WO2017187707A1 - リチウムイオン二次電池の充電方法、リチウムイオン二次電池システム、及び電力貯蔵装置 - Google Patents
リチウムイオン二次電池の充電方法、リチウムイオン二次電池システム、及び電力貯蔵装置 Download PDFInfo
- Publication number
- WO2017187707A1 WO2017187707A1 PCT/JP2017/004449 JP2017004449W WO2017187707A1 WO 2017187707 A1 WO2017187707 A1 WO 2017187707A1 JP 2017004449 W JP2017004449 W JP 2017004449W WO 2017187707 A1 WO2017187707 A1 WO 2017187707A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- positive electrode
- ion secondary
- lithium ion
- secondary battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
- H02J7/04—Regulation of charging current or voltage
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method for charging a lithium ion secondary battery, a lithium ion secondary battery system, and a power storage device.
- Lithium ion secondary batteries which are a type of non-aqueous electrolyte secondary battery, are high energy density secondary batteries, and are used as power sources for portable devices such as notebook computers and mobile phones, taking advantage of their characteristics. .
- lithium ion secondary batteries have been attracting attention as power supplies for electronic devices, power storage power supplies, power supplies for electric vehicles, etc., which are becoming smaller in size, and lithium ion secondary batteries with higher energy density are required. Yes.
- One embodiment of the present invention has been made in view of the above circumstances, and a method for charging a lithium ion secondary battery capable of improving charge / discharge cycle characteristics even when a positive electrode active material exhibiting a high operating potential is used. And a lithium ion secondary battery system and a power storage device using the charging method.
- the charging method of a lithium ion secondary battery is a capacity ratio (negative electrode capacity / positive electrode capacity) of 70% by volume or more and a negative electrode capacity of the negative electrode and a positive electrode capacity of the positive electrode of 1 or less.
- the negative electrode includes, as a negative electrode active material, an active material into which lithium ions are inserted and desorbed at a potential of 1.2 V or more with respect to the lithium potential. Charging method.
- ⁇ 3> The method for charging a lithium ion secondary battery according to ⁇ 1> or ⁇ 2>, wherein the negative electrode includes a lithium titanium composite oxide as a negative electrode active material.
- ⁇ 4> The method for charging a lithium ion secondary battery according to ⁇ 3>, wherein the set voltage is 3.4 V to 3.8 V.
- a lithium ion secondary battery system comprising: a charge control unit that charges the lithium ion secondary battery by the charging method according to any one of ⁇ 1> to ⁇ 4>.
- a charging method for a lithium ion secondary battery that can improve charge / discharge cycle characteristics even when a positive electrode active material exhibiting a high operating potential is used, and lithium ion using the charging method
- a secondary battery system and a power storage device can be provided.
- FIG. 1 It is a perspective view which shows an example of a structure of the lithium ion secondary battery of this embodiment. It is a perspective view which shows the positive electrode plate, negative electrode plate, and separator which comprise the electrode group of the lithium ion secondary battery of FIG.
- a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
- the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range.
- the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
- each component is not limited to one, and a plurality of components may exist.
- the content or content of each component means the total content or content of the plurality of types of substances unless there is a specific indication when there are a plurality of types of substances corresponding to the respective components.
- the particle diameter of each component means a value for a mixture of the plurality of types of particles when there are a plurality of types of particles corresponding to each component, unless otherwise specified.
- the term “layer” or “film” refers to a part of the region in addition to the case where the layer or the film is formed when the region where the layer or film exists is observed. It is also included when it is formed only.
- the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
- the “solid content” of the positive electrode mixture or the negative electrode mixture means the remaining components obtained by removing volatile components such as organic solvents from the positive electrode mixture or the negative electrode mixture.
- the lithium ion secondary battery charging method of the present embodiment (hereinafter also referred to as “charging method of the present embodiment”) includes a positive electrode including a spinel type lithium / nickel / manganese composite oxide as a positive electrode active material, a negative electrode, And an electrolytic solution containing dimethyl carbonate as a non-aqueous solvent, the content ratio of dimethyl carbonate exceeds 70% by volume with respect to the total amount of the non-aqueous solvent, and the capacity ratio between the negative electrode capacity of the negative electrode and the positive electrode capacity of the positive electrode (negative electrode).
- the present invention is applied to a lithium ion secondary battery (capacity / positive electrode capacity) of 1 or less (hereinafter also referred to as “lithium ion secondary battery of this embodiment”).
- constant current charging is performed until the set voltage is reached, or constant current charging is performed until the set voltage is reached, and then constant voltage charging is performed within 30 minutes at the set voltage.
- the lithium ion secondary battery includes a positive electrode including a spinel type
- the present inventor presumes as follows.
- the positive electrode potential is high and the negative electrode potential is low.
- the electrolytic solution is easily oxidatively decomposed on the positive electrode side and reductively decomposed on the negative electrode side.
- the electrolytic solution is decomposed, the ionic conductivity of the electrolytic solution decreases and the resistance value increases.
- the resistance value also increases when the decomposition product of the electrolytic solution forms a film on the electrode. For this reason, it is speculated that the charge / discharge cycle characteristics can be improved by setting the constant voltage charging time to a short time.
- the constant voltage charging time is preferably within 15 minutes and more preferably within 10 minutes from the viewpoint of further improving the charge / discharge cycle characteristics.
- the constant voltage charging time is 0 minute, that is, the lithium ion secondary battery of the present embodiment is charged by constant current charging.
- the set voltage (end-of-charge voltage) in constant current charging and constant voltage charging is preferably set to 3.4 V to 3.8 V, for example.
- the end-of-charge voltage is set to 3.4 V or higher. As a result, charging is sufficient, and the initial capacity tends to be further improved.
- the end-of-charge voltage is more preferably 3.5V or more.
- the end-of-charge voltage is more preferably 3.7 V or less.
