制限はない。当業者であれば、後述する実施例の欄の記載に基づき、本願の出願時における技術常識を参酌して、本発明に係る化合物を製造することが可能である。以下では、本発明に係る化合物のうち、上記化学式1においてXが-O-である化合物を例に挙げて、その製造方法を説明する。
本形態に係る製造方法における出発物質は、下記化学式5で表される化合物である。
ここで、化学式5において、W、Z、p、q、r、s、L0、L1、AaおよびAbは、前記化学式1について定義した通りである。
また、化学式5において、R”は、脱離基である。R”を構成する脱離基の具体的な種類について特に制限はなく、従来公知の脱離基が用いられうるが、例えば、ベンジル基、メトキシベンジル基、ジメチルアミノベンジル基、トリチル基、クロロトリチル基、メチルトリチル基、メトキシトリチル基、tert-ブチル基などが挙げられる。
化学式5で表される化合物は、例えば、国際公開第2015/050199号パンフレットの記載に従って合成することが可能である。
本形態に係る製造方法では、上記で準備した出発物質(化学式5で表される化合物)を、ハロゲン単体またはハロゲン生成試薬(例えば、塩化スルフリル、塩素ガス、オキシ塩化リン、五塩化リン、臭素、フッ化アルキルピリジン、フッ化キヌクリジンまたはヨウ素)と反応させる。これにより、下記化学式6で表される化合物が得られる(工程(I))。
ここで、化学式6において、W、Z、p、q、r、s、L0、L1、AaおよびAbは、前記化学式1について定義した通りである。
また、化学式6において、Halは、フッ素、塩素、臭素またはヨウ素から選択されるハロゲン原子を表す。
工程(I)において上記反応を行う場合には、例えば、化学式5で表される化合物に1,2-ジクロロエタン等の溶媒のほか、ピリジン、塩化スルフリル等のハロゲン生成試薬を加え、穏やかに1~2時間程度撹拌する。その後、反応溶液を減圧留去し、ヘキサン等を用いて共沸させることができる。この際、Rが高分子担体である場合には、予め反応前に化学式5で表される化合物を溶媒で膨潤させておくことが好ましい。
本形態に係る製造方法では、続いて、上記で得られた化学式6で表される化合物を、塩基性条件下でY-OH(Yは、前記化学式1について定義した通りである)で表されるアルコールと反応させる。これにより、下記化学式7で表される化合物が得られる(工程(II))。
ここで、化学式7において、W、Y、Z、p、q、r、s、L0、L1、AaおよびAbは、前記化学式1について定義した通りである。なお、上記化学式7で表される化合物は、上記化学式1においてXが-O-である化合物に相当する。
工程(I)において上記反応を行う場合には、例えば、上記で得られた化合物6で表される化合物を、Y-OHで表されるアルコールに溶解させる。そして、反応系を撹拌しながら塩基を添加すると、Y-O-で表されるアルコキシドイオンが求核剤として作用し、Hal-で表されるハロゲン化物イオンが脱離する求核置換反応が硫黄原子上で進行する。その結果、上記化学式7で表される化合物が生成する。なお、添加する塩基の種類について特に制限はないが、求核性が低いほど好ましいことから、N,N-ジイソプロピルエチルアミン(DIPEA;ヒューニッヒ塩基)などの低求核性の塩基が好ましく用いられる。得られた生成物については、常法に従って精製することができる。
以上、上記化学式1においてXが-O-である化合物(化学式7で表される化合物)を例に挙げて本発明に係る化合物の製造方法を説明したが、その他の化合物についても、当業者であれば適宜製造が可能である。例えば、上記化学式1においてXが-NH-である化合物については、上記で得られた化学式6で表される化合物をY-NH2で表されるアミンと適当な有機溶媒中で反応させることで、同様の反応機構により、製造が可能である。
(本発明の化合物の用途)
本発明者らは、上述した本発明の含窒素化合物(またはその塩)が、驚くべきことに、ジスルフィド化試薬としての機能を有していることを発見した。そして、本発明に係る含窒素化合物は室温(25℃)での保管が可能なほど、化学的に極めて安定であることも見出した。さらに、本発明に係る含窒素化合物をジスルフィド化試薬として用いることで、簡便な処理によって短時間に、かつ、化学的に安定な手法により、ペプチド等の有機化合物の分子内に位置する2つの遊離チオール基に対して選択的にジスルフィド結合を導入することが可能となるという、従来公知のジスルフィド化試薬では発揮されなかった優れた効果も奏される。さらに、公知の化合物として上述した化合物(A)~(H)についても、上記のようなチオール基のジスルフィド化試薬としての用途は知られていなかったが、本発明によれば、これらの化合物(A)~(H)についてもまた、ジスルフィド化試薬としての用途発明が提供される。したがって、本発明の他の形態によれば、上述した含窒素化合物またはその塩、あるいは、以下の化合物(A)~(H)からなる、チオール基のジスルフィド化試薬が提供される。
(A)3-ニトロ-2-ピリジンスルフィン酸メチル
(B)3-ニトロ-2-ピリジンスルフィン酸エチル
(C)3-ニトロ-2-ピリジンスルフィン酸N,N-ジエチルアミノエチル
(D)N-(3’-ニトロ-2’-ピリジンスルフェニルオキシ)-5-ノルボルネン-2,3ジカルボキシイミド
(E)(S)-((tert-ブトキシカルボニル)アミノ)-3-(((3-ニトロピリジン-2-イル)チオ)オキシ)プロパン酸
(F)(2S,3R)-2-(((ベンジルオキシ)カルボニル)アミノ)-3-(((3-ニトロピリジン-2-イル)チオ)オキシ)ブタン酸
(G)4-((((3-ニトロピリジン-2-イル)チオ)オキシ)メチル)安息香酸
(H)(S)-2-(((3-ニトロピリジン-2-イル)チオ)オキシ)-3-フェニルプロパン酸。
本発明者らは、上述した本発明の含窒素化合物(またはその塩)が、驚くべきことに、ジスルフィド化試薬としての機能を有していることを発見した。そして、本発明に係る含窒素化合物は室温(25℃)での保管が可能なほど、化学的に極めて安定であることも見出した。さらに、本発明に係る含窒素化合物をジスルフィド化試薬として用いることで、簡便な処理によって短時間に、かつ、化学的に安定な手法により、ペプチド等の有機化合物の分子内に位置する2つの遊離チオール基に対して選択的にジスルフィド結合を導入することが可能となるという、従来公知のジスルフィド化試薬では発揮されなかった優れた効果も奏される。さらに、公知の化合物として上述した化合物(A)~(H)についても、上記のようなチオール基のジスルフィド化試薬としての用途は知られていなかったが、本発明によれば、これらの化合物(A)~(H)についてもまた、ジスルフィド化試薬としての用途発明が提供される。したがって、本発明の他の形態によれば、上述した含窒素化合物またはその塩、あるいは、以下の化合物(A)~(H)からなる、チオール基のジスルフィド化試薬が提供される。
(A)3-ニトロ-2-ピリジンスルフィン酸メチル
(B)3-ニトロ-2-ピリジンスルフィン酸エチル
(C)3-ニトロ-2-ピリジンスルフィン酸N,N-ジエチルアミノエチル
(D)N-(3’-ニトロ-2’-ピリジンスルフェニルオキシ)-5-ノルボルネン-2,3ジカルボキシイミド
(E)(S)-((tert-ブトキシカルボニル)アミノ)-3-(((3-ニトロピリジン-2-イル)チオ)オキシ)プロパン酸
(F)(2S,3R)-2-(((ベンジルオキシ)カルボニル)アミノ)-3-(((3-ニトロピリジン-2-イル)チオ)オキシ)ブタン酸
(G)4-((((3-ニトロピリジン-2-イル)チオ)オキシ)メチル)安息香酸
(H)(S)-2-(((3-ニトロピリジン-2-イル)チオ)オキシ)-3-フェニルプロパン酸。
ここで、本発明に係る化学式1の含窒素化合物については、上記化学式1において、「p=0、s=0、r=0、かつ、R=水素原子」の条件を満たすものではないことが好ましいことを上述した。これに対し、この条件を満たす化合物についてもジスルフィド化試薬としての用途は新規である。したがって、本発明に係るジスルフィド化試薬の好ましい一実施形態は、本発明に係る化学式1の含窒素化合物のうち、上記化学式1において、「p=0、s=0、r=0、かつ、R=水素原子」の条件を満たすもの(下記化学式8)を有効成分とするものである。
化学式8において、W、X、YおよびZは、前記化学式1について定義した通りである。ここで、各符号(置換基)の好ましい形態は化学式1について上述したのと同様である。
本実施形態における好ましいジスルフィド化試薬の一例は、以下の化合物14a~化合物14jのいずれかを有効成分とするものである。
また、上述した化学式1においてRが固相合成法に用いられる高分子担体である場合には、ジスルフィド化活性を有する含窒素化合物を固相合成法に用いられる高分子担体に固定させることができる。したがってこの場合には、ペプチド等の有機化合物の分子内に位置する2つの遊離チオール基に対して選択的に作用する固相担持型試薬として使用することができる。
本発明のさらに他の形態は、上述した本発明に係る含窒素化合物をジスルフィド化試薬(好ましくは、固相担持型ジスルフィド化試薬)として用いて、分子内に2つ以上の遊離チオール基を有する化合物にジスルフィド結合(-S-S-)を導入する方法に関する。換言すれば、本形態に係る方法は、分子内に2つ以上の遊離チオール基を有する化合物を、上述した本発明に係る含窒素化合物(またはその塩)からなるジスルフィド化試薬と接触させ、2つの前記遊離チオール基の間でジスルフィド結合を形成させてジスルフィド含有化合物を得ることを含む、ジスルフィド含有化合物の製造方法である。
ここで、ジスルフィド結合を導入する対象となる「分子内に2つ以上の遊離チオール基を有する化合物」の構造は特に制限されない。「分子内に2つ以上の遊離チオール基を有する化合物」としては、例えば、アミノ酸、ペプチド(オリゴペプチド、ポリペプチド(抗体等のタンパク質を含む))などのアミノ酸残基含有化合物のほか、高分子化合物、低分子化合物、並びにそれらの同位体を含む誘導体が挙げられる。また、当該化合物における遊離チオール基の存在形態についても特に制限はなく、例えば、アミノ酸、ペプチドまたはタンパク質におけるシステイン残基、システインアミド残基のほか、有機化合物におけるシステアミノ基、チオアルキルアミノ基などが挙げられる。
「分子内に2つ以上の遊離チオール基を有する化合物」がペプチドである場合、当該ペプチドは、天然由来のものであってもよいし、人工的に合成されたものであってもよい。ペプチドが人工的に合成されたものである場合、その合成方法について特に制限はなく、従来公知の知見が適宜参照されうる。ペプチドの人工的な合成方法としては、「固相合成法」および「液相合成法」が知られており、固相合成法の場合はさらにFmoc法およびBoc法が知られている。「分子内に2つ以上の遊離チオール基を有する化合物」がペプチドである場合、当該ペプチドはいずれの方法で合成してもよい。固相合成法を例に挙げて簡単に説明すると、例えば、表面をアミノ基で修飾した直径0.1mm程度のポリスチレン高分子ゲルのビーズを固相として用い、縮合剤としてN,N’-ジイソプロピルカルボジイミドを用いる。この際、1-ヒドロキシベンゾトリアゾールを併用することで、反応速度を向上させつつ、ラセミ化を抑制することもできる。具体的には、まず、C末端のアミノ酸のアミノ基をFmoc基またはBoc基で保護して、上記ポリスチレン高分子ゲルのアミノ基との間でペプチド結合を形成させる。次いで、固相を溶媒でよく洗い、残存する試薬やアミノ酸を洗浄・除去する。その後、固相に結合しているアミノ酸のアミノ基の保護基を除去する。続いて、アミノ基をFmoc基またはBoc基保護したアミノ酸を用いて、順次、同様の反応を繰り返すことで、固相上でペプチドを合成する。最後に、固相をトリフルオロ酢酸(TFA)で温浸させることで、ペプチドを固相から切り離し、ペプチドを合成することができる。
