WO2017197980A1 - Catalyseur de synthèse de fischer-tropsch bimétallique intégral à base de cobalt/fer et son procédé de préparation - Google Patents

Catalyseur de synthèse de fischer-tropsch bimétallique intégral à base de cobalt/fer et son procédé de préparation Download PDF

Info

Publication number
WO2017197980A1
WO2017197980A1 PCT/CN2017/078053 CN2017078053W WO2017197980A1 WO 2017197980 A1 WO2017197980 A1 WO 2017197980A1 CN 2017078053 W CN2017078053 W CN 2017078053W WO 2017197980 A1 WO2017197980 A1 WO 2017197980A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
iron
fischer
monolithic
tropsch synthesis
Prior art date
Application number
PCT/CN2017/078053
Other languages
English (en)
Chinese (zh)
Inventor
海国良
李昌元
刘倩倩
饶莎莎
郑申棵
宋德臣
詹晓东
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Publication of WO2017197980A1 publication Critical patent/WO2017197980A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions

Definitions

  • the invention belongs to the technical field of Fischer-Tropsch synthesis catalyst, and specifically relates to a monolithic iron-cobalt bimetal Fischer-Tropsch synthesis catalyst and a preparation method thereof.
  • Fischer-Tropsch synthesis has been closely related to the price of petroleum. With the increasing shortage of petroleum resources and increasingly demanding environmental protection, Fischer-Tropsch synthesis has renewed great interest in the past 20 years.
  • the active metals that can be used in Fischer-Tropsch synthesis are mainly concentrated in the eighth group, such as ruthenium, nickel, cobalt, iron, ruthenium, palladium, platinum, etc., but due to price, activity, selectivity, etc., only the iron and cobalt.
  • Iron catalysts are inexpensive and allow a wide range of operating temperatures and are the first catalysts to be applied to Fischer-Tropsch synthesis.
  • the iron-based catalyst has high water gas shift reaction activity, is easy to deposit carbon and poison, thereby causing catalyst deactivation, and the iron-based catalyst has poor chain growth ability, and easily forms olefins and oxygenates.
  • Cobalt-based catalysts are not sensitive to water gas change reaction, stable in the reaction process, difficult to cause catalyst carbon deposition and poisoning, long life, high Fischer-Tropsch chain growth ability, high single pass conversion, and high molecular weight
  • the formation of hydrocarbons and long-chain hydrocarbon compounds can produce fuels such as lubricating oil and diesel oil through further hydrocracking, and the oxygen-containing compounds in the products are less. It is considered to be the most suitable for Fischer-Tropsch synthesis using syngas as raw material.
  • Catalysts are also hotspots in current research, but cobalt catalysts have lower operating temperatures, lower space-time yields than iron-based catalysts, and less olefin content in the product.
  • active metal cobalt, iron and nickel to prepare a double active component catalyst, the Fischer-Tropsch reaction activity of the catalyst can be improved, and the product distribution can be adjusted, which is a new direction of current research and development.
  • the monolith catalyst is generally composed of a monolithic support, a washcoat, and an active component.
  • the catalyst bed of the monolith catalyst has small lamination loss, high mass transfer and heat transfer efficiency, easy reactor amplification, easy separation of catalyst and product, simple catalyst regeneration, and good heat transfer effect, corrosion resistance and high mechanical strength.
  • the monolithic support has a small surface area, and the catalyst and the reactor wall are liable to cause gaps, resulting in low reaction efficiency.
  • the object of the present invention is to provide a monolithic iron-cobalt bimetallic Fischer-Tropsch synthesis catalyst and a preparation method thereof, in view of the deficiencies of the prior art.
  • the catalyst has the advantages of large surface area of the carrier and strong catalyst adhesion performance, and the preparation method has the advantages of simple process and good product performance stability.
  • the monolithic iron-cobalt bimetallic Fischer-Tropsch synthesis catalyst of the present invention comprises a porous metal iron carrier, a molecular sieve membrane coated on the surface of the porous metal iron carrier, and a metal active component cobalt supported on the molecular sieve membrane.