- the charge end voltage is preferably set to 4.8 V to 5.0 V, for example.
- said charge end voltage is a voltage per cell. In the case of an assembled battery composed of a plurality of batteries, it means a voltage set for each single battery.
- the positive electrode active material and the negative electrode active material of the lithium ion secondary battery of this embodiment will be described, and then the overall configuration of the lithium ion secondary battery will be described.
- a positive electrode active material containing a spinel type lithium / nickel / manganese composite oxide is used.
- the content of the spinel-type lithium / nickel / manganese composite oxide in the positive electrode active material is preferably 50% by mass to 100% by mass from the viewpoint of further improving the energy density, and 60% by mass to 100% by mass. More preferably, it is more preferably 70% by mass to 100% by mass, and particularly preferably 85% by mass to 100% by mass.
- the spinel-type lithium / nickel / manganese composite oxide is preferably a compound represented by LiNi X Mn 2-X O 4 (0.3 ⁇ X ⁇ 0.7), and LiNi X Mn 2-X O 4 (0.4 ⁇ X ⁇ 0.6) is more preferable, and LiNi 0.5 Mn 1.5 O 4 is more preferable from the viewpoint of stability.
- the Mn site, Ni site, or part of the O site of the spinel type lithium / nickel / manganese composite oxide is replaced with other elements. May be substituted. Further, excess lithium may be present in the crystal of the spinel type lithium / nickel / manganese composite oxide. Further, a spinel type lithium / nickel / manganese composite oxide in which defects are generated at the O site may be used.
- Examples of other elements that can replace the Mn site or Ni site of the spinel type lithium / nickel / manganese composite oxide include Ti, V, Cr, Fe, Co, Zn, Cu, W, Mg, and Al. , And Ru.
- the Mn site or Ni site of the spinel type lithium / nickel / manganese composite oxide may be substituted with one or more of these elements.
- Ti is preferably used from the viewpoint of further stabilizing the crystal structure of the spinel type lithium / nickel / manganese composite oxide.
- Examples of other elements that can replace the O site of the spinel type lithium / nickel / manganese composite oxide include F and B.
- the O site of the spinel type lithium / nickel / manganese composite oxide may be substituted with one or more of these elements.
- F is preferably used from the viewpoint of further stabilizing the crystal structure of the spinel type lithium / nickel / manganese composite oxide.
- the potential in a fully charged state (also referred to herein as lithium potential) Li / Li + relative, 4. 5V to 5.1V is preferable, and 4.6V to 5.0V is more preferable.
- the fully charged state means a state where the SOC (state of charge) is 100%.
- BET specific surface area of the lithium-nickel-manganese composite oxide of the spinel type is preferably less than 2.9 m 2 / g, to be less than 2.8 m 2 / g More preferably, it is more preferably less than 1.5 m 2 / g, and particularly preferably less than 1.0 m 2 / g.
- BET specific surface area of the lithium-nickel-manganese composite oxide of the spinel is preferably at 0.05 m 2 / g or more, is 0.08 m 2 / g or more More preferably, it is more preferably 0.1 m 2 / g or more.
- BET specific surface area of the lithium-nickel-manganese composite oxide of the spinel is preferably less than 0.05 m 2 / g or more 2.9m 2 / g, 0.05m 2 / g or more 2.8 m 2 / g Is more preferably 0.08 m 2 / g or more and less than 1.5 m 2 / g, and particularly preferably 0.1 m 2 / g or more and less than 1.0 m 2 / g.
- a BET specific surface area can be measured from nitrogen adsorption capacity according to JIS Z 8830: 2013, for example.
- the evaluation apparatus for example, AUTOSORB-1 (trade name) manufactured by QUANTACHROME can be used.
- pretreatment a measurement cell charged with 0.05 g of a measurement sample is depressurized to 10 Pa or less with a vacuum pump, heated at 110 ° C. and held for 3 hours or more, and then kept at a normal temperature ( Cool to 25 ° C).
- the evaluation temperature is 77K
- the evaluation pressure range is measured as a relative pressure (equilibrium pressure with respect to saturated vapor pressure) of less than 1.
- the median diameter D50 of the spinel-type lithium / nickel / manganese composite oxide particles is the dispersion of the particles.
- the thickness is preferably 0.5 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m.
- the median diameter D50 can be obtained from the particle size distribution obtained by the laser diffraction scattering method. Specifically, a lithium / nickel / manganese composite oxide is added to pure water so as to be 1% by mass, and is dispersed with ultrasonic waves for 15 minutes, and then measured by a laser diffraction scattering method.
- the positive electrode active material in the lithium ion secondary battery of this embodiment may contain other positive electrode active materials other than the spinel type lithium / nickel / manganese composite oxide.
- Other positive electrode active materials other than the spinel type lithium / nickel / manganese composite oxide include, for example, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1 1-y O z (wherein M 1 is selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Cu, Zn, Al, Cr, Pb, Sb, V, and B) At least one element selected), Li x Ni 1-y M 2 y O z (wherein M 2 is Na, Mg, Sc, Y, Fe, Co, Cu, Zn, Al, Cr) , Pb, Sb, V, and B represents at least one element selected from the group consisting of Li x Mn 2 O 4 , and Li
- x is 0 ⁇ x ⁇ 1.2
- y is 0 ⁇ y ⁇ 0.9
- z is 2.0 ⁇ z ⁇ 2.3.
- the x value indicating the molar ratio of lithium is increased or decreased by charging and discharging.
- the BET specific surface area of the other positive electrode active material is 2.9 m from the viewpoint of further improving the storage characteristics. preferably less than 2 / g, more preferably less than 2.8 m 2 / g, more preferably less than 1.5 m 2 / g, especially less than 1.0 m 2 / g preferable.