なお、上述した方法によってジスルフィド結合を導入する対象となる「分子内に2つ以上の遊離チオール基を有する化合物」は、「分子内に2つの遊離チオール基を有する化合物」であることが好ましい。かような形態によれば、「分子内に2つの遊離チオール基を有する化合物」の当該2つの遊離チオール基の間でジスルフィド結合を形成させることができ、所望のジスルフィド含有化合物を高収率かつ高純度で製造することができる。ジスルフィド結合を導入する対象が「分子内に2つの遊離チオール基を有する化合物」である場合であっても、当該化合物がペプチドであるような場合には、システイン残基やシステインアミド残基を3つ以上含んでいる可能性がある。したがって、このような場合にジスルフィド結合を導入する対象を「分子内に2つの遊離チオール基を有する化合物」とするためには、システイン残基やシステインアミド残基の1つ以上のチオール基を保護基で保護しておく必要がある。このような保護基の導入は、通常、上述したようなペプチドの合成の際に、所望の位置にチオール基が保護されたアミノ酸を導入しておくことで達成されうる。なお、かような手法においてペプチドの合成の際に用いられる「チオール基が保護されたアミノ酸」におけるチオール基の保護基としては、例えば、t-ブチル基、トリチル基、ベンズヒドリル基、ベンジル基、メチルベンジル基、ジメチルベンジル基、トリメチルベンジル基、メトキシベンジル基、ジメトキシベンジル基、トリメトキシベンジル基、ニトロベンジル基、アセトアミドメチル基、9-フルオレニルメチル基、カルボニルベンジルオキシ基、ジフェニルベンジル基、エチルカルバモイル基、ピコリル基、スルホニル基またはこれらの塩が挙げられる。
続いて、本発明に係るジスルフィド化試薬が固相担持型ジスルフィド化試薬である場合を例に挙げて、ジスルフィド化を行う(ジスルフィド含有化合物を製造する)方法について説明する。
まず、ジスルフィド結合を導入する対象である「分子内に2つ(以上)の遊離チオール基を有する化合物」を溶媒に溶解させる。好ましい形態によれば、上記化合物を水、または1%(v/v)以上の水を含む有機溶媒に溶解させる。また、この際のpHは中性付近が好ましく、pH6.5~8.5が好ましい。また、水に代えて緩衝液を用いることができ、水、緩衝液および有機溶媒のいずれかを組み合わせて用いてもよい。一方、有機溶媒を組み合わせて用いる場合は、水と混和する有機溶媒が好ましく、アセトニトリル、ジメチルホルムアミド、アセトン、ジメチルスルホキシド、アルコール、テトラヒドロフラン、1,4-ジオキサンなどが挙げられる。
次いで、上記で調製した「分子内に2つ(以上)の遊離チオール基を有する化合物」の溶液と本発明に係る固相担持型ジスルフィド化試薬とを混和する。この際、溶液の入った容器に本発明に係る固相担持型ジスルフィド化試薬を添加してもよいし、本発明に係る固相担持型ジスルフィド化試薬の入った容器に溶液を添加してもよい。なお、容器の形態、材質は限定されないが、好ましくはフィルター付きチューブ等の濾過用フィルターの付いた攪拌可能な容器である。混和は容器を静置しておいてもよいが、振とうや、固相合成用振とう機、マグネチックスターラー、ボルテックスミキサー、スリーワンモーター等による攪拌により行うことが好ましい。
上記の混和により起こる反応により、通常5分~2時間で反応を行うことができる。この反応で用いられる本発明に係る固相担持型ジスルフィド化試薬の添加量は、「分子内に2つ(以上)の遊離チオール基を有する化合物」の量に応じて増減すればよい。例えば、「分子内に2つ(以上)の遊離チオール基を有する化合物」1当量に対し、本発明に係る固相担持型ジスルフィド化試薬の量は過剰量用いるのが好ましく、より好ましくは1.2当量から10等量用いる。反応の完結は、溶液中の「分子内に2つ(以上)の遊離チオール基を有する化合物」の消費を一般的な分析手法に基づいて判断すればよい。例えば、適用可能な分析手法として、HPLC、NMR、TLC、IR、MSスペクトル、滴定等が挙げられる。
原料化合物がシステイン残基やシステインアミド残基を3つ以上含んだペプチドである場合であって、システイン残基やシステインアミド残基の1つ以上のチオール基が保護基で保護されているような場合には、本発明に係る固相担持型ジスルフィド化試薬を用いてジスルフィド結合を導入した後に当該保護基を脱保護する必要がある場合もある。このような脱保護の手法としては従来公知の手法が用いられうる。また、例えばヨウ素酸化法を用いて脱保護処理を行うことで、チオール基の脱保護と同時に脱保護されたチオール基の間にさらにジスルフィド結合を導入することも可能である(後述する実施例2-3「α-コノトキシンImIの合成」を参照)。
反応後、固相担持型ジスルフィド化試薬、目的生成物であるジスルフィド含有化合物、未反応の「分子内に2つ(以上)の遊離チオール基を有する化合物」、および「分子内に2つ(以上)の遊離チオール基を有する化合物」が反応の進行と共に変化した化合物はろ過により分別され、ろ液にジスルフィド含有化合物が得られる。ろ過には使用器具、ろ過手法にとらわれない。器具としてろ紙、グラスファイバー、ろ過助剤、ろ布によるろ過や、メンブランフィルター、グラスフィルター等が挙げられる。ろ過手法としても、自然ろ過、吸引ろ過、遠心分離、デカンテーション等が挙げられ、それぞれ用途や反応スケールに応じて適宜選択できる。このように、ジスルフィド化試薬を高分子担体に固相化されてなる形態の含窒素化合物からなる固相化試薬の形態とすることで、生成物とジスルフィド化試薬との分離操作をろ過という簡便な操作のみによって可能である。したがって、特に固相化試薬の形態の本発明に係るジスルフィド化試薬は、有機合成(特に、ペプチド合成)の技術分野において極めて高い優位性を備えた発明であると言える。
以下、本発明を実施例により説明するが、本発明の範囲はこれらに限定されるものではない。
[実施例1]
本発明の化合物の一例として、化合物2a~2iの合成例を以下に示す。
本発明の化合物の一例として、化合物2a~2iの合成例を以下に示す。
以下のスキームにより、化合物2a~2iを合成した。
その具体的な手法は、以下の通りである。
実施例1-1:化合物2aの合成
化合物1(300 mg, 0.99 mmol)の1,2-ジクロロエタン(2.5 mL)溶液に室温にて塩化スルフリル(176 μL, 2.18 mmol)、ピリジン(40.3 μL, 0.50 mmol)を添加し、同温度にて1時間撹拌した。反応溶液を減圧留去し、ヘキサンで共沸した。このものは精製することなく次の反応に用いた。得られた残渣をメタノール(4 mL)に溶解させ、氷冷撹拌下、N,N-ジイソプロピルエチルアミン(2.85 mL, 19.8 mmol)を添加し、室温にて2時間撹拌した。反応溶液を減圧留去し、得られた残渣をクロロホルムで希釈し、5%クエン酸水溶液、水、飽和食塩水で洗浄、Na2SO4で乾燥した。ろ過後、母液を減圧留去し、得られた残渣をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=5:1)で精製することで、黄色固体(化合物2a)を得た(190 mg, 0.780 mmol, 2工程 79%)
。
。
実施例1-2:化合物2bの合成
化合物1(100 mg, 0.329 mmol)、n-ブタノール(6 mL)を用い、化合物2aと同様の方法で、化合物2bを合成した(黄色固体, 72.3 mg, 2工程77%)。
実施例1-3:化合物2cの合成
化合物1(100 mg, 0.329 mmol)、2-プロパノール(6 mL)を用い、化合物2aと同様の方法で、化合物2cを合成した(黄色固体, 25.4 mg, 2工程29%)。
実施例1-4:化合物2dの合成
化合物1(200 mg, 0.329 mmol)、t-ブチルアルコール(3 mL)を用い、化合物2aと同様の方法で、化合物2dを合成した(黄色固体, 38.0 mg, 2工程20%)。
実施例1-5:化合物2eの合成
化合物1(100 mg, 0.329 mmol)、ベンジルアルコール(6 mL)を用い、化合物2aと同様の方法で、化合物2eを合成した(黄色固体, 84.9 mg, 2工程81%)。
実施例1-6:化合物2fの合成
化合物1(200 mg, 0.657 mmol)の1,2-ジクロロエタン(1.5 mL)溶液に室温にて塩化スルフリル(117 μL, 1.45 mmol)、ピリジン(26.5 μL, 0.329 mmol)を添加し、同温度にて1時間撹拌した。反応溶液を減圧留去し、ヘキサンで共沸した。このものは精製することなく次の反応に用いた。得られた残渣をTHF(3.3 mL)に溶解し、遮光中、室温にてフェノール(57.8 μL, 0.657 mmol)を添加後、氷塩浴撹拌下、N,N-ジイソプロピルエチルアミン(142 μL, 0.986 mmol)を添加し、同温度にて2時間撹拌した。反応溶液を減圧留去し、得られた残渣をクロロホルムで希釈し、5%クエン酸水溶液、水、飽和食塩水で洗浄、Na2SO4で乾燥した。ろ過後、母液を減圧留去し、得られた残渣をシリカゲルクロマトグラフィー(クロロホルム)で精製することで、黄色固体(化合物2f)を得た(116 mg, 0.379 mmol, 2工程 58%)。
実施例1-7:化合物2gの合成
化合物1(100 mg, 0.328 mmol)、o-メトキシフェノール(0.328 mmol)を用い、化合物2fと同様の方法で、化合物2gを合成した(黄色粘性物質, 12.9 mg, 2工程12%)。
実施例1-8:化合物2hの合成
化合物1(100 mg, 0.328 mmol)、p-ブロモベンジルアルコール(61.3 mg, 0.328 mmol)を用い、化合物2fと同様の方法で、化合物2hを合成した(黄色固体, 65.1 mg, 2工程50%)。
実施例1-9:化合物2iの合成
化合物1(100 mg, 0.33 mmol)の1,2-ジクロロエタン(0.75 mL)溶液に室温にて塩化スルフリル(59 μL, 0.72 mmol)、ピリジン(13 μL, 0.16 mmol)を添加し、同温度にて2時間撹拌した。反応溶液を減圧留去し、ヘキサンで共沸した。このものは精製することなく次の反応に用いた。得られた残渣を1,2-ジクロロエタン(1 mL)に溶解し、遮光中、室温にて1-ヒドロキシベンゾトリアゾール(HOBt・H2O, 49 mg, 0.32 mmol)およびピリジン(0.1 mL, 1.29 mmol)を添加し、同温度にて30分間撹拌した。反応溶液を減圧留去し、得られた残渣をクロロホルムで希釈し、5%クエン酸水溶液、水、飽和食塩水で洗浄、Na2SO4で乾燥した。ろ過後、母液を減圧留去し、得られた残渣をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル = 5:1)で精製することで、黄色固体(化合物2i)を得た(17 mg, 48.9 μmol, 2工程 15%)。
[実施例2]
上記で合成した本発明に係る含窒素化合物を選択的ジスルフィド化剤として用いて、2つの遊離チオール基を有するペプチドの分子内にジスルフィド結合を形成することにより、ジスルフィド含有ペプチドを合成した。
上記で合成した本発明に係る含窒素化合物を選択的ジスルフィド化剤として用いて、2つの遊離チオール基を有するペプチドの分子内にジスルフィド結合を形成することにより、ジスルフィド含有ペプチドを合成した。
実施例2-1(a):化合物2aを用いたオキシトシンの合成
以下のスキームにより、上記で合成した化合物2aを選択的ジスルフィド化剤として用いて、分子内に1対のジスルフィド結合(N末端側から1番目および6番目のシステイン残基間)を有するノナペプチド(9アミノ酸)であるオキシトシン(ペプチド4)を合成した。
以下のスキームにより、上記で合成した化合物2aを選択的ジスルフィド化剤として用いて、分子内に1対のジスルフィド結合(N末端側から1番目および6番目のシステイン残基間)を有するノナペプチド(9アミノ酸)であるオキシトシン(ペプチド4)を合成した。
その具体的な手法は、以下の通りである。
(H-Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2(ペプチド3)の合成)
