WO2017199366A1 - ドハティ増幅器 - Google Patents

ドハティ増幅器 Download PDF

Info

Publication number
WO2017199366A1
WO2017199366A1 PCT/JP2016/064723 JP2016064723W WO2017199366A1 WO 2017199366 A1 WO2017199366 A1 WO 2017199366A1 JP 2016064723 W JP2016064723 W JP 2016064723W WO 2017199366 A1 WO2017199366 A1 WO 2017199366A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
frequency
electrical length
impedance
compensation
Prior art date
Application number
PCT/JP2016/064723
Other languages
English (en)
French (fr)
Inventor
優治 小松崎
新庄 真太郎
圭吾 中谷
翔平 今井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP16902385.0A priority Critical patent/EP3461000B1/en
Priority to JP2016564277A priority patent/JP6157759B1/ja
Priority to CN201680085698.9A priority patent/CN109155612B/zh
Priority to DE112016006870.0T priority patent/DE112016006870T5/de
Priority to PCT/JP2016/064723 priority patent/WO2017199366A1/ja
Priority to US16/097,844 priority patent/US10608594B2/en
Publication of WO2017199366A1 publication Critical patent/WO2017199366A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/04Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in discharge-tube amplifiers
    • H03F1/06Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in discharge-tube amplifiers to raise the efficiency of amplifying modulated radio frequency waves; to raise the efficiency of amplifiers acting also as modulators
    • H03F1/07Doherty-type amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/36Indexing scheme relating to amplifiers the amplifier comprising means for increasing the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to a Doherty amplifier in which a carrier amplifier and a peak amplifier are connected in parallel.
  • Doherty amplifiers that realize highly efficient operation have been proposed as communication amplifiers.
  • a carrier amplifier and a peak amplifier are connected in parallel, and by loading a 90-degree line that performs load modulation on the output side of the carrier amplifier, the output power is high at the time of back-off operation lower than the saturated output. Efficient operation is realized.
  • the peak amplifier is in a stopped state.
  • the Doherty amplifier operates on a narrow band due to the influence of the frequency dependence of the 90-degree line loaded on the output side of the carrier amplifier due to the operating principle, and the electrical length of the 90-degree line deviates from 90 degrees. May be.
  • Patent Document 1 a plurality of lines having different electrical lengths are provided on the output side of the carrier amplifier, and the plurality of lines having different electrical lengths are connected to the output side of the carrier amplifier according to the frequency of the input signal.
  • a Doherty amplifier having a control mechanism for selecting a line to be used is disclosed. With this control mechanism, the electrical length of the output line of the carrier amplifier is brought close to 90 degrees.
  • the electrical length in the output-side line of the carrier amplifier can be brought close to 90 degrees.
  • a detection mechanism for detecting the frequency of the input signal and a control mechanism for selecting a line connected to the output side of the carrier amplifier there is a problem that the circuit becomes large and complicated.
  • the frequency bandwidth of the input signal is wider than the applicable bandwidth of each line provided on the output side of the carrier amplifier, it will not be possible to increase the bandwidth even if any line is selected. There was a problem.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a Doherty amplifier capable of achieving a wide band without increasing the size and complexity of the circuit.
  • a Doherty amplifier includes a distributor that distributes a signal to be amplified, a carrier amplifier that amplifies one of the signals distributed by the distributor, and a 90-degree line having one end connected to the output side of the carrier amplifier. And a peak amplifier that amplifies the other signal distributed by the distributor, and a combiner that combines the signal that has passed through the 90-degree line and the signal that has been amplified by the peak amplifier, and outputs the combined signal.
  • the impedance viewed from the output terminal of its own is opened within the operating frequency, and the frequency of the impedance viewed from the output of the combiner
  • a compensation circuit for compensating the dependency is connected between the peak amplifier and the combiner.
  • the impedance when the peak amplifier side is viewed from its own output terminal is opened within the operating frequency, and the combiner is opened from the output side of the combiner. Since the compensation circuit that compensates the frequency dependence of the impedance seen is connected between the peak amplifier and the combiner, it is possible to increase the bandwidth without increasing the size and complexity of the circuit. There is an effect that can be done.
  • wire whose characteristic impedance is Z d at a degree.
  • FIG. 1 is a block diagram showing a Doherty amplifier according to Embodiment 1 of the present invention.
  • an input terminal 1 is a terminal for inputting a high frequency signal such as a microwave or a millimeter wave as a signal to be amplified.
  • the distributor 2 distributes the high-frequency signal input from the input terminal 1, outputs one distributed high-frequency signal to the signal path 3, and outputs the other distributed high-frequency signal to the signal path 4.
  • the signal path 3 is a path from the distributor 2 to the synthesizer 10 through the carrier amplifier 6.
  • the signal path 4 is a path from the distributor 2 through the peak amplifier 8 to the combiner 10.
  • the phase correction circuit 5 is inserted into the signal path 3 and is a circuit that aligns the electrical length of the signal path 3 with the electrical length of the signal path 4. In the example of FIG. 1, the phase correction circuit 5 is inserted in the signal path 3. However, the electrical length of the signal path 3 and the electrical length of the signal path 4 may be equal. It may be inserted in.
  • the carrier amplifier 6 is an amplifying element that amplifies the high-frequency signal that has passed through the phase correction circuit 5.
  • the 90-degree line 7 is a line having one end connected to the output side of the carrier amplifier 6 and the other end connected to the combiner 10 and having an electrical length of 90 degrees.
  • the peak amplifier 8 is inserted into the signal path 4 and is an amplifying element that amplifies the high-frequency signal distributed by the distributor 2.
  • the compensation circuit 9 is connected between the peak amplifier 8 and the combiner 10, and when the peak amplifier 8 stops operating, the impedance viewed from the output terminal 9 a of the peak amplifier 8 is within the operating frequency. And a circuit that compensates for the frequency dependence of the impedance when the synthesizer 10 is viewed from the output side of the synthesizer 10. That is, when the impedance of the synthesizer 10 viewed from the output side of the synthesizer 10 is present in the capacitive region, the compensation circuit 9 performs compensation to bring the impedance closer to the boundary between the capacitive region and the inductive region.
  • the circuit When the impedance seen from the output side of the synthesizer 10 is present in the inductive region, the circuit performs compensation to bring the impedance closer to the boundary between the capacitive region and the inductive region.
  • “within use frequency” means within the range of frequencies handled by the Doherty amplifier of FIG.
  • the synthesizer 10 synthesizes the high frequency signal that has passed through the 90-degree line 7 at the signal synthesis point 10 a and the high frequency signal that has passed through the compensation circuit 9, and outputs the synthesized high frequency signal to the output terminal 11.
  • the signal combining point 10a is a connection point where the signal path 3 and the signal path 4 are connected.
  • the synthesizer 10 is simply a circuit in which the signal path 3 and the signal path 4 are connected at a signal synthesis point 10a and has a signal path from the signal synthesis point 10a to the output terminal 11, which is a so-called Wilkinson distributor. It is not a synthesizer like this.
  • the output terminal 11 is a terminal that outputs the combined high-frequency signal output from the combiner 10 to the outside.
  • the distributor 2 distributes the high-frequency signal input from the input terminal 1, outputs one distributed high-frequency signal to the signal path 3, and outputs the other distributed high-frequency signal to the signal path 4.
  • the high frequency signal output from the distributor 2 to the signal path 3 is input to the phase correction circuit 5.
  • the phase correction circuit 5 has an electrical length such that the electrical length of the signal path 3 is equal to the electrical length of the signal path 4. For this reason, the electrical length of the signal path 3 and the electrical length of the signal path 4 are aligned by the phase correction circuit 5.
  • the carrier amplifier 6 amplifies the high-frequency signal that has passed through the phase correction circuit 5.
  • the high frequency signal amplified by the carrier amplifier 6 reaches the combiner 10 after passing through the 90-degree line 7 having an electrical length of 90 degrees.
  • the peak amplifier 8 amplifies the high frequency signal distributed by the distributor 2.
  • the high frequency signal amplified by the peak amplifier 8 passes through the compensation circuit 9 and then reaches the combiner 10.
  • the combiner 10 combines the high-frequency signal that has passed through the 90-degree line 7 and the high-frequency signal that has passed through the compensation circuit 9, and outputs the combined high-frequency signal to the output terminal 11.
  • FIG. 2 is a configuration diagram showing the Doherty amplifier when the compensation circuit 9 is not mounted.
  • the compensation circuit 9 is not mounted, and the electrical length of the signal path 4 is shorter than the electrical length of the signal path 4 in the Doherty amplifier of FIG.
  • the example inserted in the signal path 4 is shown.
  • FIG. 2 shows impedance transformation in a state where the operation of the peak amplifier 8 is stopped (hereinafter referred to as “back-off operation”).
  • the output load of the carrier amplifier 6 is generally twice the output impedance Ropt of the Doherty amplifier during the back-off operation.
  • the impedance of the carrier amplifier 6 viewed from the output side of the carrier amplifier 6 is 2 ⁇ Ropt.
