WO2017191922A1 - 이차전지의 제조방법 및 전극 조립체의 제조방법 - Google Patents

이차전지의 제조방법 및 전극 조립체의 제조방법 Download PDF

Info

Publication number
WO2017191922A1
WO2017191922A1 PCT/KR2017/004381 KR2017004381W WO2017191922A1 WO 2017191922 A1 WO2017191922 A1 WO 2017191922A1 KR 2017004381 W KR2017004381 W KR 2017004381W WO 2017191922 A1 WO2017191922 A1 WO 2017191922A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode assembly
separator
secondary battery
manufacturing
Prior art date
Application number
PCT/KR2017/004381
Other languages
English (en)
French (fr)
Inventor
김성종
김태규
김경택
김동현
이경재
구자훈
이의경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL17792824T priority Critical patent/PL3331083T3/pl
Priority to US15/754,335 priority patent/US10476096B2/en
Priority to CN201780003011.7A priority patent/CN108028414B/zh
Priority to EP17792824.9A priority patent/EP3331083B1/en
Publication of WO2017191922A1 publication Critical patent/WO2017191922A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a secondary battery and a method for manufacturing an electrode assembly.
  • a method for manufacturing a secondary battery and an electrode which can also remove unreacted regions during charging and discharging. It relates to a method for producing an assembly.
  • a secondary battery refers to a battery that can be charged and discharged, unlike a primary battery that is not rechargeable, these secondary batteries are widely used in the field of advanced electronic devices such as phones, notebook computers and camcorders.
  • the secondary battery includes an electrode assembly, an electrolyte, and a case in which the electrode assembly and the electrolyte are accommodated, and the electrode assembly is formed by alternately stacking a plurality of electrodes and a plurality of separators.
  • the secondary battery having such a configuration inserts the electrode assembly into the case, injects the electrolyte into the case containing the electrode assembly, and seals the opening of the case.
  • the electrolyte injected into the case improves the performance of the electrode assembly while being impregnated into the electrode assembly.
  • the secondary battery may not absorb the electrolyte solution to the inside of the electrode assembly due to resistance due to the adhesion between the electrode and the separator interface, thereby limiting the performance of the electrode assembly.
  • an object of the present invention includes a step of forming an unbonded portion at the interface between the electrode and the separator, thereby increasing the impregnation force of the electrolyte, and improve the performance of the electrode assembly It is to provide a secondary battery manufacturing method.
  • Still another object of the present invention is to provide a method of manufacturing a secondary battery that further includes a step of adhering an unbonded portion formed at an interface between an electrode and a separator, thereby improving performance of an electrode assembly by removing an unreacted region during charging and discharging. .
  • Method of manufacturing a secondary battery according to an embodiment of the present invention for achieving the above object is a first step (S10) of manufacturing an unfinished electrode assembly in which a plurality of electrodes and a plurality of separators are alternately stacked; A second step (S20) of manufacturing the finished electrode assembly in which the electrode and the separator interface are pattern-bonded by partially pressing the unfinished electrode assembly to coexist with the bonded portion and the unbonded portion at the electrode and the separator interface; A third step (S30) of accommodating the finished electrode assembly in a case; A fourth step (S40) of impregnating the electrode assembly by injecting an electrolyte solution through the opening of the case and impregnating the inside of the electrode assembly while the electrolyte solution penetrates into an unbonded portion of the interface between the electrode and the separator; A fifth step (S50) of manufacturing a secondary battery by sealing an unsealed surface on which an opening of the case is formed; And a sixth step (S60) of bonding the non-bonded portion of the interface between the electrode
  • the plurality of electrodes may be provided as a first electrode and a second electrode, and the plurality of separators may be provided as a first separator and a second separator.
  • the unfinished electrode assembly may have a structure in which a first unit, a first separator, a second electrode, and a second separator are sequentially stacked, or at least two or more basic units are stacked.
  • the unfinished electrode assembly is provided with a first basic unit and a second basic unit stacked vertically with a separation sheet interposed therebetween, and the first basic unit includes a first electrode, a first separator, a second electrode, and a second separator. And a structure in which the first electrode is sequentially stacked, and the second basic unit may have a structure in which the second electrode, the second separator, the first electrode, the first separator, and the second electrode are sequentially stacked.
  • the first electrode may be a cathode, and the second electrode may be an anode.
  • the finished electrode assembly may be manufactured by partially heating and pressing the unfinished electrode assembly with a pattern roller to bond the interface between the electrode and the separator.
  • the pattern roller is provided on the upper or lower surface of the unfinished electrode assembly and is provided with a roller portion having a rotational force, and a patterned pressing protrusion which is provided on the outer circumferential surface of the roller portion and partially heat-presses the upper or lower surface of the unfinished electrode assembly.
  • a roller portion having a rotational force
  • a patterned pressing protrusion which is provided on the outer circumferential surface of the roller portion and partially heat-presses the upper or lower surface of the unfinished electrode assembly.
  • the roller portion is disposed in the width direction of the unfinished electrode assembly, and the pressing protrusion is formed in the circumferential direction of the roller portion to form a patterned adhesive portion having a linear shape at the interface between the electrode and the separator pressed by the pressing protrusion. And a non-bonded portion having a straight shape may be formed at an interface between the electrode and the separator not pressed by the pressing protrusion.
  • the sixth process may be performed by a heating press device for simultaneously heating and pressing both surfaces of the secondary battery.
  • the heating pressurization apparatus may include a pressurizing unit including a pressurized main body on which the secondary battery is mounted, and a heating plate configured to heat pressurize the secondary battery mounted on the pressurized main body.
  • the heating plate may be provided as a metal plate in which a heating wire is embedded.
  • a secondary battery in which all the sealing surfaces are sealed may be manufactured by injecting heat and simultaneously applying an unsealed surface having the opening of the case through a sealing device.
  • the secondary battery may further include a seventh process (S70) of manufacturing a finished secondary battery by charging and discharging the secondary battery.
  • S70 seventh process
  • the electrode assembly manufacturing method comprises a first step of manufacturing an unfinished electrode assembly in which a plurality of electrodes and a plurality of separators are alternately stacked; And a second process (S20) of manufacturing the finished electrode assembly in which the bonded portion and the unbonded portion coexist at the electrode and the separator interface by partially pressing the unfinished electrode assembly to pattern-bond the electrode and the separator interface. can do.