Fmoc-Rink-amide樹脂(0.58 mmol/g, 200 mg, 0.116 mmol)に20%(v/v)ピペリジン/ジメチルホルムアミド溶液を添加し、室温にて振とうした。ろ過にて反応溶液を除去した後、Fmoc-アミノ酸誘導体(3当量)、1-ヒドロキシベンゾトリアゾール(HOBt・H2O、3当量)、N,N’-ジイソプロピルカルボジイミド(DIPCI、3当量)を用い、Fmoc-固相ペプチド合成法にてペプチド鎖を伸長した。得られたH-Cys(Trt)-Tyr(t-Bu)-Ile-Gln(Trt)-Asn(Trt)-Cys(Trt)-Pro-Leu-Gly-NH-樹脂(331 mg)にTFA:H2O:トリイソプロピルシラン:1,2-エタンジチオール(94:2.5:1.0:2.5(体積比), 10 mL)を添加し、室温にて3時間撹拌した。反応溶液をろ過、TFAを除去した後、エーテルを添加し、ペプチドを析出させた。エーテルで2回洗浄し、乾燥した。粗生成物をHPLC(gradient : milliQ (0.1%TFA)/CH3CN (0.1%TFA) = 79 : 21 to 74 :26 over 15 min, flow late 5 mL/min, UV: 230 nm, column: SunfireTM Prep C18 OBDTM5 μm, 19 x 150 mm Column)にて精製することでペプチド3を得た(49.6 mg, 44.2 μmol, 38%)。
Fmoc-Rink-amide樹脂(0.58 mmol/g, 200 mg, 0.116 mmol)に20%(v/v)ピペリジン/ジメチルホルムアミド溶液を添加し、室温にて振とうした。ろ過にて反応溶液を除去した後、Fmoc-アミノ酸誘導体(3当量)、1-ヒドロキシベンゾトリアゾール(HOBt・H2O、3当量)、N,N’-ジイソプロピルカルボジイミド(DIPCI、3当量)を用い、Fmoc-固相ペプチド合成法にてペプチド鎖を伸長した。得られたH-Cys(Trt)-Tyr(t-Bu)-Ile-Gln(Trt)-Asn(Trt)-Cys(Trt)-Pro-Leu-Gly-NH-樹脂(331 mg)にTFA:H2O:トリイソプロピルシラン:1,2-エタンジチオール(94:2.5:1.0:2.5(体積比), 10 mL)を添加し、室温にて3時間撹拌した。反応溶液をろ過、TFAを除去した後、エーテルを添加し、ペプチドを析出させた。エーテルで2回洗浄し、乾燥した。粗生成物をHPLC(gradient : milliQ (0.1%TFA)/CH3CN (0.1%TFA) = 79 : 21 to 74 :26 over 15 min, flow late 5 mL/min, UV: 230 nm, column: SunfireTM Prep C18 OBDTM5 μm, 19 x 150 mm Column)にて精製することでペプチド3を得た(49.6 mg, 44.2 μmol, 38%)。
(オキシトシン(ペプチド4)の合成)
ペプチド3(0.71 mg, 0.63 μmol)のアセトニトリル/水の混合溶液(1:3(体積比)、0.1 mM)に化合物2a(0.31, 2当量)を室温にて添加、遮光し同温度にて6時間撹拌した。主ピークとして検出された画分をTOF-MSにて分析して、オキシトシン(ペプチド4)の合成を確認した。
ペプチド3(0.71 mg, 0.63 μmol)のアセトニトリル/水の混合溶液(1:3(体積比)、0.1 mM)に化合物2a(0.31, 2当量)を室温にて添加、遮光し同温度にて6時間撹拌した。主ピークとして検出された画分をTOF-MSにて分析して、オキシトシン(ペプチド4)の合成を確認した。
なお、ペプチド3からペプチド4を合成した際の、化合物2aの添加前(A)、添加1時間後(B)および添加6時間後(C)の反応系のHPLC(gradient : milliQ (0.1%TFA)/CH3CN = 85 : 15 to 65 :35 over 20 min, flow late 1 mL/min, UV: 230 nm, column: COSMOSIL Packed Column 5C4-AR-300 4.6ID x 150 mm)による分析結果を図1に示す。なお、図中の*は非ペプチド性のピークである(以下同様)。図1に示すように、化合物2aの添加1時間後でペプチド3のピークはほとんど消失し、生成物(ペプチド4)のピークが確認された。また、添加6時間後にはペプチド3のピークは完全に消失し、化合物2aのピークもわずかに残るのみとなった。このことから、本発明に係る含窒素化合物(またはその塩)をジスルフィド化試薬として用いることで、極めて簡便な処理によって短時間に、かつ、化学的に安定な手法により、ペプチドの分子内にジスルフィド結合を導入してジスルフィド含有ペプチドを合成することが可能であることが示された。なお、本実施例においてジスルフィド結合が導入される推定反応機構は以下の通りである。
実施例2-1(b):化合物2bを用いたオキシトシンの合成
化合物2aに代えて化合物2bを選択的ジスルフィド化剤として用いたこと以外は、上述した実施例2-1(a)と同様の手法により、オキシトシン(ペプチド4)を合成した。そして、上記と同様にして、主ピークとして検出された画分をTOF-MSにて分析することにより、オキシトシン(ペプチド4)の合成を確認した。
化合物2aに代えて化合物2bを選択的ジスルフィド化剤として用いたこと以外は、上述した実施例2-1(a)と同様の手法により、オキシトシン(ペプチド4)を合成した。そして、上記と同様にして、主ピークとして検出された画分をTOF-MSにて分析することにより、オキシトシン(ペプチド4)の合成を確認した。
実施例2-1(c):化合物2cを用いたオキシトシンの合成
化合物2aに代えて化合物2cを選択的ジスルフィド化剤として用いたこと以外は、上述した実施例2-1(a)と同様の手法により、オキシトシン(ペプチド4)を合成した。そして、上記と同様にして、主ピークとして検出された画分をTOF-MSにて分析することにより、オキシトシン(ペプチド4)の合成を確認した。
化合物2aに代えて化合物2cを選択的ジスルフィド化剤として用いたこと以外は、上述した実施例2-1(a)と同様の手法により、オキシトシン(ペプチド4)を合成した。そして、上記と同様にして、主ピークとして検出された画分をTOF-MSにて分析することにより、オキシトシン(ペプチド4)の合成を確認した。
実施例2-1(d):化合物2dを用いたオキシトシンの合成
化合物2aに代えて化合物2dを選択的ジスルフィド化剤として用いたこと以外は、上述した実施例2-1(a)と同様の手法により、オキシトシン(ペプチド4)を合成した。そして、上記と同様にして、主ピークとして検出された画分をTOF-MSにて分析することにより、オキシトシン(ペプチド4)の合成を確認した。
化合物2aに代えて化合物2dを選択的ジスルフィド化剤として用いたこと以外は、上述した実施例2-1(a)と同様の手法により、オキシトシン(ペプチド4)を合成した。そして、上記と同様にして、主ピークとして検出された画分をTOF-MSにて分析することにより、オキシトシン(ペプチド4)の合成を確認した。
ここで、実施例2-1(a)~実施例2-1(d)のそれぞれについて、選択的ジスルフィド化剤の添加から1時間後、3時間後および6時間後の反応溶液のHPLCによる分析により、オキシトシン(ペプチド4)の収率を測定した。結果を下記の表1に示す。
なお、実施例2-1(a)~実施例2-1(d)のHPLC条件は以下の通りである。実施例2-1(a)gradient : milliQ (0.1%TFA)/CH3CN = 85 : 15 to 65 : 35 over 20 min, flow late 1 mL/min, UV: 230 nm, column: COSMOSIL Packed Column 5C4-AR-300 4.6ID x 150 mmであり、実施例2-1(b)gradient : milliQ (0.1%TFA)/CH3CN = 85 : 15 to 45 : 55 over 40 min, flow late 1 mL/min, UV: 230 nm, column: COSMOSIL Packed Column 5C4-AR-300 4.6ID x 150 mmであり、実施例2-1(c)および(d)gradient : milliQ (0.1%TFA)/CH3CN = 85 : 15 to 55 : 45 over 30 min, flow late 1 mL/min, UV: 230 nm, column: COSMOSIL Packed Column 5C4-AR-300 4.6ID x 150 mmである。
実施例2-2:ヒト心房性ナトリウム利尿ペプチド(ヒトANP)(ペプチド6)の合成
以下のスキームにより、分子内に1対のジスルフィド結合(N末端側から7番目および23番目のシステイン残基間)を有するポリペプチド(28アミノ酸)であるヒト心房性ナトリウム利尿ペプチド(ヒトANP)(ペプチド6)を合成した。
以下のスキームにより、分子内に1対のジスルフィド結合(N末端側から7番目および23番目のシステイン残基間)を有するポリペプチド(28アミノ酸)であるヒト心房性ナトリウム利尿ペプチド(ヒトANP)(ペプチド6)を合成した。
その具体的な手法は、以下の通りである。
(H-Ser-Leu-Arg-Arg-Ser-Ser-Cys-Phe-Gly-Gly-Arg-Met-Asp-Arg-Ile-Gly-Ala-Gln-Ser-Gly-Leu-Gly-Cys-Asn-Ser-Phe-Arg-Tyr-OH(ペプチド5)の合成)
Fmoc-Tyr(t-Bu)-TrtA-PEG-樹脂(0.22 mmol/g, 182 mg, 80.0 μmol)を用い、Prelude(登録商標)6チャンネルペプチド合成装置にてペプチド鎖を伸長した。得られたH-Ser(t-Bu)-Leu-Arg(Pbf)-Arg(Pbf)-Ser(t-Bu)-Ser(t-Bu)-Cys(Trt)-Phe-Gly-Gly-Arg(Pbf)-Met-Asp(Ot-Bu)-Arg(Pbf)-Ile-Gly-Ala-Gln(Trt)-Ser(t-Bu)-Gly-Leu-Gly-Cys(Trt)-Asn(Trt)-Ser(t-Bu)-Phe-Arg(Pbf)-Tyr(t-Bu)-O-樹脂(710 mg)の一部(244 mg)にTFA:H2O:トリイソプロピルシラン:1,2-エタンジチオール(94:2.5:1.0:2.5(体積比), 5 mL)を添加し、室温にて3時間撹拌した。反応溶液をろ過、TFAを除去した後、エーテルを添加し、ペプチドを析出させた。さらにエーテルで2回洗浄し、乾燥した。粗生成物をHPLC(gradient : milliQ (0.1%TFA)/CH3CN (0.1%TFA) = 80 : 20 to 67 : 33 over 13 min, flow late 5 mL/min, UV: 230 nm, column: SunfireTM Prep C18 OBDTM5 μm, 19 x 150 mm Column)にて精製することでペプチド5を得た(11.3 mg, 3.01
μmol, 10%)。