  • the peak amplifier 8 has stopped operating, and the output impedance of the peak amplifier 8 is open.
  • the characteristic impedance of the 90-degree line 7 is Ropt, and the electrical length of the 90-degree line 7 is 90 degrees at the center frequency within the use frequency in the Doherty amplifier.
  • the frequency dependence of the impedance ⁇ when the synthesizer 10 is viewed from the output side of the synthesizer 10 is expressed as shown in FIG.
  • FIG. 3 is a Smith chart showing the frequency dependence of the impedance ⁇ in the Doherty amplifier in which the compensation circuit 9 is not mounted.
  • the impedance ⁇ is located at the center of the Smith chart, that is, on the horizontal axis of the Smith chart.
  • the electrical length of the 90-degree line 7 is shorter than 90 degrees, so that the impedance ⁇ is located in the capacitive region. .
  • the electrical length of the 90-degree line 7 becomes longer than 90 degrees, so that the impedance ⁇ is positioned in the inductive region.
  • the reflection characteristics deteriorate as the frequency of the high-frequency signal is further away from the center frequency.
  • the characteristic impedance of the 90-degree line 7 is Ropt, and the electrical length of the 90-degree line 7 is 90 degrees at the center frequency within the use frequency in the Doherty amplifier.
  • the compensation circuit 9 has a function of opening the impedance when the peak amplifier 8 side is viewed from its own output terminal 9a within the operating frequency, and in a state where the frequency of the high frequency signal is in a low frequency range lower than the center frequency, In a state where the frequency characteristic is switched to inductive (hereinafter referred to as “L characteristic”) and the frequency of the high frequency signal is present in a high frequency range higher than the center frequency, the frequency characteristic is capacitive (hereinafter referred to as “C characteristic”). And a function of switching to inductive (hereinafter referred to as “L characteristic”) and the frequency of the high frequency signal is present in a high frequency range higher than the center frequency.
  • L characteristic inductive
  • C characteristic capacitive
  • FIG. 4 is a Smith chart showing the frequency dependence of the impedance ⁇ in the Doherty amplifier in which the compensation circuit 9 is mounted.
  • the frequency characteristic of the compensation circuit 9 is switched to L property, so that the impedance ⁇ located in the capacitive region is at the center of the Smith chart. Compensation that approaches is performed. Further, in the state where the frequency of the high frequency signal exists in a high frequency range higher than the center frequency, the frequency characteristic of the compensation circuit 9 is switched to the C characteristic, so that the impedance ⁇ located in the inductive region is the center of the Smith chart. Compensation to approach
  • FIG. 5 is an explanatory diagram showing the frequency dependence of the reflection characteristics when the combiner 10 is viewed from the output side of the combiner 10. Since the compensation circuit 9 performs compensation so that the impedance ⁇ approaches the center of the Smith chart, as shown in FIG. 5, a wide band of the Doherty amplifier is realized.
  • the impedance viewed from the output terminal 9a of the peak amplifier 8 side is opened within the operating frequency.
  • the compensation circuit 9 for compensating the frequency dependence of the impedance when the synthesizer 10 is viewed from the output side of the synthesizer 10 is configured to be connected between the peak amplifier 8 and the synthesizer 10, the circuit There is an effect that it is possible to increase the bandwidth without increasing the size and complexity.
  • Embodiment 2 FIG. In the first embodiment, the Doherty amplifier in which the compensation circuit 9 is connected between the peak amplifier 8 and the combiner 10 is shown. However, in the second embodiment, the compensation circuit 9 is 180 degrees within the use frequency. A Doherty amplifier that is a frequency-dependent compensation line having an electrical length that is an integral multiple of is described.
  • FIG. 6 is an explanatory diagram showing a frequency-dependent compensation line 21 which is a compensation circuit for a Doherty amplifier according to Embodiment 2 of the present invention.
  • N is a natural number.
  • FIG. 7 is a Smith chart showing the frequency dependence of the impedance ⁇ in the Doherty amplifier in which the frequency dependence compensation line 21 is mounted.
  • the impedance ⁇ located in the capacitive region approaches the center of the Smith chart due to the L property of the frequency dependent compensation line 21. Compensation is made. Further, in a state where the frequency of the high frequency signal exists in a high frequency range higher than the center frequency, the impedance ⁇ located in the inductive region approaches the center of the Smith chart due to the C property of the frequency dependent compensation line 21. Such compensation is performed.
  • the amount of impedance compensation differs according to the characteristic impedance Z of the frequency-dependent compensation line 21.
  • the characteristic impedance Z of the frequency-dependent compensation line 21 is determined by the frequency dependence of the carrier amplifier 6 and the 90-degree line 7 and the band characteristics required for the Doherty amplifier.
  • the compensation circuit 9 is configured to use the frequency-dependent compensation line 21 having an electrical length that is an integral multiple of 180 degrees within the operating frequency. Therefore, as in the first embodiment, there is an effect that it is possible to increase the bandwidth without increasing the size and complexity of the circuit.
  • the frequency-dependent compensation line 21 has an electrical length ⁇ that is an integral multiple of 180 degrees at the center frequency within the use frequency. It suffices to have an electrical length ⁇ that is an integral multiple of 180 degrees within the operating frequency, and does not have to have an electrical length ⁇ that is an integral multiple of 180 degrees at the center frequency.
  • the compensation circuit 9 has an electrical length ⁇ that is an integral multiple of 180 degrees at the center frequency within the operating frequency, and has the same characteristics as the output impedance of the combiner 10. A description will be given of one using the frequency-dependent compensation line 22 having impedance.
  • FIG. 8 is an explanatory diagram showing a frequency-dependent compensation line 22 that is a compensation circuit for a Doherty amplifier according to Embodiment 3 of the present invention.
  • FIG. 9 is a Smith chart showing the frequency dependence of the impedance ⁇ in the Doherty amplifier in which the frequency dependence compensation line 22 is mounted.
  • the impedance ⁇ located in the capacitive region approaches the center of the Smith chart due to the L property of the frequency dependent compensation line 22. Compensation is made. Further, in a state where the frequency of the high frequency signal is present in a high frequency range higher than the center frequency, the impedance ⁇ located in the inductive region approaches the center of the Smith chart due to the C property of the frequency dependent compensation line 22. Such compensation is performed.
  • the amount of impedance compensation differs according to the electrical length ⁇ of the frequency dependent compensation line 22.
  • the electrical length ⁇ of the frequency-dependent compensation line 22 is determined by the frequency dependence of the carrier amplifier 6 and the 90-degree line 7 and the band characteristics required for the Doherty amplifier.
  • the compensation circuit 9 is configured to use the frequency-dependent compensation line 22 having an electrical length that is an integral multiple of 180 degrees within the operating frequency. Therefore, as in the first embodiment, there is an effect that it is possible to increase the bandwidth without increasing the size and complexity of the circuit.
  • the frequency-dependent compensation line 22 has an electrical length ⁇ that is an integral multiple of 180 degrees at the center frequency within the use frequency. It suffices to have an electrical length ⁇ that is an integral multiple of 180 degrees within the operating frequency, and does not have to have an electrical length ⁇ that is an integral multiple of 180 degrees at the center frequency.
  • Embodiment 4 FIG.
  • the Doherty amplifier in which the compensation circuit 9 is connected between the peak amplifier 8 and the combiner 10 has been described.
  • a plurality of lines having an electrical length ⁇ of 180 degrees are shown.
  • a Doherty amplifier using the frequency-dependent compensation line 23 in which the plurality of lines have different characteristic impedances as the compensation circuit 9 will be described.
  • FIG. 10 is an explanatory diagram showing a frequency-dependent compensation line 23 which is a compensation circuit for a Doherty amplifier according to Embodiment 4 of the present invention.
  • It is explanatory drawing which shows the frequency dependence compensation line 23 with which the line which is d is connected in series. 10A and 10B, even if the characteristic impedance Z is different, all the lines having an electrical length ⁇ of 180 degrees are connected in series, so that the frequency-dependent compensation line 23 in the frequency-dependent compensation line 23
  • the impedance on the input side matches the impedance on the output side.
  • the impedance ⁇ located in the capacitive region approaches the center of the Smith chart due to the L property of the frequency dependent compensation line 23. Compensation is made. Further, in a state where the frequency of the high frequency signal is present in a high frequency region higher than the center frequency, the impedance ⁇ located in the inductive region approaches the center of the Smith chart due to the C property of the frequency dependent compensation line 23. Such compensation is performed.
  • the amount of impedance compensation in the frequency dependent compensation line 23 varies.
  • the characteristic impedance Z of the frequency dependence compensation line 23 is determined by the frequency dependence of the carrier amplifier 6 and the 90-degree line 7 and the band characteristics required for the Doherty amplifier.
  • the compensation circuit 9 As the compensation circuit 9, a plurality of lines having an electrical length ⁇ of 180 degrees are connected in series, and the plurality of lines have different characteristic impedances. Since the frequency-dependent compensation line 23 is used, as in the first embodiment, there is an effect that a wide band can be achieved without increasing the size and complexity of the circuit.
