WO2017196209A1 - Модульная установка для обработки сыпучих зерновых продуктов ультрафиолетовым излучением - Google Patents

Модульная установка для обработки сыпучих зерновых продуктов ультрафиолетовым излучением Download PDF

Info

Publication number
WO2017196209A1
WO2017196209A1 PCT/RU2017/000302 RU2017000302W WO2017196209A1 WO 2017196209 A1 WO2017196209 A1 WO 2017196209A1 RU 2017000302 W RU2017000302 W RU 2017000302W WO 2017196209 A1 WO2017196209 A1 WO 2017196209A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamps
modules
ultraviolet radiation
lamp
radiation
Prior art date
Application number
PCT/RU2017/000302
Other languages
English (en)
French (fr)
Inventor
Руслан Владимирович КЛЕВАКИН
Original Assignee
Руслан Владимирович КЛЕВАКИН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Руслан Владимирович КЛЕВАКИН filed Critical Руслан Владимирович КЛЕВАКИН
Priority to CA3022817A priority Critical patent/CA3022817A1/en
Priority to KR1020187035776A priority patent/KR102430800B1/ko
Priority to UAA201812043A priority patent/UA124149C2/ru
Priority to JP2018557377A priority patent/JP6960412B2/ja
Priority to EA201800418A priority patent/EA039242B1/ru
Priority to BR112018073021-1A priority patent/BR112018073021B1/pt
Priority to EP17796476.4A priority patent/EP3456206B1/en
Priority to CN201780029360.6A priority patent/CN109068694B/zh
Priority to US15/747,120 priority patent/US10986854B2/en
Publication of WO2017196209A1 publication Critical patent/WO2017196209A1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C1/00Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C1/00Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting
    • A01C1/08Immunising seed
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B9/00Preservation of edible seeds, e.g. cereals
    • A23B9/06Preserving by irradiation or electric treatment without heating effect
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/001Details of apparatus, e.g. for transport, for loading or unloading manipulation, pressure feed valves
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/005Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating using irradiation or electric treatment
    • A23L3/0055Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating using irradiation or electric treatment with infrared rays
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/26Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating
    • A23L3/28Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating with ultraviolet light
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/40Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by drying or kilning; Subsequent reconstitution
    • A23L3/54Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by drying or kilning; Subsequent reconstitution using irradiation or electrical treatment, e.g. ultrasonic waves