Fmoc-Tyr(t-Bu)-TrtA-PEG-樹脂(0.22 mmol/g, 182 mg, 80.0 μmol)を用い、Prelude(登録商標)6チャンネルペプチド合成装置にてペプチド鎖を伸長した。得られたH-Ser(t-Bu)-Leu-Arg(Pbf)-Arg(Pbf)-Ser(t-Bu)-Ser(t-Bu)-Cys(Trt)-Phe-Gly-Gly-Arg(Pbf)-Met-Asp(Ot-Bu)-Arg(Pbf)-Ile-Gly-Ala-Gln(Trt)-Ser(t-Bu)-Gly-Leu-Gly-Cys(Trt)-Asn(Trt)-Ser(t-Bu)-Phe-Arg(Pbf)-Tyr(t-Bu)-O-樹脂(710 mg)の一部(244 mg)にTFA:H2O:トリイソプロピルシラン:1,2-エタンジチオール(94:2.5:1.0:2.5(体積比), 5 mL)を添加し、室温にて3時間撹拌した。反応溶液をろ過、TFAを除去した後、エーテルを添加し、ペプチドを析出させた。さらにエーテルで2回洗浄し、乾燥した。粗生成物をHPLC(gradient : milliQ (0.1%TFA)/CH3CN (0.1%TFA) = 80 : 20 to 67 : 33 over 13 min, flow late 5 mL/min, UV: 230 nm, column: SunfireTM Prep C18 OBDTM5 μm, 19 x 150 mm Column)にて精製することでペプチド5を得た(11.3 mg, 3.01
μmol, 10%)。
(ヒト心房性ナトリウム利尿ペプチド(ヒトANP)(ペプチド6)の合成)
ペプチド5(1.52 mg, 0.403 μmol)のアセトニトリル/水の混合溶液(1:3、403 μL)に化合物2a(0.49 mg, 2.02 μmol)を添加、遮光し、室温にて24時間撹拌した。反応溶液をHPLC(gradient : milliQ (0.1%TFA)/CH3CN (0.1%TFA) = 80 : 20 to 67 : 33 over 13 min, flow late 5 mL/min, UV: 230 nm, column: SunfireTM Prep C18 OBDTM5 μm, 19 x 150 mm Column)にて精製することで、ヒト心房性ナトリウム利尿ペプチド(ヒトANP)(ペプチド6)を得た(0.76 mg, 2.02 μmol, 50%)。
ペプチド5(1.52 mg, 0.403 μmol)のアセトニトリル/水の混合溶液(1:3、403 μL)に化合物2a(0.49 mg, 2.02 μmol)を添加、遮光し、室温にて24時間撹拌した。反応溶液をHPLC(gradient : milliQ (0.1%TFA)/CH3CN (0.1%TFA) = 80 : 20 to 67 : 33 over 13 min, flow late 5 mL/min, UV: 230 nm, column: SunfireTM Prep C18 OBDTM5 μm, 19 x 150 mm Column)にて精製することで、ヒト心房性ナトリウム利尿ペプチド(ヒトANP)(ペプチド6)を得た(0.76 mg, 2.02 μmol, 50%)。
なお、ペプチド5からペプチド6を合成した際の、化合物2aの添加前(A)、添加1時間後(B)、添加6時間後(C)および添加24時間後(D)の反応系のHPLC(gradient : milliQ (0.1%TFA)/CH3CN = 95 : 5 to 35 : 65 over 30 min, flow late 1 mL/min, UV: 230 nm, column: COSMOSIL Packed Column 5C4-AR-300 4.6ID x 150 mm)による分析結果を図2に示す。図2に示すように、化合物2aの添加1時間後でペプチド5のピークは約半分に減少し、生成物(ペプチド6)のピークが確認された。また、添加6時間後にはペプチド5のピークはごくわずかとなり、生成物(ペプチド6)のピークが増大した。そして、添加24時間後にはペプチド5のピークは完全に消失し、化合物2aのピークについても大幅な減少が見られた。このことから、本発明に係る含窒素化合物(またはその塩)からなるジスルフィド化試薬は、28アミノ酸という比較的大きめのポリペプチドを原料として用いても、分子内にジスルフィド結合を導入してジスルフィド含有ペプチドを合成することが可能であることがわかる。
実施例2-3:α-コノトキシンImI(ペプチド9)の合成
以下のスキームにより、分子内に2対のジスルフィド結合(N末端側から1番目および10番目のシステイン残基間、並びに5番目および11番目のシステイン残基間)を有するポリペプチド(12アミノ酸)であるα-コノトキシンImI(ペプチド9)を合成した。
以下のスキームにより、分子内に2対のジスルフィド結合(N末端側から1番目および10番目のシステイン残基間、並びに5番目および11番目のシステイン残基間)を有するポリペプチド(12アミノ酸)であるα-コノトキシンImI(ペプチド9)を合成した。
その具体的な手法は、以下の通りである。
(H-Gly-Cys-Cys(Acm)-Ser-Asp-Pro-Arg-Cys-Ala-Trp-Arg-Cys(Acm)-NH2(ペプチド7)の合成)
Fmoc-SAL-amide樹脂(0.54 mmol/g, 148 mg, 80.0 μmol)を用い、Prelude(登録商標)6チャンネルペプチド合成装置にてペプチド鎖を伸長した。得られたH-Gly-Cys(Trt)-Cys(Acm)-Ser(t-Bu)-Asp(t-Bu)-Pro-Arg(Pbf)-Cys(Trt)-Ala-Trp(Boc)-Arg(Pbf)-Cys(Acm)-NH-樹脂(362 mg)にTFA:H2O:トリイソプロピルシラン:1,2-エタンジオール(94:2.5:1.0:2.5(体積比), 5 mL)を添加し、室温にて3時間撹拌した。反応溶液をろ過、TFAを除去した後、エーテルを添加し、ペプチドを析出させた。さらにエーテルで2回洗浄し、乾燥した。粗生成物をHPLC(gradient : milliQ (0.1%TFA)/CH3CN (0.1%TFA) = 85 : 15 to 72 : 28 over 13 min, flow late 5 mL/min, UV: 230 nm, column: SunfireTM Prep C18 OBDTM5 μm, 19 x 150 mm Column)にて精製することでペプチド7を得た(39.9 mg, 21.7 μmol, 27%)。
Fmoc-SAL-amide樹脂(0.54 mmol/g, 148 mg, 80.0 μmol)を用い、Prelude(登録商標)6チャンネルペプチド合成装置にてペプチド鎖を伸長した。得られたH-Gly-Cys(Trt)-Cys(Acm)-Ser(t-Bu)-Asp(t-Bu)-Pro-Arg(Pbf)-Cys(Trt)-Ala-Trp(Boc)-Arg(Pbf)-Cys(Acm)-NH-樹脂(362 mg)にTFA:H2O:トリイソプロピルシラン:1,2-エタンジオール(94:2.5:1.0:2.5(体積比), 5 mL)を添加し、室温にて3時間撹拌した。反応溶液をろ過、TFAを除去した後、エーテルを添加し、ペプチドを析出させた。さらにエーテルで2回洗浄し、乾燥した。粗生成物をHPLC(gradient : milliQ (0.1%TFA)/CH3CN (0.1%TFA) = 85 : 15 to 72 : 28 over 13 min, flow late 5 mL/min, UV: 230 nm, column: SunfireTM Prep C18 OBDTM5 μm, 19 x 150 mm Column)にて精製することでペプチド7を得た(39.9 mg, 21.7 μmol, 27%)。
なお、ペプチド7のN末端側から3番目および12番目のシステイン残基のチオール基はN-(アセチル)アミノメチル基(Acm基)で保護されており、このAcm基はヨウ素酸化法によって選択的に脱保護されうる。
(ペプチド8(ペプチド7のN末端側から2番目および8番目のシステイン残基間にジスルフィド結合が形成されたもの)の合成)
ペプチド7(6.14 mg, 3.34 μmol)に化合物2a(0.33 mg, 1.36 μmol)のアセトニトリル/水の混合溶液(1:3(体積比), 3.34 mL)を室温にて添加、同温度で遮光下27時間撹拌した。反応溶液をHPLC(gradient : milliQ (0.1%TFA)/CH3CN (0.1%TFA) = 85 : 15 to 77 : 23 over 16 min, flow late 5 mL/min, UV: 230 nm, column: SunfireTM Prep C18 OBDTM5 μm, 19 x 150 mm Column)にて精製することで、ペプチド8を得た(3.75 mg, 2.04 μmol, 61%)。
ペプチド7(6.14 mg, 3.34 μmol)に化合物2a(0.33 mg, 1.36 μmol)のアセトニトリル/水の混合溶液(1:3(体積比), 3.34 mL)を室温にて添加、同温度で遮光下27時間撹拌した。反応溶液をHPLC(gradient : milliQ (0.1%TFA)/CH3CN (0.1%TFA) = 85 : 15 to 77 : 23 over 16 min, flow late 5 mL/min, UV: 230 nm, column: SunfireTM Prep C18 OBDTM5 μm, 19 x 150 mm Column)にて精製することで、ペプチド8を得た(3.75 mg, 2.04 μmol, 61%)。
なお、ペプチド7からペプチド8を合成した際の、化合物2aの添加前(A)、添加4時間後(B)、添加9時間後(C)および添加27時間後(D)の反応系のHPLC(gradient : milliQ (0.1%TFA)/CH3CN = 95 : 5 to 35 : 65 over 30 min, flow late 1 mL/min, UV: 230 nm, column: COSMOSIL Packed Column 5C4-AR-300 4.6ID x 150 mm)による分析結果を図3に示す。図3に示すように、化合物2aの添加4時間後でペプチド7のピークは約半分に減少し、生成物(ペプチド8)のピークが確認された。また、添加9時間後にはペプチド7のピークはごくわずかとなり、生成物(ペプチド8)のピークが増大した。そして、添加27時間後にはペプチド7のピークは完全に消失し、化合物2aのピークについても大幅な減少が見られた。ここで、反応溶液をHPLCにて精製した後のサンプルについてのHPLC(gradient : milliQ (0.1%TFA)/CH3CN = 95 : 5 to 35 : 65 over 30 min, flow late 1 mL/min, UV: 230 nm, column: COSMOSIL Packed Column 5C4-AR-300 4.6ID x 150 mm)による分析結果を図3の(E)に示す。この結果からわかるように、精製によって得られた生成物のピークはペプチド8のピークと保持時間が一致した。
(α-コノトキシンImI(ペプチド9)の合成)
ペプチド8(2.94 mg, 1.60 μmol)のアセトニトリル/水の混合溶液(5:1(体積比), 1.60 mL)にヨウ素(I2)(2.03 mg, 8.00 μmol)を室温にて添加、遮光し同温度にて1時間撹拌した。これにより、ペプチド7における2箇所のAcm基を脱保護すると同時に対応する2つのチオール基の間にジスルフィド結合を形成した(ヨウ素酸化法)。反応溶液に1Mアスコルビン酸ナトリウム水溶液(50 μL)を加え、HPLC(gradient : milliQ (0.1%TFA)/CH3CN (0.1%TFA) = 85 : 15 to 77 : 23 over 16 min, flow late 5 mL/min, UV: 230 nm, column: SunfireTM Prep C18 OBDTM5 μm, 19 x 150 mm Column)にて精製することで、α-コノトキシンImI(ペプチド9)を得た(1.25 mg, 0.738
μmol, 46%)。