  • the electrical length ⁇ of a plurality of lines in the frequency-dependent compensation line 23 is an integral multiple of 180 degrees.
  • the electrical length ⁇ is an integer of 180 degrees within the operating frequency. It is not limited to an integral multiple of 180 degrees at the center frequency within the use frequency.
  • Embodiment 5 FIG.
  • the Doherty amplifier in which the compensation circuit 9 is connected between the peak amplifier 8 and the combiner 10 has been described.
  • the electrical length ⁇ is an integral multiple of 90 degrees.
  • a plurality of lines are connected in series, and among the plurality of lines, the characteristic impedance and electrical length of the line existing on the input side with respect to the line existing at the center position in the signal transmission direction,
  • a Doherty amplifier using the frequency-dependent compensation line 24 in which the characteristic impedance and the electrical length of the line existing on the output side are symmetrical will be described.
  • FIG. 11 is an explanatory diagram showing a frequency-dependent compensation line 24 which is a compensation circuit for a Doherty amplifier according to Embodiment 5 of the present invention.
  • wire which is b in series.
  • wire which is b in series.
  • 11C has the characteristic impedance and electrical length of the line existing on the input side and the line existing on the output side with respect to the center line. Therefore, the impedance on the input side and the impedance on the output side of the frequency-dependent compensation line 24 coincide with each other.
  • the impedance ⁇ located in the capacitive region approaches the center of the Smith chart due to the L property of the frequency dependent compensation line 24. Compensation is made. Further, in a state where the frequency of the high frequency signal is present in a high frequency range higher than the center frequency, the impedance ⁇ located in the inductive region approaches the center of the Smith chart due to the C property of the frequency dependent compensation line 24. Such compensation is performed.
  • the amount of impedance compensation in the frequency-dependent compensation line 24 varies.
  • the characteristic impedance Z of the frequency-dependent compensation line 24 is determined by the frequency dependence of the carrier amplifier 6 and the 90-degree line 7 and the band characteristics required for the Doherty amplifier.
  • the compensation circuit 9 a plurality of lines whose electrical length ⁇ is an integer multiple of 90 degrees are connected in series.
  • the characteristic impedance and electrical length of the line existing on the input side and the characteristic impedance and electrical length of the line existing on the output side are symmetrical with respect to the line existing at the center position in the transmission direction of Since the frequency-dependent compensation line 24 is used, as in the first embodiment, there is an effect that it is possible to increase the bandwidth without increasing the size and complexity of the circuit.
  • the electrical length ⁇ of a plurality of lines in the frequency-dependent compensation line 24 is an integer multiple of 90 degrees.
  • the electrical length ⁇ is an integer of 90 degrees within the operating frequency. It is only necessary to be double, and it is not limited to an integral multiple of 90 degrees at the center frequency within the use frequency.
  • Embodiment 6 FIG.
  • the Doherty amplifier in which the compensation circuit 9 is connected between the peak amplifier 8 and the combiner 10 has been described.
  • the electrical length ⁇ is an integral multiple of 90 degrees.
  • a plurality of lines are connected in series, and among the plurality of lines, the electric length of the line existing on the input side and the output side with respect to the line existing at the center in the signal transmission direction
  • the frequency-dependent compensation line in which the electrical length of the line existing in the line is symmetrical and the characteristic impedance of the line existing on the input side and the characteristic impedance of the line existing on the output side are asymmetric.
  • 25 is a Doherty amplifier used as the compensation circuit 9.
  • the second line from the left and the second line from the right have both electrical lengths ⁇ of 90 degrees, and therefore the electrical lengths are symmetric.
  • the impedance ⁇ located in the capacitive region approaches the center of the Smith chart due to the L property of the frequency dependent compensation line 25. Compensation is made. Further, in a state where the frequency of the high frequency signal is present in a high frequency range higher than the center frequency, the impedance ⁇ located in the inductive region approaches the center of the Smith chart due to the C property of the frequency dependent compensation line 25. Such compensation is performed.
  • the compensation circuit 9 As the compensation circuit 9, the electrical length of the line existing on the input side and the output side exist with respect to the central line existing at the center position in the signal transmission direction. Since the frequency-dependent compensation line 25 that is symmetric with respect to the electrical length of the line is used, the bandwidth can be increased without increasing the size and complexity of the circuit as in the first embodiment. There is an effect.
  • the characteristic impedance of the line existing on the input side and the characteristic impedance of the line existing on the output side are asymmetric with respect to the center line, frequency dependence compensation is performed. The impedance on the input side of the line 25 and the impedance on the output side do not match. Therefore, the compensation circuit 9 has an impedance conversion function.
  • Embodiment 7 FIG.
  • the Doherty amplifier in which the compensation circuit 9 is connected between the peak amplifier 8 and the combiner 10 has been described.
  • the parasitic reactance inside the peak amplifier 8 is compensated for. It may also serve as a part of the circuit 30.
  • the compensation circuit 30 opens the impedance viewed from the output terminal 30a of the peak amplifier 8 within the operating frequency when the peak amplifier 8 is not operating. At the same time, it is a circuit that compensates for the frequency dependence of the impedance when the synthesizer 10 is viewed from the output side of the synthesizer 10. However, unlike the compensation circuit 9 of FIG. 1, the compensation circuit 30 has an electrical length such that the sum of the electrical length due to the parasitic reactance inside the peak amplifier 8 becomes an electrical length that is an integral multiple of 180 degrees within the operating frequency. is doing.
  • the compensation circuit 30 includes a compensation unit 31, and the compensation unit 31 has an electrical length that makes the sum of the electrical length due to the parasitic reactance inside the peak amplifier 8 an integer multiple of 180 degrees within the operating frequency. ing.
  • the phase correction circuit 5 is inserted into the signal path 3.
  • the electrical length of the signal path 3 and the electrical length of the signal path 4 may be equal, and the phase correction circuit 5 is connected to the signal path 4. It may be inserted in.
  • FIG. 14 is a block diagram showing a compensation circuit 30 of a Doherty amplifier according to Embodiment 7 of the present invention.
  • a current source 41 is a transistor as an amplifying element in the peak amplifier 8.
  • a parasitic capacitance component 42 and a parasitic induction component 43 are added to the current source 41 in the peak amplifier 8 as parasitic reactance inside the peak amplifier 8.
  • the signal path 44 is a path for transmitting the high-frequency signal amplified by the peak amplifier 8 to the compensation unit 31.
  • the compensation unit 31 includes an inductor 45 and a capacitor 46.
  • FIG. 14 shows an example in which the compensation unit 31 includes an inductor 45 and a capacitor 46.
  • the compensation unit 31 has a sum of the electrical length due to the parasitic reactance inside the peak amplifier 8 at 180 degrees within the operating frequency. As long as it has an electrical length that is an integral multiple of, a compensation unit including a line may be used, for example.
  • the compensation unit 31 of the compensation circuit 30 has a function of opening the impedance viewed from the output terminal 30a of the self-side output terminal 30a within the use frequency during the back-off operation, In a state where the frequency of the signal exists in a low frequency range lower than the center frequency, the frequency characteristic is switched to L, and in a state where the frequency of the high frequency signal exists in a high frequency range higher than the center frequency, the frequency characteristic is C. It has a function to switch to sex.
  • the frequency characteristic of the compensation unit 31 is switched to L property, so that the impedance ⁇ located in the capacitive region is Smith chart. Compensation to approach the center of the is performed. Further, in a state where the frequency of the high frequency signal is present in a high frequency range higher than the center frequency, the frequency characteristic of the compensation unit 31 is switched to C-type, so that the impedance ⁇ located in the inductive region is the center of the Smith chart. Compensation to approach
  • the parasitic reactance inside the peak amplifier 8 also serves as a part of the compensation circuit 30, but when the peak amplifier 8 is not operating, the compensation unit 31 of the compensation circuit 30.
  • the impedance when the peak amplifier 8 side is viewed from the output terminal 30a is opened within the operating frequency and the frequency dependence of the impedance when the synthesizer 10 is viewed from the output side of the synthesizer 10 is compensated, Similar to the first embodiment, there is an effect that a wide band can be achieved without causing an increase in size and complexity of the circuit.
  • Embodiment 8 FIG. In the first to seventh embodiments, it is assumed that the phase correction circuit 5, the 90-degree line 7 and the compensation circuits 9 and 30 are composed of distributed constant lines. 7 and the compensation circuits 9 and 30 may be configured by lumped constant parts.
  • the present invention is suitable for a Doherty amplifier in which a carrier amplifier and a peak amplifier are connected in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

