WO2017195524A1 - 放射線検出器 - Google Patents

放射線検出器 Download PDF

Info

Publication number
WO2017195524A1
WO2017195524A1 PCT/JP2017/015236 JP2017015236W WO2017195524A1 WO 2017195524 A1 WO2017195524 A1 WO 2017195524A1 JP 2017015236 W JP2017015236 W JP 2017015236W WO 2017195524 A1 WO2017195524 A1 WO 2017195524A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
flexible printed
scintillator
array substrate
semiconductor element
Prior art date
Application number
PCT/JP2017/015236
Other languages
English (en)
French (fr)
Inventor
勇一 榛葉
Original Assignee
東芝電子管デバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝電子管デバイス株式会社 filed Critical 東芝電子管デバイス株式会社
Priority to KR1020187024417A priority Critical patent/KR102146033B1/ko
Priority to CN201780011576.XA priority patent/CN108700672A/zh
Priority to EP17795885.7A priority patent/EP3457181A4/en
Publication of WO2017195524A1 publication Critical patent/WO2017195524A1/ja
Priority to US16/058,183 priority patent/US20180348382A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/208Circuits specially adapted for scintillation detectors, e.g. for the photo-multiplier section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20188Auxiliary details, e.g. casings or cooling
    • G01T1/20189Damping or insulation against damage, e.g. caused by heat or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20188Auxiliary details, e.g. casings or cooling
    • G01T1/2019Shielding against direct hits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments

Definitions

  • Embodiments of the present invention relate to a radiation detector.
  • the X-ray detector includes a scintillator that converts incident X-rays into fluorescence, an array substrate provided with a plurality of photoelectric conversion units that convert fluorescence into signal charges, a circuit board provided with readout circuits and amplification / conversion circuits, A plurality of photoelectric conversion units and a flexible printed circuit board for electrically connecting the readout circuit and the amplification / conversion circuit are provided.
  • the X-ray detector has been made thinner and lighter, so that the X-ray detector can be carried or a cassette with a built-in film medium for taking an X-ray image ( Cartridge) and X-ray detectors can be replaced.
  • the circuit board is provided on the side of the array substrate opposite to the X-ray incident side. Then, one end of the flexible printed board is connected to the peripheral area of the array board. The other end of the flexible printed board is connected to the peripheral area of the circuit board. Therefore, the flexible printed circuit board is provided in the vicinity of the periphery of the array substrate or the circuit board. A semiconductor element may be mounted on such a flexible printed circuit board. However, since the flexible printed circuit board is provided in the vicinity of the peripheral edge of the array substrate or the circuit board, if a semiconductor element is simply mounted, there is a possibility that X-rays are incident on the semiconductor element almost directly. If X-rays are incident almost directly on the semiconductor element, the semiconductor element may be damaged.
  • the problem to be solved by the present invention is to provide a radiation detector capable of suppressing the X-ray dose of X-rays incident on a semiconductor element provided on a flexible printed circuit board.
  • the radiation detector includes an array substrate having a plurality of photoelectric conversion elements, a scintillator that is provided on the plurality of photoelectric conversion elements and converts incident radiation into fluorescence, and the scintillator of the array substrate.
  • a flexible printed circuit board that electrically connects a circuit board provided on the opposite side of the circuit board, a plurality of wirings provided on the array board, and a plurality of wirings provided on the circuit board.
  • a semiconductor element provided on the flexible printed circuit board so as to be positioned below the scintillator when viewed from the incident direction of the radiation.
  • FIG. 2 is a circuit diagram of an array substrate 2.
  • FIG. 2 is a block diagram of a detection unit 10.
  • FIG. (A), (b) is a schematic diagram for illustrating flexible printed circuit board 2e1 by which semiconductor element 3aa1 was mounted.
  • (A), (b) is a schematic diagram for illustrating the flexible printed circuit board 2e2 in which the semiconductor element 3b1 was mounted.
  • (A), (b) is a schematic cross section for demonstrating arrangement
  • the radiation detector according to the embodiment of the present invention can be applied to various types of radiation such as ⁇ rays in addition to X-rays.
  • ⁇ rays in addition to X-rays.
  • X-rays as a representative example of radiation will be described as an example. Therefore, by replacing “X-ray” in the following embodiments with “other radiation”, the present invention can be applied to other radiation.
  • FIG. 1 is a schematic cross-sectional view for illustrating an X-ray detector 1 according to the present embodiment.
  • FIG. 2 is a schematic enlarged view of a portion A in FIG.
  • FIG. 3 is a schematic perspective view for illustrating the detection unit 10.
  • the reflection layer 6 and the moistureproof body 7 are omitted in FIG.
  • FIG. 4 is a circuit diagram of the array substrate 2.
  • FIG. 5 is a block diagram of the detection unit 10.
  • the X-ray detector 1 that is a radiation detector is an X-ray flat sensor that detects an X-ray image that is a radiation image.
  • the X-ray detector 1 can be used for general medical care, for example. However, the use of the X-ray detector 1 is not limited to general medicine.
  • the X-ray detector 1 is provided with a detection unit 10, a housing 20, and a support unit 30.
  • the detection unit 10 includes an array substrate 2, a circuit substrate 3, an image configuration unit 4, a scintillator 5, a reflective layer 6, and a moisture-proof body 7.
  • the detection unit 10 is provided inside the housing 20.
  • the array substrate 2 converts the fluorescence (visible light) converted from the X-rays by the scintillator 5 into a signal charge.
  • the array substrate 2 includes a substrate 2a, a photoelectric conversion unit 2b, a control line (or gate line) 2c1, a data line (or signal line) 2c2, a protective layer 2f, and the like. Note that the numbers of the photoelectric conversion units 2b, the control lines 2c1, the data lines 2c2, and the like are not limited to those illustrated.
  • the substrate 2a has a plate shape and is made of a translucent material such as non-alkali glass.
  • a plurality of photoelectric conversion units 2b are provided on one surface of the substrate 2a.
  • the photoelectric conversion unit 2b has a rectangular shape and is provided in a region defined by the control line 2c1 and the data line 2c2.
  • the plurality of photoelectric conversion units 2b are arranged in a matrix.
  • One photoelectric conversion unit 2b corresponds to one pixel.
  • Each of the plurality of photoelectric conversion units 2b is provided with a photoelectric conversion element 2b1 and a thin film transistor (TFT) 2b2 which is a switching element. Further, as shown in FIG. 4, a storage capacitor 2b3 for storing the signal charge converted in the photoelectric conversion element 2b1 can be provided.
  • the storage capacitor 2b3 has, for example, a rectangular flat plate shape and can be provided under each thin film transistor 2b2. However, depending on the capacitance of the photoelectric conversion element 2b1, the photoelectric conversion element 2b1 can also serve as the storage capacitor 2b3.
  • the photoelectric conversion element 2b1 can be, for example, a photodiode.
  • the thin film transistor 2b2 performs switching of charge accumulation and discharge to the storage capacitor 2b3.
  • the thin film transistor 2b2 may include a semiconductor material such as amorphous silicon (a-Si) or polysilicon (P-Si).
  • the thin film transistor 2b2 includes a gate electrode 2b2a, a source electrode 2b2b, and a drain electrode 2b2c. Gate electrode 2b2a of thin film transistor 2b2 is electrically connected to corresponding control line 2c1.
  • the source electrode 2b2b of the thin film transistor 2b2 is electrically connected to the corresponding data line 2c2.
  • the drain electrode 2b2c of the thin film transistor 2b2 is electrically connected to the corresponding photoelectric conversion element 2b1 and the storage capacitor 2b3.
  • the anode side of the photoelectric conversion element 2b1 and the storage capacitor 2b3 are connected to the ground.
  • a plurality of control lines 2c1 are provided in parallel with each other at a predetermined interval.
  • the control line 2c1 extends in the row direction.
  • One control line 2c1 is electrically connected to one of a plurality of wiring pads 2d1 provided near the periphery of the substrate 2a.
  • One wiring pad 2d1 is electrically connected to one of a plurality of wirings provided on the flexible printed board 2e1.
  • the other ends of the plurality of wirings provided on the flexible printed board 2e1 are electrically connected to the readout circuit 3a provided on the circuit board 3, respectively.
  • a plurality of data lines 2c2 are provided in parallel with each other at a predetermined interval.
  • the data line 2c2 extends, for example, in the column direction orthogonal to the row direction.
  • One data line 2c2 is electrically connected to one of a plurality of wiring pads 2d2 provided near the periphery of the substrate 2a.
  • One wiring pad 2d2 is electrically connected to one of a plurality of wirings provided on the flexible printed board 2e2.
  • the other ends of the plurality of wirings provided on the flexible printed board 2e2 are electrically connected to the amplification / conversion circuit 3b provided on the circuit board 3, respectively.
  • the control line 2c1 and the data line 2c2 can be formed using a low resistance metal such as aluminum or chromium, for example.
  • the protective layer 2f covers the photoelectric conversion unit 2b, the control line 2c1, and the data line 2c2.
  • the protective layer 2f includes, for example, at least one of an oxide insulating material, a nitride insulating material, an oxynitride insulating material, and a resin material.
  • the circuit board 3 is provided on the side of the array substrate 2 opposite to the side on which the scintillator 5 is provided.
  • the circuit board 3 is provided with a readout circuit 3a and an amplification / conversion circuit 3b.
  • the readout circuit 3a switches between the on state and the off state of the thin film transistor 2b2.
  • the read circuit 3a includes a plurality of gate drivers 3aa and a row selection circuit 3ab.
  • the row selection circuit 3ab receives a control signal S1 from the image construction unit 4 or the like.
  • the row selection circuit 3ab inputs the control signal S1 to the corresponding gate driver 3aa according to the scanning direction of the X-ray image.
  • the gate driver 3aa inputs the control signal S1 to the corresponding control line 2c1.
  • the readout circuit 3a sequentially inputs the control signal S1 for each control line 2c1 via the flexible printed board 2e1 and the control line 2c1.
  • the thin film transistor 2b2 is turned on by the control signal S1 input to the control line 2c1, and the signal charge (image data signal S2) from the photoelectric conversion element 2b1 can be received.
  • the amplification / conversion circuit 3b includes a plurality of integration amplifiers 3ba, a plurality of parallel-series conversion circuits 3bb, and a plurality of analog-digital conversion circuits 3bc.
  • the integrating amplifier 3ba is electrically connected to the data line 2c2.
  • the parallel-serial conversion circuit 3bb is electrically connected to the integration amplifier 3ba through a changeover switch.
  • the analog-digital conversion circuit 3bc is electrically connected to the parallel-serial conversion circuit 3bb.
  • the integrating amplifier 3ba sequentially receives the image data signal S2 from the photoelectric conversion unit 2b. Then, the integrating amplifier 3ba integrates the current flowing within a predetermined time, and outputs a voltage corresponding to the integrated value to the parallel-serial conversion circuit 3bb. In this way, the value of the current (charge amount) flowing through the data line 2c2 within a predetermined time can be converted into a voltage value. That is, the integrating amplifier 3ba converts image data information corresponding to the intensity distribution of fluorescence generated in the scintillator 5 into potential information.
  • the parallel-serial conversion circuit 3bb sequentially converts the image data signal S2 converted into potential information into a serial signal.
  • the analog-digital conversion circuit 3bc sequentially converts the image data signal S2 converted into a serial signal into a digital signal.
