JP2021081611A - 撮像装置、撮像装置の制御方法およびプログラム - Google Patents

撮像装置、撮像装置の制御方法およびプログラム Download PDF

Info

Publication number
JP2021081611A
JP2021081611A JP2019209572A JP2019209572A JP2021081611A JP 2021081611 A JP2021081611 A JP 2021081611A JP 2019209572 A JP2019209572 A JP 2019209572A JP 2019209572 A JP2019209572 A JP 2019209572A JP 2021081611 A JP2021081611 A JP 2021081611A
Authority
JP
Japan
Prior art keywords
posture
image pickup
image
correction information
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019209572A
Other languages
English (en)
Other versions
JP7504579B2 (ja
Inventor
知 小松
Satoru Komatsu
知 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019209572A priority Critical patent/JP7504579B2/ja
Publication of JP2021081611A publication Critical patent/JP2021081611A/ja
Application granted granted Critical
Publication of JP7504579B2 publication Critical patent/JP7504579B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

【課題】撮像装置の姿勢に応じて計測値を高精度に取得できる撮像装置を提供する。【解決手段】撮像装置100は、撮影時の計測値を取得するレンズ駆動情報取得部130と、撮影時の撮像装置100の姿勢を検出する姿勢検出部131と、検出した撮像装置100の姿勢に応じて、撮像装置100の姿勢に起因する撮像装置100の内部の状態変化による計測値の誤差を補正するための補正情報を取得する補正情報取得部132と、補正情報に基づいて撮影時の計測値を補正する補正部133と、を備える。【選択図】図1