  • the finished electrode assembly may be manufactured by partially heating and pressing the unfinished electrode assembly with a pattern roller.
  • the pattern roller is provided on the upper or lower surface of the unfinished electrode assembly and is provided with a roller portion having a rotational force, and a patterned pressing protrusion which is provided on the outer circumferential surface of the roller portion and partially heat-presses the upper or lower surface of the unfinished electrode assembly.
  • a roller portion having a rotational force
  • a patterned pressing protrusion which is provided on the outer circumferential surface of the roller portion and partially heat-presses the upper or lower surface of the unfinished electrode assembly.
  • the roller portion is disposed in the width direction of the unfinished electrode assembly, and the pressing protrusion is formed in the circumferential direction of the roller portion to form a patterned adhesive portion having a linear shape at the interface between the electrode and the separator pressed by the pressing protrusion. And a non-bonded portion having a straight shape may be formed at an interface between the electrode and the separator not pressed by the pressing protrusion.
  • the present invention has the following effects.
  • the present invention may partially bond the electrode and the separator interface by high temperature pressurization of the electrode assembly including the plurality of electrodes and the plurality of separators, and when the electrolyte is impregnated into the electrode assembly, the electrolyte and the electrode Impregnation force can be increased while penetrating into the unbonded portion of the membrane interface.
  • the present invention can stably pattern-bond the electrode and separator interface provided in the electrode assembly by partially heating and pressing the electrode assembly using the patterned roller having the patterned projection.
  • the present invention can increase the penetration force of the electrolyte by patterning the electrode and the membrane interface to be bonded in the longitudinal direction of the electrode assembly, thereby improving the electrolyte impregnation force.
  • the present invention can heat-press the entire surface of a secondary battery including a pattern-bonded electrode assembly to bond the non-bonded portion of the electrode and the separator interface provided in the electrode assembly, thus the unreacted area during charging and discharging of the secondary battery It can increase the charging and discharging efficiency.
  • the present invention can stably bond the unbonded portion of the electrode and the separator interface by heating and pressing the entire surface of the secondary battery including the pattern-bonded electrode assembly using a heating press device.
  • FIG. 1 is a flow chart showing a secondary battery manufacturing method according to an embodiment of the present invention.
  • FIG. 2 is a view showing a first embodiment of an unfinished electrode assembly in a secondary battery manufacturing method according to an embodiment of the present invention.
  • FIG 3 is a view showing a second embodiment of an unfinished electrode assembly in a secondary battery manufacturing method according to an embodiment of the present invention.
  • FIG. 4 is a view showing a second process of manufacturing a finished electrode assembly in a secondary battery manufacturing method according to an embodiment of the present invention.
  • FIG. 5 is an enlarged view of a portion 'A' shown in FIG. 4.
  • FIG. 5 is an enlarged view of a portion 'A' shown in FIG. 4.
  • FIG. 6 is a view illustrating a third process of housing a finished electrode assembly in a secondary battery manufacturing method according to an embodiment of the present invention
  • FIG. 7 is a view showing a fourth process of injecting an electrolyte into a case in a secondary battery manufacturing method according to an embodiment of the present invention.
  • FIG. 8 is an enlarged view of a portion 'B' shown in FIG. 7;
  • FIG. 9 is a view illustrating a fifth process of manufacturing a secondary battery by sealing an opening of a case in the method of manufacturing a secondary battery according to an embodiment of the present invention.
  • FIG. 10 is a view illustrating a sixth process of pressing the secondary battery at high temperature in the method of manufacturing a secondary battery according to an embodiment of the present invention.
  • FIG. 11 is an enlarged view of a portion 'C' shown in FIG. 10.
  • FIG. 12 is a view illustrating a seventh process of charging and discharging a secondary battery in a method of manufacturing a secondary battery according to an embodiment of the present invention.
  • a secondary battery manufacturing method as shown in Figure 1 to 12, the first step (S10) of manufacturing an unfinished electrode assembly (10 ') in which a plurality of electrodes and a plurality of separators are alternately stacked, A second process (S20) of manufacturing the finished electrode assembly 10 in which the electrode and separator interface is pattern-bonded by partially heating and pressing the unfinished electrode assembly 10 ′ and accommodating the finished electrode assembly 10 in the case 20.
  • the electrolyte solution 30 is impregnated in the electrode assembly 10, while the electrolyte solution 30 is an unbonded portion of the electrode and the separator interface
  • a fifth process of manufacturing the secondary battery 1 by sealing the unsealed surface on which the opening 21 of the case 20 is formed and the fourth process S40 impregnated to the inside of the electrode assembly 10 while penetrating into 10b) S50
  • the entire surface of the secondary battery 1 is heated and pressurized, and the unbonded portion between the electrode and the separator interface is heated.
  • a sixth step (S60) for adhering the powder (10b) and a seventh step (S70) for charging and discharging and activating the secondary battery (1).
  • the first step S10 is a step of manufacturing the unfinished electrode assembly 10 ′. That is, in the first step S10, a plurality of electrodes and a plurality of separators are alternately stacked to manufacture an unfinished electrode assembly 10 ′.
  • the plurality of electrodes are provided as the first electrode 11 and the second electrode 13, and the plurality of separators are provided as the first separator 12 and the second separator 14. .
  • the unfinished electrode assembly 10 ′ is, as shown in FIG. 2, the first electrode 11, the first separator 12, the second electrode 13, and the second separator 14.
  • the sequentially stacked base unit 10A, or at least two or more base units 10A are laminated.
  • the unfinished electrode assembly 10 ′ is, as illustrated in FIG. 3, the first basic unit 10B and the second basic unit 10 stacked up and down with the separation sheet 15 interposed therebetween. 10C), and the first basic unit 10B includes the first electrode 11, the first separator 12, the second electrode 13, the second separator 14, and the first electrode 11 sequentially.
  • the second basic unit 10C includes a second electrode 13, a second separator 14, a first electrode 11, a first separator 12, and a second electrode 13. It has a structure that is sequentially stacked.
  • the first electrode is a cathode and the second electrode is an anode. Accordingly, the unfinished electrode assembly 10 ′ in which the cathode and the anode are stacked in a state where the separator is interposed therebetween may be manufactured.