  • the image construction unit 4 is electrically connected to an analog-digital conversion circuit 3bc provided on the circuit board 3. As illustrated in FIG. 3, the image configuration unit 4 can be integrated with the circuit board 3. Note that the image forming unit 4 and the circuit board 3 may be provided separately and electrically connected to the image forming unit 4 and the circuit board 3 through wiring.
  • the image construction unit 4 constructs an X-ray image.
  • the image construction unit 4 creates an X-ray image signal based on the image data signal S2 converted into a digital signal by the analog-digital conversion circuit 3bc.
  • the created X-ray image signal is output from the image construction unit 4 to an external device.
  • the scintillator 5 is provided on the plurality of photoelectric conversion elements 2b1, and converts incident X-rays into fluorescence, that is, visible light.
  • the scintillator 5 is provided so as to cover an area (effective pixel area) where a plurality of photoelectric conversion units 2b are provided on the substrate 2a.
  • the scintillator 5 can be formed using, for example, cesium iodide (CsI): thallium (Tl) or sodium iodide (NaI): thallium (Tl). In this case, if the scintillator 5 is formed using a vacuum vapor deposition method or the like, the scintillator 5 composed of an aggregate of a plurality of columnar crystals is formed.
  • the scintillator 5 can also be formed using, for example, gadolinium oxysulfide (Gd 2 O 2 S).
  • Gd 2 O 2 S gadolinium oxysulfide
  • a matrix-like groove portion can be formed so that the quadrangular columnar scintillator 5 is provided for each of the plurality of photoelectric conversion portions 2b.
  • the reflective layer 6 is provided so as to cover the surface side (X-ray incident surface side) of the scintillator 5.
  • the reflective layer 6 is provided in order to improve the use efficiency of fluorescence and improve sensitivity characteristics.
  • the reflective layer 6 can be formed by applying a resin containing light scattering particles such as titanium oxide (TiO 2 ) on the scintillator 5.
  • the moisture-proof body 7 is provided so as to cover the reflective layer 6 and the scintillator 5.
  • the moisture-proof body 7 is provided in order to suppress degradation of the characteristics of the scintillator 5 and the characteristics of the reflective layer 6 due to water vapor contained in the air.
  • the moisture-proof body 7 has a hat shape and can be formed of, for example, an aluminum alloy.
  • the housing 20 includes a cover part 21, an incident window 22, and a base part 23.
  • the cover portion 21 has a box shape and has openings on the X-ray incident side and on the opposite side to the X-ray incident side.
  • the cover portion 21 can be formed using, for example, an aluminum alloy.
  • the cover part 21 can also be formed using polyphenylene sulfide resin, polycarbonate resin, carbon fiber reinforced plastic (CFRP; Carbon-Fiber-Reinforced Plastic), etc., for example.
  • the incident window 22 has a plate shape and is provided so as to close the X-ray incident side opening of the cover portion 21.
  • the entrance window 22 transmits X-rays.
  • the entrance window 22 is formed using a material having a low X-ray absorption rate.
  • the incident window 22 can be formed using, for example, carbon fiber reinforced plastic.
  • the base 23 has a plate shape and is provided so as to close the opening of the cover 21 opposite to the X-ray incident side.
  • the material of the base 23 is not particularly limited as long as it has a certain degree of rigidity.
  • the material of the base portion 23 can be the same as the material of the cover portion 21, for example.
  • the support unit 30 includes a support plate 31 and a support body 32.
  • the support plate 31 has a plate shape and is provided inside the housing 20.
  • the array substrate 2 and the scintillator 5 are provided on the surface of the support plate 31 on the incident window 22 side.
  • a circuit board 3 and an image construction unit 4 are provided on the surface of the support plate 31 on the base 23 side.
  • the material of the support plate 31 is not particularly limited as long as it has a certain degree of rigidity. However, considering the weight reduction of the X-ray detector 1, the material of the support plate 31 is preferably a material having a small specific gravity.
  • the material of the support plate 31 can be, for example, a light metal such as an aluminum alloy, a resin such as a carbon fiber reinforced plastic, or the like.
  • the support 32 has a columnar shape and is provided inside the housing 20.
  • the support body 32 can be provided between the support plate 31 and the base portion 23.
  • the support 32 and the support plate 31 can be fixed, and the support 32 and the base 23 can be fixed using, for example, a fastening member such as a screw.
  • the material of the support 32 is not particularly limited as long as it has a certain degree of rigidity.
  • the material of the support 32 can be, for example, a light metal such as an aluminum alloy, a resin such as a carbon fiber reinforced plastic, or the like.
  • positioning position, number, etc. of the support body 32 are not necessarily limited to what was illustrated.
  • the support body 32 has a plate shape and can be provided so as to protrude from the inner surface of the cover portion 21. That is, the support body 32 only needs to be capable of supporting the support plate 31 inside the housing 20.
  • the control line 2c1 provided on the array substrate 2 has a large number and a short pitch dimension. Therefore, when the pitch dimension of the wiring provided on the circuit board 3 is matched with the pitch dimension of the control line 2c1, it becomes difficult to mount the semiconductor element.
  • the number of data lines 2c2 provided on the array substrate 2 is also large, and the pitch dimension is short. Therefore, if the pitch dimension of the wiring provided on the circuit board 3 is matched with the pitch dimension of the data line 2c2, it becomes difficult to mount the semiconductor element. Therefore, the pitch dimension of the wiring provided on the circuit board 3 is lengthened, and the pitch dimension of the wiring on the array board 2 and the pitch dimension of the wiring on the circuit board 3 are matched in the flexible printed boards 2e1 and 2e2.
  • the gate driver 3aa described above can be provided in one semiconductor element 3aa1 as an integrated circuit.
  • the amplification / conversion circuit 3b can also be provided in one semiconductor element 3b1 as an integrated circuit.
  • the semiconductor elements 3aa1, 3b1 can be mounted on the circuit board 3, but if mounted on the flexible printed boards 2e1, 2e2, the number of wirings connected to the circuit board 3 provided on the flexible printed boards 2e1, 2e2 is reduced. Can be reduced. Therefore, the semiconductor elements 3aa1, 3b1 may be mounted on the flexible printed boards 2e1, 2e2.
  • FIGS. 6A and 6B are schematic views for illustrating the flexible printed board 2e1 on which the semiconductor element 3aa1 is mounted.
  • one end of the flexible printed board 2e1 is electrically connected to a wiring pad 2d1 provided near the periphery of the array board 2.
  • the other end of the flexible printed board 2e1 is electrically connected to the wiring of the circuit board 3 through the connector 2e1a.
  • the semiconductor element 3aa1 is mounted on one surface of the flexible printed board 2e1.
  • FIGS. 7A and 7B are schematic views for illustrating the flexible printed circuit board 2e2 on which the semiconductor element 3b1 is mounted. As shown in FIGS. 7A and 7B, one end of the flexible printed board 2e2 is electrically connected to a wiring pad 2d2 provided near the periphery of the array board 2. The other end of the flexible printed board 2e2 is electrically connected to the wiring of the circuit board 3 via the connector 2e2a.
  • the semiconductor element 3b1 is mounted on one surface of the flexible printed board 2e2.
  • the manufacturing cost can be greatly reduced.
  • the flexible printed boards 2e1 and 2e2 are provided in the vicinity of the peripheral edge of the array board 2 and the circuit board 3, simply mounting the semiconductor elements 3aa1 and 3b1 on the flexible printed boards 2e1 and 2e2 There is a risk of direct incidence on 3aa1, 3b1. If the X-rays are incident almost directly on the semiconductor elements 3aa1, 3b1, the semiconductor elements 3aa1, 3b1 may fail.
  • FIG. 8A and 8B are schematic cross-sectional views for illustrating the arrangement of semiconductor elements according to the comparative example.
  • the flexible printed boards 2 e 1 and 2 e 2 are provided in the vicinity of the periphery of the array board 2 and the circuit board 3.
  • the circuit board 3 is mainly formed of resin.
  • the support plate 31 is formed of a light metal such as an aluminum alloy or a resin for weight reduction.
  • the substrate 2a is made of alkali-free glass or the like.
  • the moistureproof body 7 is made of an aluminum alloy or the like.
  • the cover portion 21 is formed from an aluminum alloy or the like.
  • the entrance window 22 is made of carbon fiber reinforced plastic or the like. Therefore, as shown in FIG. 8A, the X-rays irradiated toward the X-ray detector 1 enter these semiconductor elements 3aa1, 3b1 without passing through these elements and being attenuated.
  • a shielding plate 8 made of lead, copper, or the like is provided on the X-ray incident side of the semiconductor elements 3aa1, 3b1, the X-ray dose incident on the semiconductor elements 3aa1, 3b1 Can be reduced.
  • the shielding plate 8 is provided, the structure becomes complicated.
  • a thick metal plate is required, which causes an increase in the thickness dimension and weight of the X-ray detector 1. Therefore, there is a possibility that the X-ray detector 1 cannot be reduced in thickness and weight.
  • the semiconductor elements 3aa1 and 3b1 are provided on the flexible printed boards 2e1 and 2e2 so as to be positioned below the scintillator 5 when viewed from the X-ray incident direction.
  • the X-ray dose incident on the semiconductor elements 3aa1, 3b1 can be greatly reduced. That is, the X-ray dose of X-rays incident on the semiconductor elements 3aa1 and 3b1 provided on the flexible printed boards 2e1 and 2e2 can be suppressed without providing the shielding plate 8.
  • the X-ray detector 1 can be easily reduced in thickness and weight.
  • the formation range of the scintillator 5 is widened, the connection position between the circuit board 3 and the connectors 2e1a, 2e2a is arranged on the center side of the housing 20, and the distance between the semiconductor elements 3aa1, 3b1 and the connectors 2e1a, 2e2a is as much as possible. It is preferable to shorten it. However, it is necessary to prevent the connector 2e1a and the connector 2e2a from overlapping on the circuit board 3. In this case, the connector 2e1a and the connector 2e2a can be shifted in the vertical direction, but the X-ray detector 1 may not be thinned.
  • the formation range of the scintillator 5 the connection position between the circuit board 3 and the connectors 2e1a and 2e2a, the dimensions (lengths) of the flexible printed boards 2e1 and 2e2, and the flexible printed boards 2e1 and 2e2 It is preferable to consider the mounting positions of the semiconductor elements 3aa1, 3b1 in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measurement Of Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