  • the porous metal iron carrier is a polyurethane foam divided into fragments and is immersed in a binder solution mixed with active powdered alumina, potassium carbonate, calcium carbonate, magnetite and iron powder, and then passed through
  • the monolithic three-dimensional network structure carrier which is dried and sintered, and the weight ratio of the main components in the monolithic three-dimensional network structure carrier satisfies the following mathematical relationship:
  • Fe:Al 2 O 3 :K 2 O:CaO 100: (1.5 ⁇ 6.0): (0.2 ⁇ 2.8): (0.2 ⁇ 3.2);
  • the molecular sieve membrane is a cluster aggregate of ZSM-5 nanoparticles dispersed uniformly;
  • the metal active component cobalt is supported in an amount of 10 to 30% by weight based on the weight of the finished catalyst.
  • the active powder alumina, potassium carbonate, calcium carbonate, magnetite and iron powder have an average particle size of 120 to 240 mesh, and the alumina has a specific surface area of 160 to 290 m 2 /g, the monolithic
  • the three-dimensional network structure carrier has a porosity of 85% or more.
  • the active powder alumina, potassium carbonate, calcium carbonate, magnetite and iron powder have an average particle size of 150 to 200 mesh, and the alumina has a specific surface area of 180 to 270 m 2 /g, the whole
  • the three-dimensional network structure carrier has a porosity of 88% or more.
  • the ZSM-5 nanoparticles have an average particle diameter ranging from 10 to 30 nm, a pore diameter of 2.0 nm or less, and a gap between adjacent ZSM-5 nanoparticles of less than or equal to 100 nm.
  • the ZSM-5 nanoparticles have an average particle diameter ranging from 15 to 25 nm, a micropore diameter of 0.5 to 1.0 nm, and a gap between adjacent ZSM-5 nanoparticles of less than or equal to 80 nm.
  • the metal active component cobalt is supported in an amount of 15 to 25% by weight of the finished catalyst.
  • the preparation method of the monolithic iron-cobalt bimetal Fischer-Tropsch synthesis catalyst is special in that it comprises the following steps:
  • the porous metal iron carrier coated by the molecular sieve self-assembly is washed, and then dried and calcined to obtain a porous metal iron carrier coated by a molecular sieve membrane, which is a cluster uniformly dispersed with ZSM-5 nanoparticles. Aggregates;
  • the metal active component cobalt can be supported on the molecular sieve membrane on the surface of the porous metal iron carrier to obtain a monolithic iron-cobalt bimetallic Fischer-Tropsch synthesis catalyst.
  • the average particle size of alumina, potassium carbonate, calcium carbonate, magnetite and iron powder is 120 to 240 mesh, and the specific surface area of alumina is 160 to 290 m 2 /g.
  • the average particle size of alumina, potassium carbonate, calcium carbonate, magnetite and iron powder is 150 to 200 mesh, and the specific surface area of alumina is 180 to 270 m 2 /g.
  • the grinding time is 4 to 10 hours.
  • the organic binder is sodium carboxymethyl cellulose or glycerin, and the weight percentage of sodium carboxymethyl cellulose or glycerin in the aqueous binder solution is 10 to 30%.
  • the solid solution volume percentage of the active powder and the aqueous binder solution is 20 to 65%.
  • the polishing is continued for 4 to 10 hours.
  • the drying treatment temperature is 90 to 150 °C.
  • the drying treatment temperature is 100 to 110 °C.
  • the temperature of the high-temperature sintering treatment is 1000 to 1500 ° C, and the porosity of the obtained porous metal iron carrier is 85% or more.
  • the temperature of the high-temperature sintering treatment is 1100 to 1400 ° C, and the porosity of the obtained porous metal iron carrier is 88% or more.
  • the stirring time is 0.5 to 1.5 hours.
  • the hydrothermal synthesis reaction is carried out in an blast state, the reaction temperature is 150 to 200 ° C, and the crystallization time is 20 to 30 h.
  • the hydrothermal synthesis reaction is carried out in an blast state, the reaction temperature is 170 to 180 ° C, and the crystallization time is 22 to 26 h.
  • the drying and calcination treatment conditions are as follows: first drying at a temperature of 60 to 120 ° C for 5 to 15 hours, and then baking at a temperature of 300 to 550 ° C for 4 to 8 hours.