  • the second process S20 manufactures a finished electrode assembly 10 in which the interface between the electrode and the separator is pattern-bonded. That is, in the second step S20, the unfinished electrode assembly 10 ′ is partially heated and pressurized to manufacture the finished electrode assembly 10 in which the electrode and the separator interface are pattern-bonded. In other words, the finished electrode assembly in which the bonded portion and the non-bonded portion coexist at the electrode and the separator interface may be manufactured.
  • the second process S20 partially heat-presses the unfinished electrode assembly 10 ′ with the pattern roller 100 to pattern-bond the finished electrode assembly with the electrode and the separator interface ( 10) is prepared.
  • both heating and pressurization are not necessarily performed, and the second process S20 may be performed only by partial pressurization.
  • the pattern roller 100 is provided on the upper surface or the lower surface of the unfinished electrode assembly 10 'in the width direction of the unfinished electrode assembly 10' and has a roller portion 110 having a rotational force and an outer circumferential surface of the roller portion 110. And a patterned pressing protrusion 120 partially heating and pressing the upper or lower surface of the unfinished electrode assembly 10 '.
  • the pressing protrusion 120 partially heat-presses the upper or lower surface of the unfinished electrode assembly 10 ′ when the roller unit 110 rotates, and at this time, the unfinished pressurized by the pressing protrusion 120.
  • the surface of the electrode assembly 10 ' is bonded to form an adhesive portion 10a, and the surface of the unfinished electrode assembly 10' that is not pressed by the pressing protrusion 120 forms an unbonded portion 10b.
  • the pressing protrusion 120 is formed to be connected in the circumferential direction of the roller unit 110, thereby patterning the flat shape at the interface between the electrode and the separator while heating and pressing in the longitudinal direction of the unfinished electrode assembly 10 '.
  • the adhesive part 10a is formed.
  • the non-adhesive portion 10b having a straight shape is formed at the interface between the electrode and the separator not pressed by the pressing protrusion 120.
  • the electrode assembly having a predetermined size was described as one embodiment, but the electrode assembly in which the electrode sheet and the separator sheet are stacked may be pattern-bonded through the pattern roller 100.
  • the third process S30 accommodates the finished electrode assembly 10 (hereinafter, referred to as an electrode assembly 10 in the case 20. That is, the electrode provided in the electrode assembly 10).
  • the electrode assembly 10 is inserted through the opening 21 of the case 20 while the tab is pulled out.
  • the electrolyte 30 is injected into the case 20. That is, the electrolyte 30 is injected and impregnated into the case 20 in which the electrode assembly 10 is accommodated.
  • the fourth process S40 fixes the case 20 with the opening 21 facing upward, and the electrolyte injection device 200 in the opening 21 of the case 20. ) And injects the electrolyte solution 30 into the opening 21 of the case 20 through the electrolyte injection device 200.
  • the electrolyte 30 injected into the case 20 is impregnated while being absorbed by the electrode assembly 10.
  • the electrolyte solution 30 is impregnated to the inside of the electrode assembly 10 while penetrating into the non-bonded portion 10b of the electrode and the separator interface.
  • non-adhesive portion 10b is formed in a straight shape to increase the penetration force of the electrolyte solution 30.
  • the secondary battery manufacturing method according to the present invention has a technical feature of forming an unbonded portion 10b to allow the electrolyte 30 to penetrate into the electrode and the separator interface, the electrolyte and the electrode as the unbonded portion 10b.
  • the impregnation force of the assembly 10 can be greatly increased.
  • the fifth process S50 seals the case 20 to be hermetically sealed. That is, in the fifth process S50, the secondary battery 1 is manufactured by sealing an unsealed surface on which the opening 21 of the case 20 is formed.
  • the fifth process S50 is performed by applying heat and pressure to the unsealed surface of the case 20 in which the electrode assembly 10 and the electrolyte 30 are accommodated by the heat fusion apparatus 300. It is sealed by applying a seal, thereby manufacturing a secondary battery (1).
  • the unbonded portion 10b at the interface between the electrode and the separator is adhered. That is, the entire surface of the secondary battery 1 is heated and pressurized to bond the unbonded portion 10b of the electrode to the separator interface.
  • the sixth step S60 is performed by a heating press device 400 which simultaneously heat-presses both surfaces of the secondary battery 1.
  • the heating press device 400 is provided with a pressurized main body 410 on which the secondary battery 1 is mounted, and a heat generating plate 421 for heating and pressing the surface of the secondary battery 1 mounted on the pressurized main body 410.
  • the pressing unit 420 is included.
  • the heating plate 421 is also provided between the wall surface of the pressing body 410 and the surface of the secondary battery (1).
  • the heating and pressing device 400 presses the entire surface of the secondary battery 1 mounted on the pressing body 410 with the pressing unit 420 and is not adhered to the electrode and the separator interface.
  • the part 10b is in close contact with each other so that it is not formed.
  • the non-bonded portion 10b of the interface between the electrode and the separator is bonded by the high temperature heat generated by the heat generating plate 421.
  • the electrode and the entire membrane interface may be adhered to each other.
  • the secondary battery 1 is charged and discharged to be activated. That is, power is supplied to the positive electrode tab and the negative electrode tab of the secondary battery 1 to perform charge and discharge continuously to activate the secondary battery.
  • the secondary battery manufacturing method according to the present invention can improve the secondary battery performance by removing the unreacted region during charging and discharging by adhering the unbonded portion formed at the interface between the electrode and the separator to increase the electrolyte impregnation force. .
  • the electrolyte impregnation force and the secondary battery performance can be simultaneously improved.
  • the present invention can be carried out separately separated only the method for producing an electrode assembly.
  • the second process (S20) partially heat-presses the unfinished electrode assembly 10 'with the pattern roller 100 to manufacture the finished electrode assembly 10 having the electrode and the separator interface pattern-bonded.
  • the electrode assembly manufacturing method according to the present exemplary embodiment may produce the electrode assembly 10 having the adhesive portion patterned at the interface between the electrode and the separator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 이차전지의 제조방법에 관한 것으로서, 미완성 전극조립체를 제조하는 제1 공정(S10); 상기 미완성 전극조립체를 부분적으로 가압하여 접착 부분과 미접착 부분이 공존하는 완제품 전극조립체를 제조하는 제2 공정(S20); 상기 완제품 전극조립체를 케이스에 수용하는 제3 공정(S30); 전해액을 주입하여 상기 전극조립체를 함침시키는 제4 공정(S40); 상기 케이스의 미실링면을 실링하여 이차전지를 제조하는 제5 공정(S50); 및 상기 이차전지의 표면 전체를 가열 가압하여 상기 전극과 상기 분리막 계면의 미접착 부분을 접착하는 제6 공정(S60)을 포함한다.