キャリア増幅器(6)とピーク増幅器(8)が並列に接続されているドハティ増幅器において、ピーク増幅器(8)が動作を停止している状態では、自己の出力端(9a)からピーク増幅器(8)側を見たインピーダンスを使用周波数内でオープンにするとともに、合成器(10)の出力側から合成器(10)を見たインピーダンスの周波数依存性を補償する補償回路(9)が、ピーク増幅器(8)と合成器(10)の間に接続されているように構成する。これにより、回路の大型化や複雑化を招くことなく、広帯域化を図ることができる。

Description

ドハティ増幅器
 この発明は、キャリア増幅器とピーク増幅器が並列に接続されているドハティ増幅器に関するものである。
 近年、通信用増幅器として、高効率な動作を実現するドハティ増幅器が提案されている。
 ドハティ増幅器は、キャリア増幅器とピーク増幅器が並列に接続されており、負荷変調を行う90度線路をキャリア増幅器の出力側に装荷することで、出力電力が飽和出力より低いバックオフ動作時での高効率動作を実現している。バックオフ動作時は、ピーク増幅器が動作を停止している状態である。
 しかしながら、ドハティ増幅器は、動作原理上、キャリア増幅器の出力側に装荷されている90度線路における周波数依存性の影響で、90度線路の電気長が90度からずれることで、狭帯域な動作になることがある。
 以下の特許文献1には、電気長が異なる複数の線路をキャリア増幅器の出力側に設け、入力信号の周波数に応じて、電気長が異なる複数の線路の中から、キャリア増幅器の出力側に接続する線路を選択する制御機構を備えるドハティ増幅器が開示されている。
 この制御機構によって、キャリア増幅器の出力側の線路における電気長が90度に近づけられる。
特開2006-345341号公報
 従来のドハティ増幅器は以上のように構成されているので、キャリア増幅器の出力側の線路における電気長を90度に近づけることができる。しかし、入力信号の周波数を検出する検出機構や、キャリア増幅器の出力側に接続する線路を選択する制御機構を備える必要があるため、回路の大型化や複雑化を招いてしまうという課題があった。
 また、入力信号の周波数帯域幅が、キャリア増幅器の出力側に設けている各線路の適用可能な帯域幅より広いような場合、いずれの線路も選択しても、広帯域化を図ることができないという課題があった。
 この発明は上記のような課題を解決するためになされたもので、回路の大型化や複雑化を招くことなく、広帯域化を図ることができるドハティ増幅器を得ることを目的とする。
 この発明に係るドハティ増幅器は、増幅対象の信号を分配する分配器と、分配器により分配された一方の信号を増幅するキャリア増幅器と、一端がキャリア増幅器の出力側に接続されている90度線路と、分配器により分配された他方の信号を増幅するピーク増幅器と、90度線路を通過してきた信号とピーク増幅器により増幅された信号を合成し、その合成した信号を出力する合成器とを備え、ピーク増幅器が動作を停止している状態では、自己の出力端からピーク増幅器側を見たインピーダンスを使用周波数内でオープンにするとともに、合成器の出力側から当該合成器を見たインピーダンスの周波数依存性を補償する補償回路が、ピーク増幅器と合成器の間に接続されているようにしたものである。
 この発明によれば、ピーク増幅器が動作を停止している状態では、自己の出力端からピーク増幅器側を見たインピーダンスを使用周波数内でオープンにするとともに、合成器の出力側から当該合成器を見たインピーダンスの周波数依存性を補償する補償回路が、ピーク増幅器と合成器の間に接続されているように構成したので、回路の大型化や複雑化を招くことなく、広帯域化を図ることができる効果がある。
この発明の実施の形態1によるドハティ増幅器を示す構成図である。 補償回路9が実装されていない場合のドハティ増幅器を示す構成図である。 補償回路9が実装されていないドハティ増幅器におけるインピーダンスΓの周波数依存性を示すスミスチャートである。 補償回路9が実装されているドハティ増幅器におけるインピーダンスΓの周波数依存性を示すスミスチャートである。 合成器10の出力側から合成器10を見た反射特性の周波数依存性を示す説明図である。 この発明の実施の形態2によるドハティ増幅器の補償回路である周波数依存性補償線路21を示す説明図である。 周波数依存性補償線路21が実装されているドハティ増幅器におけるインピーダンスΓの周波数依存性を示すスミスチャートである。 この発明の実施の形態3によるドハティ増幅器の補償回路である周波数依存性補償線路22を示す説明図である。 周波数依存性補償線路22が実装されているドハティ増幅器におけるインピーダンスΓの周波数依存性を示すスミスチャートである。 図10Aは電気長θが180度で特性インピーダンスがZ=bである線路と、電気長θが180度で特性インピーダンスがZ=cである線路とが直列に接続されている周波数依存性補償線路23を示す説明図、図10Bは電気長θが180度で特性インピーダンスがZ=bである線路と、電気長θが180度で特性インピーダンスがZ=cである線路と、電気長θが180度で特性インピーダンスがZ=dである線路とが直列に接続されている周波数依存性補償線路23を示す説明図である。 図11Aは電気長θが90度で特性インピーダンスがZ=bである線路と、電気長θが180度で特性インピーダンスがZ=cである線路と、電気長θが90度で特性インピーダンスがZ=bである線路とが直列に接続されている周波数依存性補償線路24を示す説明図、図11Bは電気長θが90度で特性インピーダンスがZ=dである線路と、電気長θが180度で特性インピーダンスがZ=eである線路と、電気長θが90度で特性インピーダンスがZ=dである線路とが直列に接続されている周波数依存性補償線路24を示す説明図、図11Cは電気長θが180度で特性インピーダンスがZ=fである線路と、電気長θが90度で特性インピーダンスがZ=dである線路と、電気長θが180度で特性インピーダンスがZ=eである線路と、電気長θが90度で特性インピーダンスがZ=dである線路と、電気長θが180度で特性インピーダンスがZ=fである線路とが直列に接続されている周波数依存性補償線路24を示す説明図である。 この発明の実施の形態6によるドハティ増幅器の補償回路である周波数依存性補償線路25を示す説明図である。 この発明の実施の形態7によるドハティ増幅器を示す構成図である。 この発明の実施の形態7によるドハティ増幅器の補償回路30を示す構成図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面にしたがって説明する。
実施の形態1.
 図1はこの発明の実施の形態1によるドハティ増幅器を示す構成図である。
 図1において、入力端子1は増幅対象の信号として、例えば、マイクロ波やミリ波などの高周波信号を入力する端子である。
 分配器2は入力端子1から入力された高周波信号を分配し、分配した一方の高周波信号を信号経路3に出力するとともに、分配した他方の高周波信号を信号経路4に出力する。
 信号経路3は分配器2からキャリア増幅器6を通過して合成器10に至るまで経路である。
 信号経路4は分配器2からピーク増幅器8を通過して合成器10に至るまで経路である。
 位相補正回路5は信号経路3に挿入されており、信号経路3の電気長と、信号経路4の電気長とを揃える回路である。
 図1の例では、位相補正回路5が信号経路3に挿入されているが、信号経路3の電気長と、信号経路4の電気長とが等しくなればよく、位相補正回路5が信号経路4に挿入されているものであってもよい。
 キャリア増幅器6は位相補正回路5を通過してきた高周波信号を増幅する増幅素子である。
 90度線路7は一端がキャリア増幅器6の出力側に接続され、他端が合成器10に接続されている電気長が90度の線路である。
 ピーク増幅器8は信号経路4に挿入されており、分配器2により分配された高周波信号を増幅する増幅素子である。
 補償回路9はピーク増幅器8と合成器10の間に接続されており、ピーク増幅器8が動作を停止している状態では、自己の出力端9aからピーク増幅器8側を見たインピーダンスを使用周波数内でオープンにするとともに、合成器10の出力側から合成器10を見たインピーダンスの周波数依存性を補償する回路である。
 即ち、補償回路9は合成器10の出力側から合成器10を見たインピーダンスが容量性領域に存在する場合、当該インピーダンスを容量性領域と誘導性領域の境界に近づける補償を行い、合成器10の出力側から合成器10を見たインピーダンスが誘導性領域に存在する場合、当該インピーダンスを容量性領域と誘導性領域の境界に近づける補償を行う回路である。
 ここで、使用周波数内とは、図1のドハティ増幅器により取り扱われる周波数の範囲内を意味する。
 合成器10は信号合成点10aで90度線路7を通過してきた高周波信号と補償回路9を通過してきた高周波信号とを合成し、合成後の高周波信号を出力端子11に出力する。
 信号合成点10aは信号経路3と信号経路4が接続されている接続点である。
 なお、合成器10は、単に信号経路3と信号経路4が信号合成点10aで接続され、信号合成点10aから出力端子11に至るまでの信号経路を有する回路であり、いわゆるウイルキンソン型分配器のような合成器ではない。
 出力端子11は合成器10から出力された合成後の高周波信号を外部に出力する端子である。
 次に動作について説明する。
 分配器2は、入力端子1から入力された高周波信号を分配し、分配した一方の高周波信号を信号経路3に出力するとともに、分配した他方の高周波信号を信号経路4に出力する。
 分配器2から信号経路3に出力された高周波信号は、位相補正回路5に入力される。
 位相補正回路5は、信号経路3の電気長と、信号経路4の電気長とが等しくなるような電気長を有している。このため、位相補正回路5によって、信号経路3の電気長と、信号経路4の電気長とが揃えられる。
 キャリア増幅器6は、位相補正回路5を通過してきた高周波信号を増幅する。
 キャリア増幅器6により増幅された高周波信号は、電気長が90度である90度線路7を通過したのち、合成器10に到達する。
 ピーク増幅器8は、分配器2により分配された高周波信号を増幅する。
 ピーク増幅器8により増幅された高周波信号は、補償回路9を通過したのち、合成器10に到達する。
 合成器10は、90度線路7を通過してきた高周波信号と、補償回路9を通過してきた高周波信号とを合成し、合成後の高周波信号を出力端子11に出力する。
 以下、補償回路9の動作を具体的に説明する。
 図2は補償回路9が実装されていない場合のドハティ増幅器を示す構成図である。
 図2のドハティ増幅器では、補償回路9が実装されておらず、信号経路4の電気長が、図1のドハティ増幅器における信号経路4の電気長よりも短くなっているため、位相補正回路5が、信号経路4に挿入されている例を示している。
 図2は、ピーク増幅器8が動作を停止している状態(以下、「バックオフ動作時」と称する)でのインピーダンス変成を示している。
 ドハティ増幅器の出力インピーダンスがRoptである場合、バックオフ動作時では、一般的にキャリア増幅器6の出力負荷が、ドハティ増幅器の出力インピーダンスRoptの2倍になる。
 このため、図2では、キャリア増幅器6の出力側からキャリア増幅器6を見たインピーダンスが2×Roptになっている。
 ピーク増幅器8は動作を停止しており、ピーク増幅器8の出力インピーダンスはオープンになっている。
 また、図2では、90度線路7の特性インピーダンスはRoptであり、90度線路7の電気長は、ドハティ増幅器における使用周波数内の中心周波数で90度である。
 この場合、合成器10の出力側から合成器10を見たインピーダンスΓの周波数依存性は図3のように表される。
 図3は補償回路9が実装されていないドハティ増幅器におけるインピーダンスΓの周波数依存性を示すスミスチャートである。
 高周波信号の周波数が、ドハティ増幅器における使用周波数内の中心周波数と一致している状態では、インピーダンスΓがスミスチャートの中心に位置、即ち、スミスチャートの横軸上に位置している。