- the BET specific surface area of the other of the positive electrode active material is preferably 0.05 m 2 / g or more, more preferably 0.08 m 2 / g or more, 0 More preferably, it is 1 m 2 / g or more.
- BET specific surface area of the other of the positive electrode active material is preferably less than 0.05 m 2 / g or more 2.9 m 2 / g, more is less than 0.05 m 2 / g or more 2.8 m 2 / g It is more preferably 0.08 m 2 / g or more and less than 1.5 m 2 / g, and particularly preferably 0.1 m 2 / g or more and less than 1.0 m 2 / g.
- the BET specific surface area of other positive electrode active materials can be measured by the same method as for spinel type lithium / nickel / manganese composite oxide.
- the median diameter D50 of the particles of the other positive electrode active material is preferably from 0.5 ⁇ m to 100 ⁇ m, more preferably from 1 ⁇ m to 50 ⁇ m, from the viewpoint of further improving the dispersibility of the particles.
- the median diameter D50 of the other positive electrode active material particles can be measured by the same method as that for the spinel-type lithium / nickel / manganese composite oxide particles.
- the negative electrode active material used for the lithium ion secondary battery of this embodiment is not particularly limited.
- the negative electrode active material include lithium titanium composite oxide, molybdenum oxide, iron sulfide, titanium sulfide, and a carbon material.
- the negative electrode active material preferably contains a lithium titanium composite oxide.
- the content of the lithium titanium composite oxide in the negative electrode active material is preferably 50% by mass to 100% by mass and more preferably 70% by mass to 100% by mass from the viewpoint of further improving the energy density. 80% by mass to 100% by mass is more preferable.
- the negative electrode active material preferably includes an active material into which lithium ions are inserted and desorbed at a potential of 1.2 V or higher with respect to the lithium potential (hereinafter also referred to as “specific negative electrode active material”). Specifically, “an activity in which an insertion reaction and a desorption reaction of lithium ions are performed with an electrochemical capacity of at least 100 mAh / g or more per unit mass of the active material at a potential of 1.2 V or more with respect to the lithium potential. “Substance” is preferably included.
- the lithium ion secondary battery of this embodiment substantially operates as a “battery” when the potential of the negative electrode is 1.2 V or more with respect to the lithium potential.
- the discharge is performed under conditions where lithium ion secondary batteries are normally used Is performed, it is necessary that 50% or more of the amount of discharged electricity is carried corresponding to the negative electrode operating region having a negative electrode potential of 1.2 V or more. That is, the working potential of the negative electrode is substantially required to be 1.2 V (vs. Li / Li + ) or higher.
- the negative electrode active material examples include lithium titanium composite oxide, molybdenum oxide, iron sulfide, and titanium sulfide.
- the specific negative electrode active material is preferably a lithium titanium composite oxide.
- the content of the specific negative electrode active material in the negative electrode active material is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, from the viewpoint of further improving the energy density. More preferably, it is 80% by mass to 100% by mass.
- the lithium titanium composite oxide used as the negative electrode active material is preferably a spinel type lithium titanium composite oxide.
- the basic composition formula of the spinel type lithium titanium composite oxide is represented by Li [Li 1/3 Ti 5/3 ] O 4 .
- a part of the Li site, Ti site, or O site of the spinel type lithium titanium composite oxide may be substituted with another element.
- excess lithium may be present in the crystal of the spinel type lithium titanium composite oxide.
- deletion in the O site of a spinel type lithium titanium complex oxide may be used.
- Examples of other elements that can replace the Li site or Ti site of the spinel type lithium titanium composite oxide include Nb, V, Mn, Ni, Cu, Co, Zn, Sn, Pb, Al, Mo, Ba, Sr, Ta, Mg, and Ca can be mentioned.
- the Li site or Ti site of the spinel type lithium titanium composite oxide may be substituted with one or more of these elements.
- Examples of other elements that can replace the O site of the spinel type lithium titanium composite oxide include F and B.
- the O site of the spinel type lithium titanium composite oxide may be substituted with one or more of these elements.
- the BET specific surface area of the negative electrode active material is preferably less than 40 m 2 / g, more preferably less than 30 m 2 / g, and more preferably less than 20 m 2 / g from the viewpoint of further improving storage characteristics. More preferably, it is particularly preferably less than 15 m 2 / g. From the viewpoint of improving input / output characteristics, the BET specific surface area of the negative electrode active material is preferably 0.1 m 2 / g or more, more preferably 0.5 m 2 / g or more, and 1 m 2 / g. It is still more preferable that it is above.
- BET specific surface area of the negative electrode active material is preferably less than 0.1 m 2 / g or more 40 m 2 / g, more preferably less than 0.1 m 2 / g or more 30m 2 / g, 0.5m 2 more preferably less than / g or more 20 m 2 / g, and particularly preferably less than 1 m 2 / g or more 15 m 2 / g.
- the BET specific surface area of the negative electrode active material can be measured by the same method as for the spinel type lithium / nickel / manganese composite oxide.
- the median diameter D50 of the particles of the negative electrode active material (the median diameter D50 of the secondary particles when the primary particles are aggregated to form secondary particles) is from the viewpoint of further improving the dispersibility of the particles.
- the thickness is preferably 0.5 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m.
- the median diameter D50 of the negative electrode active material particles can be measured by the same method as that for the spinel-type lithium / nickel / manganese composite oxide particles.
- the lithium ion secondary battery of this embodiment has a positive electrode, a negative electrode, and an electrolytic solution.
- a separator is interposed between the positive electrode and the negative electrode.
- the positive electrode includes, for example, a current collector and a positive electrode mixture layer formed on both surfaces or one surface of the current collector.
- the positive electrode mixture layer contains the above-described positive electrode active material.
- Examples of the material of the positive electrode current collector include aluminum, titanium, stainless steel, and nickel.
- a positive electrode active material containing a spinel-type lithium / nickel / manganese composite oxide is mixed with a conductive material, and an appropriate binder and solvent are added as necessary to add a paste-like positive electrode composite.