Description

이차전지의 제조방법 및 전극 조립체의 제조방법
관련출원과의 상호인용
본 출원은 2016년 05월 02일자 한국특허출원 제10-2016-0054112호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 이차전지의 제조방법 및 전극 조립체의 제조방법에 관한 것으로서, 특히 전극과 분리막의 계면에 주액 합침력을 높인 후, 충방전시 미반응 영역도 제거할 수 있는 이차전지의 제조방법 및 전극 조립체의 제조방법에 관한 것이다.
일반적으로 이차전지(secondary battery)는 충전이 불가능한 일차 전지와는 달리 충전 및 방전이 가능한 전지를 말하며, 이러한 이차 전지는 폰, 노트북 컴퓨터 및 캠코더 등의 첨단 전자 기기 분야에서 널리 사용되고 있다.
이차전지는 전극조립체, 전해액 및 상기 전극조립체와 전해액이 수용되는 케이스를 포함하며, 상기 전극조립체는 복수의 전극과 복수의 분리막이 교대로 적층되면서 형성된다.
이와 같은 구성을 가진 이차전지는 상기 케이스의 내부에 상기 전극조립체를 삽입하고, 상기 전극조립체가 수용된 상기 케이스의 내부에 상기 전해액을 주입하며, 상기 케이스의 개구를 실링하는 공정을 수행한다.
여기서 상기 케이스에 주입된 상기 전해액은 상기 전극조립체에 함침되면서 상기 전극조립체의 성능을 향상시킨다.
그러나 상기 이차전지는 전극과 분리막 계면의 접착력에 의한 저항으로 상기 전해액이 상기 전극조립체 내부까지 흡수하지 못하며, 이에 전극조립체의 성능을 향상시키는데 한계가 있었다.
본 발명은 상기와 같은 문제점을 해결하기 위해 발명된 것으로, 본 발명의 목적은 전극과 분리막 계면에 미접착 부분을 형성하는 공정을 포함하며, 이에 전해액의 함침력을 높이고, 전극조립체의 성능을 향상시키는 이차전지용 제조방법을 제공하는데 있다.
본 발명의 또 다른 목적은 전극과 분리막 계면에 형성된 미접착 부분을 접착하는 공정을 더 포함하며, 이에 충방전시 미반응 영역을 제거하여 전극조립체의 성능을 향상시키는 이차전지용 제조방법을 제공하는데 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 실시예에 따른 이차전지의 제조방법은 복수의 전극과 복수의 분리막이 교대로 적층된 미완성 전극조립체를 제조하는 제1 공정(S10); 상기 미완성 전극조립체를 부분적으로 가압하여 상기 전극과 상기 분리막 계면이 패턴 접착됨으로써, 상기 전극과 상기 분리막 계면에서 접착 부분과 미접착된 부분이 공존하는 완제품 전극조립체를 제조하는 제2 공정(S20); 상기 완제품 전극조립체를 케이스에 수용하는 제3 공정(S30); 상기 케이스의 개구부를 통해 전해액을 주입하여 상기 전극조립체를 함침시키는 한편, 상기 전해액이 상기 전극과 상기 분리막 계면의 미접착 부분으로 침투되면서 상기 전극조립체 내부까지 함침되는 제4 공정(S40); 상기 케이스의 개구부가 형성된 미실링면을 실링하여 이차전지를 제조하는 제5 공정(S50); 및 상기 이차전지의 표면 전체를 가열 가압하여 상기 전극과 상기 분리막 계면의 미접착 부분을 접착하는 제6 공정(S60)을 포함할 수 있다.
상기 미완성 전극조립체에서 상기 복수의 전극은 제1 전극과 제2 전극으로 마련되고, 상기 복수의 분리막은 제1 분리막과 제2 분리막으로 마련될 수 있다.
상기 미완성 전극조립체는 제1 전극, 제1 분리막, 제2 전극 및 제2 분리막이 순차적으로 적층된 기본단위체, 또는 상기 기본단위체가 적어도 2개 이상 적층되는 구조를 가질 수 있다.
상기 미완성 전극조립체는 분리시트를 개재한 상태로 상하로 적층되는 제1 기본단위체와 제2 기본단위체로 마련되며, 상기 제1 기본단위체는 제1 전극, 제1 분리막, 제2 전극, 제2 분리막 및 제1 전극이 순차적으로 적층되는 구조를 가지고, 상기 제2 기본단위체는 제2 전극, 제2 분리막, 제1 전극, 제1 분리막 및 제2 전극이 순차적으로 적층되는 구조를 가질 수 있다.
상기 제1 전극은 음극이고, 상기 제2 전극은 양극일 수 있다.
상기 제2 공정(S20)은 패턴롤러로 상기 미완성 전극조립체를 부분적으로 가열 가압하여 상기 전극과 상기 분리막 계면이 패턴 접착된 완제품 전극조립체를 제조할 수 있다.
상기 패턴롤러는 상기 미완성 전극조립체의 상면 또는 하면에 구비되고 회전력을 가지는 롤러부와, 상기 롤러부의 외주면에 구비되고 상기 미완성 전극조립체의 상면 또는 하면을 부분적으로 가열 가압하는 패턴화된 가압돌기로 마련될 수 있다.
상기 롤러부는 상기 미완성 전극조립체의 폭방향으로 배치되고, 상기 가압돌기는 상기 롤러부의 원주방향으로 형성되면서 상기 가압돌기에 의해 가압되는 상기 전극과 상기 분리막의 계면에 일자 형태의 패턴화된 접착 부분을 형성하며, 상기 가압돌기에 의해 가압되지 않는 상기 전극과 상기 분리막의 계면에 일자 형태의 미접착 부분을 형성할 수 있다.
상기 제6 공정은 이차전지의 양측 표면을 동시에 가열 가압하는 가열 가압장치에 의해 이루어질 수 있다.
상기 가열 가압장치는 이차전지가 탑재되는 가압본체와, 상기 가압본체에 탑재된 상기 이차전지를 가열 가압하는 발열플레이트가 구비된 가압부를 포함할 수 있다.
상기 발열 플레이트는 열선이 내장되어 있는 금속 플레이트로 마련될 수 있다.
상기 제5 공정은 실링장치를 통해 상기 케이스의 개구부가 형성된 미실링면을 압입함과 동시에 열을 가하여 모든 실링면이 밀폐된 이차전지를 제조할 수 있다.
상기 제6 공정 후, 상기 이차전지를 충방전하여 완제품 이차전지를 제조하는 제7 공정(S70)를 더 포함할 수 있다.
한편, 본 발명에 따른 전극조립체 제조방법은 복수의 전극과 복수의 분리막이 교대로 적층된 미완성 전극조립체를 제조하는 제1 공정(S10); 및 상기 미완성 전극조립체를 부분적으로 가압하여 상기 전극과 상기 분리막 계면이 패턴 접착됨으로써 상기 전극과 상기 분리막 계면에서 접착 부분과 미접착 부분이 공존하는 완제품 전극조립체를 제조하는 제2 공정(S20)을 포함할 수 있다.
상기 제2 공정(S10)은 패턴롤러로 상기 미완성 전극조립체를 부분적으로 가열 가압하여 상기 전극과 상기 분리막 계면이 패턴 접착된 완제품 전극조립체를 제조할 수 있다.
상기 패턴롤러는 상기 미완성 전극조립체의 상면 또는 하면에 구비되고 회전력을 가지는 롤러부와, 상기 롤러부의 외주면에 구비되고 상기 미완성 전극조립체의 상면 또는 하면을 부분적으로 가열 가압하는 패턴화된 가압돌기로 마련될 수 있다.
상기 롤러부는 상기 미완성 전극조립체의 폭방향으로 배치되고, 상기 가압돌기는 상기 롤러부의 원주방향으로 형성되면서 상기 가압돌기에 의해 가압되는 상기 전극과 상기 분리막의 계면에 일자 형태의 패턴화된 접착 부분을 형성하며, 상기 가압돌기에 의해 가압되지 않는 상기 전극과 상기 분리막의 계면에 일자 형태의 미접착 부분을 형성할 수 있다.