 しかし、高周波信号の周波数が、中心周波数より低い低周波域に存在している状態では、90度線路7の電気長が90度より短くなるため、インピーダンスΓは容量性領域に位置するようになる。
 また、高周波信号の周波数が、中心周波数より高い高周波域に存在している状態では、90度線路7の電気長が90度より長くなるため、インピーダンスΓは誘導性領域に位置するようになる。
 この結果、高周波信号の周波数が中心周波数から離れるほど、反射特性が劣化する。
 次に、図1に示すように、ドハティ増幅器が補償回路9を実装している場合の動作を説明する。
 この場合も、90度線路7の特性インピーダンスはRoptであり、90度線路7の電気長は、ドハティ増幅器における使用周波数内の中心周波数で90度であるとする。
 補償回路9は、自己の出力端9aからピーク増幅器8側を見たインピーダンスを使用周波数内でオープンにする機能と、高周波信号の周波数が中心周波数より低い低周波域に存在している状態では、周波数特性が誘導性(以下、「L性」と称する)に切り替わり、高周波信号の周波数が中心周波数より高い高周波域に存在している状態では、周波数特性が容量性(以下、「C性」と称する)に切り替わる機能とを有している。
 図4は補償回路9が実装されているドハティ増幅器におけるインピーダンスΓの周波数依存性を示すスミスチャートである。
 高周波信号の周波数が中心周波数より低い低周波域に存在している状態では、補償回路9の周波数特性がL性に切り替わるため、容量性領域に位置しているインピーダンスΓが、スミスチャートの中心に近づくような補償が行われる。
 また、高周波信号の周波数が中心周波数より高い高周波域に存在している状態では、補償回路9の周波数特性がC性に切り替わるため、誘導性領域に位置しているインピーダンスΓが、スミスチャートの中心に近づくような補償が行われる。
 図5は合成器10の出力側から合成器10を見た反射特性の周波数依存性を示す説明図である。
 補償回路9によって、インピーダンスΓがスミスチャートの中心に近づくような補償が行われるため、図5に示すように、ドハティ増幅器の広帯域化が実現される。
 以上で明らかなように、この実施の形態1によれば、ピーク増幅器8が動作を停止している状態では、自己の出力端9aからピーク増幅器8側を見たインピーダンスを使用周波数内でオープンにするとともに、合成器10の出力側から合成器10を見たインピーダンスの周波数依存性を補償する補償回路9が、ピーク増幅器8と合成器10の間に接続されているように構成したので、回路の大型化や複雑化を招くことなく、広帯域化を図ることができる効果を奏する。
実施の形態2.
 上記実施の形態1では、補償回路9がピーク増幅器8と合成器10の間に接続されているドハティ増幅器について示したが、この実施の形態2では、補償回路9が、使用周波数内で180度の整数倍の電気長を有している周波数依存性補償線路であるドハティ増幅器について説明する。
 図6はこの発明の実施の形態2によるドハティ増幅器の補償回路である周波数依存性補償線路21を示す説明図である。
 図6において、周波数依存性補償線路21は使用周波数内の中心周波数で180度の整数倍の電気長θを有し、かつ、任意の特性インピーダンスZ=aを有する線路である。図中、Nは自然数である。
 図7は周波数依存性補償線路21が実装されているドハティ増幅器におけるインピーダンスΓの周波数依存性を示すスミスチャートである。
 図7では、周波数依存性補償線路21の電気長θが、使用周波数内で360度(=2×180度)の例を示している。即ち、N=2の例を示している。
 高周波信号の周波数が中心周波数より低い低周波域に存在している状態では、周波数依存性補償線路21のL性によって、容量性領域に位置しているインピーダンスΓが、スミスチャートの中心に近づくような補償が行われる。
 また、高周波信号の周波数が中心周波数より高い高周波域に存在している状態では、周波数依存性補償線路21のC性によって、誘導性領域に位置しているインピーダンスΓが、スミスチャートの中心に近づくような補償が行われる。
 図7より、周波数依存性補償線路21の特性インピーダンスZに応じてインピーダンスの補償量が異なることが確認される。
 周波数依存性補償線路21の特性インピーダンスZが小さいほど、同じ周波数では周波数依存性補償線路21のL性が大きくなる。
 周波数依存性補償線路21の特性インピーダンスZは、キャリア増幅器6及び90度線路7の周波数依存性と、ドハティ増幅器に求められる帯域特性とによって決定される。
 以上で明らかなように、この実施の形態2によれば、補償回路9として、使用周波数内で180度の整数倍の電気長を有している周波数依存性補償線路21を用いるように構成したので、上記実施の形態1と同様に、回路の大型化や複雑化を招くことなく、広帯域化を図ることができる効果を奏する。
 この実施の形態2では、周波数依存性補償線路21が、使用周波数内の中心周波数で180度の整数倍の電気長θを有している例を示したが、周波数依存性補償線路21は、使用周波数内で180度の整数倍の電気長θを有していればよく、中心周波数で180度の整数倍の電気長θを有しているものでなくてもよい。
実施の形態3.
 上記実施の形態2では、補償回路9として、使用周波数内の中心周波数で180度の整数倍の電気長θを有し、かつ、任意の特性インピーダンスZ=aを有する周波数依存性補償線路21を用いるものを示したが、この実施の形態3では、補償回路9として、使用周波数内の中心周波数で180度の整数倍の電気長θを有し、かつ、合成器10の出力インピーダンスと同じ特性インピーダンスを有する周波数依存性補償線路22を用いるものを説明する。
 図8はこの発明の実施の形態3によるドハティ増幅器の補償回路である周波数依存性補償線路22を示す説明図である。
 図8において、周波数依存性補償線路22は使用周波数内の中心周波数で180度の整数倍の電気長θを有し、かつ、合成器10の出力インピーダンスと同じ特性インピーダンスZ=Roptを有する線路である。
 図9は周波数依存性補償線路22が実装されているドハティ増幅器におけるインピーダンスΓの周波数依存性を示すスミスチャートである。
 高周波信号の周波数が中心周波数より低い低周波域に存在している状態では、周波数依存性補償線路22のL性によって、容量性領域に位置しているインピーダンスΓが、スミスチャートの中心に近づくような補償が行われる。
 また、高周波信号の周波数が中心周波数より高い高周波域に存在している状態では、周波数依存性補償線路22のC性によって、誘導性領域に位置しているインピーダンスΓが、スミスチャートの中心に近づくような補償が行われる。
 図9より、周波数依存性補償線路22の電気長θに応じてインピーダンスの補償量が異なることが確認される。
 周波数依存性補償線路22の電気長θが長いほど、同じ周波数では周波数依存性補償線路22のL性が大きくなる。
 周波数依存性補償線路22の電気長θは、キャリア増幅器6及び90度線路7の周波数依存性と、ドハティ増幅器に求められる帯域特性とによって決定される。
 以上で明らかなように、この実施の形態3によれば、補償回路9として、使用周波数内で180度の整数倍の電気長を有している周波数依存性補償線路22を用いるように構成したので、上記実施の形態1と同様に、回路の大型化や複雑化を招くことなく、広帯域化を図ることができる効果を奏する。
 この実施の形態3では、周波数依存性補償線路22が、使用周波数内の中心周波数で180度の整数倍の電気長θを有している例を示したが、周波数依存性補償線路22は、使用周波数内で180度の整数倍の電気長θを有していればよく、中心周波数で180度の整数倍の電気長θを有しているものでなくてもよい。
実施の形態4.
 上記実施の形態1では、補償回路9がピーク増幅器8と合成器10の間に接続されているドハティ増幅器について示したが、この実施の形態4では、電気長θが180度である複数の線路が直列に接続されており、複数の線路が異なる特性インピーダンスを有している周波数依存性補償線路23を、補償回路9として用いているドハティ増幅器について説明する。
 図10はこの発明の実施の形態4によるドハティ増幅器の補償回路である周波数依存性補償線路23を示す説明図である。
 図10Aは電気長θが180度で特性インピーダンスがZ=bである線路と、電気長θが180度で特性インピーダンスがZ=cである線路とが直列に接続されている周波数依存性補償線路23を示す説明図である。
 図10Bは電気長θが180度で特性インピーダンスがZ=bである線路と、電気長θが180度で特性インピーダンスがZ=cである線路と、電気長θが180度で特性インピーダンスがZ=dである線路とが直列に接続されている周波数依存性補償線路23を示す説明図である。
 図10A及び図10Bに示す周波数依存性補償線路23は、特性インピーダンスZが違っていても、全て電気長θが180度である線路を直列に接続しているので、周波数依存性補償線路23における入力側のインピーダンスと、出力側のインピーダンスとは一致している。
 高周波信号の周波数が中心周波数より低い低周波域に存在している状態では、周波数依存性補償線路23のL性によって、容量性領域に位置しているインピーダンスΓが、スミスチャートの中心に近づくような補償が行われる。
 また、高周波信号の周波数が中心周波数より高い高周波域に存在している状態では、周波数依存性補償線路23のC性によって、誘導性領域に位置しているインピーダンスΓが、スミスチャートの中心に近づくような補償が行われる。
 周波数依存性補償線路23の特性インピーダンスZに応じて、周波数依存性補償線路23におけるインピーダンスの補償量は異なる。
 周波数依存性補償線路23の特性インピーダンスZが小さいほど、同じ周波数では周波数依存性補償線路23のL性が大きくなる。
 周波数依存性補償線路23の特性インピーダンスZは、キャリア増幅器6及び90度線路7の周波数依存性と、ドハティ増幅器に求められる帯域特性とによって決定される。
 以上で明らかなように、この実施の形態4によれば、補償回路9として、電気長θが180度である複数の線路が直列に接続されており、複数の線路が異なる特性インピーダンスを有している周波数依存性補償線路23を用いるように構成したので、上記実施の形態1と同様に、回路の大型化や複雑化を招くことなく、広帯域化を図ることができる効果を奏する。
 この実施の形態4では、周波数依存性補償線路23における複数の線路の電気長θが180度の整数倍である例を示しているが、この電気長θは、使用周波数内で180度の整数倍であればよく、使用周波数内の中心周波数で180度の整数倍に限るものではない。
実施の形態5.
 上記実施の形態1では、補償回路9がピーク増幅器8と合成器10の間に接続されているドハティ増幅器について示したが、この実施の形態5では、電気長θが90度の整数倍である複数の線路が直列に接続されており、複数の線路のうち、信号の伝送方向で中心の位置に存在している線路に対して、入力側に存在している線路の特性インピーダンス及び電気長と、出力側に存在している線路の特性インピーダンス及び電気長とが対称である周波数依存性補償線路24を、補償回路9として用いているドハティ増幅器について説明する。
 図11はこの発明の実施の形態5によるドハティ増幅器の補償回路である周波数依存性補償線路24を示す説明図である。
 図11Aは電気長θが90度で特性インピーダンスがZ=bである線路と、電気長θが180度で特性インピーダンスがZ=cである線路と、電気長θが90度で特性インピーダンスがZ=bである線路とが直列に接続されている周波数依存性補償線路24を示す説明図である。
 図11Bは電気長θが90度で特性インピーダンスがZ=dである線路と、電気長θが180度で特性インピーダンスがZ=eである線路と、電気長θが90度で特性インピーダンスがZ=dである線路とが直列に接続されている周波数依存性補償線路24を示す説明図である。