- What was made into the agent can be applied to the surface of the current collector and dried to form a positive electrode mixture layer, and then, if necessary, formed by increasing the density of the positive electrode mixture layer by pressing or the like.
- Examples of the conductive material include powdered carbon materials such as carbon black, acetylene black, ketjen black, and graphite.
- a conductive material may be used individually by 1 type, and may be used in combination of 2 or more type.
- acetylene black is preferable from the viewpoint of further improving input / output characteristics.
- the content of the conductive material is preferably 3% by mass or more, more preferably 4% by mass or more, based on the total solid content of the positive electrode mixture. More preferably, it is 5% by mass or more. From the viewpoint of further increasing the battery capacity, the content of the conductive material is preferably 10% by mass or less, more preferably 9% by mass or less, based on the total solid content of the positive electrode mixture, and 8. More preferably, it is 5 mass% or less. The content of the conductive material is preferably 3% by mass to 10% by mass, more preferably 4% by mass to 9% by mass, and more preferably 4.5% by mass based on the total solid content of the positive electrode mixture. More preferably, it is -8.5 mass%.
- the binder is not particularly limited, and a material having good solubility or dispersibility in a solvent is preferable.
- resin-based polymers such as polyethylene and polypropylene; rubbery polymers such as SBR (styrene-butadiene rubber) and NBR (acrylonitrile-butadiene rubber); polyvinylidene fluoride (PVdF), polytetrafluoroethylene, and the like.
- PVdF polyvinylidene fluoride
- Fluorine-based polymer a copolymer obtained by adding acrylic acid and a linear ether group to a polyacrylonitrile skeleton.
- a binder may be used individually by 1 type and may be used in combination of 2 or more type.
- binders from the viewpoint of further improving the adhesion of the positive electrode mixture layer, a polyvinylidene fluoride (PVdF) or a copolymer obtained by adding acrylic acid and a linear ether group to a polyacrylonitrile skeleton is preferable. From the viewpoint of further improving the discharge cycle characteristics, a copolymer obtained by adding acrylic acid and a linear ether group to a polyacrylonitrile skeleton is more preferable.
- PVdF polyvinylidene fluoride
- a copolymer obtained by adding acrylic acid and a linear ether group to a polyacrylonitrile skeleton is more preferable.
- the content of the binder is the total solid content of the positive electrode mixture from the viewpoint of sufficiently binding the positive electrode active material to further increase the mechanical strength of the positive electrode and further stabilizing the battery performance such as charge / discharge cycle characteristics. Is preferably 0.1% by mass or more, more preferably 1% by mass or more, and further preferably 2% by mass or more. From the viewpoint of further increasing the battery capacity and further improving the conductivity, the content of the binder is preferably 30% by mass or less, and 20% by mass or less, based on the total solid content of the positive electrode mixture. More preferably, it is more preferably 10% by mass or less.
- the content of the binder is preferably 0.1% by mass to 30% by mass, more preferably 1% by mass to 20% by mass based on the total solid content of the positive electrode mixture, and 2% by mass. More preferably, the content is from 10% to 10% by mass.
- Examples of the solvent in which these positive electrode active material, conductive material, binder and the like are dispersed include organic solvents such as N-methyl-2-pyrrolidone.
- the solid content of the positive electrode mixture a 100g / m 2 ⁇ 250g / m 2, more preferably from 110g / m 2 ⁇ 200g / m 2, and still more preferably from 130g / m 2 ⁇ 170g / m 2.
- the density of the positive electrode mixture layer from the viewpoint of further improving the energy density and output characteristics, the solid content of the positive electrode mixture is preferably from 1.8g / cm 3 ⁇ 3.3g / cm 3, 2. It is more preferably 0 g / cm 3 to 3.2 g / cm 3 , and still more preferably 2.2 g / cm 3 to 2.8 g / cm 3 .
- the negative electrode includes, for example, a current collector and a negative electrode mixture layer formed on both surfaces or one surface of the current collector.
- the negative electrode mixture layer contains the above-described negative electrode active material.
- Examples of the material of the negative electrode current collector include copper, stainless steel, nickel, aluminum, titanium, and a conductive polymer.
- a negative electrode active material and a conductive material are mixed, and if necessary, an appropriate binder and solvent are added to form a paste-like negative electrode mixture on the surface of the current collector. And it can dry and form a negative mix layer, and it can form by raising the density of a negative mix layer by a press etc. as needed after that.
- the conductive material examples include the same conductive material as that of the positive electrode.
- the content of the conductive material is preferably 1% by mass or more, more preferably 2% by mass or more, based on the total solid content of the negative electrode mixture. More preferably, it is at least mass%.
- the content of the conductive material is preferably 15% by mass or less, more preferably 12% by mass or less, more preferably 10% by mass based on the total solid content of the negative electrode mixture. % Or less is more preferable.
- the content of the conductive material is preferably 1% by mass to 15% by mass, more preferably 2% by mass to 12% by mass, more preferably 3% by mass to 10% by mass, based on the total solid content of the negative electrode mixture. More preferably, it is mass%.
- the content of the binder is the total solid content of the negative electrode mixture from the viewpoint of sufficiently binding the negative electrode active material to further increase the mechanical strength of the negative electrode and further stabilizing the battery performance such as charge / discharge cycle characteristics. Is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and still more preferably 1% by mass or more. From the viewpoint of further increasing the battery capacity and further improving the conductivity, the content of the binder is preferably 40% by mass or less, based on the total solid content of the negative electrode mixture, and is 25% by mass or less. More preferably, it is more preferably 15% by mass or less. The content of the binder is preferably 0.1% by mass to 40% by mass, more preferably 0.5% by mass to 25% by mass, based on the total solid content of the negative electrode mixture. More preferably, it is 1 to 15% by mass.