Description

本発明は、撮像装置、撮像装置の制御方法およびプログラムに関する。
焦点検出および調節を自動で行うオートフォーカス(以下、AFと記す)機能がある。特許文献1は、カメラの姿勢変化にともなうレンズの光軸の角度変化量が検出された場合に、レンズを合焦駆動するためのレンズ駆動量を演算してレンズ駆動を実施することで合焦の再調節を行う技術を開示している。特許文献1では、所望の被写体に合焦させた後に、三脚に設置されたカメラをパンさせることで構図変更を実施した場合に、カメラの角度変化量に基づいて被写体までの距離の補正値を演算してレンズ駆動量を算出している。
特開平4−175738号公報
しかしながら、特許文献1では、撮像装置の姿勢変化に伴う撮像装置の内部状態変化に関しては考慮されておらず、内部状態変化により撮像光学系の焦点距離に変化が生じた場合、被写体への合焦にずれが生じる。撮像装置の姿勢変化に伴う撮像装置の内部状態変化としては、例えば、撮像光学系のレンズ間隔変化、レンズ傾き変化、撮像素子の取り付け位置変化などがある。撮像装置の内部状態は、特許文献1で説明されている水平方向の動きに比べ、撮像装置を上向きや下向きに構えた場合に重力の影響を受けて大きく変化する。
一方、AFによる合焦動作においては、撮像装置の姿勢変化による内部状態変化が生じても、変化した状態における合焦動作が実施されれば被写体への合焦は可能となる。しかしながら、フォーカスレンズの位置など撮像装置の内部状態に応じて算出される被写体までの距離等の計測値は、撮像装置の姿勢による内部状態変化によって同距離に位置する被写体でも異なる計測値が算出されてしまう恐れがある。
本発明は、撮像装置の姿勢に応じて計測値を高精度に取得できる撮像装置を提供する。
上記課題を解決するために、本発明の撮像装置は、撮影時の計測値を取得する計測手段と、前記撮影時の撮像装置の姿勢を検出する姿勢検出手段と、検出した前記撮像装置の姿勢に応じて、前記撮像装置の姿勢に起因する前記撮像装置の内部の状態変化による計測値の誤差を補正するための補正情報を取得する補正情報取得手段と、前記補正情報に基づいて前記撮影時の計測値を補正する補正手段と、を備える。
本発明によれば、撮像装置の姿勢に応じて計測値を高精度に取得できる撮像装置を提供することができる。
第1実施形態に係る撮像装置の機能構成を説明する図である。 撮像装置の姿勢による内部状態の変化を説明する図である。 被写体までの距離算出処理を示すフローチャートである。 第2実施形態に係る撮像装置の機能構成を説明する図である。 第2実施形態に係る撮像素子の構成を説明する図である。 撮像面位相差測距方式の測距原理を説明する図である。 視差量とデフォーカス量との関係について説明する図である。 深度画像を生成する処理を示すフローチャートである。 焦点距離および撮影倍率の補正処理を示すフローチャートである。
各実施形態では、撮像装置の一例として撮像装置から合焦した被写体までの距離を示す深度情報を取得可能なデジタルカメラに本発明を適用した例に説明する。しかし、これに限られるものではなく、本発明は被写体までの距離を取得可能な任意の撮像機器に適用可能である。また、各実施形態では撮像装置の一例としてレンズ装置と本体部が一体となった撮像装置について説明するが、これに限られるものではなく、レンズ装置が本体部に着脱可能なレンズ交換式の撮像装置であってもよい。
(第1実施形態)
図1は、第1実施形態に係る撮像装置100の機能構成を説明する図である。撮像装置100は、撮像光学系10、撮像素子11、制御部12、計測部13、画像処理部14、記憶部15、入力部16、表示部17、通信部18、センサ19を備える。なお、以下では、撮像光学系10の光軸103と平行な方向(図1の左右方向)をz方向または深度方向とする。光軸103と直交し、撮像素子11の垂直方向と平行な方向をx方向(図1の上下方向)とする。光軸103およびx軸と直交し、撮像素子11の水平方向と平行な方向をy方向とする。
撮像光学系10は、被写体の光学像を撮像素子11上に結像させる。撮像光学系10は、撮影倍率を変更するズームレンズ104、焦点調節に使用するフォーカシングレンズ105、手振れ等による画像ブレを補正するシフトレンズ102を含む光軸103上に並んだ複数のレンズと絞りを備える。また、撮像光学系10の射出瞳101は、撮像素子11から所定距離離れた位置にある。
撮像素子11は、例えばCCD(電荷結合素子)やCMOSセンサ(相補型金属酸化膜半導体)である。撮像素子11は、撮像光学系10を介して撮像面に結像された被写体像を光電変換し、被写体像に係る画像信号を出力する。
制御部12は、例えばCPU(Central Processing Unit)やマイクロプロセッサ等であり、撮像装置100が備える各ブロックの動作を制御する。制御部12は、例えば、撮像時のAF(自動焦点合わせ)、フォーカス(合焦)位置の変更、F値(絞り)の変更、画像の取り込み、被写体距離の測定、記憶部15、入力部16、表示部17、通信部18の制御等を行う。
計測部13は、合焦した被写体までの距離を算出する。計測部13は、レンズ駆動情報取得部130、姿勢検出部131、補正情報取得部132、補正部133を備える。レンズ駆動情報取得部130は、制御部12を介して、撮像光学系10内の各レンズの駆動情報を取得する。例えば、レンズ駆動情報取得部130は、合焦動作によってフォーカシングレンズ105を駆動した際の駆動量を制御部12から取得する。
姿勢検出部131は、撮像装置100に設置されたセンサ19の出力に基づいて、撮影時の撮像装置100の姿勢情報を検出する。補正情報取得部132は、撮像装置100の姿勢に応じて、距離補正に必要な距離補正情報を取得する。具体的には、補正情報取得部132は、予め撮像装置100の姿勢ごとの距離補正情報を記憶している記憶部15から、姿勢検出部131が検出した撮像装置100の姿勢情報に応じた距離補正情報を取得する。補正部133は、補正情報取得部132が取得した距離補正情報に基づいて、被写体距離情報を算出する。
画像処理部14は、撮像素子11から出力された画像信号に対して、各種画像処理を実施する。例えば、画像処理部14は画像処理として、撮像素子11から出力された画像信号のノイズ除去、デモザイキング、輝度信号変換、収差補正、ホワイトバランス調整、色補正などの処理を行う。画像処理部14から出力される画像データ(撮像画像)は不図示のメモリに蓄積され、表示部17に表示される。また、画像処理部14から出力された画像データは、記憶部15に保存される。画像処理部14は、論理回路を用いて構成してもよいし、中央演算処理装置(CPU)と演算処理プログラムを格納するメモリで構成してもよい。
記憶部15は、撮像された画像データ、各ブロックの動作の過程で生成された中間データ、画像処理部14や撮像装置100の動作において参照されるパラメータ等が記録される記録媒体である。記憶部15は、処理の実現にあたり許容される処理性能が担保されるものであれば、高速に読み書きでき、かつ、大容量の記録媒体であればどのようなものであってもよく、例えば、フラッシュメモリなどが好ましい。
入力部16は、例えば、ダイヤル、ボタン、スイッチ、タッチパネル等の撮像装置100に対してなされた情報入力や設定変更の操作入力を検出するユーザインターフェイスである。入力部16は、ユーザからの操作入力を検出すると対応する制御信号を制御部12に出力する。表示部17は、例えば、液晶ディスプレイや有機EL等の表示装置である。表示部17は、撮像画像をリアルタイムで表示することによる撮影時の構図確認、各種設定の確認、メッセージ情報の報知等に用いられる。また、表示部17にタッチパネルを利用することで表示機能と入力機能を併せ持つことができる。