実施形態に係る放射線検出器は、複数の光電変換素子を有するアレイ基板と、前記複数の光電変換素子の上に設けられ、入射した放射線を蛍光に変換するシンチレータと、前記アレイ基板の、前記シンチレータが設けられる側とは反対側に設けられた回路基板と、前記アレイ基板に設けられた複数の配線と、前記回路基板に設けられた複数の配線と、を電気的に接続するフレキシブルプリント基板と、前記放射線の入射方向から見た場合に、前記シンチレータの下方に位置するように前記フレキシブルプリント基板に設けられた半導体素子と、を備えている。

Description

放射線検出器
 本発明の実施形態は、放射線検出器に関する。
 放射線検出器の一種にX線検出器がある。X線検出器には、入射したX線を蛍光に変換するシンチレータ、蛍光を信号電荷に変換する光電変換部が複数設けられたアレイ基板、読み出し回路や増幅・変換回路が設けられた回路基板、複数の光電変換部と、読み出し回路や増幅・変換回路を電気的に接続するフレキシブルプリント基板などが設けられている。
 また、近年においては、X線検出器の薄型化や軽量化が進んだことで、X線検出器の持ち運びが可能となったり、X線画像を撮影するためのフィルム媒体が組み込まれたカセッテ(Cartridge)とX線検出器を置き換えることが可能となったりしている。
 ここで、回路基板は、アレイ基板の、X線の入射側とは反対側に設けられる。そして、フレキシブルプリント基板の一方の端部は、アレイ基板の周縁領域に接続される。フレキシブルプリント基板の他方の端部は、回路基板の周縁領域に接続される。そのため、フレキシブルプリント基板は、アレイ基板や回路基板の周縁近傍に設けられることになる。
 この様なフレキシブルプリント基板に半導体素子が実装される場合がある。
 ところが、フレキシブルプリント基板は、アレイ基板や回路基板の周縁近傍に設けられているので、単に、半導体素子を実装すると、X線が半導体素子にほぼ直接入射するおそれがある。X線が半導体素子にほぼ直接入射すると、半導体素子が故障するおそれがある。
 この場合、半導体素子の、X線の入射側に鉛や銅などからなる遮蔽板を設ければ、半導体素子に入射するX線のX線量を低減させることができる。しかしながら、遮蔽板を設ければ、構造の複雑化や、X線検出器の厚み寸法や重量の増大などを招くことになる。そのため、X線検出器の薄型化や軽量化が図れなくなるおそれがある。
 そこで、遮蔽板を設けることなく、フレキシブルプリント基板に設けられた半導体素子に入射するX線のX線量を抑制することができる技術の開発が望まれていた。
特開2003-14862号公報 特開2002-116261号公報
 本発明が解決しようとする課題は、フレキシブルプリント基板に設けられた半導体素子に入射するX線のX線量を抑制することができる放射線検出器を提供することである。
 実施形態に係る放射線検出器は、複数の光電変換素子を有するアレイ基板と、前記複数の光電変換素子の上に設けられ、入射した放射線を蛍光に変換するシンチレータと、前記アレイ基板の、前記シンチレータが設けられる側とは反対側に設けられた回路基板と、前記アレイ基板に設けられた複数の配線と、前記回路基板に設けられた複数の配線と、を電気的に接続するフレキシブルプリント基板と、前記放射線の入射方向から見た場合に、前記シンチレータの下方に位置するように前記フレキシブルプリント基板に設けられた半導体素子と、を備えている。
本実施の形態に係るX線検出器1を例示するための模式断面図である。 図1におけるA部の模式拡大図である。 検出部10を例示するための模式斜視図である。 アレイ基板2の回路図である。 検出部10のブロック図である。 (a)、(b)は、半導体素子3aa1が実装されたフレキシブルプリント基板2e1を例示するための模式図である。 (a)、(b)は、半導体素子3b1が実装されたフレキシブルプリント基板2e2を例示するための模式図である。 (a)、(b)は、比較例に係る半導体素子の配置を例示するための模式断面図である。
 以下、図面を参照しつつ、実施の形態について例示をする。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
 また、本発明の実施形態に係る放射線検出器は、X線のほかにもγ線などの各種放射線に適用させることができる。ここでは、一例として、放射線の中の代表的なものとしてX線に係る場合を例にとり説明をする。したがって、以下の実施形態の「X線」を「他の放射線」に置き換えることにより、他の放射線にも適用させることができる。
 図1は、本実施の形態に係るX線検出器1を例示するための模式断面図である。
 図2は、図1におけるA部の模式拡大図である。
 図3は、検出部10を例示するための模式斜視図である。
 なお、煩雑となるのを避けるために、図3においては反射層6、防湿体7を省いて描いている。
 図4は、アレイ基板2の回路図である。
 図5は、検出部10のブロック図である。
 放射線検出器であるX線検出器1は、放射線画像であるX線画像を検出するX線平面センサである。X線検出器1は、例えば、一般医療などに用いることができる。ただし、X線検出器1の用途は、一般医療に限定されるわけではない。
 図1~図5に示すように、X線検出器1には、検出部10、筐体20、および支持部30が設けられている。
 検出部10には、アレイ基板2、回路基板3、画像構成部4、シンチレータ5、反射層6、および防湿体7が設けられている。
 検出部10は、筐体20の内部に設けられている。
 アレイ基板2は、シンチレータ5によりX線から変換された蛍光(可視光)を信号電荷に変換する。
 アレイ基板2は、基板2a、光電変換部2b、制御ライン(又はゲートライン)2c1、データライン(又はシグナルライン)2c2、および保護層2fなどを有する。
 なお、光電変換部2b、制御ライン2c1、およびデータライン2c2などの数は例示をしたものに限定されるわけではない。
 基板2aは、板状を呈し、無アルカリガラスなどの透光性材料から形成されている。
 光電変換部2bは、基板2aの一方の表面に複数設けられている。
 光電変換部2bは、矩形状を呈し、制御ライン2c1とデータライン2c2とにより画された領域に設けられている。複数の光電変換部2bは、マトリクス状に並べられている。なお、1つの光電変換部2bは、1つの画素(pixel)に対応する。
 複数の光電変換部2bのそれぞれには、光電変換素子2b1と、スイッチング素子である薄膜トランジスタ(TFT;Thin Film Transistor)2b2が設けられている。
 また、図4に示すように、光電変換素子2b1において変換した信号電荷を蓄積する蓄積キャパシタ2b3を設けることができる。蓄積キャパシタ2b3は、例えば、矩形平板状を呈し、各薄膜トランジスタ2b2の下に設けることができる。ただし、光電変換素子2b1の容量によっては、光電変換素子2b1が蓄積キャパシタ2b3を兼ねることができる。
 光電変換素子2b1は、例えば、フォトダイオードなどとすることができる。