본 발명은 하기와 같은 효과가 있다.
첫째: 본 발명은 복수의 전극과 복수의 분리막으로 마련된 전극조립체를 부분적으로 고온 가압함으로써 상기 전극과 상기 분리막 계면을 패턴 접착할 수 있으며, 이에 전해액을 전극조립체에 함침시킬 때 전해액이 상기 전극과 상기 분리막 계면의 미접착 부분으로 침투되면서 함침력을 높일 수 있다.
둘째: 본 발명은 가압돌기가 패턴화된 패턴롤러를 이용하여 전극조립체를 부분적으로 가열 가압함으로써 전극조립체에 마련된 전극과 분리막 계면을 안정적으로 패턴 접착할 수 있다.
셋째: 본 발명은 전극과 분리막 계면을 전극조립체의 길이방향으로 접착되도록 패턴화함으로써 전해액의 침투력을 높일 수 있고, 이에 전해액 함침력을 향상시킬 수 있다.
넷째: 본 발명은 패턴 접착된 전극조립체가 포함된 이차전지의 표면 전체를 가열 가압함으로써 전극조립체에 마련된 전극과 분리막 계면의 미접착 부분을 접착시킬 수 있으며, 이에 이차전지의 충방전시 미반응영역이 없어 충방전 효율성을 높일 수 있다.
다섯째: 본 발명은 가열 가압장치를 이용하여 패턴 접착된 전극조립체가 포함된 이차전지의 표면 전체를 가열 가압함으로써 전극과 분리막 계면의 미접착 부분을 안정적으로 접착할 수 있다.
도 1은 본 발명의 일실시예에 따른 이차전지 제조방법을 나타낸 순서도.
도 2는 본 발명의 일실시예에 따른 이차전지 제조방법에서 미완성 전극조립체의 제1 실시예를 도시한 도면.
도 3은 본 발명의 일실시예에 따른 이차전지 제조방법에서 미완성 전극조립체의 제2 실시예를 도시한 도면.
도 4는 본 발명의 일실시예에 따른 이차전지 제조방법에서 완제품 전극조립체를 제조하는 제2 공정을 도시한 도면.
도 5는 도 4에 표시된 'A'부분 확대도.
도 6은 본 발명의 일실시예에 따른 이차전지 제조방법에서 완제품 전극조립체를 케이스 수용하는 제3 공정을 도시한 도면.
도 7은 본 발명의 일실시예에 따른 이차전지 제조방법에서 케이스에 전해액을 주입하는 제4 공정을 도시한 도면.
도 8은 도 7에 표시된 'B'부분 확대도.
도 9는 본 발명의 일실시예에 따른 이차전지 제조방법에서 케이스의 개구부를 실링하여 이차전지를 제조하는 제5 공정을 도시한 도면.
도 10은 본 발명의 일실시예에 따른 이차전지 제조방법에서 이차전지를 고온 가압하는 제6 공정을 도시한 도면.
도 11은 도 10에 표시된 'C'부분 확대도.
도 12는 본 발명의 일실시예에 따른 이차전지 제조방법에서 이차전지를 충방전하는 제7 공정을 도시한 도면.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
[이차전지 제조방법]
본 발명에 따른 이차전지 제조방법은 도 1 내지 도 12에 도시되어 있는 것과 같이, 복수의 전극과 복수의 분리막이 교대로 적층된 미완성 전극조립체(10')를 제조하는 제1 공정(S10), 미완성 전극조립체(10')를 부분적으로 가열 가압하여 전극과 분리막 계면이 패턴 접착된 완제품 전극조립체(10)를 제조하는 제2 공정(S20), 완제품 전극조립체(10)를 케이스(20)에 수용하는 제3 공정(S30), 케이스(20)의 개구부(21)를 통해 전해액(30)을 주입하여 전극조립체(10)에 함침시키는 한편, 전해액(30)은 전극과 분리막 계면의 미접착 부분(10b)으로 침투되면서 전극조립체(10) 내부까지 함침되는 제4 공정(S40), 케이스(20)의 개구부(21)가 형성된 미실링면을 실링하여 이차전지(1)를 제조하는 제5 공정(S50), 이차전지(1)의 표면 전체를 가열 가압하여 전극과 상기 분리막 계면의 미접착 부분(10b)을 접착하는 제6 공정(S60), 및 이차전지(1)를 충방전하여 활성화하는 제7 공정(S70)을 포함한다.
제1 공정(S10)
제1 공정(S10)은 도 2와 도 3에 도시되어 있는 것과 같이, 미완성 전극조립체(10')를 제조하는 공정이다. 즉, 제1 공정(S10)은 복수의 전극과 복수의 분리막을 교대로 적층하여 미완성 전극조립체(10')를 제조한다.
여기서 미완성 전극조립체(10')에서 복수의 전극은 제1 전극(11)과 제2 전극(13)으로 마련되고, 복수의 분리막은 제1 분리막(12)과 제2 분리막(14)으로 마련된다.
제1 실시예로, 미완성 전극조립체(10')는 도 2에 도시되어 있는 것과 같이, 제1 전극(11), 제1 분리막(12), 제2 전극(13) 및 제2 분리막(14)이 순차적으로 적층된 기본단위체(10A), 또는 기본단위체(10A)가 적어도 2개 이상 적층되는 구조를 가진다.
제2 실시예로, 미완성 전극조립체(10')는 도 3에 도시되어 있는 것과 같이, 분리시트(15)를 개재한 상태로 상하로 적층되는 제1 기본단위체(10B)와 제2 기본단위체(10C)로 마련되며, 제1 기본단위체(10B)는 제1 전극(11), 제1 분리막(12), 제2 전극(13), 제2 분리막(14) 및 제1 전극(11)이 순차적으로 적층되는 구조를 가지고, 제2 기본단위체(10C)는 제2 전극(13), 제2 분리막(14), 제1 전극(11), 제1 분리막(12) 및 제2 전극(13)이 순차적으로 적층되는 구조를 가진다.
여기서 제1 전극은 음극이고, 제2 전극은 양극이다. 이에 분리막이 개재된 상태로 음극과 양극이 적층된 미완성 전극조립체(10')를 제조할 수 있다.
한편, 본 발명에서는 제1 실시예에 의해 제조된 미완성 전극조립체(10')를 참조하여 설명한다.
제2 공정(S20)
제2 공정(S20)은 도 4에 도시되어 있는 것과 같이, 전극과 분리막의 계면이 패턴 접착된 완제품 전극조립체(10)를 제조한다. 즉, 제2 공정(S20)은 미완성 전극조립체(10')를 부분적으로 가열 가압하여 상기 전극과 상기 분리막 계면이 패턴 접착된 완제품 전극조립체(10)를 제조한다. 다시 말해, 전극과 분리막 계면에서 접착 부분과 미접착 부분이 공존하는 완제품 전극 조립체를 제조할 수 있다.
일례로, 제2 공정(S20)은 도 4에 도시되어 있는 것과 같이, 패턴롤러(100)로 미완성 전극조립체(10')를 부분적으로 가열 가압하여 전극과 분리막 계면이 패턴 접착된 완제품 전극조립체(10)를 제조한다. 다만, 반드시 가열과 가압이 모두 수행되어야 하는 것은 아니며, 부분적인 가압만으로 제2 공정(S20)을 수행할 수도 있다.
여기서 패턴롤러(100)는 미완성 전극조립체(10')의 상면 또는 하면에 미완성 전극조립체(10')의 폭방향으로 구비되고 회전력을 가지는 롤러부(110)와, 롤러부(110)의 외주면에 구비되고 미완성 전극조립체(10')의 상면 또는 하면을 부분적으로 가열 가압하는 패턴화된 가압돌기(120)로 마련된다.