- Examples of the solvent in which these negative electrode active material, conductive material, binder and the like are dispersed include organic solvents such as N-methyl-2-pyrrolidone.
- Single-side coating of the current collector of the negative electrode mixture from the viewpoint of further improving the energy density and output characteristic, as a solid of the negative electrode mixture component is preferably 10g / m 2 ⁇ 225g / m 2, More preferably, it is 50 g / m 2 to 200 g / m 2 , and still more preferably 80 g / m 2 to 160 g / m 2 .
- Density of the negative electrode mixture layer from the viewpoint of further improving the energy density and output characteristic, as a solid of the negative electrode mixture component is preferably 1.0g / cm 3 ⁇ 3.3g / cm 3, 1. It is more preferably 2 g / cm 3 to 3.2 g / cm 3 , and further preferably 1.4 g / cm 3 to 2.8 g / cm 3 .
- the separator is not particularly limited as long as it has ion permeability while electronically insulating between the positive electrode and the negative electrode, and has resistance to oxidation on the positive electrode side and reducibility on the negative electrode side.
- a material (material) of the separator that satisfies such characteristics a resin, an inorganic substance, or the like is used.
- the resin examples include olefin polymers, fluorine polymers, cellulose polymers, polyimide, nylon, and the like. Among them, it is preferable to select from materials that are stable with respect to the electrolytic solution and have excellent liquid retention properties, and polyolefins such as polyethylene and polypropylene are more preferable.
- the shape of the separator include a porous sheet and a nonwoven fabric.
- the inorganic substance examples include oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, sulfates such as barium sulfate and calcium sulfate, and glass.
- oxides such as alumina and silicon dioxide
- nitrides such as aluminum nitride and silicon nitride
- sulfates such as barium sulfate and calcium sulfate
- glass glass
- thin film-shaped base materials such as a nonwoven fabric, a woven fabric, and a microporous film
- a substrate having a pore diameter of 0.01 ⁇ m to 1 ⁇ m and a thickness of 5 ⁇ m to 50 ⁇ m is preferably used.
- a composite porous layer obtained by using the above inorganic substance in a fiber shape or a particle shape with a binder such as a resin may be used as a separator.
- this composite porous layer may be formed on the surface of another separator to form a multilayer separator.
- a composite porous layer in which alumina particles having a 90% particle size (D90) of less than 1 ⁇ m are bound using a fluororesin as a binder may be formed on the surface of the positive electrode or the surface facing the positive electrode of the separator. .
- the electrolytic solution includes a lithium salt (electrolyte) and a non-aqueous solvent that dissolves the lithium salt.
- the electrolytic solution contains dimethyl carbonate (DMC) as a non-aqueous solvent, and the content of dimethyl carbonate exceeds 70% by volume with respect to the total amount of the non-aqueous solvent. When the content of dimethyl carbonate exceeds 70% by volume with respect to the total amount of the nonaqueous solvent, the charge / discharge cycle characteristics tend to be improved.
- DMC dimethyl carbonate
- the content of dimethyl carbonate is preferably 75% by volume or more, more preferably 85% by volume or more, and still more preferably 90% by volume or more based on the total amount of the nonaqueous solvent.
- the content of dimethyl carbonate with respect to the total amount of the nonaqueous solvent may be 100% by volume, but it is preferably 95% by volume or less from the viewpoint of further improving safety.
- dimethyl carbonate Since dimethyl carbonate has excellent oxidation resistance, it is difficult to be decomposed even when a high potential positive electrode containing a spinel type lithium / nickel / manganese composite oxide as a positive electrode active material is used. Moreover, since the capacity ratio (negative electrode capacity / positive electrode capacity) of the negative electrode capacity of the negative electrode and the positive electrode capacity of the positive electrode is 1 or less, the lithium ion secondary battery of the present embodiment is charged when the lithium ion secondary battery is charged. In some cases, the negative electrode potential may drop to 1.4 V or less with respect to the lithium potential. However, since dimethyl carbonate is excellent in reduction resistance, it is difficult to be reduced and decomposed even on a negative electrode using a lithium titanium composite oxide or the like as a negative electrode active material.
- the electrolytic solution may contain other non-aqueous solvents other than dimethyl carbonate.
- Other non-aqueous solvents include ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), trifluoroethyl phosphate (TFEP), ethyl methyl sulfone (EMS), vinylene carbonate (VC), methyl ethyl carbonate. , ⁇ -butyrolactone, acetonitrile, 1,2-dimethoxyethane, dimethoxymethane, tetrahydrofuran, dioxolane, methylene chloride, methyl acetate and the like.
- the content of the other nonaqueous solvent is less than 30% by volume and 25% by volume or less with respect to the total amount of the nonaqueous solvent. Is preferably 15% by volume or less, more preferably 10% by volume or less.
- the content of other nonaqueous solvents may be 0% by volume, but is preferably 5% by volume or more from the viewpoint of further improving safety.
- Lithium salts include LiPF 6 , LiBF 4 , LiFSI (lithium bisfluorosulfonylimide), LiTFSI (lithium bistrifluoromethanesulfonylimide), LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 and LiN (SO 2 CF 2 CF 3 ) 2 .
- These lithium salts may be used individually by 1 type, and may be used in combination of 2 or more type.
- LiPF 6 is preferable when comprehensively judging solubility in a non-aqueous solvent, charge / discharge characteristics, input / output characteristics, charge / discharge cycle characteristics, and the like in the case of a lithium ion secondary battery.
- the concentration of the lithium salt in the electrolytic solution is preferably 0.8 mol / L to 2.0 mol / L and more preferably 1.0 mol / L to 2.0 mol / L from the viewpoint of further improving safety. More preferably, it is 1.2 mol / L to 2.0 mol / L.
- the electrolytic solution may contain an additive as necessary.
- the additive is not particularly limited as long as it is an additive for an electrolytic solution of a lithium ion secondary battery. Specific examples include nitrogen, sulfur, or a heterocyclic compound containing nitrogen and sulfur, a cyclic carboxylic acid ester, a fluorine-containing cyclic carbonate, a fluorine-containing boric acid ester, and a compound having an unsaturated bond in the molecule. It is done.
- other additives such as an overcharge inhibitor, a negative electrode film forming agent, a positive electrode protective agent, and a high input / output agent may be used depending on the required function.
- the capacity ratio (negative electrode capacity / positive electrode capacity) between the negative electrode capacity of the negative electrode and the positive electrode capacity of the positive electrode is set to 1 or less from the viewpoint of improving charge / discharge cycle characteristics and energy density. . If the capacity ratio of the negative electrode capacity to the positive electrode capacity (negative electrode capacity / positive electrode capacity) is 1 or less, the decomposition reaction of the electrolytic solution due to the positive electrode becoming high potential hardly occurs, and the charge / discharge cycle characteristics of the lithium ion secondary battery Tend to improve.
- the capacity ratio between the negative electrode capacity and the positive electrode capacity (negative electrode capacity / positive electrode capacity) is preferably 0.6 or more and less than 1.
- the capacity ratio between the negative electrode capacity and the positive electrode capacity (negative electrode capacity / positive electrode capacity) is 0.6 or more, the battery capacity is further increased and the volume energy density tends to be further improved.
- the capacity ratio of the negative electrode capacity to the positive electrode capacity (negative electrode capacity / positive electrode capacity) is more preferably 0.7 to 0.98, and from the viewpoint of further improving the volume energy density and input characteristics, 0.75 to 0 More preferred is .95.
- the “positive electrode capacity” and “negative electrode capacity” are the maximum reversibly available when a constant-current charge-constant-current discharge is performed with an electrochemical cell having a counter electrode made of metallic lithium. Means capacity. Further, the negative electrode capacity indicates [negative electrode discharge capacity], and the positive electrode capacity indicates [positive electrode discharge capacity].
- the “negative electrode discharge capacity” is defined as the capacity calculated by the charge / discharge device when the lithium ions inserted into the negative electrode active material are desorbed.
- the “positive electrode discharge capacity” is defined as the capacity calculated by the charge / discharge device when lithium ions are desorbed from the positive electrode active material.
- the “positive electrode capacity” and the “negative electrode capacity” were 4.95 V to 3.5 V and 1.0 V to 2.0 V, respectively, and the current density during constant current charging and constant current discharging was 0.1 mA / cm 2 to perform the above charging and discharging. The capacity obtained in such a case.
- the direction in which lithium ions are inserted into the negative electrode active material is defined as charging, and the direction in which lithium ions are desorbed is defined as discharging.
- the direction in which lithium ions are desorbed from the positive electrode active material is defined as charging, and the direction in which lithium ions are inserted is defined as discharging.
- the positive electrode capacity tends to increase as the amount of the positive electrode active material contained in the positive electrode increases, and decreases as the amount decreases.
- the negative electrode capacity varies depending on the amount of the negative electrode active material.
- the lithium ion secondary battery of this embodiment may have various shapes such as a laminate type, a wound type (cylindrical type), and a coin type. Regardless of the shape, a separator is interposed between the positive electrode and the negative electrode to form an electrode body, and between the positive electrode current collector and the negative electrode current collector and the positive electrode terminal and the negative electrode terminal leading to the outside, a current collecting lead, etc. The electrode body is sealed together with the electrolyte in a battery case to complete a lithium ion secondary battery.
- the shape of the lithium ion secondary battery of the present embodiment is not limited to the laminate type.
- a lithium ion secondary battery of another shape for example, a wound lithium ion secondary battery in which a laminate formed by laminating a positive electrode plate and a negative electrode plate via a separator can be cited.
- FIG. 1 is a perspective view showing an example of the configuration of the lithium ion secondary battery of the present embodiment.
- FIG. 2 is a perspective view showing a positive electrode plate, a negative electrode plate, and a separator constituting the electrode group of the lithium ion secondary battery of FIG.
- size of the member in each figure is notional, The relative relationship of the magnitude
- symbol is provided to the member which has the substantially same function through all the drawings, and the overlapping description may be abbreviate
- a lithium ion secondary battery 10 in FIG. 1 is a battery outer body 6 that is a laminate film, and contains an electrode group 20 and an electrolyte solution.
- a positive electrode current collecting tab 2 and a negative electrode current collecting tab 4 are provided. It is made to take out to the exterior of the battery exterior body 6.
- FIG. 2 the electrode group 20 is formed by laminating the positive electrode plate 1 to which the positive electrode current collecting tab 2 is attached, the separator 5, and the negative electrode plate 3 to which the negative electrode current collecting tab 4 is attached.
- a positive electrode plate, a negative electrode plate, a separator, an electrode group, and a battery can be made into arbitrary things, and are not necessarily limited to what is shown by FIG.1 and FIG.2.
- Examples of the material of the battery exterior body 6 include aluminum, copper, and stainless steel.
- the lithium ion secondary battery system of the present embodiment includes the lithium ion secondary battery of the present embodiment and a charge control unit that charges the lithium ion secondary battery of the present embodiment by the charging method of the present embodiment.
- the charge control unit can be configured by a control IC (Integrated Circuit) or the like. According to the lithium ion secondary battery system of the present embodiment, the charge / discharge cycle characteristics of the lithium ion secondary battery of the present embodiment can be improved.
- the lithium ion secondary battery system of the present embodiment may include one or more lithium ion secondary batteries.
- the plurality of lithium ion secondary batteries may be connected in series, may be connected in parallel, or may be connected in series and parallel.