ペプチド8(2.94 mg, 1.60 μmol)のアセトニトリル/水の混合溶液(5:1(体積比), 1.60 mL)にヨウ素(I2)(2.03 mg, 8.00 μmol)を室温にて添加、遮光し同温度にて1時間撹拌した。これにより、ペプチド7における2箇所のAcm基を脱保護すると同時に対応する2つのチオール基の間にジスルフィド結合を形成した(ヨウ素酸化法)。反応溶液に1Mアスコルビン酸ナトリウム水溶液(50 μL)を加え、HPLC(gradient : milliQ (0.1%TFA)/CH3CN (0.1%TFA) = 85 : 15 to 77 : 23 over 16 min, flow late 5 mL/min, UV: 230 nm, column: SunfireTM Prep C18 OBDTM5 μm, 19 x 150 mm Column)にて精製することで、α-コノトキシンImI(ペプチド9)を得た(1.25 mg, 0.738
μmol, 46%)。
なお、ペプチド8からペプチド9を合成した際の、ヨウ素の添加前(A)、添加2分後(B)、添加1時間後(C)およびHPLC精製後(D)の反応系のHPLC(gradient : milliQ (0.1%TFA)/CH3CN = 95 : 5 to 35 : 65 over 30 min, flow late 1 mL/min, UV: 230 nm, column: COSMOSIL Packed Column 5C4-AR-300 4.6ID x 150 mm)による分析結果を図4に示す。図4に示すように、ヨウ素の添加2分後でペプチド8のピークは大幅に減少し、生成物(ペプチド9)のピークの増大が見られた。また、添加1時間後にはペプチド8のピークは完全に消失し、生成物(ペプチド9)のピークのみが確認された。ここで、反応溶液をHPLCにて精製した後のHPLC分析結果(図4の(D))からわかるように、精製によって得られた生成物のピークはペプチド9のピークと保持時間が一致した。さらに、図5には、(A)上記実施例で合成されたα-コノトキシンImI(ペプチド9)、(B)市販のα-コノトキシンImIの標品サンプル(株式会社ペプチド研究所より購入)、(C)これらの混合サンプルのそれぞれについてHPLC(gradient : milliQ (0.1%TFA)/CH3CN = 95 : 5 to 35 : 65 over 30 min, flow late 1 mL/min, UV: 230 nm, column: COSMOSIL Packed Column 5C4-AR-300 4.6ID x 150 mm)による分析を行った結果を示す。この結果からわかるように、上記実施例で合成されたα-コノトキシンImI(ペプチド9)の保持時間は市販のものと一致した。このように、α-コノトキシンImIのように分子内に2つのジスルフィド結合を有するペプチドについても高純度での合成が可能であることから、本発明に係る含窒素化合物(またはその塩)をジスルフィド化試薬として用いるジスルフィド含有ペプチドの製造方法は、極めて強力な合成手段を提供するものであることがわかる。
[実施例3]
上記で合成した本発明に係る含窒素化合物を高分子担体に固相化させたものを選択的ジスルフィド化剤として用いて、2つの遊離チオール基を有するペプチドの分子内にジスルフィド結合を形成することにより、ジスルフィド含有ペプチドを合成した。
上記で合成した本発明に係る含窒素化合物を高分子担体に固相化させたものを選択的ジスルフィド化剤として用いて、2つの遊離チオール基を有するペプチドの分子内にジスルフィド結合を形成することにより、ジスルフィド含有ペプチドを合成した。
実施例3-1:固相化ジスルフィド化試薬(化合物11)の合成
以下のスキームにより、化学式1におけるRが高分子担体(ポリエチレングリコール架橋体)である含窒素化合物(化合物11)を合成した。
以下のスキームにより、化学式1におけるRが高分子担体(ポリエチレングリコール架橋体)である含窒素化合物(化合物11)を合成した。
その具体的な手法は、以下の通りである。
(化合物10の合成)
まず、国際公開第2015/050199号パンフレットの記載に従って、高分子担体であるアミノメチル-ChemMatrix(登録商標)樹脂(シグマ-アルドリッチ社製、表面に多数のアミノメチル基が存在、官能基置換率0.70mmol/g)の表面に上記の化学構造を有する含窒素化合物が固相化されてなる化合物10を合成した(国際公開第2015/050199号パンフレットの実施例における化合物6と同じである)。
まず、国際公開第2015/050199号パンフレットの記載に従って、高分子担体であるアミノメチル-ChemMatrix(登録商標)樹脂(シグマ-アルドリッチ社製、表面に多数のアミノメチル基が存在、官能基置換率0.70mmol/g)の表面に上記の化学構造を有する含窒素化合物が固相化されてなる化合物10を合成した(国際公開第2015/050199号パンフレットの実施例における化合物6と同じである)。
(化合物11の合成)
続いて、化合物10(26.6 mg, 15.7 μmol)に氷冷下、2%(w/v)塩化スルフリル/1,2-ジクロロエタン(1.25 mL)およびピリジン(6.35 μL, 78.6 μmol)の混合溶液を添加し、同温度にて20分撹拌した。反応溶液を除去した後、氷冷下、上記の混合溶媒を添加し、同温度にて20分撹拌した。さらにこの操作を1回行った。ろ過により反応溶液を除去した後、氷冷したジクロロメタンにて樹脂を5回洗浄した。得られた樹脂に30%(w/v)DIPEA/メタノール混合溶媒(800 μL)を室温にて添加し、1.5時間撹拌した。ろ過により反応溶液を除去した後、ジクロロメタンで5回、メタノールで5回洗浄した。さらにこの操作を2回行った後、樹脂を乾燥した(22.0 mg)。このようにして、化合物11を得た。
続いて、化合物10(26.6 mg, 15.7 μmol)に氷冷下、2%(w/v)塩化スルフリル/1,2-ジクロロエタン(1.25 mL)およびピリジン(6.35 μL, 78.6 μmol)の混合溶液を添加し、同温度にて20分撹拌した。反応溶液を除去した後、氷冷下、上記の混合溶媒を添加し、同温度にて20分撹拌した。さらにこの操作を1回行った。ろ過により反応溶液を除去した後、氷冷したジクロロメタンにて樹脂を5回洗浄した。得られた樹脂に30%(w/v)DIPEA/メタノール混合溶媒(800 μL)を室温にて添加し、1.5時間撹拌した。ろ過により反応溶液を除去した後、ジクロロメタンで5回、メタノールで5回洗浄した。さらにこの操作を2回行った後、樹脂を乾燥した(22.0 mg)。このようにして、化合物11を得た。
実施例3-2:固相化ジスルフィド化試薬(化合物11)を用いたオキシトシン(ペプチド4)の合成
以下のスキームにより、固相化ジスルフィド化試薬である化合物11を用いて、実施例2-1(a)と同様の手法により、ペプチド3からオキシトシン(ペプチド4)を合成した。
以下のスキームにより、固相化ジスルフィド化試薬である化合物11を用いて、実施例2-1(a)と同様の手法により、ペプチド3からオキシトシン(ペプチド4)を合成した。
その具体的な手法は、以下の通りである。
(化合物11を用いたオキシトシン(ペプチド4)の合成)
ペプチド3(1.56 mg, 1.39 μmol)のアセトニトリル/水の混合溶液(1:3(体積比)、1.39 mL)を固相化ジスルフィド化試薬(化合物11)(11.8 mg, 6.94 μmol)に室温にて添加、遮光し同温度にて3時間撹拌した。反応溶液をろ過し、HPLC(gradient : milliQ (0.1%TFA)/CH3CN (0.1%TFA) = 79 : 21 to 74 : 26 over 15 min, flow late 6 mL/min, UV: 230 nm, column: SunfireTM Prep C18 OBDTM5 μm, 19 x 150 mm Column)にて精製することにより、オキシトシン(ペプチド4)を得た(0.55 mg, 0.491 μmol, 35%)。
ペプチド3(1.56 mg, 1.39 μmol)のアセトニトリル/水の混合溶液(1:3(体積比)、1.39 mL)を固相化ジスルフィド化試薬(化合物11)(11.8 mg, 6.94 μmol)に室温にて添加、遮光し同温度にて3時間撹拌した。反応溶液をろ過し、HPLC(gradient : milliQ (0.1%TFA)/CH3CN (0.1%TFA) = 79 : 21 to 74 : 26 over 15 min, flow late 6 mL/min, UV: 230 nm, column: SunfireTM Prep C18 OBDTM5 μm, 19 x 150 mm Column)にて精製することにより、オキシトシン(ペプチド4)を得た(0.55 mg, 0.491 μmol, 35%)。
なお、固相化ジスルフィド化試薬(化合物11)を用いてペプチド3からペプチド4を合成した際の、反応開始3分以内(A)、反応開始1時間後(B)および反応開始3時間後(C)の反応系のHPLC(gradient : milliQ (0.1%TFA)/CH3CN = 85 : 15 to 65 :35 over 20 min, flow late 1 mL/min, UV: 230 nm, column: COSMOSIL Packed Column 5C4-AR-300 4.6ID x 150 mm)による分析結果を図6に示す。図6に示すように、反応開始3分以内でペプチド4のピークが確認された。また、反応開始1時間後でペプチド3のピークはごくわずかとなり、生成物(ペプチド4)のピークが増大した。そして、添加3時間後にはペプチド3のピークは完全に消失した。なお、本実施例において用いたジスルフィド化試薬は固相化試薬であることから、反応溶液のろ過によって回収されており、HPLCのチャートにはピークとして出現しない。このように、ジスルフィド化試薬を高分子担体に固相化されてなる形態の含窒素化合物からなる固相化試薬の形態とすることで、極めて短時間に高収率でジスルフィド含有ペプチドを製造可能である。そればかりか、生成物とジスルフィド化試薬との分離操作もろ過という簡便な操作のみによって可能である。したがって、特に固相化試薬の形態の本発明に係るジスルフィド化試薬は、有機合成(特に、ペプチド合成)の技術分野において極めて高い優位性を備えた発明であると言える。
[実施例4]
本発明の化合物の一例として、化合物16a~16jの合成例を以下に示す。
本発明の化合物の一例として、化合物16a~16jの合成例を以下に示す。
以下のスキームにより、化合物16a~16jを合成した。
その具体的な手法は、以下の通りである。
実施例4-1:化合物16aの合成
Npys-Cl(2.4 g, 12.6 mmol)のメタノール(150 mL)溶液に氷冷撹拌下、N,N-ジイソプロピルエチルアミン(2.72 mL, 18.9 mmol)を加え、室温にて3時間撹拌した。反応溶液を減圧留去し、得られた残渣をクロロホルムで希釈し、10%クエン酸水溶液、水、飽和食塩水で洗浄、Na2SO4で乾燥した。ろ過後、母液を減圧留去し、得られた残渣をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=5:1)で精製することで、黄色固体(化合物16a)を得た(1.96 g, 10.5 mmol, 84%)。
実施例4-2:化合物16bの合成
Npys-Cl(50 mg, 0.26 mmol)の1,2-ジクロロエタン(0.8 mL)溶液に室温にてベンジルアルコール(28.4 mg, 0.26 mmol)、N,N-ジイソプロピルエチルアミン(174 μL, 1.04 mmol)を添加し、同温度にて1時間撹拌した。反応溶液を減圧留去し、得られた残渣をクロロホルムで希釈し、5%クエン酸水溶液、水、飽和食塩水で洗浄、Na2SO4で乾燥した。ろ過後、母液を減圧留去し、得られた残渣をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=5:1)で精製することで、黄色固体(化合物16b)を得た(48.2 mg, 70%)。
実施例4-3:化合物16cの合成
Npys-Cl(50 mg, 0.26 mmol)、フェノール(29.6 mg, 0.31 mmol)、N,N-ジイソプロピルエチルアミン(174 μL, 1.04 mmol)を用い、化合物16bと同様の手法により化合物16cを合成した(黄色固体, 37 mg, 57%)。