  • the cobalt salt is selected from cobalt nitrate and/or cobalt acetate, and is weighed according to the ratio of the loading amount of the metal active component cobalt to the weight of the finished product of 15 to 25%.
  • the cobalt salt is selected from cobalt nitrate and/or cobalt acetate, and is dissolved in anhydrous ethanol to prepare a cobalt salt solution.
  • the evaporation temperature is 40 to 80 °C.
  • the drying and calcination treatment conditions are as follows: first, drying at a temperature of 60 to 120 ° C for 5 to 15 hours, and then baking at a temperature of 300 to 550 ° C for 4 to 8 hours.
  • the monolithic iron-cobalt bimetallic Fischer-Tropsch synthesis catalyst of the invention adopts an organic porous material polyurethane foam as a template to obtain a porous carrier material having a three-dimensional network structure by high-temperature sintering, and the carrier has a larger ratio than a general monolithic carrier.
  • the surface area overcomes the disadvantage of the small specific surface area of the conventional molten iron catalyst.
  • the organic porous material polyurethane foam preparation process is very mature, and as a template, it can have more adjustable space, and is easy to handle and easy to cut, so that the obtained monolithic carrier is better matched with the reactor.
  • the molecular sieve membrane When the molecular sieve membrane is coated, the molecular sieve is coated by hydrothermal method, which greatly increases the specific surface area of the carrier, and is more favorable for the dispersion of the cobalt active component. Then, the active component cobalt is further loaded, and the presence of the molecular sieve also makes the cobalt and the carrier bond more firmly, thereby effectively preventing the activity of the active component from falling off in the reaction.
  • the monolithic iron-cobalt bimetallic Fischer-Tropsch synthesis catalyst of the present invention and a preparation method thereof will be further described in detail below with reference to specific examples.
  • the monolithic iron-cobalt bimetallic Fischer-Tropsch synthesis catalyst A is prepared by the method of the invention, and comprises the following steps:
  • alumina having an average particle size of 180-240 mesh, 3.67 g of potassium carbonate, 0.89 g of calcium carbonate, 110 g of magnetite, and 20 g of iron powder, and ball-milling for 4 hours, and uniformly mixing them to obtain an active powder.
  • the specific surface area of alumina is 190 m 2 /g;
  • the obtained dried molded product is subjected to high-temperature sintering treatment at 1100 ° C to ablate the polyurethane foam, the organic binder, and the impurity component, thereby obtaining a monolithic three-dimensional network structure of the porous metal iron carrier;
  • the porous metal iron carrier self-assembled by molecular sieve is rinsed off, firstly dried at 60 ° C for 15 h, and then calcined at 300 ° C for 8 h to obtain a molecular sieve membrane coated porous metal iron carrier.
  • the molecular sieve membrane is a cluster aggregate of ZSM-5 nanoparticles dispersed uniformly;
  • the impregnated porous metal iron carrier is first dried at 120 ° C for 10 h and then calcined at 550 ° C for 6 h to support the metal active component cobalt on the molecular sieve membrane on the surface of the porous metal iron support.
  • a monolithic iron-cobalt bimetallic Fischer-Tropsch synthesis catalyst was obtained.
  • the monolithic iron-cobalt bimetallic catalyst has been tested to have an average particle size ranging from 10 to 30 nm and a micropore diameter of less than or equal to 2.0 nm between adjacent ZSM-5 nanoparticles.
  • the gap is less than or equal to 100 nm.
  • the monolithic iron-cobalt bimetallic Fischer-Tropsch synthesis catalyst B is prepared by the method of the invention, and comprises the following steps:
  • the obtained dried molded product is sintered at a high temperature of 1400 ° C for 2 h, and the polyurethane foam, the organic binder, and the impurity component are ablated, thereby obtaining a monolithic three-dimensional network structure of the porous metal iron carrier;
  • the porous metal iron carrier self-assembled by molecular sieve is rinsed, firstly dried at 120 ° C for 5 h, and then calcined at 350 ° C for 8 h to obtain a molecular sieve membrane coated porous metal iron carrier.