Definitions

  • the invention relates to a device for the disinfection of bulk materials, in particular grain and grain products using ultraviolet radiation.
  • the technical solution can be used in food, in the microbiological, in the pharmaceutical industry, in pharmacology, in the cosmetic industry, in agriculture, livestock, poultry, in the production of environmentally friendly food.
  • a device for irradiating and treating seeds includes a seed hopper, a chamber (housing) for irradiation, in which pitched boards (protective shields) for seeds (bulk material) located one under the other are mounted at an angle on opposite walls, and ultraviolet emitters (lamps) ultraviolet radiation).
  • UV sensors are also not provided.
  • the lamps are not protected against mechanical damage.
  • the case is one-piece, its design does not provide for the adjustment of the intensity of processing with ultraviolet radiation, depending on the type of material being processed, by changing the number of lamps, the distance between them, and the rate of fall of particles.
  • a device for drying grain [2] comprising a drying chamber (housing) with horizontally arranged grain reflectors (protective shields), a source of heat generation (lamps), elevators (loading mechanism) for loading grain into a dryer and a pitched board.
  • Horizontal grain reflectors are made at an angle to each other, while the angle in the lower row of reflectors is larger than the previous one, and light bulbs are a source of heat for drying and irradiation of pests. Light bulbs are not placed in each row of reflectors. In separate rows, light bulbs are installed with radiation harmful to pests.
  • This device [2] does not provide for the installation of ultraviolet lamps with a protective Teflon coating, the type of radiation is not indicated.
  • the housing is made integral, does not allow for dose adjustment by installing or removing lamps, or moving them freely. It does not contain elements for controlling the intensity of irradiation and cleaning the lamps from pollution. There is no way to adjust the gap between the grain reflectors (protective shields). Not the base of the lamp base is heated and the static electricity generated from the friction of the particles of material is removed.
  • UV radiation ultraviolet
  • a known installation for processing bulk products with ultraviolet (UV) radiation [3], containing loading and unloading devices, a working body and UV lamps, enclosed in transparent cases for UV radiation covers and located inside the working body.
  • UV lamps are arranged parallel to each other in horizontal and vertical rows with equal gaps in the horizontal rows and successively decreasing gaps in the vertical rows.
  • the loading device is connected to a discharge closed pipe.
  • UV lamps are equipped with a device for cleaning them.
  • a UV radiation intensity sensor is installed, aimed at one of the lamps.
  • the design of the unit is one-piece, all lamps are rigidly installed in a single housing. There is no way to adjust the installation for various types of bulk products as needed. It is difficult to change the performance of the installation without altering the housing. There is no possibility of slowing down the rate of fall of bulk product, which leads to an increase in the number of installed UV lamps in the installation.
  • the installation has much larger dimensions, since the possibility of multiple processing of one portion of a bulk product requires the installation of additional mechanisms and machines. It does not allow changing the number of ultraviolet lamps by changing or installing any group of lamps mounted in a separate unit. It does not allow selection of the irradiation intensity depending on the material to be passed by simply adding or decreasing modules with lamps.
  • Lamps are not sufficiently protected against damage, protective guards are installed only above the upper row of lamps. Quartz cases do not provide reliable lamp protection, as they are fragile. There is no way to adjust the gap between the protective shields. Not provided with the removal of static electricity generated from the friction of the particles of the material. A device for cleaning covers involves a mechanical effect on their surface, while the friction of the particles can damage the cover.
  • the technical problem to which the invention is directed is to provide processing of granular material, in particular a grain product, with ultraviolet irradiation with the possibility of adjusting the irradiation intensity, ensuring the movement of granular material due to gravity with the possibility of adjusting the flow rate, ensuring uniform irradiation of particles of granular material simultaneously all sides, ensuring the convenience of transportation, installation, repair and maintenance, neutralization of static electricity .
  • Installation should not be difficult structurally and provide the ability to increase productivity by assembling standard elements.
  • the technical result consists in ensuring the passage of bulk material, namely a grain product between ultraviolet lamps under the action of gravity and cleaning it from harmful microorganisms with the ability to adjust the flow rate of particles of bulk material and control the intensity of radiation.
  • the modular installation for processing bulk grain products with ultraviolet radiation consists of identical modules sequentially located one above the other, the module consists of a rectangular case, inside the case at equal distance from each other, horizontally, with the possibility of adjusting the relative position, UV lamps are installed radiation equipped with a protective lamp, transparent for ultraviolet radiation, a Teflon coating adjacent to the glass of the lamp and equipped with a protective shield on top to protect from spilled product, the module has an UV lamp intensity sensor aimed at one of the lamps, as well as a device for cleaning lamps from contamination while the modules are mounted on racks, with the ability to adjust the distance between the modules, the racks are mounted on a frame equipped with a vibration mechanism.
  • the protective shield is made in the form of a corner or channel and is made of metal or composite material.
  • the vibration mechanism for the entire installation contains a base and a vibration motor, while the frame is mounted on the base by means of a damper, and the vibration motor is mounted on the frame.
  • UV lamps in adjacent modules are located, crossing, that is, cross to cross in relation to each other.
  • a device for cleaning lamps contains a pneumatic fitting mounted on the module housing in the holes.
  • the installation contains a bipolar ionizer for removing static electricity from each module.
  • Figure 1 General view of the device without a frame, visible 3 modules mounted on racks
  • Figure 2 is a photograph, a general view of the device from the side of the protective shields, 3 modules are visible on the racks;
  • Fig. 3 is a photograph, a general view of the device from the side of the protective shields, 3 modules are visible on the racks, two protective shields of the upper module are missing;
  • Figure 4 is a photograph, a General view of the device without a frame, with a partial cutout of two modules
  • 5 is a photograph, two single modules with protective shields in the form of a channel for legumes.
  • the modular installation for processing bulk grain products with ultraviolet radiation contains three modules 1 (Fig.1,2,3,4,5) installed on six racks 2 (Fig.1,2,3,4).
  • Racks 2 are mounted vertically, and modules 1 are arranged in series.
  • the number of racks 2 and modules 1 can be adjusted depending on the required performance and the type of processed bulk material.
  • Module 1 consists of a square case 3 (Fig. 1,2,3,4), inside of which at an equal distance (10 cm) from each other, ultraviolet lamps 4 are installed horizontally in rows (Figs. 1, 3, 4).
  • Special lamps with UVC type radiation are used which can be used in a wide range of outdoor temperatures from -35 ° C to + 40 ° C.
  • Each lamp 4 is equipped with a protective shield 5 (Fig.2,3,4,5), which are located in the upper part of the module 1 above the lamps 4.
  • the protective shield 5 is made in the form of a corner (Fig. 1, 2,3,4), or in the form of a channel (figure 5).
  • the protective shield 5 is made of metal. Possible implementation of the protective shield 5 of carbon fiber.
  • a protective shield 5 protects each lamp 4 from the impact of particles of a crumbling grain product from above.