즉, 패턴롤러(100)는 롤러부(110) 회전시 가압돌기(120)가 미완성 전극조립체(10')의 상면 또는 하면을 부분적으로 가열 가압하며, 이때 가압돌기(120)에 의해 가압되는 미완성 전극조립체(10')의 표면은 접착되면서 접착 부분(10a)를 형성하고, 가압돌기(120)에 의해 가압되지 않는 미완성 전극조립체(10')의 표면은 미접착 부분(10b)을 형성한다.
특히, 가압돌기(120)는 롤러부(110)의 원주방향으로 연결되게 형성되어 있으며, 이에 미완성 전극조립체(10')의 길이방향으로 가열 가압하면서 전극과 분리막의 계면에 일자 형태의 패턴화된 접착 부분(10a)을 형성한다. 물론 가압돌기(120)에 의해 가압되지 않는 전극과 분리막의 계면에는 일자 형태의 미접착 부분(10b)을 형성한다.
도 5를 참조하여 설명하면, 제1 전극(11)과 제1 분리막(12)의 계면, 제1 분리막(12)과 제2 전극(13)의 계면, 제2 전극(13)과 제2 분리막(14)의 계면에 패턴화된 접착 부분(10a)과, 상호 이웃하는 접착 부분(10a) 사이에 미접착 부분(10b)이 형성된다.
한편, 본 발명의 실시예에서는 소정 크기를 가진 전극조립체를 하나의 실시예로 설명하였으나, 전극시트와 분리막시트가 적층된 전극조립체도 패턴롤러(100)를 통해 패턴 접착이 가능하다.
제3 공정(S30)
제3 공정(S30)은 도 6에 도시되어 있는 것과 같이, 완제품 전극조립체(10)(이하, 전극조립체(10)를 케이스(20)에 수용한다. 즉, 전극조립체(10)에 구비된 전극탭을 외부로 인출시킨 상태로 전극조립체(10)를 케이스(20)의 개구부(21)를 통해 삽입한다.
제4 공정(S40)
제4 공정(S40)은 도 7에 도시되어 있는 것과 같이, 케이스(20)의 내부에 전해액(30)을 주입한다. 즉, 전극조립체(10)가 수용된 케이스(20)의 내부에 전해액(30)을 주입하여 함침시킨다.
일례로, 제4 공정(S40)은 도 7에 도시되어 있는 것과 같이, 개구부(21)가 상부를 향하게 케이스(20)를 고정하고, 케이스(20)의 개구부(21)에 전해액 주입장치(200)를 위치시키며, 전해액 주입장치(200)를 통해 케이스(20)의 개구부(21)에 전해액(30)을 주입한다.
그러면, 도 8에 도시되어 있는 것과 같이, 케이스(20)에 주입된 전해액(30)은 전극조립체(10)에 흡수되면서 함침된다. 특히 전해액(30)은 전극과 분리막 계면의 미접착 부분(10b)으로 침투되면서 전극조립체(10) 내부까지 함침된다.
더욱이 미접착 부분(10b)은 일자 형태로 형성되어 있어 전해액(30)의 침투력을 높일 수 있다.
즉, 본 발명에 따른 이차전지 제조방법은 전극과 분리막 계면에 전해액(30)이 침투할 수 있도록 미접착 부분(10b)을 형성하는 기술적 특징을 가지며, 이 미접착 부분(10b)으로 전해액과 전극조립체(10)의 함침력을 크게 높일 수 있다.
제5 공정(S50)
제5 공정(S50)은 도 9에 도시되어 있는 것과 같이, 케이스(20)를 밀폐되게 실링한다. 즉, 제5 공정(S50)은 케이스(20)의 개구부(21)가 형성된 미실링면을 실링하여 이차전지(1)를 제조한다.
일례로, 제5 공정(S50)은 도 9에 도시되어 있는 것과 같이, 전극조립체(10)와 전해액(30)이 수용된 케이스(20)의 미실링면을 열융착장치(300)로 열과 압력을 가하여 밀폐되게 실링하며, 이에 이차전지(1)를 제조할 수 있다.
제6 공정(S60)
제6 공정(S60)은 도 10에 도시되어 있는 것과 같이, 전극과 분리막 계면의 미접착 부분(10b)을 접착한다. 즉, 이차전지(1)의 표면 전체를 가열 가압하여 전극과 분리막 계면의 미접착 부분(10b)을 접착한다.
일례로, 제6 공정(S60)은 도 10에 도시되어 있는 것과 같이, 이차전지(1)의 양측 표면을 동시에 가열 가압하는 가열 가압장치(400)에 의해 이루어진다.
여기서 가열 가압장치(400)는 이차전지(1)가 탑재되는 가압본체(410)와, 가압본체(410)에 탑재된 이차전지(1)의 표면을 가열 가압하는 발열플레이트(421)가 구비된 가압부(420)를 포함한다. 한편, 가압본체(410)의 벽면과 이차전지(1)의 표면 사이에도 발열플레이트(421)가 구비된다.
즉, 가열 가압장치(400)는 도 11에 도시되어 있는 것과 같이, 가압본체(410)에 탑재된 이차전지(1)의 표면 전체를 가압부(420)로 가압하여 전극과 분리막 계면에 미접착 부분(10b)이 형성되지 않게 밀착시킨다. 이와 같은 상태에서 발열플레이트(421)에서 발생하는 고온의 열로 전극과 분리막 계면의 미접착 부분(10b)을 접착시킨다. 이에 전극과 분리막 계면 전체를 접착시킬 수 있다.
제7 공정(S70)
제7 공정(S70)은 도 12에 도시되어 있는 것과 같이, 이차전지(1)를 충방전하여 활성화한다. 즉, 이차전지(1)의 양극탭과 음극탭에 전원을 공급하여 충전과 방전을 연속실시하여 이차전지를 활성화한다.
이때, 전극과 분리막의 계면 전체가 접착되어 있어 미 반응영역이 없기 때문에 이차전지의 성능을 향상시킬 수 있다.
즉, 본 발명에 따른 이차전지 제조방법은 전해액 함침력을 높이기 위해 전극과 분리막의 계면에 형성한 미접착 부분을 접착함으로써 충방전시 미반응영역을 제거할 수 있어 이차전지 성능을 향상시킬 수 있다.
이와 같은 구성을 가지는 이차전지 제조방법은 전해액 함침력 향상 및 이차전지 성능 향상을 동시에 얻을 수 있다.
이하, 본 발명에 따른 다른 실시예를 설명함에 있어 전술한 실시예와 동일한 구성과 기능을 가지는 구성에 대해서는 동일한 구성부호를 사용하며, 중복되는 설명은 생략한다.
[전극조립체 제조방법]
한편, 본 발명은 전극조립체를 제조하는 방법만 별도로 분리하여 수행할 수 있다.
본 실시예에 따른 전극조립체 제조방법은 복수의 전극과 복수의 분리막이 교대로 적층된 미완성 전극조립체(10')를 제조하는 제1 공정(S10), 및 미완성 전극조립체(10')를 부분적으로 가열 가압하여 전극과 분리막 계면이 패턴 접착된 완제품 전극조립체(10)를 제조하는 제2 공정(S20)을 포함한다.
여기서 제2 공정(S20)은 패턴롤러(100)로 미완성 전극조립체(10')를 부분적으로 가열 가압하여 전극과 분리막 계면이 패턴 접착된 완제품 전극조립체(10)를 제조한다.
한편, 제1 공정(S10)과 패턴롤러(100)에 의해 수행되는 제2 공정(S20)은 앞에서 설명한 이차전지 제조방법의 제1 공정 및 제2 공정과 동일하기에 자세한 설명을 생략한다.
이와 같이 본 실시예에 따른 전극조립체 제조방법은 전극과 분리막 계면에 패턴화된 접착 부분을 가진 전극조립체(10)를 제조할 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 다양한 실시 형태가 가능하다.