 薄膜トランジスタ2b2は、蓄積キャパシタ2b3への電荷の蓄積および放出のスイッチングを行う。薄膜トランジスタ2b2は、アモルファスシリコン(a-Si)やポリシリコン(P-Si)などの半導体材料を含むものとすることができる。薄膜トランジスタ2b2は、ゲート電極2b2a、ソース電極2b2b及びドレイン電極2b2cを有している。薄膜トランジスタ2b2のゲート電極2b2aは、対応する制御ライン2c1と電気的に接続される。薄膜トランジスタ2b2のソース電極2b2bは、対応するデータライン2c2と電気的に接続される。薄膜トランジスタ2b2のドレイン電極2b2cは、対応する光電変換素子2b1と蓄積キャパシタ2b3とに電気的に接続される。また、光電変換素子2b1のアノード側と蓄積キャパシタ2b3は、グランドに接続される。
 制御ライン2c1は、所定の間隔をあけて互いに平行に複数設けられている。制御ライン2c1は、例えば、行方向に延びている。
 1つの制御ライン2c1は、基板2aの周縁近傍に設けられた複数の配線パッド2d1のうちの1つと電気的に接続されている。1つの配線パッド2d1には、フレキシブルプリント基板2e1に設けられた複数の配線のうちの1つが電気的に接続されている。フレキシブルプリント基板2e1に設けられた複数の配線の他端は、回路基板3に設けられた読み出し回路3aとそれぞれ電気的に接続されている。
 データライン2c2は、所定の間隔をあけて互いに平行に複数設けられている。データライン2c2は、例えば、行方向に直交する列方向に延びている。
 1つのデータライン2c2は、基板2aの周縁近傍に設けられた複数の配線パッド2d2のうちの1つと電気的に接続されている。1つの配線パッド2d2には、フレキシブルプリント基板2e2に設けられた複数の配線のうちの1つが電気的に接続されている。フレキシブルプリント基板2e2に設けられた複数の配線の他端は、回路基板3に設けられた増幅・変換回路3bとそれぞれ電気的に接続されている。
 制御ライン2c1、およびデータライン2c2は、例えば、アルミニウムやクロムなどの低抵抗金属を用いて形成することができる。
 保護層2fは、光電変換部2b、制御ライン2c1、およびデータライン2c2を覆っている。
 保護層2fは、例えば、酸化物絶縁材料、窒化物絶縁材料、酸窒化物絶縁材料、および樹脂材料の少なくとも1種を含む。
 回路基板3は、アレイ基板2の、シンチレータ5が設けられる側とは反対側に設けられている。
 回路基板3には、読み出し回路3a、および増幅・変換回路3bが設けられている。
 読み出し回路3aは、薄膜トランジスタ2b2のオン状態とオフ状態を切り替える。
 図5に示すように、読み出し回路3aは、複数のゲートドライバ3aaと行選択回路3abとを有する。
 行選択回路3abには、画像構成部4などから制御信号S1が入力される。行選択回路3abは、X線画像の走査方向に従って、対応するゲートドライバ3aaに制御信号S1を入力する。
 ゲートドライバ3aaは、対応する制御ライン2c1に制御信号S1を入力する。
 例えば、読み出し回路3aは、フレキシブルプリント基板2e1と制御ライン2c1とを介して、制御信号S1を各制御ライン2c1毎に順次入力する。制御ライン2c1に入力された制御信号S1により薄膜トランジスタ2b2がオン状態となり、光電変換素子2b1からの信号電荷(画像データ信号S2)が受信できるようになる。
 増幅・変換回路3bは、複数の積分アンプ3ba、複数の並列-直列変換回路3bb、および複数のアナログ-デジタル変換回路3bcを有している。
 積分アンプ3baは、データライン2c2と電気的に接続されている。
 並列-直列変換回路3bbは、切り換えスイッチを介して積分アンプ3baと電気的に接続されている。
 アナログ-デジタル変換回路3bcは、並列-直列変換回路3bbと電気的に接続されている。
 積分アンプ3baは、光電変換部2bからの画像データ信号S2を順次受信する。
 そして、積分アンプ3baは、一定時間内に流れる電流を積分し、その積分値に対応した電圧を並列-直列変換回路3bbへ出力する。この様にすれば、所定の時間内にデータライン2c2を流れる電流の値(電荷量)を電圧値に変換することが可能となる。
 すなわち、積分アンプ3baは、シンチレータ5において発生した蛍光の強弱分布に対応した画像データ情報を、電位情報へと変換する。
 並列-直列変換回路3bbは、電位情報へと変換された画像データ信号S2を順次直列信号に変換する。
 アナログ-デジタル変換回路3bcは、直列信号に変換された画像データ信号S2をデジタル信号に順次変換する。
 画像構成部4は、回路基板3に設けられたアナログ-デジタル変換回路3bcと電気的に接続されている。図3に例示をしたように、画像構成部4は、回路基板3と一体化することができる。なお、画像構成部4と回路基板3とを別々に設け、配線を介して画像構成部4と回路基板3と電気的に接続してもよい。
 画像構成部4は、X線画像を構成する。画像構成部4は、アナログ-デジタル変換回路3bcによりデジタル信号に変換された画像データ信号S2に基づいて、X線画像信号を作成する。作成されたX線画像信号は、画像構成部4から外部の機器に向けて出力される。
 シンチレータ5は、複数の光電変換素子2b1の上に設けられ、入射したX線を蛍光すなわち可視光に変換する。シンチレータ5は、基板2a上の複数の光電変換部2bが設けられた領域(有効画素領域)を覆うように設けられている。
 シンチレータ5は、例えば、ヨウ化セシウム(CsI):タリウム(Tl)、あるいはヨウ化ナトリウム(NaI):タリウム(Tl)などを用いて形成することができる。この場合、真空蒸着法などを用いて、シンチレータ5を形成すれば、複数の柱状結晶の集合体からなるシンチレータ5が形成される。
 また、シンチレータ5は、例えば、酸硫化ガドリニウム(GdS)などを用いて形成することもできる。この場合、複数の光電変換部2bごとに四角柱状のシンチレータ5が設けられるように、マトリクス状の溝部を形成することができる。
 図2に示すように、反射層6は、シンチレータ5の表面側(X線の入射面側)を覆うように設けられている。反射層6は、蛍光の利用効率を高めて感度特性を改善するために設けられる。反射層6は、例えば、酸化チタン(TiO)などの光散乱性粒子を含む樹脂をシンチレータ5上に塗布することで形成することができる。
 図2に示すように、防湿体7は、反射層6およびシンチレータ5を覆うように設けられている。防湿体7は、空気中に含まれる水蒸気により、シンチレータ5の特性と反射層6の特性が劣化するのを抑制するために設けられる。
 防湿体7は、ハット形状を呈し、例えば、アルミニウム合金などから形成することができる。
 筐体20は、カバー部21、入射窓22、および基部23を有する。
 カバー部21は、箱状を呈し、X線の入射側、およびX線の入射側とは反対側に開口部を有している。
 軽量化を考慮して、カバー部21は、例えば、アルミニウム合金などを用いて形成することができる。また、カバー部21は、例えば、ポリフェニレンサルファイド樹脂、ポリカーボネイト樹脂、炭素繊維強化プラスチック(CFRP;Carbon-Fiber-Reinforced Plastic)などを用いて形成することもできる。
 入射窓22は、板状を呈し、カバー部21の、X線の入射側の開口部を塞ぐように設けられている。入射窓22は、X線を透過させる。入射窓22は、X線吸収率の低い材料を用いて形成されている。入射窓22は、例えば、炭素繊維強化プラスチックなどを用いて形成することができる。
 基部23は、板状を呈し、カバー部21の、X線の入射側とは反対側の開口部を塞ぐように設けられている。基部23の材料は、ある程度の剛性を有するものであれば特に限定はない。基部23の材料は、例えば、カバー部21の材料と同様とすることができる。