  • a protective shield 5 above each lamp 4 allows you to maintain the same the rate of product spilling through the modules 1 installation.
  • the lamp 4 and the protective shield 5 form a single element and are installed in the housing with the possibility of adjustment.
  • Each lamp 4 with its shield 5 can be moved in the housing 3 relative to the adjacent lamp 4 with a protective shield 5 located nearby.
  • Lamps 4 are located in a protective Teflon coating that fits tightly to the bulb (glass) of the lamp 4.
  • the Teflon coating is transparent to ultraviolet rays and protects the glass (bulb) of the lamp 4 from mechanical damage, while allowing easy cleaning of the lamp surface from dust and dirt by feeding compressed air.
  • an intensity sensor 6 is installed (not shown in the figures) of ultraviolet radiation of lamps 4 directed to one of the lamps 4.
  • Racks 2 are mounted on a frame 7 (not shown in the figures) equipped with a vibration mechanism 8 (not shown in the figures).
  • the vibration mechanism 8 comprises a base 9 (not shown in the figures) and a vibration motor 10 (not shown in the figures).
  • the frame 7 is mounted on the base 9 by means of a damper 11 (not shown in the figures), for example, made in the form of spring supports, and wheels (not indicated).
  • the vibration motor 10 is mounted on the frame 7.
  • the modules 1 are given vibration, which ensures uniform spilling of particles of bulk material (grain product) and the absence of blockages. Vibration to the installation can be imparted from an electric motor (not indicated) fixed on the base 9 and through a crank mechanism connected to the frame 7.
  • tena of infrared radiation 12 (not shown) are installed to heat the lamp base 4. Lamps 4 in neighboring modules 1 are located intersecting in relation to each other.
  • Module 1 is equipped with a device for cleaning 13 (not shown in the figures) lamps 4 from contamination.
  • a device for cleaning 13 of the lamps 4 contains a pneumatic fitting 14 (not shown in the figures) mounted on the housing 3 of the module 1 in the holes 15 (not shown in the figures).
  • Installation contains a bipolar ionizer 16 (not shown in the figures) for removing static electricity from each module 1.
  • the housing 3 of module 1 consists of a frame 17 (Fig. 4) made of pipes 18 (Fig. 4) of rectangular cross section and flat partitions 19 (Fig. four).
  • Racks 2 are made in the form of a channel with holes 20 (Fig. 4).
  • the housing 3 to the posts 2 is fixed with pins 21 (Fig. 4), which are installed in the holes 22 (Fig. 4) of the pipes 18.
  • Lamps 4 are installed in the holes of the flat partitions 19.
  • Each module 1 can be equipped with pitched plates 23 on top (Fig. 4) ) to direct the flow of particles of bulk material.
  • Frame 7 on which racks 2 with modules 1 are mounted on top is a frame from a profile pipe and is made individually depending on the performance range, plant capacity and type of bulk materials.
  • the operation of the modular installation for processing bulk grain products with ultraviolet radiation is based on the process of pouring bulk material from top to bottom through modules 1 with ultraviolet lamps 4.
  • the lamps 4 are connected to an electric current source. Lamps 4 emit ultraviolet light.
  • the vibration mechanism 8 is started for this purpose, the vibration motor 10 is turned on.
  • the vibration motor 10 mounted on the frame 7 transmits vibration to the frame 7, the frame 7 not rigidly connected to the base 9 begins to vibrate (oscillate) on the dampers 11 (it rolls back and forth on the wheels and is held springs).
  • the vibration through the frame 7 and the racks 2 is transmitted to the modules 1. They take bulk material, for example, wheat grain, and pour it on top of the module 1.
  • the installation can be equipped with loading and unloading mechanisms, for example, in the form of a screw, noriya or conveyor belt.
  • loading and unloading mechanisms for example, in the form of a screw, noriya or conveyor belt.
  • particles of granular material, wheat grains fall on the protective shields 5 and slid under the influence of weight and vibration into the gaps between adjacent flaps 5.
  • Sloping plates 23 facilitate the direction of particles of bulk material in the gaps.
  • the position of the protective shields 5 is adjusted together with the lamp installed under it, choosing the optimal gap between the adjacent edges of the protective shields 5, providing the necessary speed for the particles to spill.
  • the ability to adjust the protective shield 5 and the gap between adjacent protective shields 5 makes it possible to adjust the time of spilling of the product and its quantity, as well as adjusting the dose of ultraviolet radiation.
  • Particles of bulk material pass through the gap between the protective shields 5, while vibration does not allow the particles to stop in the gap, forming a blockage. After passing through the gap between the protective shields 5, the particles fall and rotate, while the ultraviolet radiation from the lamps 4 irradiates the particles.
  • a protective shield 5 protects each lamp 4 from impacts of particles of granular material pouring from above. Consistently, particles pass through each module mounted one above the other, from top to bottom.
  • the Teflon coating of the lamps 4 transmits ultraviolet rays and protects the glass (bulb) of the lamp 4 from mechanical damage.
  • Ultraviolet irradiation of lamps 4 affects the surface of particles of bulk material and disinfects them, sterilizes them, and cleanses them of harmful microorganisms such as viruses, bacteria, spores, mold, and others.
  • An intensity sensor 6 (not shown in the figures) of the ultraviolet radiation of the lamps 4 directed to one of the lamps 4 makes it possible to control the intensity of the ultraviolet radiation. In this case, the decrease in the intensity of ultraviolet radiation occurs, in particular, as a result of contamination of the Teflon coating of the lamps 4 and, according to the readings of the intensity sensor 6, determine the need for cleaning from dust and dirt.
  • To clean the Teflon coating of lamps 4 use a device for cleaning 13.
  • pneumatic hoses (not indicated) are connected and compressed air is supplied through them from the compressor or receiver. Compressed air cleans the contamination of the Teflon coating of the lamps 4.
  • the power of the installation as a whole and the degree of purification of bulk material spilled from above through the installation depend on the number of modules 1 installed one above the other, as well as on the number of racks 2 and the total number of modules 1. Lamps 4 in adjacent the modules are located intersecting, that is, cross to cross in relation to each other, this allows you to change the direction of motion of the particles and irradiate them more evenly.
  • Static electricity generated during the operation of the installation is discharged by a bipolar ionizer 16.
  • the bipolar ionizer 16 can be mounted on the rack 2 of the installation, one for each module 1.
  • Each module 1 has ten infrared radiation 12 (not shown) that heat the lamp base four.
  • Industrial applicability lies in the fact that the installation has a simple structure, is not complicated to manufacture and does not require sophisticated technological equipment, the installation can be made on modern industrial equipment and can be used in agriculture for pre-sowing treatment of grain seeds, cleaning grain crops from harmful microorganisms .
  • Using the invention will allow to clean the surface of the product being cleaned, if necessary, from 20% to 99.99% of bacteria, fungi, spores, harmless to humans, without the use of chemicals, both in small quantities and on an industrial scale.
  • the use of the plant in agriculture for pre-sowing cultivation improves the germination of grain, reduces the number of diseases that the crop is susceptible to when growing from germination to harvest.
  • the use of the installation in poultry and livestock farming provides reducing the likelihood of transmission of diseases through food and, accordingly, reduces the likelihood of mortality of birds and animals.
  • the use of an installation for processing grain products allows us to reduce or completely abandon the use of chemicals and antibiotics.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Cereal-Derived Products (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Physical Water Treatments (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