実施例4-4:化合物16dの合成
Npys-Cl(50 mg, 0.26 mmol)、2-フルオロフェノール(29.0 μL, 0.314 mmol)、N,N-ジイソプロピルエチルアミン(174 μL, 1.04 mmol)を用い、化合物16bと同様の手法により化合物16dを合成した(黄色固体, 38 mg, 54%)。
実施例4-5:化合物16eの合成
Npys-Cl(50 mg, 0.26 mmol)、2-フルオロフェノール(28.5 μL, 0.314 mmol)、N,N-ジイソプロピルエチルアミン(174 μL, 1.04 mmol)を用い、化合物16bと同様の手法により化合物16eを合成した(黄色固体, 27 mg, 39%)。
実施例4-6:化合物16fの合成
Npys-Cl(50 mg, 0.26 mmol)、4-フルオロフェノール(35.3 mg, 0.314 mmol)、N,N-ジイソプロピルエチルアミン(174 μL, 1.04 mmol)を用い、化合物16bと同様の手法により化合物16fを合成した(黄色固体, 51 mg, 73%)。
実施例4-7:化合物16gの合成
Npys-Cl(50 mg, 0.26 mmol)、4-クロロフェノール(25.8 μL, 0.26 mmol)、N,N-ジイソプロピルエチルアミン(174 μL, 1.04 mmol)を用い、化合物16bと同様の手法により化合物16gを合成した(黄色固体, 37 mg, 50%)。
実施例4-8:化合物16hの合成
Npys-Cl(50 mg, 0.26 mmol)、4-メトキシフェノール(32.6 mg, 0.26 mmol)、N,N-ジイソプロピルエチルアミン(174 μL, 1.04 mmol)を用い、化合物16bと同様の手法により化合物16hを合成した(黄色固体, 50 mg, 68%)。
実施例4-9:化合物16iの合成
Npys-Cl(50 mg, 0.26 mmol)、4-ヒドロキシフェニルアセテート(39.9 mg, 0.26 mmol)、N,N-ジイソプロピルエチルアミン(174 μL, 1.04 mmol)を用い、化合物16bと同様の手法により化合物16iを合成した(黄色固体, 26 mg, 32%)。
実施例4-10:化合物16jの合成
Npys-Cl(50 mg, 0.26 mmol)、p-クレゾール(27.3 μL, 0.26 mmol)、N,N-ジイソプロピルエチルアミン(174 μL, 1.04 mmol)を用い、化合物16bと同様の手法により化合物16jを合成した(黄色固体, 36.3 mg, 53%)。
[実施例5]
(化合物16aを用いたオキシトシンの合成)
以下のスキームにより、上記で合成した化合物16aを選択的ジスルフィド化剤として用いて、分子内に1対のジスルフィド結合(N末端側から1番目および6番目のシステイン残基間)を有するノナペプチド(9アミノ酸)であるオキシトシン(ペプチド4)を合成した。
(化合物16aを用いたオキシトシンの合成)
以下のスキームにより、上記で合成した化合物16aを選択的ジスルフィド化剤として用いて、分子内に1対のジスルフィド結合(N末端側から1番目および6番目のシステイン残基間)を有するノナペプチド(9アミノ酸)であるオキシトシン(ペプチド4)を合成した。
その具体的な手法は、以下の通りである。
ペプチド3のアセトニトリル/水の混合溶液(1:3(体積比)、1 mM、8.94 mL)に化合物16a(0.947 mg, 5.09 μmol)を室温にて添加、遮光し同温度にて3時間撹拌した。HPLC分析により、オキシトシン(ペプチド4)の合成を確認した。 なお、ペプチド3からペプチド4を合成した際の、化合物16aの添加前(A)、添加1時間後(B)および添加3時間後(C)の反応系のHPLC(gradient : milliQ (0.1%TFA)/CH3CN = 85 : 15 to 65 : 35 over 20 min, flow late 1 mL/min, UV: 230 nm, column: COSMOSIL Packed Column 5C4-AR-300 4.6ID x 150 mm)による分析結果を図7に示す。図7に示すように、化合物16aの添加1時間後でペプチド3のピークはほとんど消失し、生成物(ペプチド4)のピークが確認された。また、添加3時間後にはペプチド3のピークは完全に消失した。このことから、エステル構造を有さない含窒素化合物(またはその塩)からなるジスルフィド化試薬も同様に、短時間に、かつ、化学的に安定な手法により、ペプチドの分子内にジスルフィド結合を導入してジスルフィド含有ペプチドを合成することが可能であることが示された。
[実施例6]
上記で合成した本発明に係る含窒素化合物を選択的ジスルフィド化剤として用いて、樹脂に担持したペプチドの2つの遊離チオール基間のジスルフィド結合を形成することにより、ジスルフィド含有ペプチドを合成した。
上記で合成した本発明に係る含窒素化合物を選択的ジスルフィド化剤として用いて、樹脂に担持したペプチドの2つの遊離チオール基間のジスルフィド結合を形成することにより、ジスルフィド含有ペプチドを合成した。
(化合物16aを用いた樹脂上におけるジスルフィド結合の形成)
以下のスキームにより、ペプチド固相合成により得たオキシトシン-樹脂17のN末端側から1番目および6番目のシステインの側鎖(-SH基)の保護基(tert-ブチルチオ(-S-C(CH3)3)基)を脱保護してペプチド-樹脂18とした後、選択的ジスルフィド化剤である上記で合成した化合物16aを用い、樹脂上でジスルフィド結合を構築し、脱樹脂および保護基の脱保護基によって、オキシトシン(ペプチド4)を合成した。
以下のスキームにより、ペプチド固相合成により得たオキシトシン-樹脂17のN末端側から1番目および6番目のシステインの側鎖(-SH基)の保護基(tert-ブチルチオ(-S-C(CH3)3)基)を脱保護してペプチド-樹脂18とした後、選択的ジスルフィド化剤である上記で合成した化合物16aを用い、樹脂上でジスルフィド結合を構築し、脱樹脂および保護基の脱保護基によって、オキシトシン(ペプチド4)を合成した。
(オキシトシン-樹脂17の合成)
Fmoc-SAL-amide樹脂(0.56 mmol/g, 71.4 mg, 40.0 μmol)を用い、Prelude(登録商標)6チャンネルペプチド合成装置にてペプチド鎖を伸長し、H -Cys(St-Bu)-Tyr(t-Bu)-Ile-Gln(Trt)-Asn(Trt)-Cys(St-Bu)-Pro-Leu-Gly-NH-樹脂を120 mg得た。
Fmoc-SAL-amide樹脂(0.56 mmol/g, 71.4 mg, 40.0 μmol)を用い、Prelude(登録商標)6チャンネルペプチド合成装置にてペプチド鎖を伸長し、H -Cys(St-Bu)-Tyr(t-Bu)-Ile-Gln(Trt)-Asn(Trt)-Cys(St-Bu)-Pro-Leu-Gly-NH-樹脂を120 mg得た。
(オキシトシン(ペプチド4))の合成
オキシトシン-樹脂17(6.9 mg, 3.86 μmol)にN-メチルモルホリンの20%(v/v)β-メルカプトエタノール/DMF混合溶液(N-メチルモルホリンの最終濃度0.1 M, 1 mL)を室温にて加え、8時間撹拌し、システイン側鎖tert-ブチルチオ基の脱保護を行いペプチド-樹脂18とした。この樹脂をDMFで5回洗浄した後、化合物16a(1.44 mg, 7.73 μmol)のDMF(386 μL)溶液を室温にて添加し、1時間撹拌した。撹拌後、樹脂をDMF、メタノール、エーテルで各5回洗浄して、乾燥した。得られた樹脂にTFA:H2O:トリイソプロピルシラン:(95:2.5 : 2.5(体積比), 1 mL)を添加し、室温にて1時間撹拌した。反応溶液をろ過、TFAを除去した後、エーテルを添加し、ペプチドを析出させた。さらにエーテルで2回洗浄し、乾燥した。粗生成物をHPLCにて分析し、オキシトシン(ペプチド4)の合成を確認した。
オキシトシン-樹脂17(6.9 mg, 3.86 μmol)にN-メチルモルホリンの20%(v/v)β-メルカプトエタノール/DMF混合溶液(N-メチルモルホリンの最終濃度0.1 M, 1 mL)を室温にて加え、8時間撹拌し、システイン側鎖tert-ブチルチオ基の脱保護を行いペプチド-樹脂18とした。この樹脂をDMFで5回洗浄した後、化合物16a(1.44 mg, 7.73 μmol)のDMF(386 μL)溶液を室温にて添加し、1時間撹拌した。撹拌後、樹脂をDMF、メタノール、エーテルで各5回洗浄して、乾燥した。得られた樹脂にTFA:H2O:トリイソプロピルシラン:(95:2.5 : 2.5(体積比), 1 mL)を添加し、室温にて1時間撹拌した。反応溶液をろ過、TFAを除去した後、エーテルを添加し、ペプチドを析出させた。さらにエーテルで2回洗浄し、乾燥した。粗生成物をHPLCにて分析し、オキシトシン(ペプチド4)の合成を確認した。
なお、ペプチド-樹脂18を脱樹脂し、得られた粗生成物(A)、化合物16aを添加後、脱樹脂し、得られた粗生成物(B)のHPLC(gradient : milliQ (0.1%TFA)/CH3CN = 85 : 15 to 55 : 45 over 30 min, flow late 0.9 mL/min, UV: 230 nm, column: Sun Fire C18 5 μm 4.6x150 mm column)による分析結果を図8に示す。図8に示すように、ペプチド-樹脂18を化合物16aにて処理することで、生成物(ペプチド4)のピークが確認された。このことから、含窒素化合物(またはその塩)からなる選択的ジスルフィド化試薬が、樹脂に担持したペプチドの2つの遊離チオール基間のジスルフィド結合を形成してジスルフィド含有ペプチドを合成することが可能であることが示された。
[実施例7]
(化合物2aの安定性評価)
上記で合成した本発明に係る含窒素化合物2aの安定性を、HPLC分析およびNMR測定により評価した。その結果、化合物2aは、特別な処理をすることなく少なくとも6ヶ月以上、室温にて安定であることが確認された。ここで、室温保存にて6ヶ月以上経過した化合物2aのHPLC(gradient : milliQ (0.1%TFA)/CH3CN = 95 : 5 to 35 : 65 over 30 min, flow late 1 mL/min, UV: 230 nm, column: COSMOSIL Packed Column 5C4-AR-300 4.6ID x 150 mm)分析結果、および1H NMR分析結果を示すチャートをそれぞれ図9および図10に示す。
(化合物2aの安定性評価)
上記で合成した本発明に係る含窒素化合物2aの安定性を、HPLC分析およびNMR測定により評価した。その結果、化合物2aは、特別な処理をすることなく少なくとも6ヶ月以上、室温にて安定であることが確認された。ここで、室温保存にて6ヶ月以上経過した化合物2aのHPLC(gradient : milliQ (0.1%TFA)/CH3CN = 95 : 5 to 35 : 65 over 30 min, flow late 1 mL/min, UV: 230 nm, column: COSMOSIL Packed Column 5C4-AR-300 4.6ID x 150 mm)分析結果、および1H NMR分析結果を示すチャートをそれぞれ図9および図10に示す。
[実施例8]
(化合物2aによる副反応の有無の確認)
ヨウ素酸化の副反応として、トリプトファン、チロシン、ヒスチジンの側鎖に対するヨウ素化反応が報告されている(B. Kamber, et al., Helv. Chim. Acta. 1980, 899-915.)。そこで、本発明の含窒素化合物である化合物2aの副反応の有無を、上記論文と同様の手法により確認した。すなわち、以下のスキームに示すようにトリプトファン、チロシン、ヒスチジンの誘導体3種(Cbz-Trp-NH2、Cbz-Tyr-OMe、Cbz-Val-His-OMe)のメタノール/水またはDMF溶液に対し、室温にて化合物2a(3当量)を添加し、同温度にて24時間撹拌した。その結果、これらのアミノ酸誘導体と化合物2aとの反応は全く進行せず、副反応はないことが示された。