  • the molecular sieve membrane is a cluster aggregate of ZSM-5 nanoparticles dispersed uniformly;
  • the impregnated porous metal iron carrier is first dried at 60 ° C for 12 h and then calcined at 500 ° C for 4-8 h to support the metal active component cobalt on the surface of the porous metal iron support.
  • a monolithic iron-cobalt bimetallic Fischer-Tropsch synthesis catalyst was obtained.
  • the monolithic iron-cobalt bimetallic catalyst has been tested to have an average particle size ranging from 10 to 30 nm and a micropore diameter of less than or equal to 2.0 nm between adjacent ZSM-5 nanoparticles.
  • the gap is less than or equal to 100 nm.
  • the monolithic iron-cobalt bimetallic Fischer-Tropsch synthesis catalyst C is prepared by the method of the invention, and comprises the following steps:
  • alumina having an average particle size of 140-180 mesh, 3.5 g of potassium carbonate, 5.3 g of calcium carbonate, 110 g of magnetite, and 20 g of iron powder, and ball-milling for 6 hours to uniformly mix them to obtain an active powder.
  • the specific surface area of the alumina is 260 m 2 /g;
  • the obtained dried molded product is sintered at a high temperature of 1200 ° C for 2 h, ablated the polyurethane foam, the organic binder, and the impurity component to obtain a monolithic three-dimensional network structure of the porous metal iron carrier;
  • the porous metal iron carrier self-assembled by molecular sieve is washed with deionized water, firstly dried at 100 ° C for 8 h, and then calcined at 550 ° C for 4 h to obtain a molecular sieve membrane coated porous metal.
  • An iron carrier, the molecular sieve membrane being a cluster aggregate of uniformly dispersed ZSM-5 nanoparticles;
  • the impregnated porous metal iron carrier is first dried at 120 ° C for 8 h and then calcined at 450 ° C for 6 h to support the metal active component cobalt on the molecular sieve membrane on the surface of the porous metal iron support.
  • a monolithic iron-cobalt bimetallic Fischer-Tropsch synthesis catalyst was obtained.
  • the monolithic iron-cobalt bimetallic catalyst has been tested to have an average particle size ranging from 10 to 30 nm and a micropore diameter of less than or equal to 2.0 nm between adjacent ZSM-5 nanoparticles.
  • the gap is less than or equal to 100 nm.
  • the monolithic iron-cobalt bimetallic Fischer-Tropsch synthesis catalyst D is prepared by the method of the invention, and comprises the following steps:
  • alumina having an average particle size of 180-240 mesh, 1.2 g of potassium carbonate, 5.36 g of calcium carbonate, 125 g of magnetite, and 10 g of iron powder, and ball-milling for 4 hours, and uniformly mixing them to obtain an active powder.
  • the specific surface area of the alumina is 240 m 2 /g;
  • the obtained active powder is dispersed into the aqueous binder solution, and further grinding for 8 hours to obtain a mixed slurry;
  • the obtained dried molded product is sintered at a high temperature at 1300 ° C for 3 hours, and the polyurethane foam, the organic binder, and the impurity component are ablated, thereby obtaining a monolithic three-dimensional network structure of the porous metal iron carrier;
  • the porous metal iron carrier self-assembled by molecular sieve is washed with deionized water, firstly dried at 80 ° C for 10 h, and then calcined at 500 ° C for 6 h to obtain a molecular sieve membrane coated porous metal.
  • An iron carrier, the molecular sieve membrane being a cluster aggregate of uniformly dispersed ZSM-5 nanoparticles;
  • the impregnated porous metal iron carrier is first dried at 100 ° C for 5 h and then calcined at 350 ° C for 8 h to support the metal active component cobalt on the molecular sieve membrane on the surface of the porous metal iron support.
  • a monolithic iron-cobalt bimetallic Fischer-Tropsch synthesis catalyst was obtained.
  • the monolithic iron-cobalt bimetallic catalyst has been tested to have an average particle size ranging from 10 to 30 nm and a micropore diameter of less than or equal to 2.0 nm between adjacent ZSM-5 nanoparticles.
  • the gap is less than or equal to 100 nm.