Изобретение относится к устройствам для обеззараживания сыпучих материалов с помощью ультрафиолетового излучения. Модульная установка состоит из последовательно расположенных модулей. Модуль состоит из квадратного корпуса, внутри которого на равном расстоянии друг от друга, горизонтально, с возможностью регулировки взаимного положения, установлены лампы ультрафиолетового излучения. Лампы оснащены защитным, прозрачным для ультрафиолетового излучения, тефлоновым покрытием, прилегающем к стеклу лампы и снабжены сверху защитным щитком. В модуле установлен датчик интенсивности ультрафиолетового излучения ламп и устройство для очистки ламп от загрязнения. Модули установлены на стойках, которые закреплены на раме оснащенной вибрационным механизмом. Использование изобретения обеспечивает очистку сыпучего материала от вредных микроорганизмов с возможностью регулировки скорости потока частиц и контроля интенсивности облучения.

Description

МОДУЛЬНАЯ УСТАНОВКА ДЛЯ ОБРАБОТКИ СЫПУЧИХ ЗЕРНОВЫХ ПРОДУКТОВ УЛЬТРАФИОЛЕТОВЫМ
ИЗЛУЧЕНИЕМ.
Изобретение относится к устройствам для обеззараживания сыпучих материалов, в частности зерна и зерновых продуктов с помощью ультрафиолетового излучения. Техническое решение может быть использовано в пищевой, в микробиологической, в фармацевтической промышленности, в фармакологии, в косметической промышленности, в сельском хозяйстве, животноводстве, птицеводстве, в производстве экологически чистых продуктов питания.
Обработка материалов излучением ультрафиолетового спектра с целью обеззараживания и бактерицидной очистки и различные устройства для этого широко известны, в частности известно и применяется облучение излучением ультрафиолетового спектра семян зерновых с целью очистки от вредных микроорганизмов ([1] патент RU 2318305). Известны устройства шахтного типа ([2]-патент RU 9514, [3] - патент RU 2228120), барабанного типа ([4] - патент RU 82510, [5] -патент RU 2537500) конвейерного типа ([6] - патент RU 2475010).
В способе предпосевной обработки семян пшеницы, включающем облучение семян ультрафиолетовой радиацией (излучением) [1], описано устройство для облучения и обработки семян. Устройство для облучения и обработки семян включает бункер для семян, камеру (корпус) для облучения, в которой под углом на противоположных стенках смонтированы скатные доски (защитные щитки) для семян (сыпучий материал), расположенные друг под другом, и излучатели ультрафиолетового диапазона (лампы ультрафиолетового излучения).
В описанном устройстве [1] отсутствуют средства для очистки ламп от загрязнения, что может привести к снижению потока излучения и дозы ультрафиолетового облучения, так же не предусмотрены датчики интенсивности ультрафиолетового излучения. Лампы не имеют защиты от механических повреждений. Корпус цельный, в его конструкции не предусмотрена регулировка интенсивности обработки ультрафиолетовым излучением в зависимости от типа обрабатываемого материала, путем изменения количества ламп, расстояния между ними, скорости падения частиц. Нет возможности регулировки скорости прохода сыпучего материала путем изменения зазора между скатными досками (защитными щитками). Нет возможности обработки сыпучего материала одновременно со всех сторон. Не обеспечен подогрев основания цоколя лампы и снятие статического электричества, образующегося от трения частиц сыпучего материала.
Известно устройство для сушки зерна [2], содержащее сушильную камеру (корпус) с горизонтально расположенными отражателями зерна (защитными щитками), источник образования тепла (лампы), нории (загрузочный механизм) для загрузки зерна в сушилку и скатную доску. Горизонтальные отражатели зерна выполнены под углом друг к другу, при этом угол в нижнем ряду отражателей больше предыдущего, а источником тепла для сушки и облучения вредителей являются электрические лампочки. Лампочки ставятся не в каждом ряду отражателей. В отдельных рядах электрические лампочки устанавливают с вредным для вредителей излучением.
В данном устройстве [2] не предусматривается установка ультрафиолетовых ламп с защитным тефлоновым покрытием, не указан вид излучения. Корпус выполнен цельным, не позволяет осуществлять регулировку дозы облучения путем установки или снятия ламп, или их свободного перемещения. Не содержит элементов для контроля интенсивности облучения и очистки ламп от загрязнений. Нет возможности регулировки зазора между отражателями зерна (защитными щитками). Не обеспечен подогрев основания цоколя лампы и снятие статического электричества, образующегося от трения частиц материала.
Известна установка для обработки сыпучих продуктов ультрафиолетовым (УФ) излучением [3], содержащая загрузочное и разгрузочное устройства, рабочий орган и УФ-лампы, заключенные в прозрачные для УФ-излучения чехлы и расположенные внутри рабочего органа. УФ-лампы расположены параллельно друг другу горизонтальными и вертикальными рядами с равными промежутками в горизонтальных рядах и последовательно уменьшающимися промежутками в вертикальных рядах. Загрузочное устройство соединено с разгрузочным замкнутым трубопроводом. УФ-лампы оснащены приспособлением для их очистки. В рабочем органе установлен датчик интенсивности УФ-излучения, направленный на одну из ламп.
Данная установка [3] наиболее близка по сущности и выбрана в качестве прототипа. Недостатки ее конструкции заключаются в следующем.
Конструкция установки цельная, все лампы жёстко установлены в едином корпусе. Нет возможности регулировки установки под различные виды сыпучих продуктов по необходимости. Сложно изменить производительность установки без переделки корпуса. Нет возможности замедления скорости падения сыпучего продукта, что приводит к увеличению количества устанавливаемых УФ ламп в установке. Установка имеет гораздо большие габариты, так как для возможности многократной обработки одной порции сыпучего продукта необходима установка дополнительных механизмов и машин. Она не позволяет изменять количество ультрафиолетовых ламп путем смены или установки, какой- либо группы ламп, смонтированных отдельным блоком. Не позволяет производить подбор интенсивности облучения в зависимости от пропускаемого материала простым добавлением или убавление модулей с лампами. Не достаточно обеспечена защита ламп от повреждения, защитные щитки установлены только над верхним рядом ламп. Кварцевые чехлы не обеспечивают надежной защиты ламп, так как являются хрупкими. Нет возможности регулировки зазора между защитными щитками. Не обеспечено снятие статического электричества, образующегося от трения частиц материала. Устройство для очистки чехлов предполагает механическое воздействие на их поверхность, при этом трение частиц может повредить чехол.