(化合物2aによる副反応の有無の確認)
ヨウ素酸化の副反応として、トリプトファン、チロシン、ヒスチジンの側鎖に対するヨウ素化反応が報告されている(B. Kamber, et al., Helv. Chim. Acta. 1980, 899-915.)。そこで、本発明の含窒素化合物である化合物2aの副反応の有無を、上記論文と同様の手法により確認した。すなわち、以下のスキームに示すようにトリプトファン、チロシン、ヒスチジンの誘導体3種(Cbz-Trp-NH2、Cbz-Tyr-OMe、Cbz-Val-His-OMe)のメタノール/水またはDMF溶液に対し、室温にて化合物2a(3当量)を添加し、同温度にて24時間撹拌した。その結果、これらのアミノ酸誘導体と化合物2aとの反応は全く進行せず、副反応はないことが示された。
この出願は、2016年5月20日に出願された日本国特許出願第2016-101812号に基づいており、その出願は全体として参照により引用されている。
Claims (30)
- 下記化学式1で表される含窒素化合物またはその塩:
Wは、他の環員原子と一緒になって、ピリジン環、ピラジン環、イミダゾール環、オキサゾール環、チアゾール環、キノリン環、イソキノリン環、キノキサリン環、フェナントロリン環、プテリジン環およびアゾシン環からなる群から選択される含窒素複素環を形成し、
Xは、-O-または-NH-であり、
Yは、置換もしくは非置換のC1~C20のアルキル基、置換もしくは非置換のC2~C20のアルケニル基、置換もしくは非置換のC2~C20のアルキニル基、置換もしくは非置換のC3~C20のシクロアルキル基、置換もしくは非置換のC3~C20のシクロアルケニル基、置換もしくは非置換のC6~C20のアリール基、置換もしくは非置換のC3~C20のヘテロアリール基および置換もしくは非置換の電子吸引性を有する脂肪族ヘテロ環由来の1価の基からなる群から選択される基であり、
Zは、前記含窒素複素環上に存在する水素原子または電子吸引性の置換基を表し、
p、qおよびrは、それぞれ独立して、0または1であり、
sは、0~10の整数を表し、
L0およびL1は、それぞれ独立して、化学的に安定な構造を有するリンカーを表し、
AaおよびAbは、それぞれ独立して、-CH=CH-、-C≡C-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-O-、C1~C20のオキシアルキレン基、C1~C20のアルキレンオキシ基、-C(=O)-NH-、-NH-C(=O)-、-NH-C(=O)-NH-、ヒドラジン、トリアゾール、スルホン、スルホキシド、スルホン酸エステル、スルホンアミド、スルフィン酸エステル、スルフィンアミド、ピペリジンおよびジオキサンからなる群から選択される基であり、
Rは、水素原子、置換もしくは非置換のC1~C20のアルキル基、置換もしくは非置換のC2~C20のアルケニル基、置換もしくは非置換のC2~C20のアルキニル基、置換もしくは非置換のC3~C20のシクロアルキル基、置換もしくは非置換のC3~C20のシクロアルケニル基、置換もしくは非置換のC6~C20のアリール基、置換もしくは非置換のC3~C20のヘテロアリール基、アミノ基、ヒドロキシ基または高分子担体である;
ただし、以下の(A)~(H)の化合物を除く:
(A)3-ニトロ-2-ピリジンスルフィン酸メチル
(B)3-ニトロ-2-ピリジンスルフィン酸エチル
(C)3-ニトロ-2-ピリジンスルフィン酸N,N-ジエチルアミノエチル
(D)N-(3’-ニトロ-2’-ピリジンスルフェニルオキシ)-5-ノルボルネン-2,3ジカルボキシイミド
(E)(S)-((tert-ブトキシカルボニル)アミノ)-3-(((3-ニトロピリジン-2-イル)チオ)オキシ)プロパン酸
(F)(2S,3R)-2-(((ベンジルオキシ)カルボニル)アミノ)-3-(((3-ニトロピリジン-2-イル)チオ)オキシ)ブタン酸
(G)4-((((3-ニトロピリジン-2-イル)チオ)オキシ)メチル)安息香酸
(H)(S)-2-(((3-ニトロピリジン-2-イル)チオ)オキシ)-3-フェニルプロパン酸。 - 以下の条件を満たすものではない、請求項1に記載の含窒素化合物またはその塩:
条件:p=0、s=0、r=0、かつ、R=水素原子 - Wは、他の環員原子と一緒になって、前記含窒素複素環としてのピリジン環を形成する、請求項1または2に記載の含窒素化合物またはその塩。
- Xは、-O-である、請求項1~3のいずれか1項に記載の含窒素化合物またはその塩。
- Yは、置換もしくは非置換のC1~C20のアルキル基、または置換もしくは非置換のC6~C20のアリール基である、請求項1~4のいずれか1項に記載の含窒素化合物またはその塩。
- Yは、置換もしくは非置換のC1~C20のアルキル基である、請求項5に記載の含窒素化合物またはその塩。
- Zは、電子吸引性の置換基である、請求項1~6のいずれか1項に記載の含窒素化合物またはその塩。
- 前記電子吸引性の置換基は、ニトロ基、トリフルオロメチル基またはハロゲン原子である、請求項7に記載の含窒素化合物またはその塩。
- L0およびL1は、それぞれ独立して、置換または非置換のC1~C20のアルキレン基、置換または非置換のC2~C20のアルケニレン基、置換または非置換のC2~C20のアルキニレン基、置換または非置換のC3~C20のシクロアルキレン基、置換または非置換のC3~C20のシクロアルケニレン基、置換または非置換のC6~C20のアリーレン基、置換または非置換のC3~C20のヘテロアリーレン基、-NH-、-O-、-S-、-C(=O)-NH-、-NH-C(=O)-、-O-、-C(=O)-O-、-O-C(=O)-、-S-、-C(=O)-、ポリオキシアルキレン基および下記化学式(a)で表される基:
Raは、置換または非置換のC1~C15のアルキレン基を表す、
からなる群から選択される(ここで、これらのアルキレン基、アルケニレン基、アルキニレン基、シクロアルキレン基、シクロアルケニレン基、アリーレン基およびヘテロアリーレン基は置換基を有していてもよい)、請求項1~8のいずれか1項に記載の含窒素化合物またはその塩。 - Rが、置換もしくは非置換のC1~C20のアルキル基である、請求項10に記載の含窒素化合物またはその塩。
- Aaが、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-O-、-C(=O)-NH-および-NH-C(=O)-からなる群から選択される基である、請求項10または11に記載の含窒素化合物またはその塩。
- Aaが、-C(=O)-O-である、請求項12に記載の含窒素化合物またはその塩。
- pが0である、請求項10~13のいずれか1項に記載の含窒素化合物またはその塩。
- Rが、高分子担体である、請求項1~9のいずれか1項に記載の含窒素化合物またはその塩。
- Rが、固相合成法に用いられる高分子担体である、請求項15に記載の含窒素化合物またはその塩。
- Rが、ポリスチレン、ポリプロピレン、ポリエチレン、ポリエーテル、ポリ塩化ビニル、デキストラン、ポリアクリルアミド、ポリエチレングリコール、これらの共重合体および架橋体、磁性ビーズ、並びにこれらの組み合わせからなる群から選択される、請求項15または16に記載の含窒素化合物またはその塩。
- Aaが、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-O-、-C(=O)-NH-および-NH-C(=O)-からなる群から選択される基である、請求項18に記載の含窒素化合物またはその塩。
- Aaが、-C(=O)-NH-であり、Rが、ポリエチレングリコール架橋体である、請求項19に記載の含窒素化合物またはその塩。
- Aaが、-C(=O)-O-であり、Rが、ポリスチレン樹脂である、請求項19に記載の含窒素化合物またはその塩。
- pが0である、請求項15~21のいずれか1項に記載の含窒素化合物またはその塩。
- AaおよびAbが-C(=O)-NH-であり、L1がC1~C20のアルキレン基であり、Rがポリエチレングリコール架橋体である、請求項23に記載の含窒素化合物またはその塩。
- pが0である、請求項23または24に記載の含窒素化合物またはその塩。
- 請求項1~25のいずれか1項に記載の含窒素化合物またはその塩、あるいは、以下の化合物(A)~(H)のいずれかからなる、チオール基のジスルフィド化試薬:
(A)3-ニトロ-2-ピリジンスルフィン酸メチル
(B)3-ニトロ-2-ピリジンスルフィン酸エチル
(C)3-ニトロ-2-ピリジンスルフィン酸N,N-ジエチルアミノエチル
(D)N-(3’-ニトロ-2’-ピリジンスルフェニルオキシ)-5-ノルボルネン-2,3ジカルボキシイミド
(E)(S)-((tert-ブトキシカルボニル)アミノ)-3-(((3-ニトロピリジン-2-イル)チオ)オキシ)プロパン酸
(F)(2S,3R)-2-(((ベンジルオキシ)カルボニル)アミノ)-3-(((3-ニトロピリジン-2-イル)チオ)オキシ)ブタン酸
(G)4-((((3-ニトロピリジン-2-イル)チオ)オキシ)メチル)安息香酸
(H)(S)-2-(((3-ニトロピリジン-2-イル)チオ)オキシ)-3-フェニルプロパン酸。 - 前記含窒素化合物においてRが固相合成法に用いられる高分子担体である、請求項26に記載のジスルフィド化試薬。
- 分子内に2つ以上の遊離チオール基を有する化合物を、請求項26または27に記載のジスルフィド化試薬と接触させ、2つの前記遊離チオール基の間でジスルフィド結合を形成させてジスルフィド含有化合物を得ることを含む、ジスルフィド含有化合物の製造方法。
- 前記ジスルフィド含有化合物がジスルフィド含有ペプチドである、請求項28に記載のジスルフィド含有化合物の製造方法。
- (I)下記化学式5で表される化合物を、ハロゲン単体またはハロゲン生成試薬と反応させて、下記化学式6で表される化合物を調製する工程と、
W、Z、p、q、r、s、L0、L1、AaおよびAbは、請求項1において定義した通りであり、
R”は、脱離基である、
W、Z、p、q、r、s、L0、L1、AaおよびAbは、請求項1において定義した通りであり、
Halは、フッ素、塩素、臭素またはヨウ素から選択されるハロゲン原子を表す、
(II)化学式6で表される化合物を、塩基性条件下でY-OH(Yは、前記化学式1について定義した通りである)で表されるアルコール、またはY-NH2で表されるアミンと反応させて、下記化学式1で表される含窒素化合物を調製する工程と、
W、X、Y、Z、p、q、r、s、L0、L1、AaおよびAbは、請求項1において定義した通りである、
を含む、請求項1に記載の含窒素化合物またはその塩の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018518399A JP6967245B2 (ja) | 2016-05-20 | 2017-05-22 | 含窒素化合物を用いた選択的ジスルフィド化試薬、およびジスルフィド含有化合物の製造方法 |
US16/303,008 US10829512B2 (en) | 2016-05-20 | 2017-05-22 | Selective disulfidation reagent using nitrogen-containing compound and method for producing disulfide-containing compound |
DE112017002597.4T DE112017002597T5 (de) | 2016-05-20 | 2017-05-22 | Selektives Disulfidierungsreagenz verwendend eine stickstoffenthaltende Verbindung und ein Verfahren zur Herstellung einer disulfidenthaltenden Verbindung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-101812 | 2016-05-20 | ||
JP2016101812 | 2016-05-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017200109A1 true WO2017200109A1 (ja) | 2017-11-23 |
Family
ID=60326016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/019086 WO2017200109A1 (ja) | 2016-05-20 | 2017-05-22 | 含窒素化合物を用いた選択的ジスルフィド化試薬、およびジスルフィド含有化合物の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10829512B2 (ja) |
JP (1) | JP6967245B2 (ja) |
DE (1) | DE112017002597T5 (ja) |
WO (1) | WO2017200109A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54128578A (en) * | 1978-03-25 | 1979-10-05 | Sankyo Co Ltd | Pyridine sulfenic acid amide and ester, their preparation, and carcinostatic action improver |
WO2015050199A2 (ja) * | 2013-10-04 | 2015-04-09 | 学校法人 東京薬科大学 | 新規化合物、その製造方法及びその用途 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6080691A (ja) | 1983-10-08 | 1985-05-08 | 植村 厚一 | 土留方法 |
JPH0680691A (ja) | 1992-09-02 | 1994-03-22 | Sankyo Kagaku Kk | シスチン含有ペプチドの製造方法 |
JP2016101812A (ja) | 2014-11-27 | 2016-06-02 | シャープ株式会社 | 走行装置 |
-
2017
- 2017-05-22 WO PCT/JP2017/019086 patent/WO2017200109A1/ja active Application Filing
- 2017-05-22 US US16/303,008 patent/US10829512B2/en active Active
- 2017-05-22 DE DE112017002597.4T patent/DE112017002597T5/de active Pending
- 2017-05-22 JP JP2018518399A patent/JP6967245B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54128578A (en) * | 1978-03-25 | 1979-10-05 | Sankyo Co Ltd | Pyridine sulfenic acid amide and ester, their preparation, and carcinostatic action improver |
WO2015050199A2 (ja) * | 2013-10-04 | 2015-04-09 | 学校法人 東京薬科大学 | 新規化合物、その製造方法及びその用途 |
Non-Patent Citations (6)
Title |
---|
MATSUEDA, R. ET AL. ET AL.: "3-NITRO-2-PYRIDINESULFENYL PROTECTING GROUP: ACTIVATABLE PROTECTING GROUP FOR PEPTIDE SYNTHESIS AND ENZYME MODIFICATION", PEPTIDE CHEMISTRY, vol. 18, 1980, pages 31 - 36 * |
MATSUEDA, R. ET AL.: "3-NITRO-2-PYRIDINESULFENYL(Npys)GROUP A Novel Selective Protecting Group Which Can Be Activated for Peptide Bond Formation", INT. J. PEPTIDE PROTEIN RES., vol. 16, no. 5, November 1980 (1980-11-01), pages 392 - 401, XP055275689 * |
MATSUEDA, R. ET AL.: "Syntheses of 3-nitro-2-pyridinesulfenates", HETEROCYCLES, vol. 15, no. 8, 1980, pages 1089 - 1092 * |
OLSEN, F. N. ET AL.: "Npys-Mediated Elimination Reactions of Alcohols and Thiols: A Facile Route to Dehydroalanine and Dehydrobutyrine Building Blocks", SYNLETT, vol. 26, no. 19, 6 November 2015 (2015-11-06), pages 2697 - 2701, XP055598368 * |
ROSEN, 0. ET AL.: "Thiolysis of the 3-nitro-2-pyridinesulfenyl(Npys) protecting group", INT. J. PEPTIDE PROTEIN RES., vol. 35, no. 6, 1990, pages 545 - 549, XP000127614 * |
TAGUCHI, A. ET AL.: "3-Nitro-2-pyridinesulfenates as Efficient Solution- and Solid-Phase Disulfide Bond Forming Agents", CHEMISTRY EUR. J., vol. 23, no. 34, 16 June 2017 (2017-06-16), pages 8262 - 8267, XP055598365 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017200109A1 (ja) | 2019-05-09 |
US20190169228A1 (en) | 2019-06-06 |
JP6967245B2 (ja) | 2021-11-17 |
DE112017002597T5 (de) | 2019-04-25 |
US10829512B2 (en) | 2020-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6942147B2 (ja) | Mt1−mmpに対して特異的な二環式ペプチド−毒素コンジュゲート | |
AU2017383008B2 (en) | Peptide ligands for binding to MT1-MMP | |
Shao et al. | Unprotected peptides as building blocks for the synthesis of peptide dendrimers with oxime, hydrazone, and thiazolidine linkages | |
Hojo et al. | Development of a Linker with an Enhanced Stability for the Preparation of Peptide Thioesters and Its Application to the Synthesis of a Stable-Isotope-Labelled HU-Type DNA-Binding Protein. | |
JP5515738B2 (ja) | ジベンゾフルベン誘導体の淘汰方法 | |
WO2016047794A1 (ja) | 疎水性ペプチドの製造法 | |
RU2727200C2 (ru) | Способ пептидного синтеза и устройство для осуществления способа твердофазного пептидного синтеза | |
JP2960257B2 (ja) | ビオチン導入試薬およびそれを用いる合成ペプチド精製法 | |
WO2017200109A1 (ja) | 含窒素化合物を用いた選択的ジスルフィド化試薬、およびジスルフィド含有化合物の製造方法 | |
WO2020101032A1 (ja) | 分子内s-s結合を有する環化ペプチドの製造方法 | |
JP4738683B2 (ja) | 保護されたチオールを脱保護する方法 | |
JP5119159B2 (ja) | ペプチドチオエステルの製造方法 | |
JP2005325109A (ja) | 環状ペプチド中のジスルフィド結合の形成方法 | |
WO1992006107A1 (en) | Process for purifying synthetic peptide, and linker and linker-combining solid-phase carrier used in said process | |
JP2000510839A (ja) | 触媒イミダゾール(例えばヒスチジン)機能を有する触媒を使用した安定化変遷複合体を用いたアシル移行 | |
JPH0768271B2 (ja) | ヒトオステオカルシンの製造法 | |
Abdel-Aal et al. | Synthesis of Amide Backbone-Modified Peptides | |
CN113164613B (zh) | 二聚的肽-磷脂缀合物的优化方法 | |
WO2015050199A2 (ja) | 新規化合物、その製造方法及びその用途 | |
JPWO2007043615A1 (ja) | ペプチドエステル試薬、およびそのライゲーションまたはチオエステル化合物の製造のための使用 | |
WO2024043251A1 (ja) | 環状ペプチドの細胞膜透過性の予測方法 | |
JP2680080B2 (ja) | 新規カルシトニン誘導体 | |
WO2000064843A1 (fr) | Support solide fonctionnalise pour la synthese d'alpha-oxoaldehydes | |
JP2024048806A (ja) | トリプトファン選択的修飾剤、およびこれを用いたTrp-S結合含有化合物の製造方法 | |
JPH0680691A (ja) | シスチン含有ペプチドの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018518399 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17799532 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17799532 Country of ref document: EP Kind code of ref document: A1 |