Claims (17)

  1. 복수의 전극과 복수의 분리막이 교대로 적층된 미완성 전극조립체를 제조하는 제1 공정(S10);
    상기 미완성 전극조립체를 부분적으로 가압하여 상기 전극과 상기 분리막 계면이 패턴 접착됨으로써, 상기 전극과 상기 분리막 계면에서 접착 부분과 미접착 부분이 공존하는 완제품 전극조립체를 제조하는 제2 공정(S20);
    상기 완제품 전극조립체를 케이스에 수용하는 제3 공정(S30);
    상기 케이스의 개구부를 통해 전해액을 주입하여 상기 전극조립체를 함침시키는 한편, 상기 전해액이 상기 전극과 상기 분리막 계면의 미접착 부분으로 침투되면서 상기 전극조립체 내부까지 함침되는 제4 공정(S40);
    상기 케이스의 개구부가 형성된 미실링면을 실링하여 이차전지를 제조하는 제5 공정(S50); 및
    상기 이차전지의 표면 전체를 가열 가압하여 상기 전극과 상기 분리막 계면의 미접착 부분을 접착하는 제6 공정(S60)을 포함하는 이차전지의 제조방법.
  2. 청구항 1에 있어서,
    상기 미완성 전극조립체에서 상기 복수의 전극은 제1 전극과 제2 전극으로 마련되고, 상기 복수의 분리막은 제1 분리막과 제2 분리막으로 마련되는 이차전지의 제조방법.
  3. 청구항 2에 있어서,
    상기 미완성 전극조립체는 제1 전극, 제1 분리막, 제2 전극 및 제2 분리막이 순차적으로 적층된 기본단위체, 또는 상기 기본단위체가 적어도 2개 이상 적층되는 구조를 가지는 이차전지의 제조방법.
  4. 청구항 2에 있어서,
    상기 미완성 전극조립체는 분리시트를 개재한 상태로 상하로 적층되는 제1 기본단위체와 제2 기본단위체로 마련되며,
    상기 제1 기본단위체는 제1 전극, 제1 분리막, 제2 전극, 제2 분리막 및 제1 전극이 순차적으로 적층되는 구조를 가지고,
    상기 제2 기본단위체는 제2 전극, 제2 분리막, 제1 전극, 제1 분리막 및 제2 전극이 순차적으로 적층되는 구조를 가지는 이차전지의 제조방법.
  5. 청구항 2에 있어서,
    상기 제1 전극은 음극이고, 상기 제2 전극은 양극인 이차전지의 제조방법.
  6. 청구항 2에 있어서,
    상기 제2 공정(S20)은 패턴롤러로 상기 미완성 전극조립체를 부분적으로 가열 가압하여 상기 전극과 상기 분리막 계면이 패턴 접착된 완제품 전극조립체를 제조하는 이차전지의 제조방법.
  7. 청구항 6에 있어서,
    상기 패턴롤러는 상기 미완성 전극조립체의 상면 또는 하면에 구비되고 회전력을 가지는 롤러부와, 상기 롤러부의 외주면에 구비되고 상기 미완성 전극조립체의 상면 또는 하면을 부분적으로 가열 가압하는 패턴화된 가압돌기로 마련되는 이차전지의 제조방법.
  8. 청구항 7에 있어서,
    상기 롤러부는 상기 미완성 전극조립체의 폭방향으로 배치되고,
    상기 가압돌기는 상기 롤러부의 원주방향으로 형성되면서 상기 가압돌기에 의해 가압되는 상기 전극과 상기 분리막의 계면에 일자 형태의 패턴화된 접착 부분을 형성하며,
    상기 가압돌기에 의해 가압되지 않는 상기 전극과 상기 분리막의 계면에 일자 형태의 미접착 부분을 형성하는 이차전지의 제조방법.
  9. 청구항 1에 있어서,
    상기 제6 공정은 이차전지의 양측 표면을 동시에 가열 가압하는 가열 가압장치에 의해 이루어지는 이차전지의 제조방법.
  10. 청구항 9에 있어서,
    상기 가열 가압장치는 이차전지가 탑재되는 가압본체와, 상기 가압본체에 탑재된 상기 이차전지를 가열 가압하는 발열플레이트가 구비된 가압부를 포함하는 이차전지의 제조방법.
  11. 청구항 10에 있어서,
    상기 발열 플레이트는 열선이 내장되어 있는 금속 플레이트로 마련되는 이차전지의 제조방법.
  12. 청구항 1에 있어서,
    상기 제5 공정은 실링장치를 통해 상기 케이스의 개구부가 형성된 미실링면을 압입함과 동시에 열을 가하여 모든 실링면이 밀폐된 이차전지를 제조하는 이차전지의 제조방법.
  13. 청구항 1에 있어서,
    상기 제6 공정 후, 상기 이차전지를 충방전하여 완제품 이차전지를 제조하는 제7 공정(S70)를 더 포함하는 이차전지의 제조방법.
  14. 복수의 전극과 복수의 분리막이 교대로 적층된 미완성 전극조립체를 제조하는 제1 공정(S10); 및
    상기 미완성 전극조립체를 부분적으로 가압하여 상기 전극과 상기 분리막 계면이 패턴 접착됨으로써 상기 전극과 상기 분리막 계면에서 접착 부분과 미접착 부분이 공존하는 완제품 전극조립체를 제조하는 제2 공정(S20)을 포함하는 전극조립체의 제조방법.
  15. 청구항 14에 있어서,
    상기 제2 공정(S10)은 패턴롤러로 상기 미완성 전극조립체를 부분적으로 가열 가압하여 상기 전극과 상기 분리막 계면이 패턴 접착된 완제품 전극조립체를 제조하는 전극조립체의 제조방법.
  16. 청구항 15에 있어서,
    상기 패턴롤러는 상기 미완성 전극조립체의 상면 또는 하면에 구비되고 회전력을 가지는 롤러부와, 상기 롤러부의 외주면에 구비되고 상기 미완성 전극조립체의 상면 또는 하면을 부분적으로 가열 가압하는 패턴화된 가압돌기로 마련되는 전극조립체의 제조방법.
  17. 청구항 16에 있어서,
    상기 롤러부는 상기 미완성 전극조립체의 폭방향으로 배치되고,
    상기 가압돌기는 상기 롤러부의 원주방향으로 형성되면서 상기 가압돌기에 의해 가압되는 상기 전극과 상기 분리막의 계면에 일자 형태의 패턴화된 접착 부분을 형성하며,
    상기 가압돌기에 의해 가압되지 않는 상기 전극과 상기 분리막의 계면에 일자 형태의 미접착 부분을 형성하는 전극조립체의 제조방법.
PCT/KR2017/004381 2016-05-02 2017-04-25 이차전지의 제조방법 및 전극 조립체의 제조방법 WO2017191922A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL17792824T PL3331083T3 (pl) 2016-05-02 2017-04-25 Sposób wytwarzania baterii akumulatorowej i sposób wytwarzania zespołu elektrod
US15/754,335 US10476096B2 (en) 2016-05-02 2017-04-25 Method for manufacturing secondary battery and method for manufacturing electrode assembly
CN201780003011.7A CN108028414B (zh) 2016-05-02 2017-04-25 制造二次电池的方法和制造电极组件的方法
EP17792824.9A EP3331083B1 (en) 2016-05-02 2017-04-25 Method for manufacturing secondary battery and method for manufacturing electrode assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0054112 2016-05-02
KR1020160054112A KR101963313B1 (ko) 2016-05-02 2016-05-02 이차전지의 제조방법 및 전극 조립체의 제조방법