通信部18は、外部装置との情報送受信を実現する通信インタフェースである。通信部18は、撮像画像、撮影情報、距離情報等を、外部装置に送出する。センサ19は、撮像装置100の状態をモニタリングするセンサ類である。センサ19には、例えば、加速度センサ、ジャイロセンサ、温度センサ等が設置されている。撮像装置100の姿勢検出には一般に加速度センサが使用される。
撮像装置100の撮影時の姿勢による内部状態の変化について図2を用いて説明する。図2は、撮像装置の姿勢による内部状態の変化を説明する図である。図2(A)は撮像装置100を水平に保持した場合、図2(B)は撮像装置100を下向きに保持した場合、図2(C)は撮像装置100を上向きに保持した場合における撮像装置100の内部状態を示している。以下では、ズームレンズ104の取り付け時に間隙が生じていると仮定する。また、各レンズの被写体側を第一面、撮像装置100側を第二面とする。
図2(A)は、撮像装置100を水平に保持した場合の内部状態を表す断面図である。以下では、撮像装置100を水平に保持した状態を基準姿勢とする。水平保持状態におけるズームレンズ104の第二面とフォーカシングレンズ105の第一面の間隔をLとする。
図2(B)は、撮像装置100を下向き(-z方向)に保持した場合の内部状態を表す断面図である。図2(B)の状態では、水平方向を0°とした場合に検出した姿勢情報が-90°となる。下向き状態におけるズームレンズ104の第二面とフォーカシングレンズ105の第一面の間隔をLdとする。ズームレンズ104の取り付けに間隙があるため、重力によりレンズ104は-z方向に平行移動する。そのため、下向きの状態のレンズ間隔Ldは基準姿勢のレンズ間隔Lよりも長くなる。
一方、図2(C)は、撮像装置100を上向き(+z方向)に保持した場合の内部状態を表す断面図である。図2(C)の状態では、水平方向を0°とした場合に検出した姿勢情報が90°となる。上向き状態におけるズームレンズ104の第二面とフォーカシングレンズ105の第一面の間隔をLuとする。ズームレンズ104の取り付けに間隙があるため、重力によりズームレンズ104は+z方向に平行移動する。そのため、上向きの状態のレンズ間隔Ldは基準姿勢のレンズ間隔Lよりも短くなる。
レンズ間隔の変化は、撮影時の姿勢における摩擦力、応力、重力の影響により決定され、摩擦力および応力は撮像光学系10の鏡筒設計に依存する。また、レンズ間隔が変化することで撮像光学系10の状態に基づく焦点距離や焦点距離等の測定値が微小変動する。レンズ間隔の変化に伴う測定値の変化量は、撮像光学系10の光学設計といずれのレンズがどれだけ移動したかに依存する。なお、上記では一つのレンズを例にとって説明したが、実際には複数のレンズにおいて位置変動が生じる。各レンズの変動は、公差や製造誤差によってそれぞれ異なる。また、撮像光学系10の光学設計によって各レンズの位置変動による測定値の変化への敏感度も異なる。
このように、レンズ間隔変化およびそれに伴う計測値の変動は、撮像光学系10の光学設計および鏡筒設計に複雑に依存する。しかし、一般的な傾向として基準姿勢(水平)からの姿勢変化が小さい場合は大きな影響がみられず、姿勢変化が大きくなると急激に変動が生じる傾向がある。そのため、撮像装置100の姿勢を変数とする3次関数により、計測値の変化量を近似することもできる。
撮像装置100の基準姿勢とは異なる姿勢でAFを実行する場合、焦点距離の微小変動が生じていても、撮影像が良好に取得できるようにフォーカシングレンズ105を移動させるため合焦動作に支障はきたさない。しかしながら、フォーカシングレンズ105の移動状態と基準姿勢における光学設計情報を用いて合焦した被写体までの距離を算出する場合には、撮像光学系10の状態が基準状態と異なっていると算出する被写体距離に誤差が生じてしまう。そのため、撮像装置100を用いて被写体までの距離を計測する場合や撮像装置1の00の焦点距離を用いて被写体の寸法計測を実行する場合において、撮像装置100の姿勢変化に伴う内部状態変化の影響が無視できないものとなる。
撮像装置100の姿勢変化に伴う内部状態変化として撮像光学系10の状態変化について説明したが、これに限られるものではなく、例えば撮像素子11の位置変動が生じる可能性もある。また、撮像装置100がレンズ交換式カメラである場合には、撮像光学系10の本体部への取り付け部分において間隙が生じ、姿勢による内部状態変化の一因となりうる。
合焦した被写体までの距離算出処理について、図3のフローチャートを用いて説明する。図3は、被写体までの距離算出処理を示すフローチャートである。
ステップS301で、レンズ駆動情報取得部130は、合焦時のレンズ駆動情報を取得する。具体的には、レンズ駆動情報取得部130は、合焦動作によって撮像光学系10内に設置されたフォーカシングレンズ102を駆動した際の駆動量を制御部12から取得する。ここでレンズ駆動情報取得部130が取得するフォーカシングレンズ102の駆動量は、例えば、フォーカシングレンズ102をステッピングモーター等の駆動装置で駆動した際の駆動パルス数である。なお、パルス数は絶対値であっても相対値であってもよく、取得するパルス値に合わせて以降の処理を実行することができる。
ステップS302で、姿勢検出部131は、撮像装置100に設置されたセンサ19の加速度センサの出力に基づいて、撮影時の撮像装置100の姿勢情報を検出する。姿勢情報は、撮像装置100の基準姿勢からのロール・ピッチ・ヨー方向の角度変化量である。なお、本実施形態における撮像装置100の基準姿勢は水平方向とするが、これに限られるものではない。
撮像装置100の内部状態は、水平方向の動きに比べ、撮像装置を上向きや下向きに構えた場合に重力の影響を受けて大きく変化する。そのため、特に、上下方向(ピッチ方向)にどの程度の角度傾いた状態で撮影が実施されたかを取得するのが有用である。本実施形態では、撮像装置100の姿勢情報として水平方向を基準とする上下方向のピッチ角度を例に説明を行う。
ステップS303で、補正情報取得部132は、撮像装置100の姿勢情報に応じた距離補正情報を取得する。具体的には、補正情報取得部132は、記憶部15に予め保存されている距離補正情報から、ステップS302で検出した撮像装置100の姿勢情報(ピッチ方向の角度)に応じた距離補正情報を取得する。距離補正情報は、距離補正に必要な情報であり、本実施形態においては、姿勢変化に対応するフォーカシングレンズ102の駆動量の変化量である。例えば、ステッピングモーターを利用してフォーカシングレンズ102を駆動した場合は、姿勢変化に対応する駆動パルス変化量が距離補正情報となる。
記憶部15には、予め撮像装置100の姿勢情報ごとの距離補正情報、即ち撮像装置100の姿勢変化に伴う駆動パルス変化量がテーブルや関数の形で保存されている。記憶部15に予め保存されている距離補正情報としての駆動パルス変化量は、基準姿勢における駆動パルス値と基準姿勢とは異なる姿勢における駆動パルス値のずれとして算出された値である。より具体的には、撮像装置100の基準姿勢において特定距離にある被写体(例えば、チャート)への合焦動作時のフォーカシングレンズ102の駆動パルス値(制御パルス)を取得する。そして、被写体距離が一定のまま撮像装置100の姿勢を上下方向に変化させ、合焦動作を実行した際のフォーカシングレンズ102の駆動パルス値(制御パルス)を取得する。取得した基準姿勢における駆動パルス値と、撮像装置100の姿勢変化に応じた駆動パルス値のずれ(相対パルス数)が駆動パルス変化量である。算出した駆動パルス変化量をテーブルとして保存して利用してもよいし、算出した駆動パルス変化量と撮像装置100の姿勢変化量の関係をフィッティングした関数の係数のみを保存して利用してもよい。関数の係数のみを保存する場合は、テーブルを保存する場合に比べ、保存するデータ量の削減が可能となる。