 支持部30は、支持板31と支持体32とを有する。
 支持板31は、板状を呈し、筐体20の内部に設けられている。支持板31の入射窓22側の面には、アレイ基板2とシンチレータ5が設けられている。支持板31の基部23側の面には、回路基板3と画像構成部4が設けられている。
 支持板31の材料は、ある程度の剛性を有するものであれば特に限定はない。ただし、X線検出器1の軽量化を考慮すると、支持板31の材料は、比重の小さい材料とすることが好ましい。支持板31の材料は、例えば、アルミニウム合金などの軽金属、炭素繊維強化プラスチックなどの樹脂などとすることができる。
 支持体32は、柱状を呈し、筐体20の内部に設けられている。支持体32は、支持板31と基部23との間に設けることができる。支持体32と支持板31の固定、および、支持体32と基部23の固定は、例えば、ネジなどの締結部材を用いて行うことができる。支持体32の材料は、ある程度の剛性を有するものであれば特に限定はない。支持体32の材料は、例えば、アルミニウム合金などの軽金属、炭素繊維強化プラスチックなどの樹脂などとすることができる。
 なお、支持体32の形態、配設位置、数などは例示をしたものに限定されるわけではない。例えば、支持体32は、板状を呈し、カバー部21の内側面から突出するように設けることもできる。すなわち、支持体32は、筐体20の内部において、支持板31を支持することができるものであればよい。
 ここで、アレイ基板2に設けられた制御ライン2c1は数が多く、またピッチ寸法も短い。そのため、回路基板3に設けられる配線のピッチ寸法を制御ライン2c1のピッチ寸法に合わせると、半導体素子の実装が困難となる。
 また、アレイ基板2に設けられたデータライン2c2も数が多く、またピッチ寸法も短い。そのため、回路基板3に設けられる配線のピッチ寸法をデータライン2c2のピッチ寸法に合わせると、半導体素子の実装が困難となる。
 そこで、回路基板3に設けられる配線のピッチ寸法を長くし、フレキシブルプリント基板2e1、2e2において、アレイ基板2における配線のピッチ寸法と、回路基板3における配線のピッチ寸法とを合わせるようにしている。
 また、前述したゲートドライバ3aaは、集積回路として1つの半導体素子3aa1に設けることができる。増幅・変換回路3bも、集積回路として1つの半導体素子3b1に設けることができる。半導体素子3aa1、3b1は、回路基板3に実装することもできるが、フレキシブルプリント基板2e1、2e2に実装すれば、フレキシブルプリント基板2e1、2e2に設けられた回路基板3に接続される配線の数を少なくすることができる。
 そのため、フレキシブルプリント基板2e1、2e2に半導体素子3aa1、3b1が実装される場合がある。
 図6(a)、(b)は、半導体素子3aa1が実装されたフレキシブルプリント基板2e1を例示するための模式図である。
 図6(a)、(b)に示すように、フレキシブルプリント基板2e1の一方の端部はアレイ基板2の周縁近傍に設けられた配線パッド2d1と電気的に接続される。フレキシブルプリント基板2e1の他方の端部はコネクタ2e1aを介して回路基板3の配線と電気的に接続される。
 また、半導体素子3aa1は、フレキシブルプリント基板2e1の一方の面上に実装されている。
 図7(a)、(b)は、半導体素子3b1が実装されたフレキシブルプリント基板2e2を例示するための模式図である。
 図7(a)、(b)に示すように、フレキシブルプリント基板2e2の一方の端部はアレイ基板2の周縁近傍に設けられた配線パッド2d2と電気的に接続される。フレキシブルプリント基板2e2の他方の端部はコネクタ2e2aを介して回路基板3の配線と電気的に接続される。
 また、半導体素子3b1は、フレキシブルプリント基板2e2の一方の面上に実装されている。
 フレキシブルプリント基板2e1、2e2に半導体素子3aa1、3b1を実装すれば、製造コストを大幅に低減させることができる。
 ところが、フレキシブルプリント基板2e1、2e2は、アレイ基板2や回路基板3の周縁近傍に設けられているので、単に、フレキシブルプリント基板2e1、2e2に半導体素子3aa1、3b1を実装すると、X線が半導体素子3aa1、3b1にほぼ直接入射するおそれがある。X線が半導体素子3aa1、3b1にほぼ直接入射すると、半導体素子3aa1、3b1が故障するおそれがある。
 図8(a)、(b)は、比較例に係る半導体素子の配置を例示するための模式断面図である。
 図8(a)に示すように、フレキシブルプリント基板2e1、2e2は、アレイ基板2や回路基板3の周縁近傍に設けられている。
 ここで、回路基板3は主に樹脂から形成されている。支持板31は、軽量化のためにアルミニウム合金などの軽金属や樹脂などから形成されている。基板2aは無アルカリガラスなどから形成されている。防湿体7はアルミニウム合金などから形成されている。カバー部21はアルミニウム合金などから形成されている。入射窓22は、炭素繊維強化プラスチックなどから形成されている。
 そのため、図8(a)に示すように、X線検出器1に向けて照射されたX線は、これらの要素を透過して減衰することなく、半導体素子3aa1、3b1に入射する。
 この場合、図8(b)に示すように、半導体素子3aa1、3b1の、X線の入射側に鉛や銅などからなる遮蔽板8を設ければ、半導体素子3aa1、3b1に入射するX線量を低下させることができる。しかしながら、遮蔽板8を設ければ、構造の複雑化を招くことになる。また、十分なX線減衰量を得るためには、厚みの厚い金属板が必要となるため、X線検出器1の厚み寸法や重量の増大などを招くことになる。そのため、X線検出器1の薄型化や軽量化が図れなくなるおそれがある。
 そこで、図2に示すように、X線の入射方向から見た場合に、半導体素子3aa1、3b1は、シンチレータ5の下方に位置するようにフレキシブルプリント基板2e1、2e2に設けられている。
 前述したように、シンチレータ5に入射したX線の大部分は蛍光に変換される。そのため、半導体素子3aa1、3b1に入射するX線量を大幅に低減させることができる。すなわち、遮蔽板8を設けることなく、フレキシブルプリント基板2e1、2e2に設けられた半導体素子3aa1、3b1に入射するX線のX線量を抑制することができる。その結果、X線検出器1の薄型化や軽量化を図ることが容易となる。
 この場合、シンチレータ5の形成範囲を広くし、回路基板3とコネクタ2e1a、2e2aとの接続位置を筐体20の中心側に配置し、半導体素子3aa1、3b1とコネクタ2e1a、2e2aとの距離をなるべく短くすることが好ましい。
 ただし、回路基板3上において、コネクタ2e1aとコネクタ2e2aとが重ならないようにする必要がある。この場合、コネクタ2e1aとコネクタ2e2aとを上下方向にずらすこともできるが、X線検出器1の薄型化が図れなくなるおそれがある。
 そのため、X線検出器1の設計段階において、シンチレータ5の形成範囲、回路基板3とコネクタ2e1a、2e2aとの接続位置、フレキシブルプリント基板2e1、2e2の寸法(長さ)、フレキシブルプリント基板2e1、2e2における半導体素子3aa1、3b1の実装位置などを考慮することが好ましい。
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。

Claims (4)

  1.  複数の光電変換素子を有するアレイ基板と、
     前記複数の光電変換素子の上に設けられ、入射した放射線を蛍光に変換するシンチレータと、
     前記アレイ基板の、前記シンチレータが設けられる側とは反対側に設けられた回路基板と、
     前記アレイ基板に設けられた複数の配線と、前記回路基板に設けられた複数の配線と、を電気的に接続するフレキシブルプリント基板と、
     前記放射線の入射方向から見た場合に、前記シンチレータの下方に位置するように前記フレキシブルプリント基板に設けられた半導体素子と、
     を備えた放射線検出器。
  2.  前記アレイ基板に設けられた配線は、制御ラインまたはデータラインである請求項1記載の放射線検出器。
  3.  前記半導体素子は、前記制御ラインに制御信号を入力するゲートドライバを集積回路として備えている請求項2記載の放射線検出器。
  4.  前記半導体素子は、前記データラインからの画像データ信号を処理する増幅・変換回路を集積回路として備えている請求項2記載の放射線検出器。
PCT/JP2017/015236 2016-05-11 2017-04-14 放射線検出器 WO2017195524A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187024417A KR102146033B1 (ko) 2016-05-11 2017-04-14 방사선 검출기
CN201780011576.XA CN108700672A (zh) 2016-05-11 2017-04-14 射线检测器
EP17795885.7A EP3457181A4 (en) 2016-05-11 2017-04-14 RADIATION DETECTOR
US16/058,183 US20180348382A1 (en) 2016-05-11 2018-08-08 Radiation detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-095096 2016-05-11
JP2016095096A JP2017203672A (ja) 2016-05-11 2016-05-11 放射線検出器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/058,183 Continuation US20180348382A1 (en) 2016-05-11 2018-08-08 Radiation detector