  • the monolithic iron-cobalt bimetallic Fischer-Tropsch synthesis catalyst E is prepared by the method of the invention, and comprises the following steps:
  • the obtained dried molded product is sintered at a high temperature of 1400 ° C for 3 hours, and the polyurethane foam, the organic binder, and the impurity component are ablated, thereby obtaining a monolithic three-dimensional network structure of the porous metal iron carrier;
  • the porous metal iron carrier self-assembled by molecular sieve is washed with deionized water, firstly dried at 120 ° C for 15 h, and then calcined at 450 ° C for 8 h to obtain a molecular sieve membrane coated porous metal.
  • An iron carrier, the molecular sieve membrane being a cluster aggregate of uniformly dispersed ZSM-5 nanoparticles;
  • the impregnated porous metal iron carrier is first dried at 80 ° C for 15 h and then calcined at 300 ° C for 8 h to support the metal active component cobalt on the molecular sieve membrane on the surface of the porous metal iron support.
  • a monolithic iron-cobalt bimetallic Fischer-Tropsch synthesis catalyst was obtained.
  • the monolithic iron-cobalt bimetallic catalyst has been tested to have an average particle size ranging from 10 to 30 nm and a micropore diameter of less than or equal to 2.0 nm between adjacent ZSM-5 nanoparticles.
  • the gap is less than or equal to 100 nm.
  • a comparative catalyst was prepared in the conventional manner of Comparative Examples 1 to 3, and the specific preparation method was as follows:
  • the solid is added to the electric furnace at 1800 ° C for heating and melting, and then the high-temperature melt is rapidly transferred into a cooling tank with a water jacket to be cooled, cooled to room temperature, and then crushed, and 20 to 40 mesh is sieved as a catalyst.
  • the monolith catalyst of each embodiment of the present invention has a CO conversion rate of 73% or more as compared with the conventional catalyst, which is equivalent to the product prepared by the conventional method.
  • the monolith catalyst of the present invention has a selectivity to C 2 -C 4 of less than 12% while maintaining a high conversion rate, largely inhibits the water gas change reaction, and carries out a very high reaction to the Fischer-Tropsch synthesis product.
  • High regulation, selectivity for C 5 -C 20 (such as gasoline and diesel products) is above 70%, and CO 2 is chosen to remain below 6%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne un catalyseur de synthèse de Fischer-Tropsch bimétallique intégral à base de cobalt/fer et son procédé de préparation. Le catalyseur comprend un support de fer métallique poreux, une membrane de tamis moléculaire appliquée en revêtement sur la surface du support de fer métallique poreux, et un composant actif métallique chargé sur la membrane de tamis moléculaire. Le support de fer métallique poreux est un support structural de réseau tridimensionnel intégral qui est formé par : division d'une mousse de polyuréthane en morceaux à utiliser comme matrice, immersion de ces derniers dans une solution de liant contenant de l'alumine en poudre active, du carbonate de potassium, du carbonate de calcium, de la magnétite et une poudre de fer, séchage et frittage de façon à former le support. Les poids des composants majeurs dans le support structural de réseau tridimensionnel intégral tenant satisfont la relation mathématique suivante : Fe∶Al2O3:K2O∶CaO=100∶(1,5-6,0)∶(0,2-2,8)∶(0,2-3,2) ; la membrane de tamis moléculaire est un agrégat de grappes ayant des nanoparticules de ZSM-5 uniformément dispersées ; et la charge du cobalt composant actif métallique représente 10 à 30 % du poids du catalyseur fini comme produit. Le catalyseur a les avantages d'avoir une grande surface spécifique de support et de fortes performances d'adhérence de catalyseur. Le procédé de préparation de catalyseur est simple et la performance du produit est stable.
PCT/CN2017/078053 2016-05-19 2017-03-24 Catalyseur de synthèse de fischer-tropsch bimétallique intégral à base de cobalt/fer et son procédé de préparation WO2017197980A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610332639.9 2016-05-19
CN201610332639.9A CN105921167A (zh) 2016-05-19 2016-05-19 整体式铁钴双金属费托合成催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2017197980A1 true WO2017197980A1 (fr) 2017-11-23

Family

ID=56841535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078053 WO2017197980A1 (fr) 2016-05-19 2017-03-24 Catalyseur de synthèse de fischer-tropsch bimétallique intégral à base de cobalt/fer et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN105921167A (fr)
WO (1) WO2017197980A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113546630A (zh) * 2021-07-30 2021-10-26 华东理工大学 一种石墨基负载型铁基催化剂及其制备方法和应用
CN115321602A (zh) * 2021-10-18 2022-11-11 齐齐哈尔大学 一种高比表面积缺陷型铁基氧化物的制备方法
CN115415522A (zh) * 2022-09-30 2022-12-02 复旦大学 一种多壳层多孔铁钴合金及其制备方法和应用
CN115925437A (zh) * 2022-12-08 2023-04-07 上海绿强新材料有限公司 一种用于VOCs脱除的整体式蜂窝分子筛及其制备和应用
CN118022830A (zh) * 2024-04-15 2024-05-14 临朐泰丰环保科技有限公司 预还原型铁钴双活性组分催化剂及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105921167A (zh) * 2016-05-19 2016-09-07 武汉凯迪工程技术研究总院有限公司 整体式铁钴双金属费托合成催化剂及其制备方法
CN106824297A (zh) * 2017-01-20 2017-06-13 平潭自贸区金瑜环保材料有限公司 一种增强型整体式氧化铝载体及其制备方法
CN108176406A (zh) * 2017-11-27 2018-06-19 贵州理工学院 尺寸和壳层厚度可调的单核双壳Fe2O3@SiO2@MnO2及制备方法
CN112625773B (zh) * 2019-10-09 2022-10-18 中国海洋石油集团有限公司 一种变压器油基础油的制备方法
CN111111662A (zh) * 2020-01-03 2020-05-08 中国重型机械研究院股份公司 一种负载型针铁矿的泡沫金属催化剂及其制备方法
CN111659395B (zh) * 2020-05-26 2021-11-26 北京化工大学 具有高全烯烃选择性的泡沫铁基催化剂的制备方法及其应用
CN116212950A (zh) * 2021-12-02 2023-06-06 惠生工程(中国)有限公司 一种金属多孔导热催化剂体系以及低温低压制备乙交酯的方法
CN114570412B (zh) * 2022-02-18 2024-03-08 贵州理工学院 一种费托芳烃催化剂和制备方法及用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014031029A1 (fr) * 2012-08-24 2014-02-27 Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" Procédé de production de catalyseur au cobalt pour la synthèse d'hydrocarbures liquides selon le procédé de fischer-tropsch
CN104722327A (zh) * 2013-12-18 2015-06-24 武汉凯迪工程技术研究总院有限公司 一种用于费-托合成的金属基整体式膜催化剂及其制备方法
CN105080597A (zh) * 2014-05-14 2015-11-25 中国石油化工股份有限公司 合成气制烯烃催化剂及其制备方法
CN105921167A (zh) * 2016-05-19 2016-09-07 武汉凯迪工程技术研究总院有限公司 整体式铁钴双金属费托合成催化剂及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247895B (zh) * 2010-05-20 2013-04-24 中国石油化工股份有限公司 催化剂载体的制备方法以及费托合成催化剂的制备方法
CN102580771B (zh) * 2011-12-14 2013-10-30 中国科学院山西煤炭化学研究所 一种三元多级孔钴基催化剂及制备和应用
JP2014169236A (ja) * 2013-03-01 2014-09-18 Sumitomo Bakelite Co Ltd 飽和炭化水素又は不飽和炭化水素の合成方法、合成物及び触媒複合体
CN104492373B (zh) * 2014-12-05 2016-12-07 中国科学院广州地球化学研究所 一种用于挥发性有机污染物吸附的硅藻土基复合多孔陶瓷材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014031029A1 (fr) * 2012-08-24 2014-02-27 Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" Procédé de production de catalyseur au cobalt pour la synthèse d'hydrocarbures liquides selon le procédé de fischer-tropsch
CN104722327A (zh) * 2013-12-18 2015-06-24 武汉凯迪工程技术研究总院有限公司 一种用于费-托合成的金属基整体式膜催化剂及其制备方法
CN105080597A (zh) * 2014-05-14 2015-11-25 中国石油化工股份有限公司 合成气制烯烃催化剂及其制备方法
CN105921167A (zh) * 2016-05-19 2016-09-07 武汉凯迪工程技术研究总院有限公司 整体式铁钴双金属费托合成催化剂及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113546630A (zh) * 2021-07-30 2021-10-26 华东理工大学 一种石墨基负载型铁基催化剂及其制备方法和应用
CN115321602A (zh) * 2021-10-18 2022-11-11 齐齐哈尔大学 一种高比表面积缺陷型铁基氧化物的制备方法
CN115321602B (zh) * 2021-10-18 2023-12-22 齐齐哈尔大学 一种高比表面积缺陷型铁基氧化物的制备方法
CN115415522A (zh) * 2022-09-30 2022-12-02 复旦大学 一种多壳层多孔铁钴合金及其制备方法和应用
CN115925437A (zh) * 2022-12-08 2023-04-07 上海绿强新材料有限公司 一种用于VOCs脱除的整体式蜂窝分子筛及其制备和应用
CN115925437B (zh) * 2022-12-08 2023-12-19 上海绿强新材料有限公司 一种用于VOCs脱除的整体式蜂窝分子筛及其制备和应用
CN118022830A (zh) * 2024-04-15 2024-05-14 临朐泰丰环保科技有限公司 预还原型铁钴双活性组分催化剂及其制备方法

Also Published As

Publication number Publication date
CN105921167A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
WO2017197980A1 (fr) Catalyseur de synthèse de fischer-tropsch bimétallique intégral à base de cobalt/fer et son procédé de préparation
WO2018121324A1 (fr) Catalyseur pour la synthèse d'éthanol, son procédé de préparation et son utilisation
WO2015106634A1 (fr) Catalyseur chargé sur un support en phase métallique, son procédé de préparation et ses utilisations
WO2021258952A1 (fr) Catalyseur d'isomérisation par hydrocraquage, son procédé de préparation, et son utilisation
CN104588011B (zh) 烷烃脱氢催化剂及其制备方法
US10213769B2 (en) Method for producing hydrocarbon dehydrogenation catalyst using sponge-type support
CN107597133B (zh) 一种自支撑氧化镍基催化剂及其制备方法和应用
CN103203238A (zh) 一种费托合成催化剂及其制备和应用
WO2017185929A1 (fr) Catalyseur d'hydrogénation sélectif utilisé pour produire du carburant d'aviation, et son procédé de préparation et son application
CN107694562B (zh) 一种整体催化剂及其制备和应用
JP7320532B2 (ja) 合成ガスから航空灯油を合成する際に使用される触媒の製造方法、その方法により得られた触媒、及びその使用
CN103406140A (zh) 一种醇醚转化为芳烃的催化剂、其制备方法及使用方法
WO2022166084A1 (fr) Procédé de préparation et utilisation d'un catalyseur métallique de coordination de solvant
CN114917929B (zh) 用于有机液体储氢材料加氢与脱氢的催化剂及其制备方法和应用
JP2017521232A (ja) バイオマスフィッシャートロプシュ法により得られた合成油からの航空機用ケロシン製造に適する触媒およびその調製方法
CN110142060B (zh) 碳化硅/氮化硅载体及其制备方法、费托合成催化剂及其制备方法和应用
CN112108180A (zh) 一种合成气直接转化制低碳烯烃的催化剂及其制备方法
CN102371179A (zh) 一种制取低碳烯烃催化剂及其制备方法
Zhao et al. Hydrothermal acid etching of alumina beads and its effect on isobutane dehydrogenation performance over Pt/γ-Al2O3 catalyst
WO2019148551A1 (fr) Procédé de préparation de microsphères de catalyseur à base de ni son utilisation
CN107362825B (zh) 免焙烧加氢催化剂及其制备方法和应用
CN106040245B (zh) 一种Co基催化剂及其制备方法与应用
WO2014182020A1 (fr) Catalyseur monolithique pour la réaction de reformage du dioxyde de carbone, son procédé de production, et procédé de production de gaz de synthèse utilisant celui-ci
CN105727954A (zh) 一种合成气制天然气催化剂的制备方法
CN102911693A (zh) 一种采用混合催化剂的费托合成方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798544

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17798544

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/05/2019)