なお、補正情報は前述のように実験的に取得する以外にもレンズ取り付けの公差量とステッピングモーターのパルスとレンズ移動量の関係を考慮してシミュレーションにより算出してもよい。また、合焦する距離によって姿勢変化に伴うパルス変化量が変化する場合は、被写体と撮像装置100の距離を変更して同様にパルス変化量を取得する。フォーカシングレンズ102のパルス数が多い場合は、全ての合焦距離においてパルス変化量を取得する代わりに、複数の距離においてパルス変化量を取得し、補間によりその他の距離におけるパルス変化量を算出すればよい。また、焦点距離可変の撮像光学系を利用する場合には、設定可能なそれぞれの焦点距離においてパルス変化量を取得しておくのが好適である。全ての焦点距離においてパルス変化量の取得が困難な場合は、所定の焦点距離間隔でパルス変化量を取得し、所定の焦点距離間隔内の焦点距離におけるパルス変化量を内挿して算出するよいにしてもよい。
撮像装置100に付属する撮像光学系10が交換可能であった場合には、複数の異なる撮像光学系における補正情報を記憶部15に格納しておくのが好適である。また、撮像光学系10が記憶部を備える場合には、撮像光学系10の記憶部に補正情報を格納しておき、補正情報取得部13が撮像光学系10から該補正情報を読み出せる構成にしてもよい。この構成の場合、記憶部15に距離補正情報が格納されていない撮像光学系10であっても、撮像光学系10の補正情報を取得することが可能となる。なお、本実施形態では、距離補正情報を記憶部15に保存している例を説明したが、撮像装置100の撮像光学系10が固定である場合は、予め計測部13内の不図示の不揮発性メモリに補正情報を格納するようにしてもよい。
ステップS304で、補正部133は、補正した被写体距離を算出する。具体的には、補正部133は、ステップS301で取得した合焦時の駆動パルス数と、ステップS303で取得した撮像装置100の姿勢変化に応じた駆動パルス変化量から、基準姿勢で撮影した場合の駆動パルス数を算出する。そして、基準姿勢で撮影した場合の駆動パルス数に応じた被写体距離を、補正した被写体距離として算出する。
駆動パルス数に基づく被写体距離の算出は、予め保存された駆動パルス数と被写体距離の関係をテーブルもしくは関数を用いることで行われる。駆動パルス数と被写体距離の関係を表す被写体距離情報テーブルは、基準姿勢における合焦時の撮像光学系10中のフォーカシングレンズ102の駆動パルス数(駆動位置)と、合焦距離の関係を撮像光学系10の設計情報を用いて算出することで作成される。この被写体距離情報テーブルもしくは関数と補正された駆動パルス数(基準姿勢での駆動パルス数)から、撮像装置100の姿勢による内部状態変化による距離算出誤差を補正した距離を出力することが可能となる。
以上説明したように、本実施形態の撮像装置によれば、合焦時のカメラ姿勢に応じた補正情報(駆動パルス変化量)を取得して、補正情報を基にした距離情報等の計測値を算出することができる。そのため、撮像装置の姿勢によって撮像装置の内部状態が変化することによる被写体までの測距誤差を補正することができ、姿勢に依存せずに高精度な測距が可能となる。
(第2実施形態)
第1実施形態では、AF動作等で合焦した被写体位置における一つの距離を出力する態様について説明した。本実施形態では、撮像面で測距を行うことで撮影画像と同様の領域の深度画像を出力する態様に対して本発明を適用する例を説明する。
本実施形態に係る撮像装置200の機能構成を示すブロック図を図4に示す。図4は、第2実施形態における撮像装置の機能構成を説明する図である。第1実施形態と同様の構成については、同じ符号を付すことでその説明を省略する。以下では、第1実施形態との差異である、撮像素子20および画像処理部24について説明する。
撮像素子20は、撮像面位相差測距方式の測距機能を有する撮像素子である。そのため、撮像素子20は、撮像画像に加えて、撮像装置から被写体までの距離(被写体距離)を示す距離情報を生成して出力することができる。
撮像素子20の詳細な構成について、図5を参照して説明する。図5は、撮像素子20の構成を説明する図である。図5(A)は、撮像素子20および画素210を説明する図である。図5(B)は、画素210を説明する図である。撮像素子20は、行方向および列方向に二次元状に配置された複数の画素210を有する。それぞれの画素210には、赤(R)、緑(G)、青(B)のカラーフィルタが適用された2行×2列の画素210が複数連結して配列される。そのため、画素210からは、R、G、Bのいずれかの色情報を示した画像信号が出力される。なお、本実施形態では一例として、カラーフィルタがベイヤー配列されている例を説明するが、本発明の実施がこれに限られるものではない。
撮像面位相差測距方式の測距機能を有する本実施形態の撮像素子20の各画素210は、複数の光電変換部を有する。複数の光電変換部は、撮像素子20の水平方向に係る図5(A)のI−I’断面において並んで配置されている。図5(B)に示されるように、各画素210は、導光層213および受光層214を備える。導光層213は、1つのマイクロレンズ211と、複数のカラーフィルタ212を有する。受光層214は、第1の光電変換部215および第2の光電変換部216を有する。すなわち、画素210は、1つのマイクロレンズに対して複数の光電変換部を有する構成となっている。
マイクロレンズ211は、画素へ入射した光束を第1の光電変換部215および第2の光電変換部216へ効率よく導くよう構成されている。カラーフィルタ212は、所定の波長帯域の光を通過させるものであり、赤(R)、緑(G)、青(B)のいずれかの波長帯の光のみを通過させ、後段の第1の光電変換部215および第2の光電変換部216に導く。
第1の光電変換部215および第2の光電変換部216は、受光した光をアナログ画像信号に変換する。第1の光電変換部215および第2の光電変換部216は、撮像光学系10の互いに異なる瞳領域を通過する光束から一対の像信号を生成し、一対の画像信号が測距に用いられる。すなわち、撮像素子20の各画素210の第1の光電変換部215から出力された像信号で構成される第1の画像信号と、第2の光電変換部216から出力された像信号で構成される第2の画像信号が測距に用いられる。
第1の光電変換部215と第2の光電変換部216とは、画素に対してマイクロレンズ211を介して入光する光束をそれぞれ部分的に受光する。そのため、最終的に得られる2種類の画像信号は、撮像光学系10の射出瞳101の異なる領域を通過した光束に係る瞳分割画像群となる。ここで、各画素210で第1の光電変換部215と第2の光電変換部216とが光電変換した画像信号を合成した画像信号は、画素に1つの光電変換部のみが設けられている態様において該1つの光電変換部から出力される鑑賞用の画像信号と等価である。
このような構造を有することで、本実施形態の撮像素子20は、鑑賞用画像信号と測距用画像信号(2種類の瞳分割画像)とを出力することが可能となっている。なお、本実施形態では、撮像素子20の全ての画素210が2つの光電変換部を備え、高密度な深度情報を出力可能に構成されている例を説明するが、これに限られるものではない。例えば、各画素210が備える光電変換部の数が2つ以上でもよい。また、全ての画素210ではなく一部の画素210が複数の光電変換部を備える構成でもよい。
ここで、第1の光電変換部215および第2の光電変換部216から出力された瞳分割画像群に基づいて被写体距離を導出する原理について、図6および図7を参照して説明する。図6(A)は、撮像素子20の画素210の第1の光電変換部215に受光する光束を示した概略図である。図6(B)は、第2の光電変換部216に受光する光束を示した概略図である。
マイクロレンズ211は、射出瞳101と受光層214とが光学的に共役関係になるように配置されている。撮像光学系10の射出瞳101を通過した光束は、マイクロレンズ211により集光されて第1の光電変換部215または第2の光電変換部216に導かれる。この際、第1の光電変換部215と第2の光電変換部216にはそれぞれ異なる瞳領域を通過した光束を主に受光する。第1の光電変換部215は第1の瞳領域510を通過した光束を受光し、第2の光電変換部216は第2の瞳領域520を通過した光束を受光する。
撮像素子20が備える複数の第1の光電変換部215は、第1の瞳領域510を通過した光束を主に受光し、第1の画像信号を出力する。同時に、撮像素子20が備える複数の第2の光電変換部216は、第2の瞳領域520を通過した光束を主に受光し、第2の画像信号を出力する。第1の画像信号からは、第1の瞳領域510を通過した光束が撮像素子20上に形成する像の強度分布を得ることができる。同様に、第2の画像信号からは、第2の瞳領域520を通過した光束が、撮像素子20上に形成する像の強度分布を得ることができる。
第1の画像信号と第2の画像信号間の相対的な位置ズレ量(所謂、視差量)は、デフォーカス量に応じた値となる。視差量とデフォーカス量との関係について、図7を用いて説明する。図7は、視差量とデフォーカス量との関係について説明する図である。図7において、第1の光束511は、第1の瞳領域510を通過する光束を示し、第2の光束521は第2の瞳領域520を通過する光束を示す。
図7(A)は、合焦時の状態を示している。合焦時には、第1の光束511と第2の光束521が撮像素子20上で収束している。このとき、第1の光束511により形成される第1の画像信号と第2の光束521により形成される第2の画像信号間との視差量は0となる。
図7(B)は、像がz軸の負方向にデフォーカスした状態を示している。このとき、第1の光束により形成される第1の画像信号と第2の信号により形成される第2の画像信号との視差量は0とはならず、負の値を有する。図7(C)は、像がz軸の正方向にデフォーカスした状態を示している。このとき、第1の光束により形成される第1の画像信号と第2の光束により形成される第2の画像信号との視差量は0とはならず、正の値を有する。図7(B)と図7(C)の比較から、デフォーカス量の正負に応じて、位置ズレの方向が入れ替わることが分かる。また、デフォーカス量に応じて、撮像光学系10の結像関係(幾何関係)に従って位置ズレが生じることが分かる。なお、第1の画像信号と第2の画像信号との位置ズレである視差量は、後述する領域ベースのマッチング手法により検出することができる。
画像処理部24は、画像生成部240と深度生成部241を備える。画像生成部240は、撮像素子20から得られた一対の画像信号を合成して観賞用の撮像画像を生成する。深度生成部241は、撮像素子20から得られた一対の画像信号から深度画像を生成する。
ここで、深度画像生成に係る処理について、図8のフローチャートを用いて説明する。図8は、深度画像を生成する処理を示すフローチャートである。ステップS2401で、深度生成部241は、第1の画像信号および第2の画像信号に光量補正処理を行う。撮像光学系10の周辺画角ではヴィネッティングによって第1の瞳領域510と第2の瞳領域520の形状が異なることに起因して、第1の画像信号と第2の画像信号の間では光量バランスが崩れている。そのため、深度生成部241は、例えば不図示のメモリに予め格納されている光量補正値を用いて、第1の画像信号と第2の画像信号の光量補正を行い、第1の画像信号と第2の画像信号の光量を揃える。
ステップS2402で、深度生成部241は、第1の画像信号および第2の画像信号に生じたノイズを低減する処理を行う。ノイズは、例えば撮像素子20における光電変換時に生じたノイズである。具体的には深度生成部241は、第1の画像信号と第2の画像信号に対してフィルタ処理を適用することで、ノイズ低減を実現する。一般に、空間周波数が高い高周波領域ほどSN比が低くなり、相対的にノイズ成分が多くなる。従って、深度生成部241は、空間周波数が高いほど、通過率が低減するローパスフィルタを第1の画像信号と第2の画像信号に対して適用する。なお、ステップS2401における光量補正は撮像光学系10の製造誤差等によっては好適な結果とはならないため、深度生成部241は、直流成分を遮断しかつ高周波成分の通過率が低いバンドパスフィルタをステップS2402で適用することがより好ましい。
ステップS2403で、深度生成部241は、深度画像を生成する。深度生成部241は、第1の画像信号と第2の画像信号の画像間の視差量を算出してデフォーカス量に変換し、デフォーカス量を画素値とする2次元情報を深度画像として生成する。
具体的には、深度生成部241は、まず視差量を算出するために、第1の画像信号内に、代表画素情報に対応した注目点と、該注目点を中心とする照合領域とを設定する。照合領域は、例えば、注目点を中心とした一辺が所定長さを有する正方領域等の矩形領域である。次に深度生成部241は、第2の画像信号内に参照点を設定し、該参照点を中心とする参照領域を設定する。参照領域は、上述した照合領域と同一の大きさおよび形状を有する。深度生成部241は、参照点を順次移動させながら、第1の画像信号の照合領域内に含まれる画像と、第2の画像信号の参照領域内に含まれる画像との相関度を導出し、最も相関度が高い参照点を、第2の画像信号における注目点に対応する対応点として特定する。このようにしてマッチングにより特定された対応点と注目点との相対的な位置ズレ量が、注目点における視差量となる。深度生成部241は、注目点を代表画素情報に従って順次変更しながら視差量を算出することで、該代表画素情報によって定められた複数の画素位置における視差量を導出する。本実施形態では簡単のため、鑑賞用画像と同一の解像度で深度情報を得るべく、視差量を計算する画素位置(代表画素情報に含まれる画素群)は、鑑賞用画像と同数になるよう設定されているものとする。相関度の導出方法としてNCC(Normalized Cross−Correlation)やSSD(Sum of Squared Difference)、SAD(Sum of Absolute Difference)等の方法を用いてよい。
算出した視差量は、所定の変換係数を用いることで撮像素子20から撮像光学系10の焦点までの距離であるデフォーカス量に変換することができる。ここで、所定の変換係数K、デフォーカス量をΔLとすると、視差量は、下記の式1によって、デフォーカス量に変換できる。
ΔL=K×d・・・(式1)
深度生成部241は、算出したデフォーカス量を画素値とする2次元情報を構成し、深度画像として不図示のメモリに格納する。
本実施形態における補正処理は、第1実施形態における補正処理のフローチャート(図3)と同様の流れで処理を実施するが、距離補正に用いる情報が異なる。第1実施形態では、フォーカシングレンズ105の駆動パルス数を利用して補正を実行する例を説明したが、本実施形態では像側におけるフォーカス位置のずれ(デフォーカス量)を基準として補正を実行する。
本実施形態における距離補正処理は、図3に示される第1実施形態の焦点距離補正処理と同様の処理であるが、撮像装置200の姿勢に応じたフォーカシングレンズ105の駆動量の変化量をデフォーカス量として保持している点が異なっている。ステップS301で、レンズ駆動情報取得部130は、合焦動作によって撮像光学系10内に設置されたフォーカシングレンズ105を駆動した際の駆動量を制御部12から取得する。レンズ駆動情報取得部130は、取得した駆動量に基づいて、撮像光学系10の主点から像面までの像面距離を算出する。
ステップS302で、姿勢検出部131は、センサ19の加速度センサやジャイロセンサ等の出力から、撮影時すなわち合焦時の撮像装置200の姿勢情報を検出する。姿勢検出部131は姿勢情報として、撮像装置200の基準姿勢からのロール・ピッチ・ヨーの傾き角度、特に上下方向にどの程度の傾き角度で撮影が実施されたかを取得する。
ステップS303で、補正情報取得部132は、記憶部15から予め取得された距離補正に必要な距離補正情報を取得する。本実施形態における距離補正情報は、フォーカシングレンズ105を駆動した際の姿勢変化に対する駆動量の変化量をデフォーカス量に換算した値である。記憶部15には距離補正情報として、予め取得された姿勢によるデフォーカス量の変化をテーブルとして保存してもよいし、姿勢の角度による関数で近似しその係数を保持してもよい。距離補正情報として関数を利用する場合、一般的に、姿勢が上向きおよび下向きになった場合にデフォーカス量が急激に変化する傾向があるため、ピッチ角度に対する三角関数や三次関数で近似するのが好適である。
ステップS304で、補正部133は、ステップS301で取得した合焦時の像面距離、深度生成部241で生成したデフォーカス量、ステップS303で取得した撮像装置200の姿勢に伴うデフォーカス量を用いて、補正後の像側の被写体距離(像面距離+被写体のデフォーカス量)を算出する。そして、補正部133は、幾何光学における下記の式2で示されるレンズの公式を用いることで、算出した像側の被写体距離を物側の被写体距離に変換する。
1/A+1/B=1/F・・・(式2)
ここで、Aは被写体から撮像光学系10の主点までの距離(被写体距離)、Bは撮像光学系10の主点から像側の被写体距離、Fは撮像光学系10の焦点距離を表す。レンズの公式において、Bの値がステップS304で算出した像側の被写体距離である。像側の被写体距離Bと撮像時の焦点距離Fの設定に基づいて、物側の被写体距離Aを算出することができる。
深度生成部241で生成したデフォーカス量を用いない場合は、ステップS301で取得した合焦時の像面距離とステップS303で取得した撮像装置200の姿勢に伴うデフォーカス量を用いて、補正後の像面距離を算出する。
本実施形態では、撮像面位相差測距方式を利用した深度画像生成においても、撮像装置の姿勢による距離計測誤差を補正可能となり、撮像装置の姿勢変化に依存せずに被写体距離および深度画像生成が可能となる。そして、補正部133は、幾何光学における式2で示されるレンズの公式を用いることで、算出した像面距離を物側の被写体距離に変換する。
(第3実施形態)
第1実施形態および第2実施形態では、被写体までの距離を補正する例について説明した。しかしながら、被写体までの距離以外にも撮像装置の姿勢変化に伴うズレが生じる。例えば、撮像装置の姿勢変化に伴い、撮像光学系10内のレンズ取り付け時に生じる間隙等に起因するレンズ間隔の変化により、撮像光学系10の焦点距離の微小変化が生じる。焦点距離の微小変化は通常の撮影に支障をきたすものではないが、撮影倍率の算出にも誤差を生じさせる。また、第2実施形態における撮像素子20のような構成での深度画像生成において、式2における焦点距離をより正確な値にすることにより、被写体距離をより正確に算出することが可能となる。そこで本実施形態では、焦点距離および撮影倍率を補正する処理について説明する。
焦点距離の補正処理について図9(A)のフローチャートを用いて説明する。図9(A)は、焦点距離の補正処理を示すフローチャートである。第1実施形態と同様の処理については同じ符号を付すことでその説明を省略する。なお、本実施形態における撮像装置の構成は第1実施形態と同様でもよいし、第2実施形態と同様でもよい。以下では、第1実施形態の撮像装置100を例に説明する。
ステップS901で、補正情報取得部132は、焦点距離補正情報を記憶部15から取得する。焦点距離補正情報は、姿勢変化に伴う焦点距離の変化情報であり、撮像装置100の基準となる姿勢(例えば、水平)での焦点距離と撮像装置100の姿勢を変化させた場合の焦点距離の変化を表す値である。焦点距離補正情報は、例えば特定距離に設置したチャートから姿勢による画角の微小変化から算出され、予め記憶部15に保存されている。
ステップS902で、補正部133は、ステップS301で取得したレンズ駆動情報から基準となる焦点距離を算出し、ステップS901で取得した焦点距離補正情報を用いて算出した焦点距離を補正する。補正した焦点距離は、撮影した画像の付属情報として画像に紐づけて記憶部15に保存される。また、補正した焦点距離を第2実施形態における式2の演算で利用することで、被写体距離の補正をより高精度に行うことができる。
次に、撮影倍率の補正処理について図9(B)のフローチャートを用いて説明する。図9(A)は、撮影倍率の補正処理を示すフローチャートである。撮影倍率の補正処理では、被写体距離の補正と焦点距離の補正とを実施して、補正した撮影倍率を算出する。第1実施形態(図3)および焦点距離の補正処理(図9(A))と同様の処理については、同じ符号を付すことでその説明を省略する。
ステップS903で、補正部133もしくは測定部13内の不図示の倍率算出部は、ステップS304で算出した補正された被写体距離A’と、ステップS902で算出した補正された焦点距離F’から撮影倍率Mを算出する。撮影倍率Mは、M=A’/F’で算出される。算出した撮影倍率に基づいて、画像処理部14内の不図示の寸法計測部において被写体の寸法計測を実行することが可能となる。寸法計測では、像面上の被写体の大きさを撮像素子10の画素サイズから算出し、撮影倍率を乗算することによって物体側における被写体寸法を算出することが可能となる。
本実施形態では、撮像装置の姿勢変化に伴う撮像光学系の焦点距離および撮影倍率の補正を行うことが可能となり、姿勢変化に対応したより正確な焦点距離および撮影倍率を算出することが可能となる。さらに、焦点距離および撮影倍率の補正は、撮影画像からの寸法計測を実施する場合に有効であり、撮像装置の姿勢に依存せずに撮影画像からの寸法計測が可能となる。
(第4実施形態)
第1実施形態〜第3実施形態では、被写体距離や焦点距離といった1次元情報の補正に関して説明したが、本実施形態では撮像装置100の姿勢変化に伴う2次元情報の補正に関して述べる。撮像装置100の姿勢変化により、撮像光学系10中のレンズに傾きが生じた場合、像面のボケ量分布に応じて撮影した画像に片ボケが生じる場合がある。そこで、補正情報として、撮像装置100の姿勢変化に応じた像面の各位置におけるボケ量またはデフォーカス量を予め計測し、記憶部15に保存しておく。撮像装置100の姿勢変化に応じた補正情報を用いることで、撮影時の撮像装置100の姿勢を検出することだけで画像中のどの領域にどれだけのボケが生じるかの情報を取得することができる。そして、撮影画像中の領域ごとにボケに対応したシャープネスフィルタを適用することで、撮影画像の片ボケの影響を軽減することが可能となる。また、補正情報として、撮像装置100の姿勢変化に応じた補正用のフィルタを予め保存するようにしてもよい。
本実施形態によると、撮像装置の姿勢変化に伴って撮影画像に生じる片ボケの影響を補正することができ、撮像装置がどのような姿勢であってもその姿勢による片ボケの影響を軽減した撮影画像を取得することが可能となる。
(その他の実施例)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。
100 撮像装置
10 撮像光学系
11 撮像素子
12 制御部
13 計測部
130 レンズ駆動情報取得部
131 姿勢検出部
132 補正情報取得部
133 補正部
14 画像処理部
15 記憶部
19 センサ

Claims (13)

  1. 撮影時の計測値を取得する計測手段と、
    前記撮影時の撮像装置の姿勢を検出する姿勢検出手段と、
    検出した前記撮像装置の姿勢に応じて、前記撮像装置の姿勢に起因する前記撮像装置の内部の状態変化による計測値の誤差を補正するための補正情報を取得する補正情報取得手段と、
    前記補正情報に基づいて前記撮影時の計測値を補正する補正手段と、を備えることを特徴とする撮像装置。
  2. 前記計測値は、被写体距離に対応するフォーカシングレンズの駆動量であり、
    前記補正情報は、前記撮像装置の姿勢に応じたフォーカシングレンズの駆動量の変化量であり、
    前記補正手段は、補正後のフォーカシングレンズの駆動量に基づいて被写体距離を算出することを特徴とする請求項1に記載の撮像装置。
  3. 前記計測値は、撮像光学系の主点から像面までの像面距離であり、
    前記補正情報は、前記撮像装置の姿勢に応じたデフォーカス量の変化量であることを特徴とする請求項1に記載の撮像装置。
  4. 前記計測値は、撮像光学系の主点から像面までの像面距離であり、
    前記補正情報は、前記撮像装置の姿勢に応じたデフォーカス量の変化量であり、
    前記補正手段は、前記像面距離と前記デフォーカス量の変化量に基づいて被写体距離を算出することを特徴とする請求項3に記載の撮像装置。
  5. 前記計測値は、撮像光学系の焦点距離であり、
    前記補正情報は、前記撮像装置の姿勢に応じた撮像光学系の焦点距離の変化量であることを特徴とする請求項1乃至4のいずれか1項に記載の撮像装置。
  6. 前記計測値は、撮像画像のボケ量分布であり、
    前記補正情報は、前記撮像装置の姿勢に応じた撮像画像の領域ごとのボケ量であり、
    前記補正手段は、前記補正情報に基づいて前記撮像画像に生じるボケを領域ごとに補正することを特徴とする請求項1乃至5のいずれか1項に記載の撮像装置。
  7. 被写体距離および焦点距離に基づいて撮影倍率を算出する倍率算出手段を更に備え、
    前記計測手段は、前記計測値としてフォーカシングレンズの駆動量および焦点距離を取得し、
    前記補正情報取得手段は、前記補正情報として撮影時の前記撮像装置の姿勢に応じたフォーカシングレンズの駆動量の誤差を補正するための情報および焦点距離の誤差を補正するための情報を取得し、
    前記補正手段は、前記補正情報に基づいて前記計測値を補正して、補正後のフォーカシングレンズの駆動量に基づいて被写体距離を算出し、
    前記倍率算出手段は、前記補正手段が算出した被写体距離および撮影倍率に基づいて撮影倍率を算出することを特徴とする請求項1に記載の撮像装置。
  8. 前記倍率算出手段が算出した前記撮影倍率と像面における被写体像の寸法から被写体寸法を算出する寸法計測手段を更に備えることを特徴とする請求項7に記載の撮像装置。
  9. 前記補正情報は、前記撮像装置の姿勢に応じたテーブルまたは前記撮像装置の姿勢を変数とする関数の係数として記憶手段に保存されることを特徴とする請求項1乃至8のいずれか1項に記載の撮像装置。
  10. 前記姿勢検出手段が検出する前記撮像装置の姿勢は、前記撮像装置の基準姿勢に対するロール・ピッチ・ヨー方向の角度のいずれかであることを特徴とする請求項1乃至9のいずれか1項に記載の撮像装置。
  11. 撮影時のフォーカシングレンズの駆動量を取得する計測手段と、
    前記撮影時の撮像装置の姿勢を検出する姿勢検出手段と、
    検出した前記撮像装置の姿勢に応じて、前記撮像装置の姿勢に起因する前記撮像装置の内部の状態変化によるフォーカシングレンズの駆動量の誤差を補正するための補正情報を取得する補正情報取得手段と、
    前記補正情報に基づいて前記撮影時のフォーカシングレンズの駆動量を補正し、補正したフォーカシングレンズの駆動量に基づいて被写体距離を算出する補正手段と、を備えることを特徴とする撮像装置。
  12. 撮像装置の制御方法であって、
    撮影時の計測値を取得する工程と、
    前記撮影時の撮像装置の姿勢を検出する工程と、
    検出した前記撮像装置の姿勢に応じて、前記撮像装置の姿勢に起因する前記撮像装置の内部の状態変化による計測値の誤差を補正するための補正情報を取得する工程と、
    前記補正情報に基づいて前記撮影時の計測値を補正する工程と、を有することを特徴とする制御方法。
  13. 請求項1乃至11のいずれか1項に記載の撮像装置の各手段としてコンピュータを機能させるためのプログラム。
JP2019209572A 2019-11-20 2019-11-20 撮像装置、撮像装置の制御方法およびプログラム Active JP7504579B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019209572A JP7504579B2 (ja) 2019-11-20 2019-11-20 撮像装置、撮像装置の制御方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019209572A JP7504579B2 (ja) 2019-11-20 2019-11-20 撮像装置、撮像装置の制御方法およびプログラム

Publications (2)

Publication Number Publication Date
JP2021081611A true JP2021081611A (ja) 2021-05-27
JP7504579B2 JP7504579B2 (ja) 2024-06-24

Family

ID=75965094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019209572A Active JP7504579B2 (ja) 2019-11-20 2019-11-20 撮像装置、撮像装置の制御方法およびプログラム

Country Status (1)

Country Link
JP (1) JP7504579B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651176A (ja) * 1992-07-28 1994-02-25 Nikon Corp レンズ鏡筒
JP2000227543A (ja) * 1999-02-05 2000-08-15 Canon Inc 光学機器
JP2005292659A (ja) * 2004-04-02 2005-10-20 Matsushita Electric Ind Co Ltd 撮像装置及びこれに用いるレンズ鏡筒とカメラ本体
US20090268310A1 (en) * 2003-12-09 2009-10-29 Panasonic Corporation Lens driving apparatus, imaging apparatus, and lens barrel and camera main body used for this
JP2011013460A (ja) * 2009-07-02 2011-01-20 Canon Inc 光学機器
WO2014046184A1 (ja) * 2012-09-24 2014-03-27 富士フイルム株式会社 複数被写体の距離計測装置及び方法
JP2014126858A (ja) * 2012-12-27 2014-07-07 Canon Inc 撮像装置およびその制御方法
JP2019082468A (ja) * 2017-10-27 2019-05-30 キヤノン株式会社 撮像装置及び撮像装置の制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651176A (ja) * 1992-07-28 1994-02-25 Nikon Corp レンズ鏡筒
JP2000227543A (ja) * 1999-02-05 2000-08-15 Canon Inc 光学機器
US20090268310A1 (en) * 2003-12-09 2009-10-29 Panasonic Corporation Lens driving apparatus, imaging apparatus, and lens barrel and camera main body used for this
JP2005292659A (ja) * 2004-04-02 2005-10-20 Matsushita Electric Ind Co Ltd 撮像装置及びこれに用いるレンズ鏡筒とカメラ本体
JP2011013460A (ja) * 2009-07-02 2011-01-20 Canon Inc 光学機器
WO2014046184A1 (ja) * 2012-09-24 2014-03-27 富士フイルム株式会社 複数被写体の距離計測装置及び方法
JP2014126858A (ja) * 2012-12-27 2014-07-07 Canon Inc 撮像装置およびその制御方法
JP2019082468A (ja) * 2017-10-27 2019-05-30 キヤノン株式会社 撮像装置及び撮像装置の制御方法

Also Published As

Publication number Publication date
JP7504579B2 (ja) 2024-06-24

Similar Documents

Publication Publication Date Title
JP5791349B2 (ja) 撮像装置及びその制御方法
US9344617B2 (en) Image capture apparatus and method of controlling that performs focus detection
WO2014171051A1 (ja) 距離測定装置、及び、距離測定方法
US20130128097A1 (en) Image-pickup apparatus and control method therefor
JP6664177B2 (ja) 焦点検出装置、予測方法、プログラム及び記憶媒体
JP2013021615A (ja) 撮像装置
US10999491B2 (en) Control apparatus, image capturing apparatus, control method, and storage medium
JP6576114B2 (ja) 撮像装置および撮像装置の制御方法
JP2010128205A (ja) 撮像装置
JP6271911B2 (ja) 撮像装置及びその制御方法、デフォーカス量算出方法
JP5393877B2 (ja) 撮像装置および集積回路
JP5487955B2 (ja) 撮像装置および撮像方法
US20150168739A1 (en) Image stabilizer, camera system, and imaging method
JPWO2020013200A1 (ja) 交換レンズ、及びカメラボディ
JP2007060520A (ja) 撮像装置
JP7504579B2 (ja) 撮像装置、撮像装置の制御方法およびプログラム
JP2016142924A (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP2009251523A (ja) 相関演算方法、相関演算装置、焦点検出装置および撮像装置
JP2014142497A (ja) 撮像装置及びその制御方法
JP4696730B2 (ja) ピント測定装置
JP2013061560A (ja) 測距装置および撮像装置
JP6305016B2 (ja) フォーカス制御装置、フォーカス制御装置の制御方法及び撮像装置
JP6728005B2 (ja) 撮像装置、撮像方法およびプログラム
US20220232166A1 (en) Range measurement apparatus, storage medium and range measurement method
JP7271316B2 (ja) 撮像装置及びその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240612