Publications (1)

Publication Number Publication Date
WO2017195524A1 true WO2017195524A1 (ja) 2017-11-16

Family

ID=60266513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015236 WO2017195524A1 (ja) 2016-05-11 2017-04-14 放射線検出器

Country Status (7)

Country Link
US (1) US20180348382A1 (ja)
EP (1) EP3457181A4 (ja)
JP (1) JP2017203672A (ja)
KR (1) KR102146033B1 (ja)
CN (1) CN108700672A (ja)
TW (1) TWI659222B (ja)
WO (1) WO2017195524A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220018975A1 (en) * 2020-07-14 2022-01-20 Canon Kabushiki Kaisha Radiation imaging panel, radiation imaging apparatus, radiation imaging system, and scintillator plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116735631B (zh) * 2023-08-09 2024-02-23 同源微(北京)半导体技术有限公司 一种x射线成像检测单元、模块和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116261A (ja) 2000-07-04 2002-04-19 Canon Inc 放射線撮像装置及びシステム
JP2003014862A (ja) 2001-07-02 2003-01-15 Canon Inc 放射線画像検出装置及び放射線遮蔽方法
JP2007199079A (ja) * 2000-11-30 2007-08-09 Canon Inc X線撮像装置
JP2011128000A (ja) * 2009-12-17 2011-06-30 Toshiba Corp X線画像検出器
JP2015038435A (ja) * 2013-08-19 2015-02-26 株式会社東芝 放射線検出器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152486A (ja) * 1995-09-28 1997-06-10 Canon Inc 撮像装置
JP2002267758A (ja) * 2000-11-30 2002-09-18 Canon Inc X線撮像装置
JP5142943B2 (ja) * 2007-11-05 2013-02-13 キヤノン株式会社 放射線検出装置の製造方法、放射線検出装置及び放射線撮像システム
JP5032276B2 (ja) * 2007-11-19 2012-09-26 株式会社東芝 放射線検出装置
JP2009257914A (ja) * 2008-04-16 2009-11-05 Konica Minolta Medical & Graphic Inc カセッテ型放射線画像検出器
WO2010038877A1 (ja) * 2008-10-03 2010-04-08 株式会社 東芝 放射線検出装置及び放射線撮影装置
JP5485078B2 (ja) * 2009-09-30 2014-05-07 富士フイルム株式会社 可搬型放射線撮影装置
JP2014081358A (ja) * 2012-09-27 2014-05-08 Fujifilm Corp 放射線画像検出装置
JP6114635B2 (ja) * 2013-06-06 2017-04-12 東芝電子管デバイス株式会社 放射線検出器およびその製造方法
US9917133B2 (en) * 2013-12-12 2018-03-13 General Electric Company Optoelectronic device with flexible substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116261A (ja) 2000-07-04 2002-04-19 Canon Inc 放射線撮像装置及びシステム
JP2007199079A (ja) * 2000-11-30 2007-08-09 Canon Inc X線撮像装置
JP2003014862A (ja) 2001-07-02 2003-01-15 Canon Inc 放射線画像検出装置及び放射線遮蔽方法
JP2011128000A (ja) * 2009-12-17 2011-06-30 Toshiba Corp X線画像検出器
JP2015038435A (ja) * 2013-08-19 2015-02-26 株式会社東芝 放射線検出器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3457181A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220018975A1 (en) * 2020-07-14 2022-01-20 Canon Kabushiki Kaisha Radiation imaging panel, radiation imaging apparatus, radiation imaging system, and scintillator plate
US11520062B2 (en) * 2020-07-14 2022-12-06 Canon Kabushiki Kaisha Radiation imaging panel, radiation imaging apparatus, radiation imaging system, and scintillator plate

Also Published As

Publication number Publication date
TWI659222B (zh) 2019-05-11
EP3457181A1 (en) 2019-03-20
EP3457181A4 (en) 2019-12-11
KR20180104105A (ko) 2018-09-19
JP2017203672A (ja) 2017-11-16
CN108700672A (zh) 2018-10-23
TW201805652A (zh) 2018-02-16
US20180348382A1 (en) 2018-12-06
KR102146033B1 (ko) 2020-08-19

Similar Documents

Publication Publication Date Title
US8492726B2 (en) Radiation detection apparatus and radiation detection system
EP2902807B1 (en) Radiograph detection device
WO2017195524A1 (ja) 放射線検出器
WO2015029938A1 (ja) アレイ基板、放射線検出器、および配線基板
JP2011242261A (ja) 放射線検出器
JP6404661B2 (ja) 放射線検出器用アレイ基板、および放射線検出器
JP6704672B2 (ja) 放射線検出器用モジュール、および放射線検出器
WO2019176137A1 (ja) 放射線検出パネル、放射線検出器、および放射線検出パネルの製造方法
US20180164448A1 (en) Radiaton detector
JP6953186B2 (ja) 放射線検出器
US20120025190A1 (en) Radiation detector
JP6968668B2 (ja) 放射線検出モジュール、および放射線検出器
US20230035605A1 (en) Radiation detector
JP2017190951A (ja) 放射線検出器
JP7199332B2 (ja) 放射線検出モジュールの製造方法
JP2014066671A (ja) 放射線画像検出装置
JP2019074490A (ja) 放射線検出器
JP2019012774A (ja) 放射線検出器
JP2020109365A (ja) 放射線検出モジュール、および放射線検出器
CN115702366A (zh) 放射线检测器
JP2019039819A (ja) 放射線検出器、及びその製造方法
JP2017187340A (ja) 放射線検出器
JP2019004092A (ja) アレイ基板セット、および放射線検出器
JP2017207434A (ja) 放射線検出器、および放射線画像検出装置
JP2017003426A (ja) アレイ基板、および放射線検出器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187024417

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187024417

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017795885

Country of ref document: EP

Effective date: 20181211