 図11Cは電気長θが180度で特性インピーダンスがZ=fである線路と、電気長θが90度で特性インピーダンスがZ=dである線路と、電気長θが180度で特性インピーダンスがZ=eである線路と、電気長θが90度で特性インピーダンスがZ=dである線路と、電気長θが180度で特性インピーダンスがZ=fである線路とが直列に接続されている周波数依存性補償線路24を示す説明図である。
 図11Aに示す周波数依存性補償線路24は、信号の伝送方向で中心の位置に存在している線路が、電気長θが180度で特性インピーダンスがZ=cである線路(以下、「中心線路」と称する)であり、図中、その中心線路の左側の線路と右側の線路は、中心線路を中心にして、特性インピーダンス及び電気長が対称になっている。
 即ち、左側の線路及び右側の線路は、電気長θが共に90度であって、特性インピーダンスが共にZ=bである。
 また、図11Bに示す周波数依存性補償線路24は、信号の伝送方向で中心の位置に存在している線路が、電気長θが180度で特性インピーダンスがZ=eである線路(以下、「中心線路」と称する)であり、図中、その中心線路の左側の線路と右側の線路は、中心線路を中心にして、特性インピーダンス及び電気長が対称になっている。
 即ち、左側の線路及び右側の線路は、電気長θが共に90度であって、特性インピーダンスが共にZ=dである。
 図11Cに示す周波数依存性補償線路24は、信号の伝送方向で中心の位置に存在している線路が、電気長θが180度で特性インピーダンスがZ=eである線路(以下、「中心線路」と称する)であり、図中、その中心線路の左側の線路と右側の線路は、中心線路を中心にして、特性インピーダンス及び電気長が対称になっている。
 即ち、1番左側の線路及び1番右側の線路は、電気長θが共に180度であって、特性インピーダンスが共にZ=fである。
 また、左から2番目の線路及び右から2番目の線路は、電気長θが共に90度であって、特性インピーダンスが共にZ=dである。
 したがって、図11A、図11B及び図11Cに示す周波数依存性補償線路24は、中心線路に対して、入力側に存在している線路の特性インピーダンス及び電気長と、出力側に存在している線路の特性インピーダンス及び電気長とが対称であるため、周波数依存性補償線路24における入力側のインピーダンスと、出力側のインピーダンスとは一致している。
 高周波信号の周波数が中心周波数より低い低周波域に存在している状態では、周波数依存性補償線路24のL性によって、容量性領域に位置しているインピーダンスΓが、スミスチャートの中心に近づくような補償が行われる。
 また、高周波信号の周波数が中心周波数より高い高周波域に存在している状態では、周波数依存性補償線路24のC性によって、誘導性領域に位置しているインピーダンスΓが、スミスチャートの中心に近づくような補償が行われる。
 周波数依存性補償線路24の特性インピーダンスZに応じて、周波数依存性補償線路24におけるインピーダンスの補償量は異なる。
 周波数依存性補償線路24の特性インピーダンスZが小さいほど、同じ周波数では周波数依存性補償線路24のL性が大きくなる。
 周波数依存性補償線路24の特性インピーダンスZは、キャリア増幅器6及び90度線路7の周波数依存性と、ドハティ増幅器に求められる帯域特性とによって決定される。
 以上で明らかなように、この実施の形態5によれば、補償回路9として、電気長θが90度の整数倍である複数の線路が直列に接続されており、複数の線路のうち、信号の伝送方向で中心の位置に存在している線路に対して、入力側に存在している線路の特性インピーダンス及び電気長と、出力側に存在している線路の特性インピーダンス及び電気長とが対称である周波数依存性補償線路24を用いるように構成したので、上記実施の形態1と同様に、回路の大型化や複雑化を招くことなく、広帯域化を図ることができる効果を奏する。
 この実施の形態5では、周波数依存性補償線路24における複数の線路の電気長θが90度の整数倍である例を示しているが、この電気長θは、使用周波数内で90度の整数倍であればよく、使用周波数内の中心周波数で90度の整数倍に限るものではない。
実施の形態6.
 上記実施の形態1では、補償回路9がピーク増幅器8と合成器10の間に接続されているドハティ増幅器について示したが、この実施の形態6では、電気長θが90度の整数倍である複数の線路が直列に接続されており、複数の線路のうち、信号の伝送方向で中心の位置に存在している線路に対して、入力側に存在している線路の電気長と、出力側に存在している線路の電気長とが対称であり、かつ、入力側に存在している線路の特性インピーダンスと、出力側に存在している線路の特性インピーダンスが非対称である周波数依存性補償線路25を、補償回路9として用いているドハティ増幅器について説明する。
 図12はこの発明の実施の形態6によるドハティ増幅器の補償回路である周波数依存性補償線路25を示す説明図である。
 即ち、図12は電気長θが180度で特性インピーダンスがZ=fである線路と、電気長θが90度で特性インピーダンスがZ=gである線路と、電気長θが180度で特性インピーダンスがZ=eである線路と、電気長θが90度で特性インピーダンスがZ=dである線路と、電気長θが180度で特性インピーダンスがZ=fである線路とが直列に接続されている周波数依存性補償線路25を示す説明図である。
 図12に示す周波数依存性補償線路24は、信号の伝送方向で中心の位置に存在している線路が、電気長θが180度で特性インピーダンスがZ=eである線路(以下、「中心線路」と称する)であり、図中、その中心線路の左側の線路と右側の線路は、中心線路を中心にして、電気長が対称になっている。
 即ち、1番左側の線路及び1番右側の線路は、電気長θが共に180度であり、また、特性インピーダンスについても共にZ=fであるため、電気長及び特性インピーダンスが対称になっている。
 左から2番目の線路及び右から2番目の線路は、電気長θが共に90度であるため、電気長が対称になっている。しかし、左から2番目の線路は、特性インピーダンスがZ=gであり、右から2番目の線路は、特性インピーダンスがZ=dであるため、特性インピーダンスが非対称になっている。
 高周波信号の周波数が中心周波数より低い低周波域に存在している状態では、周波数依存性補償線路25のL性によって、容量性領域に位置しているインピーダンスΓが、スミスチャートの中心に近づくような補償が行われる。
 また、高周波信号の周波数が中心周波数より高い高周波域に存在している状態では、周波数依存性補償線路25のC性によって、誘導性領域に位置しているインピーダンスΓが、スミスチャートの中心に近づくような補償が行われる。
 この実施の形態6では、補償回路9として、信号の伝送方向で中心の位置に存在している中心線路に対して、入力側に存在している線路の電気長と、出力側に存在している線路の電気長とが対称である周波数依存性補償線路25を用いているため、上記実施の形態1と同様に、回路の大型化や複雑化を招くことなく、広帯域化を図ることができる効果を奏する。
 また、この実施の形態6では、中心線路に対して、入力側に存在している線路の特性インピーダンスと、出力側に存在している線路の特性インピーダンスとが非対称であるため、周波数依存性補償線路25における入力側のインピーダンスと、出力側のインピーダンスとが不一致になる。したがって、補償回路9がインピーダンスの変換機能を備えていることになる。
実施の形態7.
 上記実施の形態1では、補償回路9がピーク増幅器8と合成器10の間に接続されているドハティ増幅器について示したが、この実施の形態7では、ピーク増幅器8の内部における寄生リアクタンスが、補償回路30の一部を兼ねるものであってもよい。
 図13はこの発明の実施の形態7によるドハティ増幅器を示す構成図であり、図13において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 補償回路30は、図1の補償回路9と同様に、ピーク増幅器8が動作を停止している状態では、自己の出力端30aからピーク増幅器8側を見たインピーダンスを使用周波数内でオープンにするとともに、合成器10の出力側から合成器10を見たインピーダンスの周波数依存性を補償する回路である。
 ただし、補償回路30は、図1の補償回路9と異なり、ピーク増幅器8の内部における寄生リアクタンスによる電気長との和が、使用周波数内で180度の整数倍の電気長となる電気長を有している。
 即ち、補償回路30は補償部31を備えており、補償部31は、ピーク増幅器8の内部における寄生リアクタンスによる電気長との和が使用周波数内で180度の整数倍になる電気長を有している。
 図13の例では、位相補正回路5が信号経路3に挿入されているが、信号経路3の電気長と、信号経路4の電気長とが等しくなればよく、位相補正回路5が信号経路4に挿入されているものであってもよい。
 図14はこの発明の実施の形態7によるドハティ増幅器の補償回路30を示す構成図である。
 図14において、電流源41はピーク増幅器8内の増幅素子としてのトランジスタを示している。
 ピーク増幅器8内の電流源41には、ピーク増幅器8の内部における寄生リアクタンスとして、寄生容量成分42と寄生誘導成分43が付加されている。
 信号経路44はピーク増幅器8により増幅された高周波信号を補償部31に伝送する経路である。
 補償部31はインダクタ45及びキャパシタ46を備えている。
 図14では、補償部31がインダクタ45及びキャパシタ46を備えている例を示しているが、補償部31が、ピーク増幅器8の内部における寄生リアクタンスによる電気長との和が使用周波数内で180度の整数倍になる電気長を有していればよく、例えば、線路を備える補償部であってもよい。
 補償回路30の補償部31は、図1の補償回路9と同様に、バックオフ動作時に、自己の出力端30aからピーク増幅器8側を見たインピーダンスを使用周波数内でオープンにする機能と、高周波信号の周波数が中心周波数より低い低周波域に存在している状態では、周波数特性がL性に切り替わり、高周波信号の周波数が中心周波数より高い高周波域に存在している状態では、周波数特性がC性に切り替わる機能とを有している。
 このため、高周波信号の周波数が中心周波数より低い低周波域に存在している状態では、補償部31の周波数特性がL性に切り替わるため、容量性領域に位置しているインピーダンスΓが、スミスチャートの中心に近づくような補償が行われる。
 また、高周波信号の周波数が中心周波数より高い高周波域に存在している状態では、補償部31の周波数特性がC性に切り替わるため、誘導性領域に位置しているインピーダンスΓが、スミスチャートの中心に近づくような補償が行われる。
 この実施の形態7では、ピーク増幅器8の内部における寄生リアクタンスが、補償回路30の一部を兼ねるものであるが、ピーク増幅器8が動作を停止している状態では、補償回路30の補償部31が、出力端30aからピーク増幅器8側を見たインピーダンスを使用周波数内でオープンにするとともに、合成器10の出力側から合成器10を見たインピーダンスの周波数依存性を補償するので、上記実施の形態1と同様に、回路の大型化や複雑化を招くことなく、広帯域化を図ることができる効果を奏する。
実施の形態8.
 上記実施の形態1~7では、位相補正回路5、90度線路7及び補償回路9,30が、分布定数線路で構成されているものを想定しているが、位相補正回路5、90度線路7及び補償回路9,30が、集中定数部品で構成されているものであってもよい。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明は、キャリア増幅器とピーク増幅器が並列に接続されているドハティ増幅器に適している。
 1 入力端子、2 分配器、3,4 信号経路、5 位相補正回路、6 キャリア増幅器、7 90度線路、8 ピーク増幅器、9 補償回路、9a 出力端、10 合成器、10a 信号合成点、11 出力端子、21,22,23,24,25 周波数依存性補償線路、30 補償回路、30a 出力端、31 補償部、41 電流源、42 寄生容量成分、43 寄生誘導成分、44 信号経路、45 インダクタ、46 キャパシタ。