Publications (1)

Publication Number Publication Date
WO2017191922A1 true WO2017191922A1 (ko) 2017-11-09

Family

ID=60202908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004381 WO2017191922A1 (ko) 2016-05-02 2017-04-25 이차전지의 제조방법 및 전극 조립체의 제조방법

Country Status (6)

Country Link
US (1) US10476096B2 (ko)
EP (1) EP3331083B1 (ko)
KR (1) KR101963313B1 (ko)
CN (1) CN108028414B (ko)
PL (1) PL3331083T3 (ko)
WO (1) WO2017191922A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102129708B1 (ko) * 2018-09-12 2020-07-03 유펙스켐(주) 권취를 위한 전지용 분리막 제조장치
KR102316340B1 (ko) * 2019-01-22 2021-10-22 주식회사 엘지에너지솔루션 전극조립체, 그를 포함하는 이차전지, 이차전지 제조방법 및 전지팩
KR102099918B1 (ko) * 2019-10-10 2020-04-10 (주) 신영테크놀로지 패턴이 형성된 유연필름의 제조방법 및 이로부터 제조되는 유연필름
KR20210051164A (ko) 2019-10-30 2021-05-10 주식회사 엘지화학 가압 지그 및 이를 이용한 이차전지 제조 방법
KR20210073338A (ko) * 2019-12-10 2021-06-18 주식회사 엘지에너지솔루션 단위셀의 제조장치 및 제조방법
JP2023037042A (ja) * 2020-02-19 2023-03-15 三洋電機株式会社 非水電解質二次電池及びその製造方法
JP2023533575A (ja) 2020-11-18 2023-08-03 エルジー エナジー ソリューション リミテッド 二次電池およびその製造方法
JP2023552532A (ja) * 2021-07-09 2023-12-18 エルジー エナジー ソリューション リミテッド 電極組立体の製造装置および製造方法
EP4276959A1 (en) * 2021-09-16 2023-11-15 LG Energy Solution, Ltd. Secondary battery manufacturing apparatus and secondary battery manufacturing method using same
KR20230144794A (ko) 2022-04-08 2023-10-17 에스케이온 주식회사 배터리 셀 및 이를 제조하는 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154883B1 (ko) * 2007-04-26 2012-06-18 주식회사 엘지화학 향상된 전해액 함침성의 전극조립체를 제조하는 방법
KR20120095122A (ko) * 2011-02-18 2012-08-28 주식회사 엘지화학 전극 조립체 및 이를 이용한 이차 전지
KR20150037049A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 전지셀 고온 가압 장치
JP2015118816A (ja) * 2013-12-18 2015-06-25 日産自動車株式会社 二次電池の電極
KR20160016040A (ko) * 2014-08-01 2016-02-15 주식회사 엘지화학 전해액 주액성이 향상된 리튬이차전지 및 그의 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9431641B2 (en) * 2011-04-08 2016-08-30 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
KR101643593B1 (ko) * 2013-09-06 2016-07-29 주식회사 엘지화학 전해액 함침성이 향상된 스택-폴딩형 전극조립체 및 이의 제조방법
KR101361184B1 (ko) 2013-09-30 2014-02-25 (주)국제리프라텍 위생용품을 이용한 자동차 내장재 및 이의 제조방법
KR101671421B1 (ko) 2014-04-16 2016-11-01 주식회사 엘지화학 패턴 코팅된 전극을 포함하는 플렉서블 전극조립체
KR101720387B1 (ko) * 2014-08-04 2017-03-27 주식회사 엘지화학 전극조립체, 전지셀 및 전지셀 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154883B1 (ko) * 2007-04-26 2012-06-18 주식회사 엘지화학 향상된 전해액 함침성의 전극조립체를 제조하는 방법
KR20120095122A (ko) * 2011-02-18 2012-08-28 주식회사 엘지화학 전극 조립체 및 이를 이용한 이차 전지
KR20150037049A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 전지셀 고온 가압 장치
JP2015118816A (ja) * 2013-12-18 2015-06-25 日産自動車株式会社 二次電池の電極
KR20160016040A (ko) * 2014-08-01 2016-02-15 주식회사 엘지화학 전해액 주액성이 향상된 리튬이차전지 및 그의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3331083A4 *

Also Published As

Publication number Publication date
US20190051924A1 (en) 2019-02-14
EP3331083A1 (en) 2018-06-06
CN108028414B (zh) 2021-06-11
KR101963313B1 (ko) 2019-03-28
KR20170124336A (ko) 2017-11-10
EP3331083B1 (en) 2019-07-24
US10476096B2 (en) 2019-11-12
CN108028414A (zh) 2018-05-11
PL3331083T3 (pl) 2019-11-29
EP3331083A4 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
WO2017191922A1 (ko) 이차전지의 제조방법 및 전극 조립체의 제조방법
WO2014104841A1 (ko) 이차 전지의 파우치 케이스 실링 장치 및 실링 방법
WO2010101367A2 (ko) 전기에너지 저장장치
WO2015046792A1 (ko) 파우치형 이차전지
WO2013180449A1 (ko) 전극 조립체, 전지셀, 전극 조립체의 제조방법 및 전지셀의 제조 방법
WO2014126430A1 (ko) 전극조립체 및 이를 포함하는 폴리머 이차전지 셀
WO2010134788A2 (ko) 내수성 파우치형 이차전지
WO2014126431A1 (ko) 전극조립체 및 이를 포함하는 폴리머 이차전지 셀
WO2014137120A1 (ko) 젤리롤 타입의 전극 조립체 제조방법 및 젤리롤 타입의 폴리머 이차전지 제조방법
WO2018155811A1 (ko) 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템
WO2014126434A1 (ko) 전극 조립체
WO2018048160A1 (ko) 이차전지
WO2014126433A1 (ko) 전극조립체 및 전극조립체 제조방법
WO2019103302A1 (ko) 파우치 타입 이차 전지
WO2020101353A1 (ko) 파우치 케이스 및 이를 포함하는 파우치형 이차 전지의 제조 방법
WO2021107315A1 (ko) 전극조립체 및 그 제조방법
WO2018190530A1 (ko) 이차전지 및 그 이차전지의 제조방법
WO2017200283A1 (ko) 이차 전지, 바이폴라 전극 및 바이폴라 전극 제조 방법
WO2017191910A2 (ko) 이차전지의 제조방법 및 전극 조립체의 제조방법
WO2016056776A1 (ko) 계단 구조의 전극조립체에 대응하는 형상으로 형성되어 있는 전지케이스를 포함하는 전지셀
WO2020111646A1 (ko) 캡조립체, 이차전지 및 그의 제조방법, 전지팩
WO2021107460A1 (ko) 전해액 주입 장치 및 이를 이용한 전해액 주입 방법
WO2018212466A1 (ko) 전극 조립체 제조 장치 및 전극 조립체 제조방법
WO2018038409A1 (ko) 이차전지 및 이차전지의 전해액 보충 방법
WO2017142206A1 (ko) 전극조립체 및 그의 제조방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE