WO2017199556A1 - ステレオカメラ及びステレオカメラの制御方法 - Google Patents

ステレオカメラ及びステレオカメラの制御方法 Download PDF

Info

Publication number
WO2017199556A1
WO2017199556A1 PCT/JP2017/009859 JP2017009859W WO2017199556A1 WO 2017199556 A1 WO2017199556 A1 WO 2017199556A1 JP 2017009859 W JP2017009859 W JP 2017009859W WO 2017199556 A1 WO2017199556 A1 WO 2017199556A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
image
wide
pan
angle
Prior art date
Application number
PCT/JP2017/009859
Other languages
English (en)
French (fr)
Inventor
小野 修司
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201780030167.4A priority Critical patent/CN109155842B/zh
Priority to EP17798991.0A priority patent/EP3461127B1/en
Priority to JP2018518121A priority patent/JP6641470B2/ja
Publication of WO2017199556A1 publication Critical patent/WO2017199556A1/ja
Priority to US16/183,757 priority patent/US10863164B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B19/00Cameras
    • G03B19/02Still-picture cameras
    • G03B19/04Roll-film cameras
    • G03B19/07Roll-film cameras having more than one objective
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/296Synchronisation thereof; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/671Focus control based on electronic image sensor signals in combination with active ranging signals, e.g. using light or sound signals emitted toward objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method

Definitions

  • the present invention relates to a stereo camera and a control method of the stereo camera, and more particularly to a technique capable of simultaneously capturing a wide-angle image that is a stereo image and a telephoto image that is a stereo image.
  • Patent Document 1 a plurality of camera system pan head devices equipped with a plurality of (four) cameras.
  • a plurality of camera system pan / tilt head devices described in Patent Document 1 are equipped with two compound-eye camera units, and two first pan / tilt head means capable of controlling each compound-eye camera unit in a pan direction and a tilt direction.
  • two first pan / tilt head means capable of controlling each compound-eye camera unit in a pan direction and a tilt direction.
  • Means (parent platform), and two compound eye camera units are mounted separately on the second platform.
  • Each compound eye camera unit includes a wide-angle lens camera and a zoom camera, and the optical axis of the wide-angle lens camera and the optical axis of the zoom camera are in the same direction by default.
  • the zoom lens camera faces the same optical axis as the wide-angle lens camera, it is possible to zoom in on the details of the subject within the angle of view of the wide-angle lens and capture a detailed telephoto image.
  • the plurality of camera system pan / tilt head devices can control the second pan / tilt head means toward the captured subject, thereby allowing the device to face the subject, and the device captures the subject and corrects the subject.
  • the distance between the apparatus and the subject can be measured by the triangulation method.
  • An automatic tracking imaging device described in Patent Document 2 includes a central optical system that is a wide-angle optical system disposed on a common optical axis, a photographing optical system that includes an annular optical system that is a telephoto optical system, a wide-angle optical system, and Tracking based on at least a wide-angle image and a wide-angle image and a telephoto image acquired from the directivity sensor, a pan-tilt mechanism, and a directivity sensor that selectively receive light beams that are incident on the telephoto optical system by dividing into pupils.
  • An object detection unit that detects a target object and a pan / tilt control unit that controls a pan / tilt mechanism based on position information in the image of the object detected by the object detection unit.
  • the automatic tracking imaging device described in Patent Document 2 can simultaneously acquire a wide-angle image and a telephoto image by a single imaging unit having a wide-angle optical system and a telephoto optical system in which optical axes coincide with each other. Since the optical axes of the wide-angle optical system and the telephoto optical system coincide with each other, the object to be tracked is detected based on at least the wide-angle image. By controlling the pan / tilt mechanism based on the position information in the image, the object can be placed in the telephoto image (automatic tracking), and even if the object moves at high speed, the object can be captured by a wide-angle image. Therefore, tracking deviation does not occur.
  • each compound-eye camera unit includes a wide-angle lens camera and a zoom camera, and thus has a problem of increasing the size.
  • the optical axis of the wide-angle lens camera constituting the compound eye camera unit and the optical axis of the zoom camera are in the same direction, but the optical axes of both are parallel and do not match. Therefore, when the wide-angle lens camera captures the subject (main subject) on the optical axis, when the zoom camera is zoomed up to capture details of the main subject, the main subject is the zoomed-in telephoto image. When the image is taken at a position deviated from the center (optical axis of the zoom camera), and the zoom magnification of the zoom camera is high, the main subject deviates from the angle of view of the zoom camera and the main subject is captured by the zoom camera. There is a problem that it becomes impossible.
  • the automatic tracking imaging device described in Patent Document 2 can simultaneously acquire a wide-angle image and a telephoto image by a single imaging unit having a wide-angle optical system and a telephoto optical system whose optical axes coincide with each other, If the pan / tilt mechanism is controlled so that the tracking target object is captured at the center of the wide-angle image, the tracking target object can be captured at the center of the telephoto image, but the distance information of the main subject cannot be acquired. In addition, it is not possible to apply the automatic focus adjustment method that focuses the zoom camera on the main subject based on the distance information of the main subject.
  • the present invention has been made in view of such circumstances, and can acquire two wide-angle images that are stereo images and two telephoto images that are stereo images at the same time, particularly when acquiring two telephoto images.
  • Another object of the present invention is to provide a stereo camera and a stereo camera control method capable of reliably capturing a main subject on the optical axes of two telephoto optical systems.
  • a stereo camera includes a first photographing optical system having a wide-angle optical system and a telephoto optical system, which have optical axes that coincide with each other and are disposed in different regions.
  • a first imaging unit including a first directivity sensor having a plurality of pixels that selectively receive light by splitting a light beam incident through a wide-angle optical system and a telephoto optical system, respectively;
  • a second imaging unit including a second imaging optical system having the same configuration as the optical system and a second directional sensor having the same configuration as the first directional sensor, the first imaging unit being A second imaging unit that is spaced apart by a base line length; a first wide-angle image and a second wide-angle image from the first directivity sensor and the second directivity sensor; a first telephoto image and a first telephoto image;
  • An image acquisition unit that acquires two telephoto images, a first imaging unit, and a second imaging unit.
  • the pan / tilt mechanism that rotates in the horizontal direction and the vertical direction, and the pan / tilt mechanism is controlled based on the first wide-angle image and the second wide-angle image acquired by the image acquisition unit.
  • the distance information of at least the main subject is calculated based on the pan / tilt control unit that captures the main subject on each optical axis of the imaging optical system and the first telephoto image and the second telephoto image acquired by the image acquisition unit.
  • a distance information calculation unit is calculated based on the pan / tilt control unit that captures the main subject on each optical axis of the imaging optical system and the first telephoto image and the second telephoto image acquired by the image acquisition unit.
  • the first image pickup unit and the second image pickup unit that are spaced apart from each other by the base line length can be rotated in the horizontal direction and the vertical direction, respectively, by the pan / tilt mechanism.
  • the first imaging unit includes a first photographing optical system having a wide-angle optical system and a telephoto optical system, the optical axes of which coincide with each other and disposed in different regions, a wide-angle optical system, and a telephoto optical system.
  • a first directivity sensor having a plurality of pixels that selectively receive light by splitting each of the incident light beams through the pupil, and the second imaging unit performs the second imaging in the same manner as the first imaging unit.
  • An optical system and a second directivity sensor are included.
  • a first wide-angle image and a second wide-angle image that are stereo images, and a first telephoto image and a second telephoto image that are stereo images are simultaneously acquired from the first imaging unit and the second imaging unit.
  • the wide-angle optical system and the telephoto optical system constituting the first photographing optical system have the same optical axis.
  • the wide-angle optical system and the telephoto optical system constituting the second photographing optical system are light beams.
  • the main subject can be positioned at the center position (position corresponding to the optical axis) of the first telephoto image and the second telephoto image. Since the pan / tilt mechanism is controlled based on the first wide-angle image and the second wide-angle image, the main subject can be reliably captured without losing sight.
  • the distance information of the main subject can be calculated, but the first telephoto image and the second telephoto image are Since the spatial resolution is higher than that of the first wide-angle image and the second wide-angle image, highly accurate distance information can be calculated.
  • the distance information calculation unit includes a corresponding point detection unit that detects two corresponding points having the same feature amount based on the first telephoto image and the second telephoto image.
  • the amount of parallax in the first directional sensor and the second directional sensor of the two corresponding points detected by the corresponding point detection unit, the base line length, the first imaging optical system and the second imaging optical system It is preferable to calculate the distance between corresponding points based on the respective optical axis directions and the focal length of the telephoto optical system.
  • the first photographing optical system and the second photographing optical system are concentric with the wide-angle optical system and the central optical system, each of which includes a circular central optical system.
  • the optical system is constituted by a telephoto optical system including an annular optical system provided. No parallax occurs between two images captured by a wide-angle optical system composed of a circular central optical system and a telephoto optical system composed of an annular optical system arranged concentrically with respect to the central optical system, Moreover, since each has a rotationally symmetric shape, it is preferable as a photographing optical system.
  • each of the first directional sensor and the second directional sensor may have a microlens array or a light shielding mask that functions as pupil dividing means.
  • a stereo camera In a stereo camera according to still another aspect of the present invention, it is preferable to have a first focus adjustment unit that performs focus adjustment of each telephoto optical system of the first imaging optical system and the second imaging optical system. Since the telephoto optical system has a shallow depth of field and is easy to blur compared to the wide-angle optical system, it is preferable to perform focus adjustment.
  • the first focus adjustment unit includes the first directivity of the main subject included in each of the first wide-angle image and the second wide-angle image acquired by the image acquisition unit.
  • the main subject based on the amount of parallax in the sensor and the second directional sensor, the base line length, the optical axis directions of the first and second imaging optical systems, and the focal length of the wide-angle optical system It is preferable to acquire the distance information of the first and second telephoto optical systems of the first and second imaging optical systems based on the acquired distance information.
  • the distance information of the main subject can be acquired by the triangulation method using the first wide-angle image and the second wide-angle image that are stereo images.
  • the moving position in the optical axis direction of the entire telescopic optical system of each of the first photographing optical system and the second photographing optical system or a part of the optical system and the distance information of the subject focused by the moving position are a pair. Therefore, if the distance information of the main subject can be acquired, it is possible to adjust the focus of the telephoto optical system of each of the first photographing optical system and the second photographing optical system so as to focus on the main subject. it can.
  • the first focus adjustment unit is controlled by the pan / tilt control unit by the pan / tilt control unit, and is on the respective optical axes of the first imaging optical system and the second imaging optical system.
  • the distance of the main subject based on the base line length, the optical axis directions of the first and second imaging optical systems, and the focal length of the wide-angle optical system It is preferable to acquire information and adjust the focus of each telephoto optical system of the first imaging optical system and the second imaging optical system based on the acquired distance information.
  • the distance information of the main subject is calculated by the triangulation method based on the base line length, the optical axis directions of the first photographing optical system and the second photographing optical system, and the focal length of the wide-angle optical system. can do. If the distance information of the main subject can be acquired, the focal points of the telephoto optical systems of the first photographing optical system and the second photographing optical system can be adjusted so as to focus on the main subject as described above. it can.
  • a first focus adjustment unit that performs focus adjustment of each telephoto optical system of the first imaging optical system and the second imaging optical system, and first imaging optics It is preferable to include a second focus adjustment unit that performs focus adjustment of the wide-angle optical system of each of the system and the second imaging optical system.
  • the wide-angle optical system may be a pan focus without providing the focus adjustment unit, but it is preferable that the wide-angle optical system is also provided with a focus adjustment unit (second focus adjustment unit).
  • the first focus adjustment unit acquires distance information of the main subject based on the focus information of the wide-angle optical system by the second focus adjustment unit, and the acquired distance It is preferable to adjust the focus of each telephoto optical system of the first photographing optical system and the second photographing optical system based on the information.
  • the focus information of the wide-angle optical system after focus adjustment for example, the light of the entire or part of the wide-angle optical system in the focused state
  • the distance information of the main subject can be acquired based on the movement position in the axial direction. If the distance information of the main subject can be acquired, it is possible to adjust the focus of the telephoto optical systems of the first photographing optical system and the second photographing optical system so as to focus on the main subject as described above.
  • the pan / tilt mechanism includes a first pan / tilt mechanism for rotating the first imaging unit in the horizontal direction and the vertical direction, and the first pan / tilt mechanism independent of the first pan / tilt mechanism.
  • a second pan / tilt mechanism that rotates the two imaging units in the horizontal direction and the vertical direction, and the pan / tilt control unit controls the first pan / tilt mechanism based on the first wide-angle image.
  • a second pan / tilt control unit that controls the second pan / tilt mechanism based on the second wide-angle image.
  • the first imaging unit and the second imaging unit can be independently pan-tilted, and the optical axis directions of the first imaging optical system and the second imaging optical system are independent. Can be controlled.
  • the pan / tilt mechanism includes a holding member that holds the first pan / tilt mechanism and the second pan / tilt mechanism, and a pan mechanism that rotates the holding member in the horizontal direction.
  • the pan / tilt control unit preferably controls the pan mechanism based on the first wide-angle image and the second wide-angle image so that the first imaging unit and the second imaging unit face the main subject.
  • the distance between the first imaging unit and the second imaging unit with respect to the main subject is increased.
  • the distance information of the main subject and the like can be calculated with higher accuracy.
  • a stereo camera includes a first subject detection unit and a second subject detection unit that detect a main subject based on the first wide-angle image and the second wide-angle image, respectively, and pan / tilt
  • the control unit controls the pan / tilt mechanism based on position information in the first wide-angle image and the second wide-angle image of the main subject detected by the first subject detection unit and the second subject detection unit, It is preferable to capture the main subject on the optical axis of each of the first photographing optical system and the second photographing optical system. It is easy to image the main subject so that the main subject enters the first wide-angle image and the second wide-angle image.
  • the position information of the main subject (the center of each wide-angle image (the optical axis) is included in the first wide-angle image and the second wide-angle image.
  • the pan / tilt mechanism may be controlled so that the main subject is captured on the respective optical axes of the first imaging optical system and the second imaging optical system on the basis of position information) indicating the amount of displacement from the position). Is possible. Further, even if the main subject is a moving object that moves at high speed, the moving object can be reliably captured by the first wide-angle image and the second wide-angle image, so that tracking deviation does not occur.
  • the first subject detection unit and the second subject detection unit are based on the first wide-angle image and the second wide-angle image acquired sequentially by the image acquisition unit. It is preferable to detect a moving object and to use the detected moving object as a main subject. When the main subject is a moving object, a desired main subject can be detected by moving object detection.
  • the first subject detection unit and the second subject detection unit recognize and recognize a specific subject based on the first wide-angle image and the second wide-angle image. It is preferable that the specified subject is the main subject.
  • the main subject can be detected by recognizing the person or the face of the person.
  • the stereo camera according to still another aspect of the present invention further includes a third subject detection unit and a fourth subject detection unit that detect a main subject based on the first telephoto image and the second telephoto image, and pan / tilt
  • the control unit controls the pan / tilt mechanism based on position information of the main subject in the first telephoto image and the second telephoto image detected by the third subject detection unit and the fourth subject detection unit,
  • the first subject detection unit and the second subject detection unit detect the main subject in the first wide-angle image and the second subject detection unit. It is preferable to control the pan / tilt mechanism based on position information in the wide-angle image.
  • the main subject When the main subject can be detected based on the first telephoto image and the second telephoto image, the main subject is detected based on position information in the first telephoto image and the second telephoto image. Since the pan / tilt mechanism is controlled, the optical axes of the first photographing optical system and the second photographing optical system can be controlled with high precision, while the first telephoto image and the second telephoto optical system can be controlled. If the main subject cannot be detected based on the first wide-angle image, the position information of the main subject detected in the first wide-angle image and the second wide-angle image based on the first wide-angle image and the second wide-angle image is detected. By controlling the pan / tilt mechanism based on the above, even if the main subject is a moving object that moves at high speed, the moving object can be reliably captured by the first wide-angle image and the second wide-angle image. It does not occur.
  • Still another aspect of the present invention is a method for controlling a stereo camera using the above-described stereo camera, wherein the first wide-angle image and the second wide-angle image from the first directivity sensor and the second directivity sensor. And a pan / tilt mechanism on the basis of the acquired first wide-angle image and second wide-angle image, and a main subject on each optical axis of the first photographing optical system and the second photographing optical system.
  • the first directivity sensor and the second directivity sensor Acquiring a first telephoto image and a second telephoto image, and calculating distance information of at least a main subject based on the acquired first telephoto image and second telephoto image.
  • the present invention it is possible to simultaneously acquire a first wide-angle image and a second wide-angle image that are stereo images, and a first telephoto image and a second telephoto image that are stereo images. Since the optical axis of the wide-angle optical system and the telephoto optical system constituting the photographing optical system coincide with each other, and similarly, the optical axis of the wide-angle optical system and the telephoto optical system constituting the second photographing optical system coincide with each other.
  • the main subject can be positioned at the center position (position corresponding to the optical axis) of the first telephoto image and the second telephoto image. Since the pan / tilt mechanism is controlled based on the first wide-angle image and the second wide-angle image, the main subject can be reliably captured without losing sight.
  • the distance information of the main subject can be calculated, but the first telephoto image and the second telephoto image are Since the spatial resolution is higher than that of the first wide-angle image and the second wide-angle image, highly accurate distance information can be calculated.
  • FIG. 2 is an enlarged view of a main part of the microlens array and the image sensor shown in FIG.
  • the block diagram which shows embodiment of the internal structure of a stereo camera
  • the figure which shows an example of the wide angle image and telephoto image which are imaged with a stereo camera
  • An image diagram showing a first telephoto image showing a state in which pan-tilt control is performed so that a specific main subject (person's face) comes to the center of the first telephoto image
  • Block diagram showing the first focus adjustment unit Block diagram of pan / tilt control unit 60 A flowchart showing pan-tilt control for capturing a main subject on the optical axes L 1 and L 2 of the first photographing optical system 12 L and the second photographing optical system 12 R , respectively.
  • the flowchart which shows the process which acquires the distance information of the corresponding point in which feature-values correspond between a 1st telephoto image and a 2nd telephoto image
  • the figure used to explain an example of a moving object detection method for detecting a main subject that is a moving object The figure used to explain an example of a moving object detection method for detecting a main subject that is a moving object
  • the figure used to explain an example of a moving object detection method for detecting a main subject that is a moving object Side view showing another embodiment of a directional sensor Sectional drawing which shows other embodiment of the imaging part applicable to a stereo camera
  • FIG. 1 is an external perspective view of a stereo camera according to the present invention.
  • the stereo camera 1 mainly includes a first pan-tilt camera 10 L for the left eye, a second pan-tilt camera 10 R for the right eye, a first pan-tilt camera 10 L, and a second pan-tilt camera 10.
  • a holding member 37 that holds R apart from the base line length D
  • a pan apparatus 38 that includes a pan mechanism that rotates the holding member 37 in the horizontal direction.
  • the first pan / tilt camera 10 L includes a first imaging unit 11 L , a first pan / tilt device 30 L (FIG. 4), and a first camera body 2 L.
  • the second pan / tilt camera 10 R includes: The second imaging unit 11 R , the second pan / tilt device 30 R (FIG. 4), and the second camera body 2 R are configured.
  • the first pan-tilt device 30 L includes a pedestal 4 L, is fixed to the base 4 L, and a holding portion 8 L which holds the first imaging unit 11 L rotatably.
  • Pedestal 4 L is rotatably disposed about an axis in the vertical direction Z of the first camera body 2 L, rotates about an axis in the vertical direction Z by the pan drive unit 34 (FIG. 4) (panning )
  • Holding portion 8 L has a gear 8A provided on the shaft coaxially in the horizontal direction X, by a driving force from the tilt drive unit 36 (FIG. 4) via a gear 8A is transmitted, the first the imaging unit 11 L in the vertical direction causes rotation (tilt operation).
  • the second pan-tilt device 30 R has a pedestal 4 R, is fixed to the base 4 R, and a holding portion 8 R for holding the second imaging unit 11 R turnably .
  • Pedestal 4 R is rotatably disposed about an axis in the vertical direction Z of the second camera body 2 R, rotates about an axis in the vertical direction Z by the pan drive unit 34 (panning).
  • the holding unit 8R includes a gear 8A provided coaxially with the axis in the horizontal direction X, and a driving force is transmitted from the tilt driving unit 36 via the gear 8A, whereby the second imaging unit 11R. Tilt up and down.
  • the first pan-tilt camera 10 L by panning and tilting operation, the first pan-tilt camera 10 L shooting direction of the (first imaging optical system in the direction of the optical axis L 1) in the desired direction
  • the second pan / tilt camera 10 R performs a pan operation and a tilt operation, so that the second pan / tilt camera 10 R capture direction (the second pan / tilt camera 10 R is independent of the first pan / tilt camera 10 L ). direction) of the optical axis L 2 of the imaging optical system can be directed in a desired direction.
  • Figure 2 is a sectional view showing a first embodiment of the first imaging unit 11 L of the stereo camera 1.
  • the first imaging unit 11 L is constituted by the first imaging optical system 12 L and the first directional sensor 17 L.
  • the first photographing optical system 12 L includes a wide-angle optical system 13 composed of a circular central optical system, which is arranged on the same optical axis, and an annular optical system arranged concentrically with respect to the wide-angle optical system 13. And a telephoto optical system 14 composed of a system.
  • Wide-angle optical system 13 the first lens 13a, the second lens 13b, third lens 13c, a fourth lens 13d, and the wide-angle lens that is composed of the common lens 15, constitutes the first directional sensor 17 L
  • a wide-angle image is formed on the microlens array 16.
  • the telephoto optical system 14 is a telephoto lens including a first lens 14a, a second lens 14b, a first reflective mirror 14c as a reflective optical system, a second reflective mirror 14d, and a common lens 15, and has a first directivity.
  • the telephoto image is focused on the micro lens array 16 constituting the sexual sensor 17 L.
  • the light beam incident through the first lens 14a and the second lens 14b is reflected twice by the first reflection mirror 14c and the second reflection mirror 14d, and then passes through the common lens 15.
  • the light beam is folded back by the first reflecting mirror 14c and the second reflecting mirror 14d, so that the length in the optical axis direction of the telephoto optical system (telephoto lens) having a long focal length is shortened.
  • the first directivity sensor 17 L includes a microlens array 16 and an image sensor 18.
  • FIG. 3 is an enlarged view of a main part of the microlens array 16 and the image sensor 18 shown in FIG.
  • the microlens array 16 includes a plurality of microlenses (pupil imaging lenses) 16 a arranged in a two-dimensional manner, and the horizontal and vertical intervals between the microlenses are the photoelectric conversion elements of the image sensor 18. This corresponds to the interval of three light receiving cells 18a. That is, each microlens of the microlens array 16 is formed corresponding to the position of every two light receiving cells in each of the horizontal direction and the vertical direction.
  • each microlens 16a of the microlens array 16 corresponds to the first imaging optical system 12 L of the wide angle optical system 13, and the telephoto optical system 14, a circular central pupil image (first pupil image) 17a and the annular A pupil image (second pupil image) 17 b is formed on the light receiving cell 18 a in the corresponding light receiving region of the image sensor 18.
  • 3 ⁇ 3 light receiving cells 18 a having a lattice shape (square lattice shape) are allocated per microlens 16 a of the microlens array 16.
  • one microlens 16a and a light receiving cell group (3 ⁇ 3 light receiving cells 18a) corresponding to one microlens 16a are referred to as a unit block.
  • the central pupil image 17a is formed only on the light receiving cell 18a at the center of the unit block, and the annular pupil image 17b is formed on eight light receiving cells 18a around the unit block.
  • the first imaging unit 11 of the L of the above-described configuration simultaneously imaging the first wide-angle image corresponding to the wide-angle optical system 13, and a first telescopic image corresponding to the telephoto optical system 14 as described below Can do.
  • Second imaging section 11 R of the stereo camera 1 is configured similarly to the first imaging unit 11 of the L shown in FIGS. 2 and 3, a second shooting with a wide angle optical system and the telephoto optical system
  • the optical system and the second directivity sensor are provided, and a second wide-angle image corresponding to the wide-angle optical system and a second telephoto image corresponding to the telephoto optical system can be captured simultaneously.
  • FIG. 4 is a block diagram illustrating an embodiment of the internal configuration of the stereo camera 1.
  • the first image acquisition unit 22 L the second image acquisition unit 22 R , the first subject detection unit 50 L , the second subject detection unit 50 R , and the first pan / tilt control unit 60.
  • L , the second pan / tilt control unit 60R , the distance image calculation unit 74, the parallax amount detection unit 72, the digital signal processing unit 40, and the like may be configured by a general-purpose CPU or an FPGA (Field Programmable Gate Array).
  • a circuit configuration designed exclusively for executing specific processing such as a programmable logic device (PLD) or an application specific integrated circuit (ASIC), which is a processor whose circuit configuration can be changed after manufacturing It may be configured by a dedicated electric circuit that is a processor, or a combination thereof.
  • PLD programmable logic device
  • ASIC application specific integrated circuit
  • the stereo camera 1 as described in FIG. 1 a first pan-tilt camera 10 L of the left eye, while a second pan-tilt camera 10 R for the right eye, of both cameras constituting the same there, in FIG 4, mainly describes the first pan-tilt camera 10 L, the detailed description of the second pan-tilt camera 10 R is omitted.
  • the first pan-tilt camera 10 L for the left eye constituting the stereo camera 1 includes a first photographing optical system 12 L having the wide-angle optical system 13 and the telephoto optical system 14 described in FIG. and a first image pickup unit 11 L comprising a first directional sensor 17 L having a microlens array 16 and the image sensor 18 described in FIG.
  • the first imaging unit 11 of the L is preferably provided with at least a first focusing unit that performs focus adjustment of the telescopic optical system 14 automatically (including the focusing mechanism 19).
  • the focus adjustment mechanism 19 can be configured by, for example, a voice coil motor that moves the entire telescopic optical system 14 or a part of the optical system in the optical axis direction.
  • the first focus adjustment unit is configured such that a focus control unit 190 described later acquires distance information of the main subject, and drives the focus adjustment mechanism 19 based on the acquired distance information, whereby the first focus adjustment unit 19 of the telephoto optical system 14 is driven. The focus can be adjusted.
  • the wide-angle optical system 13 may be provided with a second focus adjustment unit that automatically adjusts the focus of the wide-angle optical system 13 or may be pan-focused.
  • a contrast AF (Autofocus) method or an image plane phase difference AF method can be considered.
  • focus adjustment is performed by moving the whole or a part of the wide-angle optical system 13 in the optical axis direction so that the contrast of the AF area of the first wide-angle image and the second wide-angle image is maximized.
  • the image plane phase difference AF method is the entire or part of the wide angle optical system 13 so that the image plane phase difference between the AF areas of the first wide angle image and the second wide angle image becomes zero. Is a method of adjusting the focus of the wide-angle optical system 13 by moving the lens in the optical axis direction.
  • a tilt mechanism hereinafter referred to as “pan tilt mechanism” 32, a pan drive unit 34, a tilt drive unit 36, and the like.
  • the pan / tilt mechanism 32 includes a home position sensor that detects a reference position of a rotation angle (pan angle) in the pan direction and a home position sensor that detects a reference position of a tilt angle (tilt angle) in the tilt direction.
  • the pan driving unit 34 and the tilt driving unit 36 each have a stepping motor and a motor driver, and output a driving force to the pan / tilt mechanism 32 to drive the pan / tilt mechanism 32.
  • the first imaging unit 11 L is for imaging the first wide-angle image and the first telescopic image of a time series through the first imaging optical system 12 L and the first directional sensor 17 L,
  • the subject image formed on the light receiving surface of each light receiving cell (photoelectric conversion element) of the first directivity sensor 17 L (image sensor 18) via the first photographing optical system 12 L corresponds to the amount of incident light. Converted to a certain amount of signal voltage (or charge).
  • the signal voltage (or charge) accumulated in the image sensor 18 is accumulated in the light receiving cell itself or an attached capacitor.
  • the stored signal voltage (or electric charge) is selected with the selection of the light receiving cell position by using a MOS (MetalMetaOxide Semiconductor) type image sensor (so-called Complementary Metal Oxide Semiconductor) CMOS sensor using the XY address method. Read out.
  • MOS MetalMetaOxide Semiconductor
  • CMOS Complementary Metal Oxide Semiconductor
  • the image signal indicating the first wide-angle image of the group of light receiving cells in the center corresponding to the wide-angle optical system 13 from the image sensor 18 and the first of the group of eight light-receiving cells in the vicinity corresponding to the telephoto optical system 14 are obtained.
  • the image signal indicating the telephoto image can be read out. Note that image signals indicating the first wide-angle image and the first telephoto image are continuously read from the image sensor 18 at a predetermined frame rate (for example, the number of frames per second is 24p, 30p, or 60p). However, when a shutter button (not shown) is operated, image signals indicating the first wide-angle image and the first telephoto image, which are each a still image, are read out.
  • the image signal (voltage signal) read from the image sensor 18 is converted into an output signal for each light receiving cell for the purpose of reducing correlated double sampling processing (noise (particularly thermal noise) included in the sensor output signal).
  • the image signal for each light-receiving cell is sampled and held by A / D (Analog / Digital) conversion after processing to obtain accurate pixel data by taking the difference between the included feedthrough component level and the signal component level.
  • a / D converter 20 converts sequentially input image signals into digital signals and outputs them to the image acquisition unit 22. Note that some MOS type sensors include an A / D converter. In this case, a digital signal is directly output from the image sensor 18.
  • the first image acquisition unit 22 L by reading the image signal by selecting the light receiving cell location of the image sensor 18, and an image signal representing an image signal and a first telescopic image showing the first wide-angle image at the same time Or can be acquired selectively.
  • the first light receiving cell by selectively reading out the image signal of the light receiving cell on which the central pupil image 17a of the image sensor 18 is incident, the first light receiving cell (light receiving cell in the center of the 3 ⁇ 3 light receiving cells) per microlens.
  • An image signal indicating one wide-angle image an image signal indicating a mosaic image of a Bayer array
  • an image signal of a light receiving cell on which the annular pupil image 17b of the image sensor 18 enters is selectively read out.
  • image signals are read from the image sensor 18 and temporarily stored in the buffer memory. From the image signals stored in the buffer memory, image signals of two images, a first wide-angle image and a first telephoto image. The grouping may be performed.
  • Image signal indicating the first wide-angle image and the first telescopic image acquired by the first image acquisition unit 22 L are outputted to the digital signal processing unit 40 and the first object detecting unit 50 L.
  • the first subject detecting unit 50 L based on the image signal representing the first wide-angle image in which the first image acquisition section 22 L is acquired to detect the main object, the position information in the image of the main subject detected and outputs the first pan and tilt control unit 60 L.
  • Methods for detecting a main subject in the first subject detecting unit 50 L a method for detecting a particular object (main subject) by the object recognition technology represented by technique for face recognition of the person, or the body as the main subject There is a moving object detection method to detect.
  • the object detection method based on object recognition is a method of registering the appearance characteristics of a specific object in advance as an object dictionary, and comparing the image extracted from the captured image while changing its position and size with the object dictionary. It is a method of recognizing an object.
  • FIG. 5 is a diagram illustrating an example of the captured first wide-angle image and first telephoto image. Note that a region indicated by a broken line in the first wide-angle image indicates the shooting range of the first telephoto image.
  • the first subject detector 50 L can detect the "face” in the first wide-angle image.
  • the first subject detecting unit 50 L is, when detecting the "face” of a person from the first telescopic image, the first telescopic image shown in Figure 5, does not contain only part of the face of the person Therefore, the “face” cannot be detected from the first telephoto image.
  • the photographing magnification of the telephoto optical system 14 is high (when the angle of view is very small), there is a high probability that the desired main subject is not in the first telephoto image.
  • first major subjects detected by the subject detection unit 50 L of the position information in the first wide-angle image is output to the first pan-tilt controller 60 L .
  • the first pan / tilt control unit 60 L is a part that controls the first pan / tilt device 30 L based on the position information of the main subject in the first wide-angle image input from the first subject detection unit 50 L.
  • the position information of the main subject in the first wide-angle image (for example, the center of gravity of the face area when the main subject is a “face” of a person) is the center position (on the optical axis L 1 ) of the first wide-angle image. to move to the position), controls the pan and tilt mechanism 32 through the pan drive unit 34, tilt drive unit 36 (i.e., the photographing direction of the first imaging unit 11 L).
  • the pan / tilt mechanism 32 is controlled so that the main subject is captured on the optical axis L 1 of the first photographing optical system 12 L (so that the main subject enters the center position of the first wide-angle image). Then, the main subject enters the center position of the first telephoto image.
  • Each of the optical axis L 1 of the first wide-angle optical system 13 constituting an imaging optical system 12 L and of telescopic optics 14 is because match (see FIG. 2).
  • FIG. 6 is an image diagram showing a first telephoto image showing a state in which pan-tilt control is performed so that a specific main subject (in this example, a “face” of a person) is at the center of the first wide-angle image.
  • a specific main subject in this example, a “face” of a person
  • the second pan-tilt camera 10 R for the right eye forming a stereo camera 1, as in the first pan-tilt camera 10 L for the left eye, the second imaging optical system 12 R and the second directional sensor 17
  • a second imaging unit 11 R having R (not shown) and a second pan / tilt device 30 R are provided.
  • the second imaging unit 11 R captures the second wide-angle image and the second telephoto image in time series via the second imaging optical system 12 R and the second directivity sensor 17 R , and the second imaging unit 11 R from the directional sensor 17 R, an image signal of a second wide-angle image, and the image signal of a second telephoto images are enabled simultaneously output.
  • the second image acquisition section 22 for R an image signal representing an image signal and a second telescopic image from the second image pickup unit 11 R shows a second wide-angle image at the same time, or selectively acquired.
  • Image signal indicating a second wide-angle image and a second telephoto images acquired by the second image acquisition section 22 R is output to the digital signal processing unit 40 and the second object detecting unit 50 R.
  • Second object detecting unit 50 R based on the image signal of a second wide-angle image in which the second image acquisition section 22 R is obtained to detect the main object, the position information in the image of the main subject detected and outputs to the second pan-tilt controller 60 R.
  • the second pan and tilt control unit 60 R is a portion that controls the second second pan-tilt device 30 R on the basis of the position information of the main subject in the wide-angle image to be input from the second object detecting unit 50 R, position information in the second wide-angle image of the main object is, to move to the center position of the second wide-angle image (position on the optical axis L 2), the pan drive unit 34, via the tilt drive portion 36 pan-tilt mechanism 32 (i.e., the photographing direction of the second imaging unit 11 R) to control.
  • each optical axis L 2 of the second wide-angle optical system 13 constituting an imaging optical system 12 R and of telescopic optics 14 is because match (see FIG. 2).
  • the digital signal processing unit 40 receives a digital image signal indicating the first wide-angle image and the first telephoto image from the first image acquisition unit 22L, and also receives the first image from the second image acquisition unit 22R . Digital image signals indicating two wide-angle images and a second telephoto image are input, and the digital signal processing unit 40 performs predetermined signal processing such as offset processing and gamma correction processing on each input image signal. I do.
  • the digital signal processing unit 40 when the display unit 42 has a function of performing stereoscopic display, the digital signal processing unit 40 generates an image signal for stereoscopic wide-angle image display from image signals indicating the first wide-angle image and the second wide-angle image that are stereo images.
  • the display data of the stereoscopic telephoto image is generated from the image signals of the first telephoto image and the second telephoto image that are generated or stereo images, and the generated display data is output to the display unit 42, A wide-angle image or a stereoscopic telephoto image is displayed on the display unit 42.
  • the digital signal processing unit 40 obtains, for example, display data for a wide-angle image or a telephoto image from an image signal indicating the first wide-angle image or the first telephoto image. By generating and outputting the generated display data to the display unit 42, a wide-angle image or a telephoto image is displayed on the display unit 42.
  • the digital signal processing unit 40 is a stereo image. Recording data is generated from an image signal indicating a first wide-angle image and a second wide-angle image, or recording data is generated from an image signal indicating a first telephoto image and a second telephoto image that are stereo images. Then, by outputting the generated recording data to the recording unit 44, the recording data is recorded on a recording medium (hard disk, memory card, etc.). Note that the recording unit 44 may record only the first telephoto image and the second telephoto image. The display unit 42 can also reproduce a necessary image based on the recording data recorded in the recording unit 44.
  • the distance information calculation unit 70 includes a parallax amount detection unit 72 and a distance image calculation unit 74.
  • the parallax amount detection unit 72 shows the image signal, the second telescopic image obtained from the second image acquisition section 22 R of a first telescopic image acquired by the first image acquisition unit 22 L
  • the image signal is added, and the parallax amount detection unit 72 captures the main subject on the optical axes L 1 and L 2 of the first imaging optical system 12 L and the second imaging optical system 12 R , respectively.
  • the parallax amount detection unit 72 corresponds to the feature points where the feature amounts match between the first telephoto image and the second telephoto image based on the input image signals indicating the first telephoto image and the second telephoto image. has a corresponding point detecting unit 72a for detecting, detects a parallax amount of the first directional sensor 17 L and the second directional sensor 17 R of the two corresponding points detected by the corresponding point detecting unit 72a.
  • Corresponding point detection by the corresponding point detection unit 72a corresponds to a target pixel having the highest correlation by block matching between an image having a predetermined block size based on the target pixel of the first telephoto image and the second telephoto image. This can be done by detecting the pixel position on the second telephoto image.
  • parallax amount detection unit 72 It detected by the parallax amount detection unit 72, information indicating the amount of parallax in the first telephoto images and two first directional sensor 17 L and the second directional sensor 17 R of the corresponding point of the second telescopic image Is output to the distance image calculation unit 74.
  • the other input of the distance image calculation unit 74 includes the first pan / tilt device 30 L and the second pan / tilt mechanism including the first pan / tilt mechanism from the first pan / tilt control unit 60 L and the second pan / tilt control unit 60 R.
  • angle information indicating each pan angle and the tilt angle of the second pan-tilt device 30 R containing (in each of the first imaging optical system 12 L and the second imaging optical system 12 R of the optical axis L 1, L 2 Information indicating a direction) is input, and the distance image calculation unit 74 calculates three-dimensional space information including distance information of corresponding points based on the input information.
  • the pan angle and the tilt angle of the first imaging unit 11 L (first imaging optical system 12 L ) and the second imaging unit 11 R (second imaging optical system 12 R ) are controlled.
  • the case where the main subject is located at the cross point A where the optical axes L 1 and L 2 of the first photographing optical system 12 L and the second photographing optical system 12 R intersect is shown.
  • the optical axes L 1 and L 2 of the first imaging optical system 12 L and the second imaging optical system 12 R are horizontal.
  • ⁇ 1 Pan angle of the first photographing optical system 12 L
  • ⁇ 2 Pan angle of the second photographing optical system 12
  • D Base line length
  • ⁇ x 1 Parallax amount at the first directivity sensor 17 L at the corresponding point B
  • ⁇ x 2 Parallax amount at the second directivity sensor 17 R at the corresponding point B
  • ⁇ 1 Horizontal direction of the corresponding point B with respect to the optical axis
  • L 1 ⁇ 2 Horizontal angle of the corresponding point B with respect to the optical axis
  • f Focal length of the telephoto optical system 14 included in the first photographing optical system 12 L and the second photographing optical system 12 R
  • the respective positions of the first imaging optical system 12 L and the second imaging optical system 12 R considering a triangle consisting of a cross point a (main subject), the length of
  • the base angles ⁇ 1 and ⁇ 2 can be calculated based on the pan angle ⁇ 1 and the pan angle ⁇ 2 , respectively.
  • the two base angles ⁇ 1 and ⁇ 2 can be obtained from the pan angles ⁇ 1 and ⁇ 2 and the angles ⁇ 1 and ⁇ 2 calculated by the equation [1], respectively.
  • the distance image calculation unit 74 can calculate the distance image by calculating the distance information for each corresponding point of the first telephoto image and the second telephoto image.
  • the distance image is a two-dimensional distribution image of distance values (distance information) to the subject obtained by the stereo camera 1, and each pixel of the distance image has distance information.
  • the distance information of the cross point A (main subject) is distance information of a singular point where the parallax amounts ⁇ x 1 and ⁇ x 2 are zero.
  • the distance image calculated by the distance image calculation unit 74 is recorded in the distance image recording unit 76.
  • the distance image is calculated by the distance image calculation unit 74, for example, when the structure is a subject, the three-dimensional information of the structure can be acquired, and the acquired three-dimensional information is recorded in the distance image recording unit 76.
  • the three-dimensional information can be used as appropriate.
  • FIG. 8 is a block diagram showing the first focus adjustment unit.
  • First focusing unit shown in FIG. 8 is moved, respectively provided in the first imaging unit 11 L and the second imaging unit 11 R, all or part of the optical system of the telephoto optical system 14 in the optical axis direction And a focus control unit 190 that controls the focus adjustment mechanism 19.
  • the focus control unit 190 includes a parallax amount detection unit 192, a distance information calculation unit 194, a focus position calculation unit 196, and the like.
  • Position information of the main subject in the first wide-angle image and the second wide-angle image is input to the parallax amount detection unit 192 from the first subject detection unit 50L and the second subject detection unit 50R , respectively. cage, the parallax amount detection unit 192, based on the position information of the main subject entered, detects a parallax amount of the main subject in the first directional sensor 17 L and the second directional sensor 17 R.
  • the focus control unit 190 in this example is before the main subject is captured on the optical axes L 1 and L 2 of the first imaging optical system 12 L and the second imaging optical system 12 R , respectively.
  • the telephoto optical system 14 is adjusted in focus, but the main subject is captured on the optical axes L 1 and L 2 of the first imaging optical system 12 L and the second imaging optical system 12 R , respectively.
  • the parallax amount detection unit 192 is not necessary. This is because the parallax amount is zero when the main subject is captured on the optical axes L 1 and L 2 of the first photographing optical system 12 L and the second photographing optical system 12 R , respectively.
  • the parallax amount detected by the parallax amount detection unit 192 is output to the distance information calculation unit 194.
  • the other input of the distance information calculation unit 194 the angle information from the first pan-tilt controller 60 L shows the pan angle and the tilt angle of the first pan-tilt device 30 L (first imaging optical system 12 L and the second The information indicating the directions of the optical axes L 1 and L 2 of the imaging optical system 12 R ) is input, and the distance information calculation unit 194 calculates distance information of the main subject based on these input information. .
  • the distance information calculation unit 194 calculates the distance information of the main subject in the same manner as the distance information calculation of the corresponding points by the distance information calculation unit 70 shown in FIG.
  • the indicated parallax amounts ⁇ x 1 and ⁇ x 2 are the parallax amounts of the main subject in the first wide-angle image and the second wide-angle image in the first directivity sensor 17 L and the second directivity sensor 17 R , and focal length f is different in that the focal length of the first imaging optical system 12 L and the second imaging angle optical system 13 included in the optical system 12 R.
  • the main subject distance information calculated by the distance information calculation unit 194 is output to the in-focus position calculation unit 196.
  • Focus position calculating unit 196 based on the distance information of the main subject to be input from the distance information calculation unit 194, the first imaging optical system 12 L and the second imaging optical system 12 each telescopic optical systems 14 R
  • An in-focus position at which the main subject is in focus is calculated, which is a movement position in the optical axis direction of all or part of the optical system.
  • the moving position in the optical axis direction of the entire telescopic optical system 14 or a part of the optical system and the distance information of the subject focused by the moving position have a one-to-one correspondence. If the distance information of the main subject can be acquired, the in-focus position at which the main subject is focused can be calculated.
  • Focus control unit 190 controls the focus adjustment mechanism 19 based on the focus position calculated by the focusing position calculation unit 196, each of the first imaging optical system 12 L and the second imaging optical system 12 R The entire telephoto optical system 14 or a part of the optical system is moved to the in-focus position in the optical axis direction to perform focus adjustment (first focus adjustment) of the telephoto optical system 14.
  • the focal control unit 190 of the present example the main object in the first directional sensor 17 L and the second directional sensor 17 R of the main subject included in each of the first wide-angle image and the second wide-angle image It acquires distance information of the main subject based on the parallax amount and the like, the focusing of the respective telescopic optical systems 14 of the first imaging optical system 12 L and the second imaging optical system 12 R on the basis of the obtained distance information It was to perform, not limited to this, the first imaging optical system 12 L and the second imaging optical system 12 contrast AF performs focus adjustment of each of the wide angle optical system 13 R, such as the image plane phase difference AF
  • the focus adjustment unit second focus adjustment unit
  • focusing information of the wide-angle optical system 13 by the second focus adjustment unit for example, the whole or a part of the wide-angle optical system 13 in the focused state
  • Position of the optical system in the optical axis direction It acquires distance information of the main subject on the basis, so as to perform focus adjustment of the first imaging optical system 12 L
  • FIG. 9 is a block diagram of the pan / tilt control unit 60.
  • the pan and tilt control unit 60 in addition to the first pan and tilt control unit 60 L and the second pan-tilt controller 60 R shown in FIG. 4, includes a pan control unit 62 for controlling the pan 38 shown in FIG. 1 ing.
  • Pan control unit 62 controls the pan 38 containing bread mechanism based on the first wide-angle image and the second wide-angle image, the main subject first imaging unit 11 L and the second imaging unit 11 R To face up.
  • the first pan and tilt control unit 60 L and the second pan-tilt control unit 60 R is, the main object detected by the first object detecting unit 50 L and the second object detecting unit 50 R, respectively, the first wide-angle image and the second is to control the first pan-tilt apparatus 30 L and the second pan-tilt device 30 R on the basis of the position information of the main subject in the wide-angle image, the pan control section 62, a first pan and tilt control unit 60 L and each pan angle alpha 1 and the first pan-tilt apparatus 30 L and the second pan-tilt device 30 R from the second pan and tilt control unit 60 R pan angle alpha 2 acquires angular information indicating a (see FIG. 7).
  • the pan control section 62 based on the angle information indicating the pan angle alpha 1 and the pan angle alpha 2, the pan angle alpha 1 Is positive, the pan angle ⁇ 2 is negative, and the absolute values of the pan angle ⁇ 1 and the pan angle ⁇ 2 are equal to each other, the pan device 38 (the first pan / tilt device 30 L and the second pan / tilt device 30 The holding member 37) holding R is rotated in the horizontal direction.
  • the pan position ⁇ 1 becomes positive
  • the pan angle ⁇ 2 becomes negative
  • the pan angle ⁇ 1 and the pan angle ⁇ 2 are absolute. The values can be equal.
  • the first imaging relative to the main subject part 11 L and the distance between the second imaging unit 11 R can be the same distance, it is possible to more accurately calculate the distance information, such as the main subject.
  • Figure 10 is a flowchart showing a pan and tilt control to capture the main subject in the optical axes L 1, the L 2 of the first imaging optical system 12 L and the second imaging optical system 12 R.
  • the first wide-angle image is acquired via the first imaging unit 11 L and the first image acquisition unit 22 L , and the second imaging unit 11 R and the second image acquisition unit are acquired. through the 22 R to obtain a second wide-angle image (step S10).
  • the first object detecting unit 50 L and the second object detecting unit 50 R detects a main object of the acquired first in the wide-angle image and the second wide-angle image (step S12), the detected Position information (first and second position information) of the main subject in the first wide-angle image and the second wide-angle image is calculated (step S14).
  • the first pan / tilt device 30L and the second pan / tilt device based on the first position information and the second position information in the first wide-angle image and the second wide-angle image of the main subject calculated in step S14. 30R is controlled (step S16).
  • step S18 it is determined whether or not the tracking of the main subject has been completed. That is, when the main subject moves and the first wide-angle image and the second wide-angle image that are stereo images and the first telephoto image and the second telephoto image that are stereo images are acquired as moving images, It is necessary to always capture the main subject (track the main subject) on the optical axes L 1 and L 2 of the first photographing optical system 12 L and the second photographing optical system 12 R , respectively.
  • step S18 it is determined whether or not the automatic tracking of the main subject has ended. If it is determined that the main subject has not ended, the process proceeds to step S10. As a result, the processing from step S10 to step S18 is repeated, and imaging with automatic tracking of the main subject is performed.
  • the pan / tilt control for tracking the main subject is ended. Whether or not the automatic tracking of the main subject has ended may be determined by turning on / off the power, or by a switch input for ending the pan / tilt operation.
  • the end of automatic tracking of the main subject can be terminated at the end of the still image photographing.
  • FIG. 11 is a flowchart showing a process of acquiring distance information of corresponding points having the same feature amount between the first telephoto image and the second telephoto image.
  • the corresponding point detection unit 72a of the parallax amount detection unit 72 detects the corresponding point having the same feature amount between the acquired first telephoto image and the second telephoto image (step S22), and detects it. detecting a parallax amount of the two first directional sensor 17 of the corresponding point L and second directional sensors 17 R was (step S24).
  • the distance image calculation unit 74 a parallax amount of corresponding points calculated by the step S26 as described with reference to FIG. 7, each of the pan angle of the first pan-tilt apparatus 30 L and the second pan-tilt device 30 R And angle information indicating the tilt angle (information indicating the directions of the optical axes L 1 and L 2 of the first imaging optical system 12 L and the second imaging optical system 12 R ), and the first pan-tilt camera 10 L.
  • step S26 After calculating the distance information of the corresponding points based on the baseline length between the second pan-tilt camera 10 R (step S26).
  • the distance image calculation unit 74 can calculate a distance image by calculating distance information for each corresponding point of the first telephoto image and the second telephoto image. Further, since the points on the optical axes L 1 and L 2 of the main subject are also corresponding points, distance information of the main subject is also calculated. In this case, the parallax amount of the points on the optical axes L 1 and L 2 is 0.
  • the distance information (distance image) calculated in step S26 is output and recorded in the distance image recording unit 76, or is output to an external device (step S28).
  • ⁇ Moving object detection method> an example of a moving object detection method for detecting a main object (moving object) when the main object is a moving object will be described with reference to FIGS.
  • the first subject detection unit 50L When functioning as a moving body detection unit, the first subject detection unit 50L has two time-series first wide-angle images (the first wide-angle image acquired previously (FIG. 12) as shown in FIGS. ) And the first wide-angle image acquired this time (FIG. 13)), and a difference image (FIG. 14) obtained by taking the difference between the two time-series first wide-angle images is detected.
  • the object A of the objects A and B moves, the object B stops, and the object A is the main subject (moving object).
  • the difference images A 1 and A 2 are images generated by the movement of the object A.
  • the barycentric positions of the difference images A 1 and A 2 are calculated and set as positions P 1 and P 2 , respectively, and the midpoint of the line segment connecting these positions P 1 and P 2 is set as a position G. Then, this position G is set as a position in the first wide-angle image of the object A (main subject which is a moving object).
  • Position G of the object A in a first wide-angle image that is calculated this way to have, to move to the center position of the first wide-angle image (position on the optical axis L 1), the pan-tilt mechanism 32 (i.e., the by repeatedly controlling a shooting direction) by the first image pickup unit 11 L, the object a moves (convergence) to the center position of the first wide-angle image (the first telescopic image).
  • the first imaging unit 11 L is moved when you, but will also move the background between images of the time series, in this case Moves in the real space regardless of the movement of the first imaging unit 11 L by shifting the images so that the background between the time-series images matches and taking the difference image between the shifted images.
  • the object A to be detected can be detected.
  • the moving object detection method is not limited to the above embodiment.
  • FIG. 15 is a side view showing another embodiment of the directivity sensor.
  • Directional sensor 117 shown in FIG. 15 is available instead of the first directional sensor 17 L and the second directional sensor 17 R.
  • the directivity sensor 117 includes a microlens array 118 serving as a pupil dividing unit, a light shielding member 120 functioning as a light shielding mask, and an image sensor 116 in which a part of the light receiving cells 116 a and 116 b is shielded from light by the light shielding member 120. ing.
  • the light receiving cells 116a and the light receiving cells 116b partially shielded by the light shielding member 120 are provided alternately (checker flag shape) in the horizontal direction and the vertical direction of the image sensor 116.
  • the microlens array 118 has microlenses 118 a that correspond one-to-one with the light receiving cells 116 a and 116 b of the image sensor 116.
  • Light blocking member 120 is intended to regulate the light receiving cells 116a, 116b opening of the image sensor 116, an opening corresponding to the first imaging optical system 12 L of the wide angle optical system 13, and the telephoto optical system 14 shown in FIG. 2 It has a shape.
  • the periphery of the opening is shielded by the light shielding portion 120a of the light shielding member 120, while in the light receiving cell 116b, the central portion of the opening is shielded by the light shielding portion 120b of the light shielding member 120.
  • the light beam which has passed through the first imaging optical system 12 L of the wide angle optical system 13 is pupil dividing incident on the light receiving cell 116a by the light-shielding portion 120a of the microlens array 118 and the light blocking member 120, while the first the light beam which has passed through the imaging optical system 12 L of the telescopic optical system 14 is being pupil division by the light shielding part 120b of the microlens array 118 and the light blocking member 120 is incident on the light receiving cell 116 b.
  • the image signal of the first wide-angle image can be read from each light receiving cell 116a of the image sensor 116, and the image signal of the first telephoto image can be read from each light receiving cell 116b of the image sensor 116.
  • FIG. 16 is a cross-sectional view showing another embodiment of an imaging unit (first imaging unit 11 L , second imaging unit 11 R ) applicable to the stereo camera 1.
  • This imaging unit is configured by a photographing optical system 112 and a directivity sensor 17. Since the directivity sensor 17 is the same as that shown in FIGS. 2 and 3, the photographing optical system 112 will be described below.
  • the photographing optical system 112 is composed of a central optical system 113 at the center and an annular optical system 114 at the periphery thereof arranged on the same optical axis.
  • the central optical system 113 is a telephoto optical system including a first lens 113a, a second lens 113b, and a common lens 115, and has an angle of view ⁇ .
  • the annular optical system 114 is a wide-angle optical system including a lens 114 a and a common lens 115, has an angle of view ⁇ ( ⁇ > ⁇ ), and is wider than the central optical system 113.
  • the imaging optical system 112 is different from the first imaging optical system 12 L shown in FIG. 2, not using the reflection mirror,
  • the central optical system 113 is telescopic optical system, an annular optical system 114 Is a wide-angle optical system.
  • the pan / tilt mechanism 32 that rotates the first imaging unit 11 L and the second imaging unit 11 R in the pan direction and the tilt direction includes the first camera body 2 L and the second camera body.
  • the first imaging unit 11 of the L, and the second imaging unit 11 R may be obtained by mounting the two electric pan head each (pan-tilt apparatus).
  • the main subject is detected from the first telephoto image and the second telephoto image.
  • the third subject detection unit and the second subject detection unit detects position information of the main subject in the first telephoto image and the second telephoto image
  • the pan / tilt control unit first and second pan / tilt control unit
  • Subject detection unit and It may be controlled pan and tilt mechanism on the basis of the position information in the first wide-angle image of the main object detected by the second object detecting unit and the second wide-angle image.
  • the main subject may be initially set by the operator using a touch panel or the like from the wide-angle image displayed on the display unit 42.
  • reflection mirrors constituting a telescopic optical system 14 of the first imaging optical system 12 L and the second imaging optical system 12 R is not limited to a concave or convex mirror may be a plane mirror, also the number of reflecting mirrors Not only two but also three or more may be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • Remote Sensing (AREA)
  • Studio Devices (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Cameras In General (AREA)
  • Accessories Of Cameras (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

2つの広角画像及び2つの望遠画像を同時に取得することができ、特に2つの望遠画像を取得する際に2つの望遠光学系の光軸上で主要被写体を確実に捕捉することができるステレオカメラ及びステレオカメラの制御方法を提供する。第1の撮像部11及び第2の撮像部11から第1の広角画像と第2の広角画像、及び第1の望遠画像と第2の望遠画像を同時に取得し、特に第1の撮影光学系12を構成する広角光学系と望遠光学系とは光軸が一致し、同様に第2の撮影光学系も同様に構成されているため、第1の広角画像及び第2の広角画像に基づいて第1の撮影光学系及び第2の撮影光学系のそれぞれの光軸上で主要被写体を捕捉するように第1の撮像部11L及び第2の撮像部11Rを独立してパンチルト制御することにより、第1の望遠画像及び第2の望遠画像の中心位置に主要被写体を位置させることができる。

Description

ステレオカメラ及びステレオカメラの制御方法
 本発明はステレオカメラ及びステレオカメラの制御方法に関し、特にステレオ画像である広角画像とステレオ画像である望遠画像とを同時に撮像することができる技術に関する。
 従来、複数(4台)のカメラを搭載した複数のカメラシステム用雲台装置が提案されている(特許文献1)。
 特許文献1に記載の複数のカメラシステム用雲台装置は、2台の複眼カメラユニットを搭載し、各複眼カメラユニットをパン方向及びチルト方向に制御可能とする2台の第1の雲台手段(子雲台)と、2台の第1の雲台手段(2台の複眼カメラユニット)を搭載し、2台の複眼カメラユニットをパン方向又はチルト方向に制御可能とする第2の雲台手段(親雲台)と、から成り、2台の複眼カメラユニットを第2の雲台上において離間して搭載している。
 各複眼カメラユニットは、広角レンズカメラとズームカメラとを含み、広角レンズカメラの光軸とズームカメラの光軸は、デフォルトで同じ方向を向いている。
 ズームレンズカメラは、広角レンズカメラと同じ光軸方向を向いているため、広角レンズの画角内において被写体の詳細をズームアップし、詳細な望遠画像を撮像することができる。更に、複数のカメラシステム用雲台装置は、捕捉された被写体に向けて第2の雲台手段を制御することにより、装置を被写体に正対させることができ、装置が被写体を捕捉し、正対した時点で装置と被写体との間の距離を三角測量法により測定できるようにしている。
 一方、光軸が一致する広角光学系及び望遠光学系を有する単一の撮像部により広角画像と望遠画像とを同時に取得し、かつ追尾対象の物体を望遠画像において確実に捉えることができる自動追尾撮像装置が提案されている(特許文献2)。
 特許文献2に記載の自動追尾撮像装置は、共通する光軸上に配置された広角光学系である中央光学系と、望遠光学系である環状光学系からなる撮影光学系と、広角光学系及び望遠光学系を介して入射する光束をそれぞれ瞳分割して選択的に受光する指向性センサと、パンチルト機構と、指向性センサから取得した広角画像及び望遠画像のうちの少なくとも広角画像に基づいて追尾対象の物体を検出する物体検出部と、物体検出部により検出された物体の画像中における位置情報に基づいてパンチルト機構を制御するパンチルト制御部とから構成されている。
 特許文献2に記載の自動追尾撮像装置は、光軸が一致する広角光学系と望遠光学系とを有する単一の撮像部により広角画像と望遠画像とを同時に取得することができるため、装置の小型化、低コスト化を図ることができ、また、広角光学系と望遠光学系の光軸が一致しているため、少なくとも広角画像に基づいて追尾対象の物体を検出し、検出された物体の画像中における位置情報に基づいてパンチルト機構を制御することにより、物体を望遠画像内に入れること(自動追尾すること)ができ、また、物体が高速で移動しても広角画像により物体を捉えることができるため、トラッキング逸脱が発生することがない。
特開2011-109630号公報 特開2015-154386号公報
 特許文献1に記載の複数のカメラシステム用雲台装置は、2台の複眼カメラユニット(2台の広角レンズカメラと2台のズームカメラ)を搭載しているため、ステレオ画像である2つの広角画像とステレオ画像である2つの望遠画像とを同時に撮像することができるが、各複眼カメラユニットは、広角レンズカメラとズームカメラとを含むため、大型化するという問題がある。
 また、複眼カメラユニットを構成する広角レンズカメラの光軸とズームカメラの光軸は、同じ方向を向いているが、両者の光軸は平行であって、一致していない。したがって、広角レンズカメラが被写体(主要被写体)を光軸上において捕捉しているときに、ズームカメラをズームアップして主要被写体の詳細を撮像する場合、主要被写体は、ズームアップされた望遠画像の中心(ズームカメラの光軸)からずれた位置に撮像され、また、ズームカメラのズーム倍率が高倍率の場合には、ズームカメラの画角から主要被写体が外れ、ズームカメラにより主要被写体を捉えることができなくなるという問題がある。
 一方、特許文献2に記載の自動追尾撮像装置は、光軸が一致する広角光学系と望遠光学系とを有する単一の撮像部により広角画像と望遠画像とを同時に取得することができるため、広角画像の中心において追尾対象の物体を捕捉するようにパンチルト機構を制御すると、望遠画像の中心において追尾対象の物体を捕捉することができるが、主要被写体の距離情報等を取得することができず、また、主要被写体の距離情報に基づいてズームカメラを主要被写体に合焦させる自動焦点調節方法を適用することができない。
 本発明はこのような事情に鑑みてなされたもので、ステレオ画像である2つの広角画像とステレオ画像である2つの望遠画像とを同時に取得することができ、特に2つの望遠画像を取得する際に2つの望遠光学系の光軸上において主要被写体を確実に捕捉することができるステレオカメラ及びステレオカメラの制御方法を提供することを目的とする。
 上記目的を達成するために本発明の一の態様に係るステレオカメラは、それぞれ光軸が一致し、かつ異なる領域に配置された広角光学系と望遠光学系とを有する第1の撮影光学系と、広角光学系及び望遠光学系を介して入射する光束をそれぞれ瞳分割して選択的に受光する複数の画素を有する第1の指向性センサとを含む第1の撮像部と、第1の撮影光学系と同一構成の第2の撮影光学系と、第1の指向性センサと同一構成の第2の指向性センサとを含む第2の撮像部であって、第1の撮像部に対して基線長だけ離間して配置された第2の撮像部と、第1の指向性センサ及び第2の指向性センサから第1の広角画像及び第2の広角画像と、第1の望遠画像及び第2の望遠画像とを取得する画像取得部と、第1の撮像部及び第2の撮像部をそれぞれ水平方向及び垂直方向に回動させるパンチルト機構と、画像取得部により取得した第1の広角画像及び第2の広角画像に基づいてパンチルト機構を制御し、第1の撮影光学系及び第2の撮影光学系のそれぞれの光軸上で主要被写体を捕捉させるパンチルト制御部と、画像取得部により取得した第1の望遠画像及び第2の望遠画像に基づいて少なくとも主要被写体の距離情報を算出する距離情報算出部と、を備える。
 本発明の一の態様によれば、互いに基線長だけ離間して配置された第1の撮像部と第2の撮像部とは、パンチルト機構によりそれぞれ水平方向及び垂直方向に回動することができ、また、第1の撮像部は、それぞれ光軸が一致し、かつ異なる領域に配置された広角光学系と望遠光学系とを有する第1の撮影光学系と、広角光学系及び望遠光学系を介して入射する光束をそれぞれ瞳分割して選択的に受光する複数の画素を有する第1の指向性センサとを含み、第2の撮像部は、第1の撮像部と同様に第2の撮影光学系と第2の指向性センサを含んで構成されている。
 そして、第1の撮像部及び第2の撮像部からステレオ画像である第1の広角画像と第2の広角画像、及びステレオ画像である第1の望遠画像と第2の望遠画像を同時に取得することができ、特に第1の撮影光学系を構成する広角光学系と望遠光学系とは光軸が一致し、同様に第2の撮影光学系を構成する広角光学系と望遠光学系とは光軸が一致しているため、第1の広角画像及び第2の広角画像に基づいて第1の撮影光学系及び第2の撮影光学系のそれぞれの光軸上(光軸が交差するクロスポイント)で主要被写体を捕捉するようにパンチルト機構を制御することにより、第1の望遠画像及び第2の望遠画像の中心位置(光軸に対応する位置)に主要被写体を位置させることができる。尚、第1の広角画像及び第2の広角画像に基づいてパンチルト機構を制御するため、主要被写体を見失うことなく確実に捕捉することができる。
 また、第1の望遠画像及び第2の望遠画像は、ステレオ画像として撮像されるため、主要被写体の距離情報を算出することができるが、第1の望遠画像及び第2の望遠画像は、第1の広角画像及び第2の広角画像に比べて空間分解能が高いため、精度の高い距離情報を算出することができる。
 本発明の他の態様に係るステレオカメラにおいて、距離情報算出部は、第1の望遠画像及び第2の望遠画像に基づいてそれぞれ特徴量が一致する2つの対応点を検出する対応点検出部を備え、対応点検出部により検出した2つの対応点の第1の指向性センサ及び第2の指向性センサにおける視差量と、基線長と、第1の撮影光学系及び第2の撮影光学系のそれぞれの光軸方向と、望遠光学系の焦点距離とに基づいて対応点の距離を算出することが好ましい。
 これにより、第1の撮像光学系及び第2の撮像光学系のそれぞれの光軸上の主要被写体の距離情報だけでなく、第1の望遠画像及び第2の望遠画像から対応点が検出された被写体の距離情報も算出することができる。
 本発明の更に他の態様に係るステレオカメラにおいて、第1の撮影光学系及び第2の撮影光学系は、それぞれ円形の中央光学系からなる広角光学系と、中央光学系に対して同心円状に配設された環状光学系からなる望遠光学系とにより構成されることが好ましい。円形の中央光学系からなる広角光学系と、中央光学系に対して同心円状に配設された環状光学系からなる望遠光学系とにより撮像される2つの画像間には視差が発生せず、また、それぞれ回転対称の形状であるため、撮影光学系として好ましい。
 本発明の更に他の態様に係るステレオカメラにおいて、第1の指向性センサ及び第2の指向性センサは、それぞれ瞳分割手段として機能するマイクロレンズアレイ又は遮光マスクを有するものとすることができる。
 本発明の更に他の態様に係るステレオカメラにおいて、第1の撮影光学系及び第2の撮影光学系のそれぞれの望遠光学系の焦点調節を行う第1の焦点調節部を有することが好ましい。望遠光学系は、広角光学系に比べて被写界深度が浅く、ボケやすいため、焦点調節を行うことが好ましい。
 本発明の更に他の態様に係るステレオカメラにおいて、第1の焦点調節部は、画像取得部により取得した第1の広角画像及び第2の広角画像にそれぞれ含まれる主要被写体の第1の指向性センサ及び第2の指向性センサにおける視差量と、基線長と、第1の撮影光学系及び第2の撮影光学系のそれぞれの光軸方向と、広角光学系の焦点距離とに基づいて主要被写体の距離情報を取得し、取得した距離情報に基づいて第1の撮影光学系及び第2の撮影光学系のそれぞれの望遠光学系の焦点調節を行うことが好ましい。
 ステレオ画像である第1の広角画像と第2の広角画像とにより三角測量法により主要被写体の距離情報を取得することができる。第1の撮影光学系及び第2の撮影光学系のそれぞれの望遠光学系の全体又は一部の光学系の光軸方向の移動位置と、その移動位置により合焦する被写体の距離情報とは一対一に対応するため、主要被写体の距離情報が取得できれば、その主要被写体に合焦するように第1の撮影光学系及び第2の撮影光学系のそれぞれの望遠光学系の焦点調節を行うことができる。
 本発明の更に他の態様に係るステレオカメラにおいて、第1の焦点調節部は、パンチルト制御部によりパンチルト機構が制御され、第1の撮影光学系及び第2の撮影光学系のそれぞれの光軸上において主要被写体が捕捉されている場合に、基線長と、第1の撮影光学系及び第2の撮影光学系のそれぞれの光軸方向と、広角光学系の焦点距離とに基づいて主要被写体の距離情報を取得し、取得した距離情報に基づいて第1の撮影光学系及び第2の撮影光学系のそれぞれの望遠光学系の焦点調節を行うことが好ましい。
 第1の撮影光学系及び第2の撮影光学系のそれぞれの光軸上において主要被写体が捕捉されている場合、主要被写体の第1の指向性センサ及び第2の指向性センサにおける視差量は0であるため、基線長と、第1の撮影光学系及び第2の撮影光学系のそれぞれの光軸方向と、広角光学系の焦点距離とに基づいて主要被写体の距離情報を三角測量法により算出することができる。また、主要被写体の距離情報が取得できれば、上記と同様にその主要被写体に合焦するように第1の撮影光学系及び第2の撮影光学系のそれぞれの望遠光学系の焦点調節を行うことができる。
 本発明の更に他の態様に係るステレオカメラにおいて、第1の撮影光学系及び第2の撮影光学系のそれぞれの望遠光学系の焦点調節を行う第1の焦点調節部と、第1の撮影光学系及び第2の撮影光学系のそれぞれの広角光学系の焦点調節を行う第2の焦点調節部とを有することが好ましい。広角光学系には焦点調節部を設けずに、広角光学系をパンフォーカスとしてもよいが、広角光学系にも焦点調節部(第2の焦点調節部)を設けることが好ましい。
 本発明の更に他の態様に係るステレオカメラにおいて、第1の焦点調節部は、第2の焦点調節部による広角光学系の合焦情報に基づいて主要被写体の距離情報を取得し、取得した距離情報に基づいて第1の撮影光学系及び第2の撮影光学系のそれぞれの望遠光学系の焦点調節を行うことが好ましい。広角光学系の焦点調節を行う第2の焦点調節部を有する場合、焦点調節後の広角光学系の合焦情報(例えば、合焦状態にある広角光学系の全体又は一部の光学系の光軸方向の移動位置)に基づいて主要被写体の距離情報を取得することができる。主要被写体の距離情報が取得できれば、上記と同様にその主要被写体に合焦するように第1の撮影光学系及び第2の撮影光学系のそれぞれの望遠光学系の焦点調節を行うことができる。
 本発明の更に他の態様に係るステレオカメラにおいて、パンチルト機構は、第1の撮像部を水平方向及び垂直方向に回動させる第1のパンチルト機構と、第1のパンチルト機構とは独立して第2の撮像部を水平方向及び垂直方向に回動させる第2のパンチルト機構とを有し、パンチルト制御部は、第1の広角画像に基づいて第1のパンチルト機構を制御する第1のパンチルト制御部と、第2の広角画像に基づいて第2のパンチルト機構を制御する第2のパンチルト制御部とを有することが好ましい。
 これによれば、第1の撮像部と第2の撮像部とをそれぞれ独立してパンチルト動作させることができ、第1の撮影光学系及び第2の撮影光学系のそれぞれの光軸方向を独立して制御することができる。
 本発明の更に他の態様に係るステレオカメラにおいて、パンチルト機構は、第1のパンチルト機構と第2のパンチルト機構とを保持する保持部材と、保持部材を水平方向に回動させるパン機構とを有し、パンチルト制御部は、第1の広角画像及び第2の広角画像に基づいてパン機構を制御し、第1の撮像部と第2の撮像部とを主要被写体に正対させることが好ましい。
 第1のパンチルト機構と第2のパンチルト機構とを保持する保持部材の全体を、水平方向に回動させることにより、主要被写体に対して第1の撮像部と第2の撮像部との距離を等距離にすることができ、主要被写体等の距離情報をより精度良く算出することができる。
 本発明の更に他の態様に係るステレオカメラにおいて、第1の広角画像及び第2の広角画像に基づいてそれぞれ主要被写体を検出する第1の被写体検出部及び第2の被写体検出部を備え、パンチルト制御部は、第1の被写体検出部及び第2の被写体検出部により検出された主要被写体の第1の広角画像内及び第2の広角画像内における各位置情報に基づいてパンチルト機構を制御し、第1の撮影光学系及び第2の撮影光学系のそれぞれの光軸上において主要被写体を捕捉させることが好ましい。主要被写体が第1の広角画像及び第2の広角画像に入るように主要被写体を撮像することは容易である。そして、第1の広角画像及び第2の広角画像に主要被写体が入っている場合、第1の広角画像内及び第2の広角画像内に主要被写体の位置情報(各広角画像の中心(光軸位置)からの変位量を示す位置情報)に基づいて、第1の撮影光学系及び第2の撮影光学系のそれぞれの光軸上において主要被写体が捕捉されるようにパンチルト機構を制御することが可能である。また、主要被写体が高速で動く動体であっても、第1の広角画像及び第2の広角画像により動体を確実に捉えることができるため、トラッキング逸脱が発生しない。
 本発明の更に他の態様に係るステレオカメラにおいて、第1の被写体検出部及び第2の被写体検出部は、画像取得部が連続して取得した第1の広角画像及び第2の広角画像に基づいて動体を検出し、検出した動体を主要被写体とすることが好ましい。主要被写体が動体である場合、動体検出により所望の主要被写体を検出することができる。
 本発明の更に他の態様に係るステレオカメラにおいて、第1の被写体検出部及び第2の被写体検出部は、第1の広角画像及び第2の広角画像に基づいて特定の被写体を認識し、認識した特定の被写体を主要被写体とすることが好ましい。例えば、特定の被写体が人物である場合には、人物又は人物の顔を認識することにより、主要被写体を検出することできる。
 本発明の更に他の態様に係るステレオカメラにおいて、第1の望遠画像及び第2の望遠画像に基づいて主要被写体を検出する第3の被写体検出部及び第4の被写体検出部を更に備え、パンチルト制御部は、第3の被写体検出部及び第4の被写体検出部により検出された主要被写体の第1の望遠画像内及び第2の望遠画像内における位置情報に基づいてパンチルト機構を制御し、第3の被写体検出部及び第4の被写体検出部により主要被写体が検出できない場合は、第1の被写体検出部及び第2の被写体検出部により検出された主要被写体の第1の広角画像内及び第2の広角画像内における位置情報に基づいてパンチルト機構を制御することが好ましい。
 第1の望遠画像及び第2の望遠画像に基づいて主要被写体を検出することができる場合には、その検出した主要被写体の第1の望遠画像内及び第2の望遠画像内における位置情報に基づいてパンチルト機構を制御するため、第1の撮影光学系及び第2の撮影光学系のそれぞれの光軸を高精度に制御することができ、一方、第1の望遠画像及び第2の望遠光学系に基づいて主要被写体を検出することができない場合には、第1の広角画像及び第2の広角画像に基づいて検出した主要被写体の第1の広角画像内及び第2の広角画像内における位置情報に基づいてパンチルト機構を制御することにより、主要被写体が高速で動く動体であっても、第1の広角画像及び第2の広角画像により動体を確実に捉えることができるため、トラッキング逸脱が発生しない。
 本発明の更に他の態様は、上記のステレオカメラを使用したステレオカメラの制御方法であって、第1の指向性センサ及び第2の指向性センサから第1の広角画像及び第2の広角画像を取得するステップと、取得した第1の広角画像及び第2の広角画像に基づいてパンチルト機構を制御し、第1の撮影光学系及び第2の撮影光学系のそれぞれの光軸上において主要被写体を捕捉させるステップと、第1の撮影光学系及び第2の撮影光学系のそれぞれの光軸上において主要被写体を捕捉している状態において、第1の指向性センサ及び第2の指向性センサから第1の望遠画像及び第2の望遠画像を取得するステップと、取得した第1の望遠画像及び第2の望遠画像に基づいて少なくとも主要被写体の距離情報を算出するステップと、を含む。
 本発明によれば、ステレオ画像である第1の広角画像と第2の広角画像、及びステレオ画像である第1の望遠画像と第2の望遠画像を同時に取得することができ、特に第1の撮影光学系を構成する広角光学系と望遠光学系とは光軸が一致し、同様に第2の撮影光学系を構成する広角光学系と望遠光学系とは光軸が一致しているため、第1の広角画像及び第2の広角画像に基づいて第1の撮影光学系及び第2の撮影光学系のそれぞれの光軸上において主要被写体を捕捉するようにパンチルト機構を制御することにより、第1の望遠画像及び第2の望遠画像の中心位置(光軸に対応する位置)に主要被写体を位置させることができる。尚、第1の広角画像及び第2の広角画像に基づいてパンチルト機構を制御するため、主要被写体を見失うことなく確実に捕捉することができる。
 また、第1の望遠画像及び第2の望遠画像は、ステレオ画像として撮像されるため、主要被写体の距離情報を算出することができるが、第1の望遠画像及び第2の望遠画像は、第1の広角画像及び第2の広角画像に比べて空間分解能が高いため、精度の高い距離情報を算出することができる。
本発明に係るステレオカメラの外観斜視図 ステレオカメラの第1の撮像部11の第1の実施形態を示す断面図 図2に示したマイクロレンズアレイ及びイメージセンサの要部拡大図 ステレオカメラの内部構成の実施形態を示すブロック図 ステレオカメラにより撮像される広角画像及び望遠画像の一例を示す図 特定の主要被写体(人物の顔)が第1の望遠画像の中心にくるようにパンチルト制御された状態を示す第1の望遠画像を示すイメージ図 主要被写体等の距離情報の算出方法を説明するために用いた図 第1の焦点調節部を示すブロック図 パンチルト制御部60のブロック図 第1の撮影光学系12及び第2の撮影光学系12のそれぞれの光軸L、L上において主要被写体を捕捉させるパンチルト制御を示すフローチャート 第1の望遠画像と第2の望遠画像との間で特徴量が一致する対応点の距離情報を取得する処理を示すフローチャート 動体である主要被写体を検出する動体検出方法の一例を説明するために用いた図 動体である主要被写体を検出する動体検出方法の一例を説明するために用いた図 動体である主要被写体を検出する動体検出方法の一例を説明するために用いた図 指向性センサの他の実施形態を示す側面図 ステレオカメラに適用可能な撮像部の他の実施形態を示す断面図
 以下、添付図面に従って本発明に係るステレオカメラ及びステレオカメラの制御方法の実施の形態について説明する。
 <ステレオカメラの外観>
 図1は本発明に係るステレオカメラの外観斜視図である。
 図1に示すようにステレオカメラ1は、主として左目用の第1のパンチルトカメラ10と、右目用の第2のパンチルトカメラ10と、第1のパンチルトカメラ10と第2のパンチルトカメラ10とを基線長Dだけ離間して保持する保持部材37と、保持部材37を水平方向に回動させるパン機構を含むパン装置38と、を有している。
 第1のパンチルトカメラ10は、第1の撮像部11、第1のパンチルト装置30(図4)、及び第1のカメラ本体2から構成され、第2のパンチルトカメラ10は、第2の撮像部11、第2のパンチルト装置30(図4)、及び第2のカメラ本体2から構成されている。
 第1のパンチルト装置30は、台座4と、台座4に固定されるとともに、第1の撮像部11を回動自在に保持する保持部8とを有している。
 台座4は、第1のカメラ本体2の垂直方向Zの軸を中心に回転自在に配設され、パン駆動部34(図4)により垂直方向Zの軸を中心にして回転(パン動作)する。
 保持部8は、水平方向Xの軸と同軸上に設けられたギア8Aを有し、チルト駆動部36(図4)からギア8Aを介して駆動力が伝達されることにより、第1の撮像部11を上下方向に回動(チルト動作)させる。
 同様に、第2のパンチルト装置30は、台座4と、台座4に固定されるとともに、第2の撮像部11を回動自在に保持する保持部8とを有している。
 台座4は、第2のカメラ本体2の垂直方向Zの軸を中心に回転自在に配設され、パン駆動部34により垂直方向Zの軸を中心にして回転(パン動作)する。
 保持部8は、水平方向Xの軸と同軸上に設けられたギア8Aを有し、チルト駆動部36からギア8Aを介して駆動力が伝達されることにより、第2の撮像部11を上下方向にチルト動作させる。
 したがって、第1のパンチルトカメラ10は、パン動作及びチルト動作することにより、第1のパンチルトカメラ10の撮影方向(第1の撮影光学系の光軸Lの方向)を所望の方向に向けることができ、同様に第2のパンチルトカメラ10は、パン動作及びチルト動作することにより、第1のパンチルトカメラ10とは独立して第2のパンチルトカメラ10の撮影方向(第2の撮影光学系の光軸Lの方向)を所望の方向に向けることができる。
 [第1の撮像部11の構成]
 図2は、ステレオカメラ1の第1の撮像部11の第1の実施形態を示す断面図である。
 図2に示すように、第1の撮像部11は、第1の撮影光学系12と第1の指向性センサ17とから構成されている。
 <第1の撮影光学系12
 第1の撮影光学系12は、それぞれ同一の光軸上に配置された、円形の中央光学系からなる広角光学系13と、広角光学系13に対して同心円状に配設された環状光学系からなる望遠光学系14とから構成されている。
 広角光学系13は、第1レンズ13a、第2レンズ13b、第3レンズ13c、第4レンズ13d、及び共通レンズ15から構成された広角レンズであり、第1の指向性センサ17を構成するマイクロレンズアレイ16上に広角画像を結像させる。
 望遠光学系14は、第1レンズ14a、第2レンズ14b、反射光学系としての第1反射ミラー14c、第2反射ミラー14d、及び共通レンズ15から構成された望遠レンズであり、第1の指向性センサ17を構成するマイクロレンズアレイ16上に望遠画像を結像させる。
 第1レンズ14a、及び第2レンズ14bを介して入射した光束は、第1反射ミラー14c及び第2反射ミラー14dにより2回反射された後、共通レンズ15を通過する。第1反射ミラー14c及び第2反射ミラー14dにより光束が折り返されることにより、焦点距離の長い望遠光学系(望遠レンズ)の光軸方向の長さを短くしている。
 <第1の指向性センサ17
 第1の指向性センサ17は、マイクロレンズアレイ16とイメージセンサ18とから構成されている。
 図3は、図2に示したマイクロレンズアレイ16及びイメージセンサ18の要部拡大図である。
 マイクロレンズアレイ16は、複数のマイクロレンズ(瞳結像レンズ)16aが2次元状に配列されて構成されており、各マイクロレンズの水平方向及び垂直方向の間隔は、イメージセンサ18の光電変換素子である受光セル18aの3つ分の間隔に対応している。即ち、マイクロレンズアレイ16の各マイクロレンズは、水平方向及び垂直方向の各方向に対して、2つ置きの受光セルの位置に対応して形成されたものが使用される。
 また、マイクロレンズアレイ16の各マイクロレンズ16aは、第1の撮影光学系12の広角光学系13及び望遠光学系14に対応する、円形の中央瞳像(第1の瞳像)17a及び環状瞳像(第2の瞳像)17bを、イメージセンサ18の対応する受光領域の受光セル18a上に結像させる。
 図3に示すマイクロレンズアレイ16及びイメージセンサ18によれば、マイクロレンズアレイ16の1マイクロレンズ16a当たりに付き、格子状(正方格子状)の3×3個の受光セル18aが割り付けられている。以下、1つのマイクロレンズ16a及び1つのマイクロレンズ16aに対応する受光セル群(3×3個の受光セル18a)を単位ブロックという。
 中央瞳像17aは、単位ブロックの中央の受光セル18aのみに結像し、環状瞳像17bは、単位ブロックの周囲の8個の受光セル18aに結像する。
 上記構成の第1の撮像部11によれば、後述するように広角光学系13に対応する第1の広角画像と、望遠光学系14に対応する第1の望遠画像とを同時に撮像することができる。
 ステレオカメラ1の第2の撮像部11は、図2及び図3に示した第1の撮像部11と同様に構成されており、広角光学系と望遠光学系とを有する第2の撮影光学系と、第2の指向性センサとを有し、広角光学系に対応する第2の広角画像と、望遠光学系に対応する第2の望遠画像とを同時に撮像することができる。
 <ステレオカメラ1の内部構成>
 図4は、ステレオカメラ1の内部構成の実施形態を示すブロック図である。ステレオカメラ1の制御に関して、第1の画像取得部22、第2の画像取得部22R、第1の被写体検出部50、第2の被写体検出部50、第1のパンチルト制御部60、第2のパンチルト制御部60R、距離画像算出部74、視差量検出部72、及びデジタル信号処理部40等は、汎用的なCPUにより構成されもよいし、FPGA (Field Programmable Gate Array) などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路や、これらの組み合わせにより構成されてもよい。なお、図8における焦点制御部190等についても同様である。尚、図1で説明したようにステレオカメラ1は、左目用の第1のパンチルトカメラ10と、右目用の第2のパンチルトカメラ10とを備えているが、両カメラの構成は同じであるため、図4では、主として第1のパンチルトカメラ10について説明し、第2のパンチルトカメラ10の詳細な説明は省略する。
 図4に示すようにステレオカメラ1を構成する左目用の第1のパンチルトカメラ10は、図2で説明した広角光学系13及び望遠光学系14を有する第1の撮影光学系12と、図3で説明したマイクロレンズアレイ16及びイメージセンサ18を有する第1の指向性センサ17とからなる第1の撮像部11を備えている。
 この第1の撮像部11は、少なくとも望遠光学系14の焦点調節を自動的に行う第1の焦点調節部(焦点調節機構19を含む)を備えることが好ましい。焦点調節機構19は、例えば、望遠光学系14の全体又は一部の光学系を光軸方向に移動させるボイスコイルモータ等により構成することができる。また、第1の焦点調節部は、後述する焦点制御部190が主要被写体の距離情報を取得し、取得した距離情報に基づいて焦点調節機構19を駆動することにより、望遠光学系14の第1の焦点調節を行うことができる。
 また、広角光学系13については、別途、広角光学系13の焦点調節を自動的に行う第2の焦点調節部を設けるようにしてよいし、パンフォーカスとしてもよい。広角光学系13に適用される第2の焦点調節部としては、コントラストAF(Autofocus)方式、あるいは像面位相差AF方式のものが考えられる。コントラストAF方式は、第1の広角画像及び第2の広角画像のAF領域のコントラストが最大になるように広角光学系13の全体又は一部の光学系を光軸方向に移動させて焦点調節を行う方式であり、像面位相差AF方式は、第1の広角画像及び第2の広角画像のAF領域の像面位相差が0になるように広角光学系13の全体又は一部の光学系を光軸方向に移動させることにより広角光学系13の焦点調節を行う方式である。
 第1のパンチルト装置30は、図1に示したように第1の撮像部11を第1のカメラ本体2に対して水平方向(パン方向)に回転させるパン機構及び垂直方向(チルト方向)に回動させるチルト機構(以下、「パンチルト機構」と称す)32、パン駆動部34、及びチルト駆動部36等を備えている。
 パンチルト機構32は、パン方向の回転角(パン角度)の基準位置を検出するホームポジションセンサ、チルト方向の傾き角(チルト角度)の基準位置を検出するホームポジションセンサを有している。
 パン駆動部34及びチルト駆動部36は、それぞれステッピングモータ及びモータドライバを有し、パンチルト機構32に駆動力を出力し、パンチルト機構32を駆動する。
 第1の撮像部11は、第1の撮影光学系12及び第1の指向性センサ17を介して時系列の第1の広角画像及び第1の望遠画像を撮像するものであり、第1の撮影光学系12を介して第1の指向性センサ17(イメージセンサ18)の各受光セル(光電変換素子)の受光面に結像された被写体像は、その入射光量に応じた量の信号電圧(又は電荷)に変換される。
 イメージセンサ18に蓄積された信号電圧(又は電荷)は、受光セルそのもの若しくは付設されたキャパシタに蓄えられる。蓄えられた信号電圧(又は電荷)は、X-Yアドレス方式を用いたMOS(Metal Oxide Semiconductor)型撮像素子(いわゆるComplementary Metal Oxide Semiconductor)CMOSセンサ)の手法を用いて、受光セル位置の選択とともに読み出される。
 これにより、イメージセンサ18から広角光学系13に対応する中央の受光セルのグループの第1の広角画像を示す画像信号と、望遠光学系14に対応する周囲8個の受光セルのグループの第1の望遠画像を示す画像信号とを読み出すことができる。尚、イメージセンサ18からは、所定のフレームレート(例えば、1秒当たりのフレーム数24p,30p,又は60p)で、第1の広角画像及び第1の望遠画像を示す画像信号が連続して読み出されるが、図示しないシャッターボタンが操作されると、それぞれ1枚の静止画となる第1の広角画像及び第1の望遠画像を示す画像信号が読み出される。
 イメージセンサ18から読み出された画像信号(電圧信号)は、相関二重サンプリング処理(センサ出力信号に含まれるノイズ(特に熱雑音)等を軽減することを目的として、受光セル毎の出力信号に含まれるフィードスルー成分レベルと信号成分レベルとの差をとることにより正確な画素データを得る処理)により受光セル毎の画像信号がサンプリングホールドされ、増幅されたのちA/D(Analog/Digital)変換器20に加えられる。A/D変換器20は、順次入力する画像信号をデジタル信号に変換して画像取得部22に出力する。尚、MOS型センサでは、A/D変換器が内蔵されているものがあり、この場合、イメージセンサ18から直接デジタル信号が出力される。
 第1の画像取得部22は、イメージセンサ18の受光セル位置を選択して画像信号を読み出すことにより、第1の広角画像を示す画像信号と第1の望遠画像を示す画像信号とを同時に、又は選択的に取得することができる。
 即ち、イメージセンサ18の中央瞳像17aが入射する受光セルの画像信号を選択的に読み出すことにより、1マイクロレンズ当たり1個の受光セル(3×3の受光セルの中央の受光セル)の第1の広角画像を示す画像信号(ベイヤ配列のモザイク画像を示す画像信号)を取得することができ、一方、イメージセンサ18の環状瞳像17bが入射する受光セルの画像信号を選択的に読み出すことにより、1マイクロレンズ当たり8個の受光セル(3×3の受光セルの周囲の受光セル)の第1の望遠画像を示す画像信号を取得することができる。
 尚、イメージセンサ18から全ての画像信号を読み出してバッファメモリに一時的に記憶させ、バッファメモリに記憶させた画像信号から、第1の広角画像と第1の望遠画像の2つ画像の画像信号のグループ分けを行ってもよい。
 第1の画像取得部22により取得された第1の広角画像及び第1の望遠画像を示す画像信号は、それぞれデジタル信号処理部40及び第1の被写体検出部50に出力される。
 第1の被写体検出部50は、第1の画像取得部22が取得した第1の広角画像を示す画像信号に基づいて主要被写体を検出し、検出した主要被写体の画像内における位置情報を第1のパンチルト制御部60に出力する。
 第1の被写体検出部50における主要被写体の検出方法としては、人物の顔認識を行う技術に代表される物体認識技術により特定の物体(主要被写体)を検出する方法、又は動体を主要被写体として検出する動体検出方法がある。
 物体認識による物体の検出方法は、特定の物体の見え方の特徴を物体辞書として予め登録しておき、撮影された画像から位置や大きさを変えながら切り出した画像と、物体辞書とを比較しながら物体を認識する方法である。
 図5は、撮像された第1の広角画像及び第1の望遠画像の一例を示す図である。尚、第1の広角画像中の破線により示した領域は、第1の望遠画像の撮影範囲を示している。
 いま、図6に示す第1の広角画像及び第1の望遠画像が撮像され、かつ人物の「顔」を主要被写体とし、顔認識技術により人物の「顔」を検出する場合、第1の被写体検出部50は、第1の広角画像内の「顔」を検出することができる。尚、第1の被写体検出部50が、第1の望遠画像から人物の「顔」を検出する場合、図5に示す第1の望遠画像には、人物の顔の一部しか入っていないため、第1の望遠画像からは「顔」を検出することができない。特に、望遠光学系14の撮影倍率が高倍率の場合(画角が非常に小さい場合)、第1の望遠画像内に所望の主要被写体が入っていない確率が高くなる。
 第1の被写体検出部50により検出された主要被写体(本例では、人物の「顔」)の、第1の広角画像内の位置情報は、第1のパンチルト制御部60に出力される。
 第1のパンチルト制御部60は、第1の被写体検出部50から入力する第1の広角画像内の主要被写体の位置情報に基づいて第1のパンチルト装置30を制御する部分であり、主要被写体の第1の広角画像内の位置情報(例えば、主要被写体が人物の「顔」の場合には、顔領域の重心位置)が、第1の広角画像の中心位置(光軸L上の位置)に移動するように、パン駆動部34、チルト駆動部36を介してパンチルト機構32(即ち、第1の撮像部11の撮影方向)を制御する。
 そして、第1の撮影光学系12の光軸L上において主要被写体が捕捉されるように(主要被写体が第1の広角画像の中心位置に入るように)、上記のパンチルト機構32を制御すると、第1の望遠画像の中心位置に主要被写体が入るようになる。第1の撮影光学系12を構成する広角光学系13及び望遠光学系14のそれぞれの光軸Lは、一致しているからである(図2参照)。
 図6は、特定の主要被写体(本例では、人物の「顔」)が第1の広角画像の中心にくるように、パンチルト制御された状態を示す第1の望遠画像を示すイメージ図である。
 一方、ステレオカメラ1を構成する右目用の第2のパンチルトカメラ10は、左目用の第1のパンチルトカメラ10と同様に、第2の撮影光学系12及び第2の指向性センサ17(図示せず)を有する第2の撮像部11と、第2のパンチルト装置30とを備えている。
 第2の撮像部11は、第2の撮影光学系12及び第2の指向性センサ17を介して時系列の第2の広角画像及び第2の望遠画像を撮像し、第2の指向性センサ17からは、第2の広角画像を示す画像信号と、第2の望遠画像を示す画像信号とが同時に出力可能になっている。
 第2の画像取得部22は、第2の撮像部11から第2の広角画像を示す画像信号と第2の望遠画像を示す画像信号とを同時に、又は選択的に取得する。
 第2の画像取得部22により取得された第2の広角画像及び第2の望遠画像を示す画像信号は、それぞれデジタル信号処理部40及び第2の被写体検出部50に出力される。
 第2の被写体検出部50は、第2の画像取得部22が取得した第2の広角画像を示す画像信号に基づいて主要被写体を検出し、検出した主要被写体の画像内における位置情報を第2のパンチルト制御部60に出力する。
 第2のパンチルト制御部60は、第2の被写体検出部50から入力する第2の広角画像内の主要被写体の位置情報に基づいて第2のパンチルト装置30を制御する部分であり、主要被写体の第2の広角画像内の位置情報が、第2の広角画像の中心位置(光軸L上の位置)に移動するように、パン駆動部34、チルト駆動部36を介してパンチルト機構32(即ち、第2の撮像部11の撮影方向)を制御する。
 そして、第2の撮影光学系12の光軸L上において主要被写体が捕捉されるように(主要被写体が第2の広角画像の中心位置に入るように)、上記のパンチルト機構32を制御すると、第2の望遠画像の中心位置に主要被写体が入るようになる。第2の撮影光学系12を構成する広角光学系13及び望遠光学系14のそれぞれの光軸Lは、一致しているからである(図2参照)。
 デジタル信号処理部40には、第1の画像取得部22から第1の広角画像及び第1の望遠画像を示すデジタルの画像信号が入力し、また、第2の画像取得部22から第2の広角画像及び第2の望遠画像を示すデジタルの画像信号が入力しており、デジタル信号処理部40は、入力する各画像信号に対して、オフセット処理、ガンマ補正処理等の所定の信号処理を行う。
 また、デジタル信号処理部40は、表示部42が立体表示する機能を有する場合、ステレオ画像である第1の広角画像及び第2の広角画像を示す画像信号から立体広角画像表示用の画像信号を生成し、又はステレオ画像である第1の望遠画像及び第2の望遠画像の画像信号から立体望遠画像の表示用データを生成し、生成した表示用データを表示部42に出力することで、立体広角画像又は立体望遠画像を表示部42に表示させる。
 また、デジタル信号処理部40は、表示部42が立体表示する機能を有しない場合、例えば、第1の広角画像又は第1の望遠画像を示す画像信号から広角画像又は望遠画像の表示用データを生成し、生成した表示用データを表示部42に出力することにより、広角画像又は望遠画像を表示部42に表示させる。
 更に、第1の撮影光学系12及び第2の撮影光学系12のそれぞれの光軸L、L上において主要被写体が捕捉されている場合、デジタル信号処理部40は、ステレオ画像である第1の広角画像及び第2の広角画像を示す画像信号から記録用データを生成し、又はステレオ画像である第1の望遠画像及び第2の望遠画像を示す画像信号から記録用データを生成し、生成した記録用データを記録部44に出力することにより、記録用データを記録媒体(ハードディスク、メモリカード等)に記録させる。尚、記録部44は、第1の望遠画像及び第2の望遠画像のみを記録するようにしてもよい。また、表示部42は、記録部44に記録された記録用データに基づいて必要な画像を再生することもできる。
 <距離情報算出部70>
 次に、距離情報算出部70につて説明する。
 距離情報算出部70は、視差量検出部72と、距離画像算出部74とを備えている。
 視差量検出部72には、第1の画像取得部22により取得された第1の望遠画像を示す画像信号と、第2の画像取得部22より取得された第2の望遠画像を示す画像信号とが加えられており、視差量検出部72は、第1の撮影光学系12及び第2の撮影光学系12のそれぞれの光軸L、L上において主要被写体が捕捉されている場合(光軸L、Lが交差し、かつ交差しているクロスポイントに主要被写体が位置している場合)に、第1の望遠画像及び第2の望遠画像を示す画像信号を入力する。
 視差量検出部72は、入力した第1の望遠画像及び第2の望遠画像を示す画像信号に基づいて第1の望遠画像と第2の望遠画像との間で、特徴量が一致する対応点を検出する対応点検出部72aを有し、対応点検出部72aにより検出した2つの対応点の第1の指向性センサ17及び第2の指向性センサ17における視差量を検出する。
 対応点検出部72aによる対応点の検出は、第1の望遠画像の対象画素を基準とする所定のブロックサイズの画像と第2の望遠画像とのブロックマッチングにより、相関が最も高い対象画素に対応する第2の望遠画像上の画素位置を検出することにより行うことができる。
 視差量検出部72により検出された、第1の望遠画像及び第2の望遠画像の2つの対応点の第1の指向性センサ17及び第2の指向性センサ17における視差量を示す情報は、距離画像算出部74に出力される。
 距離画像算出部74の他の入力には、第1のパンチルト制御部60及び第2のパンチルト制御部60から第1のパンチルト機構を含む第1のパンチルト装置30及び第2のパンチルト機構を含む第2のパンチルト装置30のそれぞれのパン角度及びチルト角度を示す角度情報(第1の撮影光学系12及び第2の撮影光学系12のそれぞれの光軸L、Lの方向を示す情報)が入力されており、距離画像算出部74は、これらの入力情報に基づいて対応点の距離情報を含む3次元空間情報を算出する。
 次に、図7を用いて主要被写体等の距離情報の算出方法について説明する。
 図7は、第1の撮像部11(第1の撮影光学系12)及び第2の撮像部11(第2の撮影光学系12)のパン角度及びチルト角度が制御され、第1の撮影光学系12及び第2の撮影光学系12のそれぞれの光軸L、Lが交差するクロスポイントAに主要被写体が位置している場合に関して示している。尚、説明を簡単にするために、第1の撮影光学系12及び第2の撮影光学系12のそれぞれの光軸L、Lは水平とする。
 図7に示す各記号の意味は、下記の通りである。
 A:光軸L、Lが交差するクロスポイント(主要被写体の位置)
 B:第1の望遠画像及び第2の望遠画像における任意の対応点
 α:第1の撮影光学系12のパン角度
 α:第2の撮影光学系12のパン角度
 D:基線長
 Δx:対応点Bの第1の指向性センサ17における視差量
 Δx:対応点Bの第2の指向性センサ17における視差量
 δ:対応点Bの光軸Lに対する水平方向の角度
 δ:対応点Bの光軸Lに対する水平方向の角度
 f:第1の撮影光学系12及び第2の撮影光学系12に含まれる望遠光学系14の焦点距離
 図7において、第1の撮影光学系12及び第2の撮影光学系12の各位置と、クロスポイントA(主要被写体)とからなる三角形を考えると、三角形の底辺の長さは、基線長Dであり、既知である。
 三角形の底角をそれぞれβ、βとすると、底角β、βは、それぞれパン角度α及びパン角度αに基づいて算出することができる。
 従って、既知の底辺(基線長D)と2つの底角β、βから、測定点である三角形の頂点のクロスポイントA(主要被写体)の距離情報を算出することができる。
 一方、対応点Bの光軸Lに対する水平方向の角度δ及び光軸Lに対する水平方向の角度δは、対応点Bの第1の指向性センサ17及び第2の指向性センサ17における視差量Δx、Δxと、望遠光学系14の焦点距離fとに基づいて、次式により算出することができる。
 [数1]
 δ=arctan(Δx/f)
 δ=arctan(Δx/f)
 対応点Bの第1の指向性センサ17及び第2の指向性センサ17における視差量Δx、Δxは、第1の指向性センサ17及び第2の指向性センサ17の中心位置(光軸L、Lに対応する位置)からの、対応点Bが結像した画素の画素位置をn,n、第1の指向性センサ17及び第2の指向性センサ17の画素ピッチをpとすると、次式により算出することができる。
 [数2]
 Δx=n×p
 Δx=n×p
 第1の指向性センサ17及び第2の指向性センサ17の画素ピッチpは既知であるため、視差量Δx、Δxは、対応点Bの第1の指向性センサ17及び第2の指向性センサ17上の位置を検出することにより、[数2]式により算出することができる。
 図7において、第1の撮影光学系12及び第2の撮影光学系12の各位置と、任意の対応点Bとからなる三角形を考えると、上記と同様に三角形の底辺の長さ(基線長D)と、2つの底角γ、γとにより、三角形の頂点である対応点Bの距離情報を算出することができる。
 尚、2つの底角γ、γは、それぞれパン角度α、αと、[数1]式により算出される角度δ、角度δとにより求めることができる。
 図4に戻って、距離画像算出部74は、第1の望遠画像と第2の望遠画像の対応点毎に距離情報を算出することより、距離画像を算出することができる。
 ここで、距離画像とは、ステレオカメラ1によって得られる被写体までの距離値(距離情報)の2次元分布画像のことであり、距離画像の各画素は距離情報を有する。また、クロスポイントA(主要被写体)の距離情報は、視差量Δx、Δxが0となる特異点の距離情報である。
 距離画像算出部74により算出された距離画像は、距離画像記録部76に記録される。距離画像算出部74により距離画像の算出により、例えば、構造物を被写体とする場合、その構造物の三次元情報を取得することができ、取得した三次元情報を距離画像記録部76に記録することにより、三次元情報を適宜活用することができる。
 <第1の焦点調節部>
 次に、第1の撮影光学系12及び第2の撮影光学系12に含まれる望遠光学系14の焦点調節を自動的に行う第1の焦点調節部について説明する。
 図8は、第1の焦点調節部を示すブロック図である。
 図8に示す第1の焦点調節部は、第1の撮像部11及び第2の撮像部11にそれぞれ設けられ、望遠光学系14の全体又は一部の光学系を光軸方向に移動させる焦点調節機構19と、焦点調節機構19を制御する焦点制御部190とから構成されている。
 焦点制御部190は、視差量検出部192、距離情報算出部194、及び合焦位置算出部196等を備えている。
 視差量検出部192には、第1の被写体検出部50及び第2の被写体検出部50からそれぞれ第1の広角画像内及び第2の広角画像内における主要被写体の位置情報が入力しており、視差量検出部192は、入力した主要被写体の位置情報に基づいて、第1の指向性センサ17及び第2の指向性センサ17における主要被写体の視差量を検出する。
 尚、前述したように第1の被写体検出部50及び第2の被写体検出部50により検出された主要被写体の第1の広角画像内及び第2の広角画像内の位置情報は、第1のパンチルト制御部60及び第2のパンチルト制御部60において、第1のパンチルト装置30及び第2のパンチルト装置30を制御するために使用されるが、焦点制御部190では、視差量検出のために使用される。また、本例の焦点制御部190は、第1の撮影光学系12及び第2の撮影光学系12のそれぞれの光軸L、L上において主要被写体が捕捉される前であっても、望遠光学系14の焦点調節を行うが、第1の撮影光学系12及び第2の撮影光学系12のそれぞれの光軸L、L上において主要被写体が捕捉されている状態で望遠光学系14の焦点調節を行う場合には、視差量検出部192は不要になる。第1の撮影光学系12及び第2の撮影光学系12のそれぞれの光軸L、L上において主要被写体が捕捉されている場合、視差量は0だからである。
 視差量検出部192により検出された視差量は、距離情報算出部194に出力される。距離情報算出部194の他の入力には、第1のパンチルト制御部60から第1のパンチルト装置30のパン角度及びチルト角度を示す角度情報(第1の撮影光学系12及び第2の撮影光学系12のそれぞれの光軸L、Lの方向を示す情報)が入力されており、距離情報算出部194は、これらの入力情報に基づいて主要被写体の距離情報を算出する。尚、距離情報算出部194により主要被写体の距離情報の算出は、図4に示した距離情報算出部70による対応点の距離情報の算出と同様に行われるが、前述した[数1]式に示した視差量Δx、Δxは、第1の指向性センサ17及び第2の指向性センサ17における第1の広角画像及び第2の広角画像における主要被写体の視差量であり、かつ焦点距離fは、第1の撮影光学系12及び第2の撮影光学系12に含まれる広角光学系13の焦点距離である点で相違する。
 距離情報算出部194により算出された主要被写体の距離情報は、合焦位置算出部196に出力される。合焦位置算出部196は、距離情報算出部194から入力する主要被写体の距離情報に基づいて、第1の撮影光学系12及び第2の撮影光学系12のそれぞれの望遠光学系14の全体又は一部の光学系の光軸方向の移動位置であって、主要被写体に合焦する合焦位置を算出する。尚、望遠光学系14の全体又は一部の光学系の光軸方向の移動位置と、その移動位置により合焦する被写体の距離情報とは一対一に対応するため、合焦位置算出部196は、主要被写体の距離情報が取得できれば、その主要被写体に合焦する合焦位置を算出することができる。
 焦点制御部190は、合焦位置算出部196により算出された合焦位置に基づいて焦点調節機構19を制御し、第1の撮影光学系12及び第2の撮影光学系12のそれぞれの望遠光学系14の全体又は一部の光学系を光軸方向の合焦位置に移動させ、望遠光学系14の焦点調節(第1の焦点調節)を行う。
 尚、本例の焦点制御部190は、第1の広角画像及び第2の広角画像にそれぞれ含まれる主要被写体の第1の指向性センサ17及び第2の指向性センサ17における主要被写体の視差量等に基づいて主要被写体の距離情報を取得し、取得した距離情報に基づいて第1の撮影光学系12及び第2の撮影光学系12のそれぞれの望遠光学系14の焦点調節を行うようにしたが、これに限らず、第1の撮影光学系12及び第2の撮影光学系12のそれぞれの広角光学系13の焦点調節を行うコントラストAF、像面位相差AF等の焦点調節部(第2の焦点調節部)が設けられている場合、第2の焦点調節部による広角光学系13の合焦情報(例えば、合焦状態にある広角光学系13の全体又は一部の光学系の光軸方向の移動位置)に基づいて主要被写体の距離情報を取得し、取得した距離情報に基づいて第1の撮影光学系12及び第2の撮影光学系12のそれぞれの望遠光学系14の焦点調節を行うようにしてもよい。
 図9はパンチルト制御部60のブロック図である。このパンチルト制御部60は、図4に示した第1のパンチルト制御部60及び第2のパンチルト制御部60に加えて、図1に示したパン装置38を制御するパン制御部62を備えている。
 パン制御部62は、第1の広角画像及び第2の広角画像に基づいてパン機構を含むパン装置38を制御し、第1の撮像部11と第2の撮像部11とを主要被写体に正対させる。
 第1のパンチルト制御部60及び第2のパンチルト制御部60は、それぞれ第1の被写体検出部50及び第2の被写体検出部50が検出した主要被写体の、第1の広角画像内及び第2の広角画像内の主要被写体の位置情報に基づいて第1のパンチルト装置30及び第2のパンチルト装置30を制御するが、パン制御部62は、第1のパンチルト制御部60及び第2のパンチルト制御部60から第1のパンチルト装置30及び第2のパンチルト装置30のそれぞれのパン角度α及びパン角度α(図7参照)を示す角度情報を取得する。
 図7において、パン角度α及びパン角度αは、時計回り方向を正とすると、パン制御部62は、パン角度α及びパン角度αを示す角度情報に基づいて、パン角度αが正、パン角度αが負になり、かつパン角度αとパン角度αの絶対値が等しくなるように、パン装置38(第1のパンチルト装置30及びと第2のパンチルト装置30を保持する保持部材37)を水平方向に回動させる。即ち、パン制御部62によりパン装置38が回動させられると、第1のパンチルト装置30及び第2のパンチルト装置30は、それぞれ主要被写体を光軸L、L上で捕捉すべくパン方向に駆動制御されるため、パン装置38の回動位置を制御することにより、パン角度αが正、パン角度αが負になり、かつパン角度αとパン角度αの絶対値を等しくすることができる。
 このように第1のパンチルト装置30及びと第2のパンチルト装置30を保持する保持部材37(ステレオカメラ1全体)を水平方向に回動させることにより、主要被写体に対して第1の撮像部11と第2の撮像部11との距離を等距離にすることができ、主要被写体等の距離情報をより精度良く算出することができる。
 [ステレオカメラの制御方法]
 次に、本発明に係るステレオカメラの制御方法について説明する。
 図10は、第1の撮影光学系12及び第2の撮影光学系12のそれぞれの光軸L、L上において主要被写体を捕捉させるパンチルト制御を示すフローチャートである。
 図10に示すように、第1の撮像部11及び第1の画像取得部22を介して第1の広角画像を取得するとともに、第2の撮像部11及び第2の画像取得部22を介して第2の広角画像を取得する(ステップS10)。
 続いて、第1の被写体検出部50及び第2の被写体検出部50により、取得した第1の広角画像内及び第2の広角画像内の主要被写体を検出し(ステップS12)、検出した主要被写体の第1の広角画像内及び第2の広角画像内のそれぞれの位置情報(第1、第2の位置情報)を算出する(ステップS14)。
 ステップS14において算出した主要被写体の第1の広角画像内及び第2の広角画像内のそれぞれの第1の位置情報及び第2の位置情報に基づいて第1のパンチルト装置30L及び第2のパンチルト装置30Rを制御する(ステップS16)。
 次に、主要被写体の追尾が終了したか否かを判別する(ステップS18)。即ち、主要被写体が移動し、ステレオ画像である第1の広角画像と第2の広角画像、及びステレオ画像である第1の望遠画像と第2の望遠画像を動画として取得する場合には、第1の撮影光学系12及び第2の撮影光学系12のそれぞれの光軸L、L上において常に主要被写体を捕捉(主要被写体を追尾)する必要がある。
 従って、主要被写体の自動追尾が終了したか否かを判別し(ステップS18)、終了していないと判別すると、ステップS10に遷移させる。これにより、上記ステップS10からステップS18の処理が繰り返され、主要被写体を自動追尾した撮像が行われる。
 一方、主要被写体の追尾が終了したと判別されると、主要被写体を追尾させるパンチルト制御を終了させる。尚、主要被写体の自動追尾が終了したか否かを判別は、電源のオン/オフにより行ってもよいし、パンチルト動作を終了させるスイッチ入力等により行ってもよい。また、主要被写体を静止画として撮影する場合、静止画の撮影の終了時点を主要被写体の自動追尾の終了とすることができる。
 図11は、第1の望遠画像と第2の望遠画像との間で特徴量が一致する対応点の距離情報を取得する処理を示すフローチャートである。
 図11において、第1の撮影光学系12及び第2の撮影光学系12のそれぞれの光軸L、L上において主要被写体が捕捉されている場合に、第1の撮像部11及び第1の画像取得部22を介して第1の望遠画像を取得するとともに、第2の撮像部11及び第2の画像取得部22を介して第2の望遠画像を取得する(ステップS20)。
 続いて、視差量検出部72の対応点検出部72aにより、取得した第1の望遠画像及び第2の望遠画像との間で、特徴量が一致する対応点を検出し(ステップS22)、検出した2つの対応点の第1の指向性センサ17及び第2の指向性センサ17における視差量を検出する(ステップS24)。
 次に、距離画像算出部74は、図7で説明したようにステップS26により算出された対応点の視差量と、第1のパンチルト装置30及び第2のパンチルト装置30のそれぞれのパン角度及びチルト角度を示す角度情報(第1の撮影光学系12及び第2の撮影光学系12のそれぞれの光軸L、Lの方向を示す情報)と、第1のパンチルトカメラ10と第2のパンチルトカメラ10との基線長とに基づいて対応点の距離情報を算出する(ステップS26)。
 尚、距離画像算出部74は、第1の望遠画像と第2の望遠画像の対応点毎に距離情報を算出することより、距離画像を算出することができる。また、主要被写体の光軸L、L上の点も対応点であるため、主要被写体の距離情報も算出されるが、この場合の光軸L、L上の点の視差量は0である。
 ステップS26により算出された距離情報(距離画像)は、距離画像記録部76に出力されて記録され、あるいは外部機器に出力される(ステップS28)。
 <動体検出方法>
 次に、主要被写体が動体の場合、その主要被写体(動体)を検出する動体検出方法の一例について、図12から図14を用いて説明する。尚、第1の被写体検出部50及び第2の被写体検出部50は、それぞれ動体検出部として同様の機能を持つため、動体検出部として機能し得る第1の被写体検出部50についてのみ説明する。
 動体検出部として機能する場合の第1の被写体検出部50は、図12及び図13に示すように時系列の2枚の第1の広角画像(前回取得した第1の広角画像(図12)と、今回取得した第1の広角画像(図13))とを取得し、時系列の2枚の第1の広角画像の差分をとった差分画像(図14)を検出する。
 図12及び図13に示す例では、物体A,Bのうちの物体Aが移動し、物体Bは停止しており、物体Aが主要被写体(動体)である。
 従って、図14に示すように差分画像A,Aは、物体Aの移動により生じた画像である。
 ここで、差分画像A,Aの重心位置を算出し、それぞれ位置P,Pとし、これらの位置P,Pを結ぶ線分の中点を、位置Gとする。そして、この位置Gを物体A(動体である主要被写体)の第1の広角画像内の位置とする。
 このようして算出した第1の広角画像内の物体Aの位置Gが、第1の広角画像の中心位置(光軸L上の位置)に移動するように、パンチルト機構32(即ち、第1の撮像部11による撮影方向)を繰り返し制御することにより、物体Aが第1の広角画像(第1の望遠画像)の中心位置に移動(収束)する。
 尚、第1の撮像部11が移動(パンチルト機構32により移動、又はステレオカメラ1を車載することにより移動)する場合、時系列の画像間の背景も移動することになるが、この場合には、時系列の画像間の背景が一致するように画像をシフトさせ、シフト後の画像間の差分画像をとることにより、第1の撮像部11の移動にかかわらず、実空間内を移動する物体Aを検出することができる。更に、動体検出方法は、上記の実施形態に限らない。
 <指向性センサの他の実施形態>
 図15は、指向性センサの他の実施形態を示す側面図である。
 図15に示す指向性センサ117は、第1の指向性センサ17及び第2の指向性センサ17に代えて使用可能なものである。
 この指向性センサ117は、瞳分割手段としてのマイクロレンズアレイ118及び遮光マスクとして機能する遮光部材120と、遮光部材120により受光セル116a、116bの一部が遮光されたイメージセンサ116とから構成されている。尚、遮光部材120により一部が遮光された受光セル116aと受光セル116bとは、イメージセンサ116の左右方向及び上下方向に交互(チェッカーフラグ状)に設けられている。
 マイクロレンズアレイ118は、イメージセンサ116の受光セル116a、116bと一対一に対応するマイクロレンズ118aを有している。
 遮光部材120は、イメージセンサ116の受光セル116a、116bの開口を規制するものであり、図2に示した第1の撮影光学系12の広角光学系13及び望遠光学系14に対応する開口形状を有している。
 受光セル116aは、遮光部材120の遮光部120aによりその開口の周辺部が遮光され、一方、受光セル116bは、遮光部材120の遮光部120bによりその開口の中心部が遮光されている。これにより、第1の撮影光学系12の広角光学系13を通過した光束は、マイクロレンズアレイ118及び遮光部材120の遮光部120aにより瞳分割されて受光セル116aに入射し、一方、第1の撮影光学系12の望遠光学系14を通過した光束は、マイクロレンズアレイ118及び遮光部材120の遮光部120bにより瞳分割されて受光セル116bに入射する。
 これにより、イメージセンサ116の各受光セル116aから第1の広角画像の画像信号を読み出すことができ、イメージセンサ116の各受光セル116bから第1の望遠画像の画像信号を読み出すことができる。
 <撮像部の他の実施形態>
 次に、本発明に係るステレオカメラに適用される撮像部の他の実施形態について説明する。
 図16は、ステレオカメラ1に適用可能な撮像部(第1の撮像部11、第2の撮像部11)の他の実施形態を示す断面図である。
 この撮像部は、撮影光学系112と、指向性センサ17とから構成されている。尚、指向性センサ17は、図2及び図3に示したものと同一であるため、以下、撮影光学系112について説明する。
 この撮影光学系112は、それぞれ同一の光軸上に配置された中央部の中央光学系113とその周辺部の環状光学系114とから構成されている。
 中央光学系113は、第1レンズ113a、第2レンズ113b、及び共通レンズ115から構成された望遠光学系であり、画角θを有している。
 環状光学系114は、レンズ114a及び共通レンズ115から構成された広角光学系であり、画角φ(φ>θ)を有し、中央光学系113よりも広角である。
 この撮影光学系112は、図2に示した第1の撮影光学系12と比較すると、反射ミラーを使用しておらず、また、中央光学系113が望遠光学系であり、環状光学系114が広角光学系である点において相違する。
 [その他]
 本実施形態のステレオカメラは、第1の撮像部11、第2の撮像部11をパン方向及びチルト方向に回動させるパンチルト機構32が第1のカメラ本体2及び第2のカメラ本体2に設けられているが、これに限らず、第1の撮像部11、第2の撮像部11をそれぞれ2台の電動雲台(パンチルト装置)に搭載したものでもよい。
 また、第1の広角画像及び第2の広角画像から主要被写体を検出する第1の被写体検出部及び第2の被写体検出部に加え、第1の望遠画像及び第2の望遠画像から主要被写体を検出する第3の被写体検出部及び第4の被写体検出部を設け、第1の望遠画像内及び第2の望遠画像内に主要被写体が入っている場合には、第3の被写体検出部及び第4の被写体検出部により第1の望遠画像内及び第2の望遠画像内における主要被写体の位置情報を検出し、パンチルト制御部(第1、第2のパンチルト制御部)は、検出された主要被写体の第1の望遠画像内及び第2の望遠画像内における位置情報に基づいてパンチルト機構を制御し、第3の被写体検出部及び第4の被写体検出部により主要被写体が検出できない場合は、第1の被写体検出部及び第2の被写体検出部により検出された主要被写体の第1の広角画像内及び第2の広角画像内における位置情報に基づいてパンチルト機構を制御するようにしてもよい。
 更に、主要被写体は、表示部42に表示された広角画像からタッチパネル等を使用して操作者が最初に設定するようにしてもよい。
 更にまた、第1の撮影光学系12及び第2の撮影光学系12の望遠光学系14を構成する反射ミラーは、凹面鏡や凸面鏡に限らず、平面鏡でもよく、また、反射ミラーの枚数も2枚に限らず、3枚以上設けるようにしてもよい。
 また、本発明は上述した実施の形態に限定されず、本発明の精神を逸脱しない範囲で種々の変形が可能であることは言うまでもない。
1 ステレオカメラ
 第1のカメラ本体
 第2のカメラ本体
、4R 台座
8A ギア
、8 保持部
10 第1のパンチルトカメラ
10 第2のパンチルトカメラ
11 第1の撮像部
11 第2の撮像部
12 第1の撮影光学系
12 第2の撮影光学系
13 広角光学系
13a 第1レンズ
13b 第2レンズ
13c 第3レンズ
13d 第4レンズ
14 望遠光学系
14a 第1レンズ
14b 第2レンズ
14c 第1反射ミラー
14d 第2反射ミラー
15 共通レンズ
16 マイクロレンズアレイ
16a マイクロレンズ
17 指向性センサ
17 第1の指向性センサ
17 第2の指向性センサ
17a 中央瞳像
17b 環状瞳像
18 イメージセンサ
18a 受光セル
19 焦点調節機構
20 A/D変換器
22 画像取得部
22 第1の画像取得部
22 第2の画像取得部
24p フレーム数
30 第1のパンチルト装置
30 第2のパンチルト装置
30p フレーム数
32 パンチルト機構
34 パン駆動部
36 チルト駆動部
37 保持部材
38 パン装置
40 デジタル信号処理部
42 表示部
44 記録部
50 第1の被写体検出部
50 第2の被写体検出部
60 パンチルト制御部
60 第1のパンチルト制御部
60 第2のパンチルト制御部
62 パン制御部
70 距離情報算出部
72 視差量検出部
72a 対応点検出部
74 距離画像算出部
76 距離画像記録部
112 撮影光学系
113 中央光学系
113a 第1レンズ
113b 第2レンズ
114 環状光学系
114a レンズ
115 共通レンズ
116 イメージセンサ
116a 受光セル
116b 受光セル
117 指向性センサ
118 マイクロレンズアレイ
118a マイクロレンズ
120 遮光部材
120a 遮光部
120b 遮光部
190 焦点制御部
192 視差量検出部
194 距離情報算出部
196 合焦位置算出部
D 基線長
 光軸
 光軸
S10~S28 ステップ
f 焦点距離Δx、Δx 視差量α、α パン角度β、β、γ、γ2 底角

Claims (16)

  1.  それぞれ光軸が一致し、かつ異なる領域に配置された広角光学系と望遠光学系とを有する第1の撮影光学系と、前記広角光学系及び前記望遠光学系を介して入射する光束をそれぞれ瞳分割して選択的に受光する複数の画素を有する第1の指向性センサとを含む第1の撮像部と、
     前記第1の撮影光学系と同一構成の第2の撮影光学系と、前記第1の指向性センサと同一構成の第2の指向性センサとを含む第2の撮像部であって、前記第1の撮像部に対して基線長だけ離間して配置された前記第2の撮像部と、
     前記第1の指向性センサ及び前記第2の指向性センサから第1の広角画像及び第2の広角画像と、第1の望遠画像及び第2の望遠画像とを取得する画像取得部と、
     前記第1の撮像部及び前記第2の撮像部をそれぞれ水平方向及び垂直方向に回動させるパンチルト機構と、
     前記画像取得部により取得した前記第1の広角画像及び前記第2の広角画像に基づいて前記パンチルト機構を制御し、前記第1の撮影光学系及び前記第2の撮影光学系のそれぞれの光軸上において主要被写体を捕捉させるパンチルト制御部と、
     前記画像取得部により取得した前記第1の望遠画像及び前記第2の望遠画像に基づいて少なくとも前記主要被写体の距離情報を算出する距離情報算出部と、
     を備えたステレオカメラ。
  2.  前記距離情報算出部は、前記第1の望遠画像及び前記第2の望遠画像に基づいてそれぞれ特徴量が一致する2つの対応点を検出する対応点検出部を備え、前記対応点検出部により検出した前記2つの対応点の前記第1の指向性センサ及び前記第2の指向性センサにおける視差量と、前記基線長と、前記第1の撮影光学系及び前記第2の撮影光学系のそれぞれの光軸方向と、前記望遠光学系の焦点距離とに基づいて前記対応点の距離を算出する請求項1に記載のステレオカメラ。
  3.  前記第1の撮影光学系及び前記第2の撮影光学系は、それぞれ円形の中央光学系からなる前記広角光学系と、前記中央光学系に対して同心円状に配設された環状光学系からなる前記望遠光学系とにより構成された請求項1又は2に記載のステレオカメラ。
  4.  前記第1の指向性センサ及び前記第2の指向性センサは、それぞれ瞳分割手段として機能するマイクロレンズアレイ又は遮光マスクを有する請求項1から3のいずれか1項に記載のステレオカメラ。
  5.  前記第1の撮影光学系及び前記第2の撮影光学系のそれぞれの前記望遠光学系の焦点調節を行う第1の焦点調節部を有する請求項1から4のいずれか1項に記載のステレオカメラ。
  6.  前記第1の焦点調節部は、前記画像取得部により取得した前記第1の広角画像及び前記第2の広角画像にそれぞれ含まれる前記主要被写体の前記第1の指向性センサ及び前記第2の指向性センサにおける視差量と、前記基線長と、前記第1の撮影光学系及び前記第2の撮影光学系のそれぞれの光軸方向と、前記広角光学系の焦点距離とに基づいて前記主要被写体の距離情報を取得し、前記取得した距離情報に基づいて前記第1の撮影光学系及び前記第2の撮影光学系のそれぞれの前記望遠光学系の焦点調節を行う請求項5に記載のステレオカメラ。
  7.  前記第1の焦点調節部は、前記パンチルト制御部により前記パンチルト機構が制御され、前記第1の撮影光学系及び前記第2の撮影光学系のそれぞれの光軸上において前記主要被写体が捕捉されている場合に、前記基線長と、前記第1の撮影光学系及び前記第2の撮影光学系のそれぞれの光軸方向と、前記広角光学系の焦点距離とに基づいて前記主要被写体の距離情報を取得し、前記取得した距離情報に基づいて前記第1の撮影光学系及び前記第2の撮影光学系のそれぞれの前記望遠光学系の焦点調節を行う請求項5に記載のステレオカメラ。
  8.  前記第1の撮影光学系及び前記第2の撮影光学系のそれぞれの前記望遠光学系の焦点調節を行う第1の焦点調節部と、前記第1の撮影光学系及び前記第2の撮影光学系のそれぞれの前記広角光学系の焦点調節を行う第2の焦点調節部とを有する請求項1から4のいずれか1項に記載のステレオカメラ。
  9.  前記第1の焦点調節部は、前記第2の焦点調節部による前記広角光学系の合焦情報に基づいて前記主要被写体の距離情報を取得し、前記取得した距離情報に基づいて前記第1の撮影光学系及び前記第2の撮影光学系のそれぞれの前記望遠光学系の焦点調節を行う請求項8に記載のステレオカメラ。
  10.  前記パンチルト機構は、前記第1の撮像部を水平方向及び垂直方向に回動させる第1のパンチルト機構と、前記第1のパンチルト機構とは独立して前記第2の撮像部を水平方向及び垂直方向に回動させる第2のパンチルト機構とを有し、
     前記パンチルト制御部は、前記第1の広角画像に基づいて前記第1のパンチルト機構を制御する第1のパンチルト制御部と、前記第2の広角画像に基づいて前記第2のパンチルト機構を制御する第2のパンチルト制御部とを有する請求項1から9のいずれか1項に記載のステレオカメラ。
  11.  前記パンチルト機構は、前記第1のパンチルト機構と前記第2のパンチルト機構とを保持する保持部材と、前記保持部材を水平方向に回動させるパン機構とを有し、
     前記パンチルト制御部は、前記第1の広角画像及び前記第2の広角画像に基づいて前記パン機構を制御し、前記第1の撮像部と前記第2の撮像部とを前記主要被写体に正対させる請求項10に記載のステレオカメラ。
  12.  前記第1の広角画像及び前記第2の広角画像に基づいてそれぞれ前記主要被写体を検出する第1の被写体検出部及び第2の被写体検出部を備え、
     前記パンチルト制御部は、前記第1の被写体検出部及び前記第2の被写体検出部により検出された前記主要被写体の前記第1の広角画像内及び前記第2の広角画像内における各位置情報に基づいて前記パンチルト機構を制御し、前記第1の撮影光学系及び前記第2の撮影光学系のそれぞれの光軸上において前記主要被写体を捕捉させる請求項1から11のいずれか1項に記載のステレオカメラ。
  13.  前記第1の被写体検出部及び前記第2の被写体検出部は、前記画像取得部が連続して取得した前記第1の広角画像及び前記第2の広角画像に基づいて動体を検出し、前記検出した動体を前記主要被写体とする請求項12に記載のステレオカメラ。
  14.  前記第1の被写体検出部及び前記第2の被写体検出部は、前記第1の広角画像及び前記第2の広角画像に基づいて特定の被写体を認識し、前記認識した特定の被写体を前記主要被写体とする請求項12に記載のステレオカメラ。
  15.  前記第1の望遠画像及び前記第2の望遠画像に基づいて前記主要被写体を検出する第3の被写体検出部及び第4の被写体検出部を更に備え、
     前記パンチルト制御部は、前記第3の被写体検出部及び前記第4の被写体検出部により検出された前記主要被写体の前記第1の望遠画像内及び前記第2の望遠画像内における位置情報に基づいて前記パンチルト機構を制御し、前記第3の被写体検出部及び前記第4の被写体検出部により前記主要被写体が検出できない場合は、前記第1の被写体検出部及び前記第2の被写体検出部により検出された前記主要被写体の前記第1の広角画像内及び前記第2の広角画像内における位置情報に基づいて前記パンチルト機構を制御する請求項12から14のいずれか1項に記載のステレオカメラ。
  16.  請求項1から12のいずれか1項に記載のステレオカメラを使用したステレオカメラの制御方法であって、
     前記第1の指向性センサ及び前記第2の指向性センサから第1の広角画像及び第2の広角画像を取得するステップと、
     前記取得した前記第1の広角画像及び前記第2の広角画像に基づいて前記パンチルト機構を制御し、前記第1の撮影光学系及び前記第2の撮影光学系のそれぞれの光軸上において主要被写体を捕捉させるステップと、
     前記第1の撮影光学系及び前記第2の撮影光学系のそれぞれの光軸上において前記主要被写体を捕捉している状態において、前記第1の指向性センサ及び前記第2の指向性センサから第1の望遠画像及び第2の望遠画像を取得するステップと、
     前記取得した前記第1の望遠画像及び前記第2の望遠画像に基づいて少なくとも前記主要被写体の距離情報を算出するステップと、
     を含むステレオカメラの制御方法。
PCT/JP2017/009859 2016-05-17 2017-03-13 ステレオカメラ及びステレオカメラの制御方法 WO2017199556A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780030167.4A CN109155842B (zh) 2016-05-17 2017-03-13 立体相机及立体相机的控制方法
EP17798991.0A EP3461127B1 (en) 2016-05-17 2017-03-13 Stereo camera and stereo camera control method
JP2018518121A JP6641470B2 (ja) 2016-05-17 2017-03-13 ステレオカメラ及びステレオカメラの制御方法
US16/183,757 US10863164B2 (en) 2016-05-17 2018-11-08 Stereo camera and method of controlling stereo camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016098915 2016-05-17
JP2016-098915 2016-05-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/183,757 Continuation US10863164B2 (en) 2016-05-17 2018-11-08 Stereo camera and method of controlling stereo camera

Publications (1)

Publication Number Publication Date
WO2017199556A1 true WO2017199556A1 (ja) 2017-11-23

Family

ID=60326394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009859 WO2017199556A1 (ja) 2016-05-17 2017-03-13 ステレオカメラ及びステレオカメラの制御方法

Country Status (5)

Country Link
US (1) US10863164B2 (ja)
EP (1) EP3461127B1 (ja)
JP (1) JP6641470B2 (ja)
CN (1) CN109155842B (ja)
WO (1) WO2017199556A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109639974A (zh) * 2018-12-20 2019-04-16 Oppo广东移动通信有限公司 控制方法、控制装置、电子装置及介质
CN109922251A (zh) * 2017-12-12 2019-06-21 华为技术有限公司 快速抓拍的方法、装置及系统
JPWO2020075307A1 (ja) * 2018-10-12 2021-09-02 日本電気株式会社 装置、方法及びプログラム
WO2022034694A1 (ja) * 2020-08-14 2022-02-17 日本電気株式会社 撮影装置、撮影ユニット、画像分析装置および三次元形状計測システム
WO2023100516A1 (ja) * 2021-12-03 2023-06-08 株式会社日立製作所 ステレオカメラ、ステレオカメラシステム、および配置方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105359006B (zh) 2013-07-04 2018-06-22 核心光电有限公司 小型长焦透镜套件
US9857568B2 (en) 2013-07-04 2018-01-02 Corephotonics Ltd. Miniature telephoto lens assembly
US9392188B2 (en) 2014-08-10 2016-07-12 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10706564B2 (en) * 2018-04-11 2020-07-07 Wisconsin Alumni Research Foundation Systems, methods, and media for determining object motion in three dimensions from light field image data
GB201813740D0 (en) * 2018-08-23 2018-10-10 Ethersec Ind Ltd Method of apparatus for volumetric video analytics
JP7262997B2 (ja) * 2018-12-27 2023-04-24 キヤノン株式会社 制御装置、撮像装置、および、プログラム
KR20220000948A (ko) * 2019-01-03 2022-01-04 코어포토닉스 리미티드 적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라
CN109918957A (zh) * 2019-03-05 2019-06-21 大连民族大学 一种双瞳远距离二维码扫描的终端、系统和方法
US11196943B2 (en) 2019-05-31 2021-12-07 Apple Inc. Video analysis and management techniques for media capture and retention
DE102020113972A1 (de) * 2019-05-31 2020-12-03 Apple Inc. Videoanalyse- und -managementtechniquen für medienerfassung und -aufbewahrung
CN110266921A (zh) * 2019-06-20 2019-09-20 浙江大华技术股份有限公司 摄像头及使用该摄像头的监控系统
US11668910B2 (en) 2019-08-21 2023-06-06 Corephotonics Ltd. Low total track length for large sensor format including seven lenses of +−+−++− refractive powers
JP7471799B2 (ja) * 2019-11-12 2024-04-22 キヤノン株式会社 制御装置、撮像装置、制御方法、および、プログラム
US11656538B2 (en) 2019-11-25 2023-05-23 Corephotonics Ltd. Folded zoom camera module with adaptive aperture
WO2021140403A1 (en) 2020-01-08 2021-07-15 Corephotonics Ltd. Multi-aperture zoom digital cameras and methods of using same
CN111491190B (zh) * 2020-04-03 2022-03-18 海信视像科技股份有限公司 一种双系统摄像头切换控制方法及显示设备
CN117518313A (zh) 2020-05-30 2024-02-06 核心光电有限公司 用于获得超微距图像的系统
WO2022118176A1 (en) 2020-12-01 2022-06-09 Corephotonics Ltd. Folded camera with continuously adaptive zoom factor
KR102610118B1 (ko) 2021-11-02 2023-12-04 코어포토닉스 리미티드 컴팩트형 더블 폴디드 텔레 카메라

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008129454A (ja) * 2006-11-22 2008-06-05 Canon Inc 光学装置、撮像装置、制御方法、及びプログラム
JP2011505022A (ja) * 2007-11-27 2011-02-17 イーストマン コダック カンパニー 二重の焦点距離のレンズシステム
JP2011109630A (ja) 2009-11-20 2011-06-02 Advas Co Ltd カメラ装置用雲台
JP2012109733A (ja) * 2010-11-16 2012-06-07 Sumitomo Electric Ind Ltd 監視システム及び監視装置
JP2012247645A (ja) * 2011-05-27 2012-12-13 Fujifilm Corp 撮像装置
WO2014132748A1 (ja) * 2013-02-27 2014-09-04 日立オートモティブシステムズ株式会社 撮像装置及び車両制御装置
JP2015154386A (ja) 2014-02-18 2015-08-24 富士フイルム株式会社 自動追尾撮像装置
WO2016047220A1 (ja) * 2014-09-24 2016-03-31 シャープ株式会社 撮像装置及び撮像方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734911B1 (en) * 1999-09-30 2004-05-11 Koninklijke Philips Electronics N.V. Tracking camera using a lens that generates both wide-angle and narrow-angle views
JP4540322B2 (ja) * 2003-09-29 2010-09-08 Hoya株式会社 画像間対応点検出装置および画像間対応点検出方法
US7206136B2 (en) * 2005-02-18 2007-04-17 Eastman Kodak Company Digital camera using multiple lenses and image sensors to provide an extended zoom range
EP2750374B1 (en) * 2011-08-24 2018-03-28 FUJIFILM Corporation Imaging device
JP2013190596A (ja) * 2012-03-14 2013-09-26 Olympus Imaging Corp ズームレンズユニット及びそれを備えた撮像装置
JP6077967B2 (ja) 2013-08-27 2017-02-08 富士フイルム株式会社 撮像装置
KR102016551B1 (ko) * 2014-01-24 2019-09-02 한화디펜스 주식회사 위치 추정 장치 및 방법
JP2016045170A (ja) * 2014-08-26 2016-04-04 富士フイルム株式会社 測距装置、方法及びプログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008129454A (ja) * 2006-11-22 2008-06-05 Canon Inc 光学装置、撮像装置、制御方法、及びプログラム
JP2011505022A (ja) * 2007-11-27 2011-02-17 イーストマン コダック カンパニー 二重の焦点距離のレンズシステム
JP2011109630A (ja) 2009-11-20 2011-06-02 Advas Co Ltd カメラ装置用雲台
JP2012109733A (ja) * 2010-11-16 2012-06-07 Sumitomo Electric Ind Ltd 監視システム及び監視装置
JP2012247645A (ja) * 2011-05-27 2012-12-13 Fujifilm Corp 撮像装置
WO2014132748A1 (ja) * 2013-02-27 2014-09-04 日立オートモティブシステムズ株式会社 撮像装置及び車両制御装置
JP2015154386A (ja) 2014-02-18 2015-08-24 富士フイルム株式会社 自動追尾撮像装置
WO2016047220A1 (ja) * 2014-09-24 2016-03-31 シャープ株式会社 撮像装置及び撮像方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3461127A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109922251A (zh) * 2017-12-12 2019-06-21 华为技术有限公司 快速抓拍的方法、装置及系统
JPWO2020075307A1 (ja) * 2018-10-12 2021-09-02 日本電気株式会社 装置、方法及びプログラム
US11308743B2 (en) 2018-10-12 2022-04-19 Nec Corporation Gate apparatus, control method of gate apparatus, and storage medium
JP7115551B2 (ja) 2018-10-12 2022-08-09 日本電気株式会社 装置、方法及びプログラム
CN109639974A (zh) * 2018-12-20 2019-04-16 Oppo广东移动通信有限公司 控制方法、控制装置、电子装置及介质
WO2022034694A1 (ja) * 2020-08-14 2022-02-17 日本電気株式会社 撮影装置、撮影ユニット、画像分析装置および三次元形状計測システム
WO2023100516A1 (ja) * 2021-12-03 2023-06-08 株式会社日立製作所 ステレオカメラ、ステレオカメラシステム、および配置方法

Also Published As

Publication number Publication date
EP3461127A1 (en) 2019-03-27
EP3461127A4 (en) 2019-05-08
US20190075284A1 (en) 2019-03-07
US10863164B2 (en) 2020-12-08
CN109155842B (zh) 2020-12-08
JPWO2017199556A1 (ja) 2019-04-04
EP3461127B1 (en) 2024-03-06
CN109155842A (zh) 2019-01-04
JP6641470B2 (ja) 2020-02-05

Similar Documents

Publication Publication Date Title
JP6641470B2 (ja) ステレオカメラ及びステレオカメラの制御方法
JP6027560B2 (ja) 自動追尾撮像装置
US10091408B2 (en) Imaging apparatus and method of recognizing target object
US7702229B2 (en) Lens array assisted focus detection
US7768571B2 (en) Optical tracking system using variable focal length lens
WO2010055931A1 (en) Focus detection apparatus and control method therefor
US8160437B2 (en) Focus detection apparatus
US8792048B2 (en) Focus detection device and image capturing apparatus provided with the same
JP5206292B2 (ja) 撮像装置および画像記録方法
JP2018134712A (ja) ロボットシステム及びロボットシステムの制御方法
JP2010128205A (ja) 撮像装置
JP2002191060A (ja) 3次元撮像装量
JP2016048825A (ja) 撮像装置
JP2016048824A (ja) 追尾装置、追尾システム、及び表示装置
JP2016046774A (ja) 撮像装置
JP2013044827A (ja) 撮像装置
JP2016046771A (ja) 撮像装置、撮像システム及び表示装置
JP2016048282A (ja) 撮像装置
JP7504579B2 (ja) 撮像装置、撮像装置の制御方法およびプログラム
JP2016046773A (ja) 撮像装置
RU2305304C2 (ru) Устройство для регистрации удаленных объемных объектов
JP2021081611A (ja) 撮像装置、撮像装置の制御方法およびプログラム
WO1998026252A2 (en) Moving imager camera for track and range capture
JP2018180136A (ja) 撮像装置
JP2006038603A (ja) 測距装置、カメラおよび測距方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017798991

Country of ref document: EP

Effective date: 20181217