Технической задачей, на решение которой направлено изобретение, является обеспечение обработки сыпучего материала, в частности зернового продукта, ультрафиолетовым облучением с возможностью регулировки интенсивности облучения, обеспечение движения сыпучего материала за счет силы тяжести с возможностью регулировки скорости потока, обеспечение равномерного облучения частиц сыпучего материала одновременно со всех сторон, обеспечение удобства транспортировки, монтажа, ремонта и эксплуатации, нейтрализации статического электричества. Установка должна быть не сложной конструктивно и обеспечивать возможность увеличения производительности путем сборки стандартных элементов.
Технический результат заключается в обеспечении прохода сыпучего материала, а именно зернового продукта между ультрафиолетовыми лампами под действием силы тяжести и очистке его от вредных микроорганизмов с возможностью регулировки скорости потока частиц сыпучего материала и контроля интенсивности облучения.
Технический результат достигается тем, что модульная установка для обработки сыпучих зерновых продуктов ультрафиолетовым излучением состоит из последовательно расположенных друг над другом одинаковых модулей, модуль состоит из прямоугольного корпуса, внутри корпуса на равном расстоянии друг от друга, горизонтально, с возможностью регулировки взаимного положения установлены лампы ультрафиолетового излучения, оснащенные защитным, прозрачным для ультрафиолетового излучения, тефлоновым покрытием прилегающем к стеклу лампы и снабженные сверху для защиты от просыпаемого продукта защитным щитком, в модуле установлен датчик интенсивности ультрафиолетового излучения ламп, направленный на одну из ламп, а также устройство для очистки ламп от загрязнения, при этом модули установлены на стойках, с возможностью регулировки расстояния между модулями, стойки закреплены на раме оснащенной вибрационным механизмом.
Вышеуказанная сущность обеспечивает достижение заявленного технического результата.
Предусмотрено, что защитный щиток выполнен в форме уголка либо швеллера и выполнен из металла или композитного материала.
Для устранения засоров из просыпаемого продукта внутри модулей, необходимо придавать незначительную вибрацию либо каждому защитному щитку (уголку) в отдельности, либо всей установке в целом.
Вибрационный механизм для всей установки содержит основание и вибромотор, при этом рама установлена на основании посредством демпфера, а вибромотор закреплен на раме.
Для работы установки при низких наружных температурах, предусмотрен подогрев цоколей УФ ламп с помощью источника инфракрасного излучения. УФ лампы в соседних модулях располагаются, перекрещиваясь, то есть крест на крест по отношению друг к другу.
Устройство для очистки ламп содержит пневматический штуцер установленный на корпусе модуля в отверстиях. Установка содержит биполярный ионизатор отвода статического электричества от каждого модуля.
Изобретение поясняется графическими материалами:
Фиг.1 - фотография, общий вид устройства без рамы, видны 3 модуля установленные на стойках; Фиг.2 - фотография, общий вид устройства со стороны защитных щитков, видны 3 модуля на стойках;
Фиг.З - фотография, общий вид устройства со стороны защитных щитков, видны 3 модуля на стойках, отсутствуют два защитных щитка верхнего модуля;
Фиг.4 - фотография, общий вид устройства без рамы, с частичным вырезом двух модулей;
Фиг.5 - фотография, два одиночных модуля с защитными щитками в виде швеллера для бобовых культур.
Сущность изобретения не ограничивается приведенным ниже описанием.
Модульная установка для обработки сыпучих зерновых продуктов ультрафиолетовым излучением содержит три модуля 1 (Фиг.1,2,3,4,5) установленных на шести стойках 2 (Фиг.1,2,3,4). Стойки 2 установлены вертикально, а модули 1 расположены последовательно. Количество стоек 2 и модулей 1 может регулироваться в зависимости от требуемой производительности и типа обрабатываемого сыпучего материала. Модуль 1 состоит из квадратного корпуса 3 (Фиг. 1,2,3,4), внутри которого на равном расстоянии (10 см) друг от друга, горизонтально рядами установлены ультрафиолетовые лампы 4 (Фиг.1 ,3 ,4). Применяются специальные лампы с излучением UVC типа которые можно использовать в широком диапазоне наружных температур от -35°С до +40°С. Каждая лампа 4 оснащена защитным щитком 5 (Фиг.2,3,4,5), которые расположены в верхней части модуля 1 над лампами 4. Защитный щиток 5 выполнен в форме уголка (фиг. 1 ,2,3,4), либо в форме швеллера (фиг.5). Защитный щиток 5 выполнен из металла. Возможно выполнение защитного щитка 5 из углепластика. Защитный щиток 5 ограждает каждую лампу 4 от ударов частиц сыплющегося сверху зернового продукта. Кроме того защитный щиток 5 над каждой лампой 4 позволяет поддерживать одинаковую скорость просыпания продукта через модули 1 установки. Лампа 4 и защитный щиток 5 образуют единый элемент и установлены в корпусе с возможностью регулировки. Каждая лампа 4 со своим щитком 5 может быть передвинута в корпусе 3 относительно соседней лампы 4 с защитным щитком 5 расположенной рядом. Лампы 4 находятся в защитном тефлоновом покрытии, плотно прилегающем к колбе (стеклу) лампы 4. Тефлоновое покрытие является прозрачным для ультрафиолетовых лучей и защищает стекло (колбу) лампы 4 от механических повреждений, позволяя при этом легко очищать поверхность лампы от пыли и грязи путем подачи сжатого воздуха. В модуле 1 установлен датчик интенсивности 6 (на фигурах не показан) ультрафиолетового излучения ламп 4, направленный на одну из ламп 4. Стойки 2 закреплены на раме 7 (на фигурах не показана) оснащенной вибрационным механизмом 8 (на фигурах не показан). Вибрационный механизм 8 содержит основание 9 (на фигурах не показано) и вибромотор 10 (на фигурах не показан). Рама 7 установлена на основании 9 посредством демпфера 11 (на фигурах не показан), например, выполненного в виде пружинных опор, и колес (не обозначены). Вибромотор 10 закреплен на раме 7. Таким образом, модулям 1 придается вибрация, обеспечивающая равномерное просыпание частиц сыпучего материала (зернового продукта) и отсутствие засоров. Вибрация установке может придаваться от электродвигателя (не обозначен), закрепленного на основании 9 и через кривошипно-шатунный механизм связанного с рамой 7. В каждом модуле 1 установлены тэны инфракрасного излучения 12 (на фигурах не показаны) для нагрева цоколя ламп 4. Лампы 4 в соседних модулях 1 располагаются перекрещиваясь по отношению друг к другу. Модуль 1 оснащен устройством для очистки 13 (на фигурах не показано) ламп 4 от загрязнения. Устройство для очистки 13 ламп 4 содержит пневматический штуцер 14 (на фигурах не показан), установленный на корпусе 3 модуля 1 в отверстиях 15 (на фигурах не показаны). Установка содержит биполярный ионизатор 16 (на фигурах не показан) отвода статического электричества от каждого модуля 1. Корпус 3 модуля 1 состоит каркаса 17 (Фиг.4), выполненного из труб 18 (фиг.4) прямоугольного поперечного сечения и плоских перегородок 19 (фиг.4). Стойки 2 выполнены в виде швеллера с отверстиями 20 (фиг.4). Корпус 3 к стойкам 2 фиксируется шпильками 21 (фиг.4), которые устанавливаются в отверстия 22 (фиг.4) труб 18. Лампы 4 устанавливаются в отверстиях плоских перегородок 19. Каждый модуль 1 сверху может быть оснащен скатными пластинами 23 (фиг.4) для направления потока частиц сыпучего материала. Рама 7 на которой сверху устанавливаются стойки 2 с модулями 1 представляет собой каркас из профильной трубы и изготавливается индивидуально в зависимости от диапазона производительности, мощности установки и вида сыпучих материалов.
Работа модульной установки для обработки сыпучих зерновых продуктов ультрафиолетовым излучением основана на процессе просыпания сыпучего материала сверху вниз через модули 1 с лампами 4 ультрафиолетового излучения. Подключают лампы 4 к источнику электрического тока. Лампы 4 испускают излучение ультрафиолетового спектра. Запускают вибрационный механизм 8 для этого включают вибромотор 10. Вибромотор 10, закрепленный на раме 7 передает вибрацию на раму 7, рама 7 не жестко соединенная с основанием 9 начинает вибрировать (колебаться) на демпферах 11 (перекатывается на колесах вперед-назад и при этом удерживаемая пружинами). Вибрация по раме 7 и стойкам 2 передается на модули 1. Берут сыпучий материал, например, зерно пшеницы, и высыпают сверху на модуль 1. Для загрузки и разгрузки обрабатываемого материала установка может быть оборудована загрузочным и разгрузочным механизмами, например, в виде шнека, нории или ленточного транспортера. Под действием силы тяжести частицы сыпучего материала, зерна пшеницы, падают на защитные щитки 5 и скатываются под действием веса и вибрации в зазоры между соседними щитками 5. Скатные пластины 23 способствуют направлению частиц сыпучего материала в зазоры. В зависимости от свойств сыпучего материала регулируют положение защитных щитков 5 вместе с установленной под ним лампой, подбирая оптимальный зазор между соседними краями защитных щитков 5, обеспечивая необходимую скорость просыпания частиц. Возможность регулировки защитного щитка 5 и зазора между соседними защитными щитками 5 дает возможность регулировки времени просыпания продукта и его количества, а также регулировки дозы ультрафиолетового облучения. Частицы сыпучего материала проходят через зазор между защитными щитками 5, при этом вибрация не позволяет частицам останавливаться в зазоре, образуя засор. После прохода через зазор, между защитными щитками 5, частицы падают и вращаются, при этом ультрафиолетовое излучение от ламп 4 облучает частицы. Защитный щиток 5 ограждает каждую лампу 4 от ударов частиц сыплющегося сверху сыпучего материала. Последовательно частицы проходят через каждый модуль, установленный друг над другом, сверху вниз. Тефлоновое покрытие ламп 4 пропускает ультрафиолетовые лучи и защищает стекло (колбу) лампы 4 от механических повреждений. Ультрафиолетовое облучение ламп 4 воздействует на поверхность частиц сыпучего материала и обеззараживает их, стерилизует, очищает от вредных микроорганизмов таких как вирусы, бактерии, споры, плесень и других. Датчик интенсивности 6 (на фигурах не показан) ультрафиолетового излучения ламп 4, направленный на одну из ламп 4 позволяет контролировать интенсивность ультрафиолетового излучения. При этом снижение интенсивности ультрафиолетового излучения происходит, в частности, в результате загрязнения тефлонового покрытия ламп 4 и по показаниям датчика интенсивности 6 определяют потребность очистки от пыли и грязи. Для очистки тефлонового покрытия ламп 4 используют устройство для очистки 13. К пневматическому штуцеру 14 (на фигурах не показан) подключают пневматические рукава (не обозначены) и подают по ним сжатый воздух от компрессора или ресивера. Сжатый воздух очищает загрязнение тефлонового покрытия ламп 4. Мощность установки в целом и степень очистки сыпучего материала, просыпаемого сверху через установку, зависят от количества модулей 1 установленных друг над другом, а также от количества стоек 2 и общего количества модулей 1. Лампы 4 в соседних модулях располагаются перекрещиваясь, то есть крест на крест по отношению друг к другу, это позволяет изменять направление движения частиц и облучать их более равномерно. Статическое электричество, образующееся в процессе работы установки, отводится биполярным ионизатором 16. Биполярный ионизатор 16 может монтироваться на стойку 2 установки, один для каждого модуля 1. В каждом модуле 1 установлены тэны инфракрасного излучения 12 (на фигурах не показаны) которые обеспечивают нагрева цоколя ламп 4.
Промышленная применимость заключается в том, что установка имеет простую конструкцию, не сложна в изготовлении и не требует сложного технологичного оборудования, установка может быть изготовлена на современном промышленном оборудовании и может быть использована в сельском хозяйстве для предпосевной обработки семян зерновых, очистки зерновых культур от вредных микроорганизмов. Использование изобретения позволит очищать поверхность очищаемого продукта по необходимости от 20% до 99,99% от бактерий, грибков, спор, безвредно для человека, без применения химических веществ, как в небольших количествах, так и в промышленных масштабах. Применение установки в сельском хозяйстве для предпосевной обработки улучшает проращивание зерновых, уменьшается количество болезней, которым подвержена культура при росте от прорастания до сбора урожая. Применение установки в птицеводстве и животноводстве обеспечивает уменьшение вероятности передачи заболеваний через корм и соответственно снижает вероятность падежа птицы и животных. При этом применение установки для обработки зерновых продуктов позволяет снизить или отказаться совсем от применения химических препаратов и антибиотиков.

Claims

ФОРМУЛА.
1. Модульная установка для обработки сыпучих зерновых продуктов ультрафиолетовым излучением характеризующаяся тем, что состоит из последовательно расположенных модулей, модуль состоит из прямоугольного корпуса, внутри корпуса на равном расстоянии друг от друга, горизонтально, с возможностью регулировки взаимного положения, установлены лампы ультрафиолетового излучения, оснащенные защитным, прозрачным для ультрафиолетового излучения, тефлоновым покрытием, прилегающем к стеклу лампы и снабженные сверху защитным щитком, в каждом модуле установлен датчик интенсивности ультрафиолетового излучения ламп, направленный на одну из ламп, а также устройство для очистки ламп от загрязнения, при этом модули установлены на стойках, с возможностью регулировки расстояния между модулями, стойки закреплены на раме оснащенной вибрационным механизмом.
2. Устройство по п.1 отличающееся тем, что устройство для очистки ламп содержит пневматический штуцер установленный в отверстиях на корпусе модуля.
3. Устройство по п.1 отличающееся тем, что содержит источник инфракрасного излучения.
4. Устройство по п.1 отличающееся тем, что содержит биполярный ионизатор отвода статического электричества от каждого модуля.
5. Устройство по п.1 отличающееся тем, что защитный щиток выполнен в форме уголка либо швеллера и выполнен из металла или композитного материала.
6. Устройство по п.1 отличающееся тем, что вибрационный механизм содержит основание и вибромотор, при этом рама установлена на основании посредством демпфера, а вибромотор закреплен на раме.
7. Устройство по п.1 отличающееся тем, что лампы в соседних модулях расположены перекрещиваясь по отношению друг к другу.
PCT/RU2017/000302 2016-05-11 2017-05-11 Модульная установка для обработки сыпучих зерновых продуктов ультрафиолетовым излучением WO2017196209A1 (ru)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA3022817A CA3022817A1 (en) 2016-05-11 2017-05-11 A modular installation for processing bulk grain products with ultraviolet radiation
KR1020187035776A KR102430800B1 (ko) 2016-05-11 2017-05-11 자외선을 이용한 벌크 곡물 가공용 모듈형 장치
UAA201812043A UA124149C2 (ru) 2016-05-11 2017-05-11 Модульная установка для обработки сыпучих зерновых продуктов ультрафиолетовым излучением
JP2018557377A JP6960412B2 (ja) 2016-05-11 2017-05-11 粉粒状の穀物製品用紫外線処理モジュールユニット
EA201800418A EA039242B1 (ru) 2016-05-11 2017-05-11 Модульная установка для обработки сыпучих зерновых продуктов ультрафиолетовым излучением
BR112018073021-1A BR112018073021B1 (pt) 2016-05-11 2017-05-11 Unidade modular para tratamento de produtos de cereais a granel
EP17796476.4A EP3456206B1 (en) 2016-05-11 2017-05-11 Modular unit for processing loose grain products using ultraviolet radiation
CN201780029360.6A CN109068694B (zh) 2016-05-11 2017-05-11 用紫外线辐射处理散装谷物的模块化装置
US15/747,120 US10986854B2 (en) 2016-05-11 2017-05-11 Modular installation for processing bulk grain products with ultraviolet radiation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2016118174A RU2620831C1 (ru) 2016-05-11 2016-05-11 Модульная установка для обработки сыпучих зерновых продуктов ультрафиолетовым излучением
RU2016118174 2016-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/747,120 Continuation US10986854B2 (en) 2016-05-11 2017-05-11 Modular installation for processing bulk grain products with ultraviolet radiation

Publications (1)

Publication Number Publication Date
WO2017196209A1 true WO2017196209A1 (ru) 2017-11-16

Family

ID=59032372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2017/000302 WO2017196209A1 (ru) 2016-05-11 2017-05-11 Модульная установка для обработки сыпучих зерновых продуктов ультрафиолетовым излучением

Country Status (11)

Country Link
US (1) US10986854B2 (ru)
EP (1) EP3456206B1 (ru)
JP (1) JP6960412B2 (ru)
KR (1) KR102430800B1 (ru)
CN (1) CN109068694B (ru)
BR (1) BR112018073021B1 (ru)
CA (1) CA3022817A1 (ru)
EA (1) EA039242B1 (ru)
RU (1) RU2620831C1 (ru)
UA (1) UA124149C2 (ru)
WO (1) WO2017196209A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021202402A1 (en) * 2020-03-29 2021-10-07 Dynamics Inc. Systems, devices and methods for viral load reduction and sterilization
RU206252U1 (ru) * 2021-06-04 2021-09-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Белгородский государственный аграрный университет имени В.Я. Горина" Устройство для ультрафиолетовой обработки семян
RU207333U1 (ru) * 2021-06-04 2021-10-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Белгородский государственный аграрный университет имени В.Я. Горина" Устройство для ультрафиолетовой обработки семян

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3828185A1 (de) * 1988-08-19 1990-02-22 Franz Boehnensieker Verfahren und vorrichtung zur keimtoetenden behandlung von waessrigem oder koernigem gut
RU2228120C2 (ru) * 2002-08-02 2004-05-10 Закрытое акционерное общество Научно-производственное объединение "Лаборатория импульсной техники" Установка для обработки сыпучих продуктов ультрафиолетовым излучением

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB533481A (en) * 1938-11-10 1941-02-13 Edmund Von Horvath Process and apparatus for reconditioning and preserving grain, legumes, vegetables and the like
JPS50135242A (ru) * 1974-04-16 1975-10-27
SU533481A1 (ru) * 1975-06-17 1976-10-30 Архангельский Ордена Трудового Красного Знамени Лесотехнический Институт Имени В.В.Куйбышева Способ креплени вставных зубьев
US4776267A (en) * 1987-03-25 1988-10-11 Harris James I Apparatus for irradiating foodstuffs with ultraviolet rays
JPS63263075A (ja) * 1987-04-22 1988-10-31 Naohiro Yamamoto 紫外線による粉粒体の殺菌方法およびその装置
US4877964A (en) * 1987-08-05 1989-10-31 Kureha Chemical Industry Co., Ltd. Ultraviolet sterilizing apparatus
JPH01236950A (ja) * 1988-03-15 1989-09-21 Kaneko Agricult Mach Co Ltd 穀物の品質保存方法およびその装置
BR9004909A (pt) * 1990-10-01 1992-04-07 Clover Eletronica Ltda. Processo,instalacao e camara para reduzir a atividade biologica em recinto,particularmente para um local de armazenagem
JPH04200749A (ja) * 1990-11-30 1992-07-21 Yanmar Agricult Equip Co Ltd 穀物乾燥施設
JP3038364B2 (ja) * 1994-06-13 2000-05-08 千代田工販株式会社 液体浄化装置及び方法
JP3801720B2 (ja) * 1996-03-14 2006-07-26 株式会社日本フォトサイエンス 光透過管にスクレーパーリングを設けた紫外線照射装置
JP3814358B2 (ja) * 1997-02-07 2006-08-30 三菱レイヨン株式会社 粉体の紫外線殺菌装置
JPH11104630A (ja) * 1997-09-30 1999-04-20 Asahi Glass Co Ltd 紫外線殺菌装置
US5901564A (en) * 1997-12-08 1999-05-11 Comeau, Ii; Richard J. System for germicidal disinfecting of food inside of refrigerators using ultraviolet radiation
US6132784A (en) * 1999-02-19 2000-10-17 E. W. Brandt & Sons, Inc. Method and apparatus for a UV light disinfection system
JP2001112453A (ja) * 1999-10-19 2001-04-24 Okawara Mfg Co Ltd 粉粒体の殺菌装置
US20020040643A1 (en) * 2000-09-25 2002-04-11 Ware Gerald J. Desiccation apparatus and method
US20040245164A1 (en) * 2001-07-02 2004-12-09 Sellner Harvey R. Fluid purification system
RU2210545C2 (ru) * 2001-10-29 2003-08-20 Закрытое акционерное общество Научно-производственное объединение "Лаборатория импульсной техники" Модуль и модульная система для обработки воды ультрафиолетовым излучением
US7160566B2 (en) * 2003-02-07 2007-01-09 Boc, Inc. Food surface sanitation tunnel
WO2005102401A2 (en) * 2004-04-20 2005-11-03 Guido Kohler Sterilizing device and a method for sterilizing of fluids
KR100748022B1 (ko) * 2006-08-04 2007-08-13 김경희 기능성 전기믹서기를 구비한 다용도 제독 보관장치
US7781745B2 (en) * 2008-01-28 2010-08-24 Rogers Wayne N Apparatus and method for sterilization of food products
US20100183779A1 (en) * 2009-01-16 2010-07-22 Perry Dean Felix Method and apparatus for sanitizing consumable products using ultraviolet light
CN101486500B (zh) * 2009-03-03 2011-05-18 沈阳建筑大学 一种紫外线消毒装置
GB0906091D0 (en) * 2009-04-07 2009-05-20 Snowball Malcolm R None invasive disinfector
JP5353690B2 (ja) * 2009-12-28 2013-11-27 岩崎電気株式会社 紫外線殺菌装置
WO2012103005A2 (en) * 2011-01-24 2012-08-02 Cornell University Deposition of materials for edible solid freeform fabrication
RU2475010C2 (ru) * 2011-04-28 2013-02-20 Федеральное государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный аграрный университет" Устройство для предпосевной обработки крупных семян
CN102284075B (zh) * 2011-08-25 2014-12-31 佛山柯维光电股份有限公司 一种高效的空气消毒杀菌方法及其装置
CN202284156U (zh) * 2011-09-22 2012-06-27 上海广茂达光艺科技股份有限公司 紫外线消毒装置
KR101945503B1 (ko) * 2012-04-27 2019-02-08 서울바이오시스 주식회사 다용도 보관 장치
US9795699B2 (en) * 2012-08-28 2017-10-24 Sensor Electronic Technology, Inc. Storage device including target UV illumination ranges
CN104856185B (zh) * 2014-02-24 2020-01-21 传感器电子技术股份有限公司 包括紫外线照明的存储设备
US10227241B2 (en) * 2015-03-27 2019-03-12 Rayvio Corporation UV-LED liquid monitoring and treatment apparatus and method
US10548332B2 (en) * 2016-02-29 2020-02-04 Sensor Electronic Technology, Inc. Disinfection of grain using ultraviolet radiation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3828185A1 (de) * 1988-08-19 1990-02-22 Franz Boehnensieker Verfahren und vorrichtung zur keimtoetenden behandlung von waessrigem oder koernigem gut
RU2228120C2 (ru) * 2002-08-02 2004-05-10 Закрытое акционерное общество Научно-производственное объединение "Лаборатория импульсной техники" Установка для обработки сыпучих продуктов ультрафиолетовым излучением

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3456206A4 *

Also Published As

Publication number Publication date
US20190075827A1 (en) 2019-03-14
KR102430800B1 (ko) 2022-08-09
CA3022817A1 (en) 2017-11-16
CN109068694A (zh) 2018-12-21
EP3456206B1 (en) 2021-03-17
CN109068694B (zh) 2023-03-28
EA039242B1 (ru) 2021-12-22
UA124149C2 (ru) 2021-07-28
US10986854B2 (en) 2021-04-27
KR20190007008A (ko) 2019-01-21
RU2620831C1 (ru) 2017-05-30
EA201800418A1 (ru) 2019-04-30
BR112018073021A2 (pt) 2019-02-26
BR112018073021B1 (pt) 2023-01-10
EP3456206A1 (en) 2019-03-20
JP6960412B2 (ja) 2021-11-05
JP2019516367A (ja) 2019-06-20
EP3456206A4 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
RU2620831C1 (ru) Модульная установка для обработки сыпучих зерновых продуктов ультрафиолетовым излучением
US20050276720A1 (en) System and method for providing germicidal lighting for poultry facilities
KR101252455B1 (ko) 고추가루 살균 건조장치
AU770264B2 (en) Process and apparatus for promoting the germination of plant seeds and the production of agricultural crops
KR200391157Y1 (ko) 자외선을 이용한 식품 살균장치
RU2537500C2 (ru) Устройство по ультрафиолетовому облучению сыпучих материалов
KR101415601B1 (ko) 수동식 분체 살균기
CN211091740U (zh) 一种绿色葡萄干表面动态杀菌机
RU54293U1 (ru) Установка для обработки сельскохозяйственных культур
EP3273800B1 (en) An apparatus and a method for treating plant products
RU203714U1 (ru) Конвейерная зерносушилка с функцией обеззараживания зерна
JPH04200749A (ja) 穀物乾燥施設
RU205872U1 (ru) Шахтная зерносушилка с функцией обеззараживания зерна
KR20170047872A (ko) 고추가루 살균유닛 및 이를 포함하는 고추가루 살균기
CN111678328A (zh) 一种农业固废处理装置及使用方法
KR20070040330A (ko) 살균 장치
RU2365102C2 (ru) Устройство для обеззараживания яиц комплексным воздействием электромагнитных излучений
CN220192113U (zh) 一种颗粒物料的辐照处理系统
CN219165664U (zh) 一种豆制品原料除湿杀菌装置
RU2787786C1 (ru) Устройство для ультрафиолетовой обработки семян
CN216333232U (zh) 一种食品加工用外杀菌隧道
KR102668594B1 (ko) 자동 식품 살균장치
RU214488U1 (ru) Устройство для ультрафиолетовой обработки семян
JP2001112453A (ja) 粉粒体の殺菌装置
RU217125U1 (ru) Устройство для обеззараживания семян

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201800418

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2018557377

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3022817

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018073021

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187035776

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017796476

Country of ref document: EP

Effective date: 20181211

ENP Entry into the national phase

Ref document number: 112018073021

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181108