Claims (10)

  1.  増幅対象の信号を分配する分配器と、
     前記分配器により分配された一方の信号を増幅するキャリア増幅器と、
     一端が前記キャリア増幅器の出力側に接続されている90度線路と、
     前記分配器により分配された他方の信号を増幅するピーク増幅器と、
     前記90度線路を通過してきた信号と前記ピーク増幅器により増幅された信号を合成し、その合成した信号を出力する合成器とを備え、
     前記ピーク増幅器が動作を停止している状態では、自己の出力端から前記ピーク増幅器側を見たインピーダンスを使用周波数内でオープンにするとともに、前記合成器の出力側から当該合成器を見たインピーダンスの周波数依存性を補償する補償回路が、前記ピーク増幅器と前記合成器の間に接続されていることを特徴とするドハティ増幅器。
  2.  前記分配器から前記キャリア増幅器を通過して前記合成器に至るまでの線路の電気長と、前記分配器から前記ピーク増幅器を通過して前記合成器に至るまでの線路の電気長とを揃える位相補正回路が、前記分配器と前記キャリア増幅器又は前記ピーク増幅器の間に接続されていることを特徴とする請求項1記載のドハティ増幅器。
  3.  前記補償回路は、前記合成器の出力側から当該合成器を見たインピーダンスが容量性領域に存在する場合、当該インピーダンスを容量性領域と誘導性領域の境界に近づける補償を行い、前記合成器の出力側から当該合成器を見たインピーダンスが誘導性領域に存在する場合、当該インピーダンスを容量性領域と誘導性領域の境界に近づける補償を行うことを特徴とする請求項1記載のドハティ増幅器。
  4.  前記補償回路は、前記使用周波数内で180度の整数倍の電気長を有していることを特徴とする請求項1記載のドハティ増幅器。
  5.  前記補償回路は、前記合成器の出力インピーダンスと同じ特性インピーダンスを有していることを特徴とする請求項4記載のドハティ増幅器。
  6.  前記補償回路は、電気長が180度である複数の線路が直列に接続されており、前記複数の線路が異なる特性インピーダンスを有していることを特徴とする請求項1記載のドハティ増幅器。
  7.  前記補償回路は、電気長が90度の整数倍である複数の線路が直列に接続されており、前記複数の線路のうち、信号の伝送方向で中心の位置に存在している線路に対して、入力側に存在している線路の特性インピーダンス及び電気長と、出力側に存在している線路の特性インピーダンス及び電気長とが対称であることを特徴とする請求項1記載のドハティ増幅器。
  8.  前記補償回路は、電気長が90度の整数倍である複数の線路が直列に接続されており、前記複数の線路のうち、信号の伝送方向で中心の位置に存在している線路に対して、入力側に存在している線路の電気長と、出力側に存在している線路の電気長とが対称であり、かつ、前記入力側に存在している線路の特性インピーダンスと、前記出力側に存在している線路の特性インピーダンスが非対称であることを特徴とする請求項1記載のドハティ増幅器。
  9.  前記補償回路は、前記ピーク増幅器の内部における寄生リアクタンスによる電気長との和が、前記使用周波数内で180度の整数倍の電気長となる電気長を有していることを特徴とする請求項1記載のドハティ増幅器。
  10.  前記90度線路及び前記補償回路が集中定数部品で構成されていることを特徴とする請求項1記載のドハティ増幅器。
PCT/JP2016/064723 2016-05-18 2016-05-18 ドハティ増幅器 WO2017199366A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16902385.0A EP3461000B1 (en) 2016-05-18 2016-05-18 Doherty amplifier
JP2016564277A JP6157759B1 (ja) 2016-05-18 2016-05-18 ドハティ増幅器
CN201680085698.9A CN109155612B (zh) 2016-05-18 2016-05-18 多尔蒂放大器
DE112016006870.0T DE112016006870T5 (de) 2016-05-18 2016-05-18 Doherty-Verstärker
PCT/JP2016/064723 WO2017199366A1 (ja) 2016-05-18 2016-05-18 ドハティ増幅器
US16/097,844 US10608594B2 (en) 2016-05-18 2016-05-18 Doherty amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064723 WO2017199366A1 (ja) 2016-05-18 2016-05-18 ドハティ増幅器

Publications (1)

Publication Number Publication Date
WO2017199366A1 true WO2017199366A1 (ja) 2017-11-23

Family

ID=59272965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064723 WO2017199366A1 (ja) 2016-05-18 2016-05-18 ドハティ増幅器

Country Status (6)

Country Link
US (1) US10608594B2 (ja)
EP (1) EP3461000B1 (ja)
JP (1) JP6157759B1 (ja)
CN (1) CN109155612B (ja)
DE (1) DE112016006870T5 (ja)
WO (1) WO2017199366A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217319A1 (ja) * 2019-04-23 2020-10-29 三菱電機株式会社 ドハティ増幅器及び通信装置
WO2021220338A1 (ja) * 2020-04-27 2021-11-04 三菱電機株式会社 ドハティ増幅器
WO2021245891A1 (ja) * 2020-06-04 2021-12-09 三菱電機株式会社 ドハティ増幅器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6729986B2 (ja) * 2017-11-15 2020-07-29 三菱電機株式会社 ドハティ増幅器及びドハティ増幅回路
JP6808092B2 (ja) 2018-04-26 2021-01-06 三菱電機株式会社 増幅器
JP7307532B2 (ja) * 2018-09-14 2023-07-12 株式会社東芝 増幅回路および送信装置
KR102690147B1 (ko) * 2019-10-02 2024-07-30 미쓰비시덴키 가부시키가이샤 도허티 증폭기
US11616476B2 (en) 2020-10-19 2023-03-28 City University Of Hong Kong Power amplifier circuit
KR102478315B1 (ko) * 2020-11-10 2022-12-16 성균관대학교산학협력단 도허티 전력 증폭 장치 및 이 장치의 부하 임피던스 변조 방법
US12034408B2 (en) 2020-11-16 2024-07-09 City University Of Hong Kong Wideband Doherty power amplifier
CN115577666A (zh) * 2022-10-21 2023-01-06 深圳飞骧科技股份有限公司 确定Doherty架构中辅助功放补偿线电长度的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205304A (ja) * 1996-01-25 1997-08-05 Murata Mfg Co Ltd 発振器の整合回路
JP2006157900A (ja) * 2004-11-05 2006-06-15 Hitachi Kokusai Electric Inc 増幅器
JP2006345341A (ja) 2005-06-10 2006-12-21 Hitachi Kokusai Electric Inc 増幅器
JP2009055515A (ja) * 2007-08-29 2009-03-12 Hitachi Kokusai Electric Inc 増幅器
JP2009284005A (ja) * 2008-05-19 2009-12-03 Mitsubishi Electric Corp 高周波増幅回路
JP2014511166A (ja) * 2011-03-16 2014-05-12 クリー インコーポレイテッド 強化型ドハティ増幅器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7847630B2 (en) * 2004-11-05 2010-12-07 Hitachi Kokusai Electric Inc. Amplifier
JP4858952B2 (ja) * 2005-05-23 2012-01-18 株式会社日立国際電気 増幅装置
JP2007006164A (ja) * 2005-06-24 2007-01-11 Hitachi Kokusai Electric Inc 増幅器
KR100862056B1 (ko) * 2007-08-06 2008-10-14 (주) 와이팜 광대역 전력 증폭 장치
WO2009118824A1 (ja) * 2008-03-25 2009-10-01 三菱電機株式会社 低歪み増幅器および低歪み増幅器を用いたドハティ増幅器
JP2010021719A (ja) 2008-07-09 2010-01-28 Toshiba Corp ドハティ増幅器
EP2905896A1 (en) * 2009-09-28 2015-08-12 NEC Corporation Doherty amplifier
DE102010018274A1 (de) * 2010-04-25 2012-05-03 Christoph Bromberger Verfahren zur Auslegung einer elektronischen Schaltung
US8314654B2 (en) * 2010-05-17 2012-11-20 Alcatel Lucent Multi-band high-efficiency Doherty amplifier
EP2458730B8 (en) * 2010-11-29 2015-08-05 Nxp B.V. Radiofrequency amplifier
EP2713505B1 (en) * 2011-05-30 2018-12-12 Huawei Technologies Co., Ltd. Doherty power amplifier and signal processing method
US9209511B2 (en) * 2011-10-14 2015-12-08 Anaren, Inc. Doherty power amplifier network
EP2634916A1 (en) * 2012-02-29 2013-09-04 Alcatel Lucent Doherty amplifier
EP2865095B1 (en) * 2012-06-21 2020-02-26 Telefonaktiebolaget LM Ericsson (publ) Doherty amplifier
EP2698918A1 (en) * 2012-08-14 2014-02-19 Nxp B.V. Amplifier circuit
WO2014068351A2 (en) * 2012-10-31 2014-05-08 Freescale Semiconductor, Inc. Amplification stage and wideband power amplifier
WO2014108716A1 (en) * 2013-01-10 2014-07-17 Freescale Semiconductor, Inc. Doherty amplifier
EP2806557B1 (en) * 2013-05-23 2017-03-08 Ampleon Netherlands B.V. Doherty amplifier
EP2843832B1 (en) * 2013-08-30 2019-07-31 Ampleon Netherlands B.V. A wideband amplifier
CN104993796B (zh) * 2015-06-25 2018-03-27 江苏大学 一种Doherty功率放大器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205304A (ja) * 1996-01-25 1997-08-05 Murata Mfg Co Ltd 発振器の整合回路
JP2006157900A (ja) * 2004-11-05 2006-06-15 Hitachi Kokusai Electric Inc 増幅器
JP2006345341A (ja) 2005-06-10 2006-12-21 Hitachi Kokusai Electric Inc 増幅器
JP2009055515A (ja) * 2007-08-29 2009-03-12 Hitachi Kokusai Electric Inc 増幅器
JP2009284005A (ja) * 2008-05-19 2009-12-03 Mitsubishi Electric Corp 高周波増幅回路
JP2014511166A (ja) * 2011-03-16 2014-05-12 クリー インコーポレイテッド 強化型ドハティ増幅器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3461000A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217319A1 (ja) * 2019-04-23 2020-10-29 三菱電機株式会社 ドハティ増幅器及び通信装置
JPWO2020217319A1 (ja) * 2019-04-23 2021-10-21 三菱電機株式会社 ドハティ増幅器及び通信装置
CN113875150A (zh) * 2019-04-23 2021-12-31 三菱电机株式会社 多赫蒂放大器和通信装置
WO2021220338A1 (ja) * 2020-04-27 2021-11-04 三菱電機株式会社 ドハティ増幅器
WO2021245891A1 (ja) * 2020-06-04 2021-12-09 三菱電機株式会社 ドハティ増幅器

Also Published As

Publication number Publication date
EP3461000A4 (en) 2019-05-22
JPWO2017199366A1 (ja) 2018-06-07
CN109155612A (zh) 2019-01-04
EP3461000B1 (en) 2022-05-04
JP6157759B1 (ja) 2017-07-05
US10608594B2 (en) 2020-03-31
US20190149097A1 (en) 2019-05-16
DE112016006870T5 (de) 2019-02-14
CN109155612B (zh) 2022-05-10
EP3461000A1 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
JP6157759B1 (ja) ドハティ増幅器
US10218315B2 (en) Doherty amplifier
KR102533919B1 (ko) 무선 주파수 신호를 증폭하기 위한 전력 증폭기
JP6026062B1 (ja) 負荷変調増幅器
US8368465B2 (en) Power amplification apparatus
US10432147B2 (en) Inverted three-stage Doherty amplifier
JP6729986B2 (ja) ドハティ増幅器及びドハティ増幅回路
WO2017028563A1 (zh) 对称多赫蒂Doherty功放电路装置及功率放大器
US20140253246A1 (en) Wideband doherty amplifier network
JP2018085635A (ja) 電力増幅器
US20170288613A1 (en) Broadband doherty power amplifier
CN109687828B (zh) 一种射频功率放大器及基站
CN112020826B (zh) 放大器
JP2016063291A (ja) 広帯域増幅器
CN113875150A (zh) 多赫蒂放大器和通信装置
US20220052658A1 (en) Power amplifier circuit
JP7003329B2 (ja) ドハティ増幅器
GB2495306A (en) A push-pull envelope tracking RF power amplifier

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016564277

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016902385

Country of ref document: EP

Effective date: 20181218