- the power storage device of this embodiment includes the lithium ion secondary battery system of this embodiment. As described above, according to the lithium ion secondary battery system of the present embodiment, the charge / discharge cycle characteristics of the lithium ion secondary battery of the present embodiment can be improved. Therefore, according to the power storage device of this embodiment, it is possible to efficiently supply the power stored in the lithium ion secondary battery to various devices.
- Examples 1 to 6 and Comparative Examples 1 and 2 Preparation of positive electrode plate and negative electrode plate
- 5 parts by mass of acetylene black (manufactured by Denka Corporation) as a conductive material 2 parts by mass of a copolymer obtained by adding acrylic acid and a linear ether group to a polyacrylonitrile skeleton (a binder resin composition of Synthesis Example 1) is mixed as an adhesive, and an appropriate amount of N-methyl-2-pyrrolidone is added. By kneading, a paste-like positive electrode mixture was obtained.
- This positive electrode mixture was applied to one side of a 20 ⁇ m thick aluminum foil as a positive electrode current collector so that the solid content of the positive electrode mixture was 140 g / m 2 substantially uniformly and uniformly. Then, the drying process was performed and the dry coating film was obtained. This dried coating film was consolidated by pressing until the density of the positive electrode mixture was 2.3 g / cm 3 to produce a sheet-like positive electrode. The thickness of the positive electrode mixture layer was 60 ⁇ m. The positive electrode was cut into a width of 31 mm and a length of 46 mm to form a positive electrode plate, and a positive electrode current collecting tab was attached to the positive electrode plate as shown in FIG.
- LiT lithium titanate
- acetylene black manufactured by Denka Co., Ltd.
- polyvinylidene fluoride a binder.
- N-methyl-2-pyrrolidone was added and kneaded to obtain a paste-like negative electrode mixture.
- This negative electrode mixture was applied to one side of a 10 ⁇ m thick copper foil as a negative electrode current collector so that the solid content of the negative electrode mixture was 85 g / m 2 . Then, the drying process was performed and the dry coating film was obtained.
- This dried coating film was consolidated by a press as a solid content of the negative electrode mixture until the density became 1.9 g / cm 3 to prepare a sheet-like negative electrode.
- the thickness of the negative electrode mixture layer was 45 ⁇ m.
- the negative electrode was cut into a width of 30 mm and a length of 45 mm to form a negative electrode plate, and a negative electrode current collecting tab was attached to the negative electrode plate as shown in FIG.
- a synthesis example of the binder used in the positive electrode is shown below.
- Synthesis Example 1> Purify 1804 g of purified water into a 3 liter separable flask equipped with a stirrer, thermometer, cooling pipe, and nitrogen gas introduction pipe, and rise to 74 ° C. with stirring under a nitrogen gas flow rate of 200 mL / min. After warming, the nitrogen gas flow was stopped.
- the prepared positive electrode plate and negative electrode plate were opposed to each other through a three-layer polypropylene / polyethylene / polypropylene separator having a thickness of 30 ⁇ m, a width of 35 mm, and a length of 50 mm, to prepare a laminated electrode group.
- LiPF 6 as an electrolyte is dissolved at a concentration of 2.0 mol / L in a non-aqueous solvent (EC: DMC is 1: 9 by volume) in which ethylene carbonate (EC) and dimethyl carbonate (DMC) are mixed. A liquid was prepared.
- EC non-aqueous solvent
- DMC dimethyl carbonate
- the electrode group is accommodated in a battery outer package made of an aluminum laminate film, and after the electrolyte is injected into the battery outer package, the positive electrode current collecting tab and the negative electrode current collector are collected. The opening of the battery container was sealed so that the electric tab was taken out to produce a lithium ion secondary battery.
- the aluminum laminate film is a laminate of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene, etc.).
- this electrode group is accommodated in a battery outer casing made of an aluminum laminate film, and after pouring electrolyte into the battery outer casing, a positive electrode current collecting tab and a counter electrode current collecting tab Was taken out to seal the opening of the battery outer package to produce a battery for measuring the positive electrode capacity.
- the aluminum laminate film is a laminate of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene, etc.).
- PET polyethylene terephthalate
- aluminum foil / sealant layer polypropylene, etc.
- an electrolytic solution an EC / DMC mixed solvent having a LiPF 6 concentration of 1.2 mol / L (EC: DMC is 3: 7 by volume) is used.
- the positive electrode capacity was a discharge capacity obtained when charging and discharging were performed with a voltage range of 4.95 V to 3.5 V and a current during constant current charging and constant current discharging of 3.5 mA. As a result of the measurement, the positive electrode capacity was 24 mAh.
- the negative electrode capacity was a discharge capacity obtained when evaluation was performed by charging and discharging with a voltage range of 1.0 V to 2.0 V and a constant current charge and constant current discharge current of 3.5 mA. As a result of the measurement, the negative electrode capacity was 17 mAh.
- the capacity ratio (negative electrode capacity / positive electrode capacity) was calculated to be 0.7.
- the lithium ion secondary battery was charged with a constant current at a current value of 0.2 C and a charge end voltage of 3.4 V at 25 ° C. using a charge / discharge device (BATTERY TEST UNIT, manufactured by IEM Co., Ltd.). After resting for 15 minutes, constant current discharge was performed at a current value of 0.2 C and a final discharge voltage of 2.0 V. Charging / discharging was repeated twice under the above charging / discharging conditions. Subsequently, constant current charging was performed at 50 ° C. with a current value of 1 C and a charge end voltage of 3.4 V, and then constant voltage charging was performed at a charging voltage of 3.4 V for the time shown in Table 1.
- Example 3 A lithium ion secondary battery was prepared in the same manner as in Example 1 except that a non-aqueous solvent (DMC: DEC is 3: 7 in volume ratio) mixed with dimethyl carbonate (DMC) and diethyl carbonate (DEC) was used. It produced and the charge / discharge cycle characteristic was evaluated. The results are shown in Table 1.
- DMC non-aqueous solvent
- DEC dimethyl carbonate
- DEC diethyl carbonate
- Example 4 A lithium ion secondary battery was prepared in the same manner as in Example 1 except that a non-aqueous solvent (PC: DEC was 3: 7 by volume) in which propylene carbonate (PC) and diethyl carbonate (DEC) were mixed was used. It produced and the charge / discharge cycle characteristic was evaluated. The results are shown in Table 1.
- PC non-aqueous solvent
- DEC propylene carbonate
- DEC diethyl carbonate
- Example 5 A lithium ion secondary battery was prepared in the same manner as in Example 5 except that a non-aqueous solvent (DMC: DEC is 3: 7 by volume) in which dimethyl carbonate (DMC) and diethyl carbonate (DEC) are mixed is used. It produced and the charge / discharge cycle characteristic was evaluated. The results are shown in Table 1.
- DMC non-aqueous solvent
- DEC dimethyl carbonate
- DEC diethyl carbonate
- Example 7 to 12 and Comparative Examples 6 to 10 The charge / discharge cycle characteristics were evaluated in the same manner as in Examples 1 to 6 and Comparative Examples 1 to 5, respectively, except that the charge end voltage (constant voltage charge voltage) was changed to 3.5V. The results are shown in Table 2.
- Example 13 to 18 and Comparative Examples 11 to 15 The charge / discharge cycle characteristics were evaluated in the same manner as in Examples 1 to 6 and Comparative Examples 1 to 5, respectively, except that the charge end voltage (constant voltage charge voltage) was changed to 3.8V. The results are shown in Table 3.
- the nonaqueous solvent does not contain dimethyl carbonate, or the content rate of dimethyl carbonate is 70 volume% or less with respect to the whole quantity of a nonaqueous solvent.
- Comparative Examples 5 to 10 Comparative Examples 8 to 10, and Comparative Examples 13 to 15, the charge / discharge cycle characteristics were significantly reduced as compared with Examples 1 to 18.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
これを解決する手段として、定電流充電過程後の定電圧充電過程における電流値を制御するリチウムイオン二次電池の充電方法が提案されている(例えば、特許文献1参照)。
<1> スピネル型のリチウム・ニッケル・マンガン複合酸化物を正極活物質として含む正極、負極、及びジメチルカーボネートを非水溶媒として含む電解液を有し、前記ジメチルカーボネートの含有率が前記非水溶媒の全量に対して70体積%を超え、前記負極の負極容量と前記正極の正極容量との容量比(負極容量/正極容量)が1以下であるリチウムイオン二次電池を用い、
設定電圧に達するまで定電流充電を行うか、又は設定電圧に達するまで定電流充電を行った後に前記設定電圧で30分間以内の定電圧充電を行うことにより、前記リチウムイオン二次電池を充電する、リチウムイオン二次電池の充電方法。
<1>~<4>のいずれか1項に記載の充電方法により前記リチウムイオン二次電池を充電する充電制御部と、を備える、リチウムイオン二次電池システム。
本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本明細書において、特段の断りがない限り、各構成要素は1つに限定されず、複数存在してもよい。
本明細書において各成分の含有量又は含有率は、各成分に該当する物質が複数種存在する場合、特に断らない限り、当該複数種の物質の合計の含有量又は含有率を意味する。
本明細書において各成分の粒子径は、各成分に該当する粒子が複数種存在する場合、特に断らない限り、当該複数種の粒子の混合物についての値を意味する。
本明細書において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
本明細書において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
本明細書において、正極合剤又は負極合剤の「固形分」とは、正極合剤又は負極合剤から有機溶剤等の揮発性成分を除いた残りの成分を意味する。
本実施形態のリチウムイオン二次電池の充電方法(以下、「本実施形態の充電方法」ともいう。)は、スピネル型のリチウム・ニッケル・マンガン複合酸化物を正極活物質として含む正極、負極、及びジメチルカーボネートを非水溶媒として含む電解液を有し、ジメチルカーボネートの含有率が非水溶媒の全量に対して70体積%を超え、負極の負極容量と正極の正極容量との容量比(負極容量/正極容量)が1以下であるリチウムイオン二次電池(以下、「本実施形態のリチウムイオン二次電池」ともいう。)について適用される。本実施形態の充電方法では、設定電圧に達するまで定電流充電を行うか、又は設定電圧に達するまで定電流充電を行った後に該設定電圧で30分間以内の定電圧充電を行うことにより、本実施形態のリチウムイオン二次電池を充電する。
定電圧充電中は、正極の電位が高く、負極の電位が低い状態にある。そのため、電解液は、正極側では酸化分解されやすく、負極側では還元分解されやすい。電解液が分解されると電解液のイオン伝導度が低下し、抵抗値が増大する。また、電解液の分解物が電極上で皮膜となることによっても抵抗値は増大する。このため、定電圧充電の時間を短時間とすることで、充放電サイクル特性を向上させることができると推察される。
また、負極が炭素材料を負極活物質として含む場合には、充電終止電圧は、例えば、4.8V~5.0Vに設定することが好ましい。
なお、上記の充電終止電圧は、単電池当たりの電圧である。複数の電池から構成される組電池の場合には、各単電池に設定される電圧を意味する。
本実施形態のリチウムイオン二次電池では、スピネル型のリチウム・ニッケル・マンガン複合酸化物を含む正極活物質が用いられる。正極活物質に占めるスピネル型のリチウム・ニッケル・マンガン複合酸化物の含有率は、エネルギー密度をより向上させる観点から、50質量%~100質量%であることが好ましく、60質量%~100質量%であることがより好ましく、70質量%~100質量%であることが更に好ましく、85質量%~100質量%であることが特に好ましい。
また、過剰のリチウムをスピネル型のリチウム・ニッケル・マンガン複合酸化物の結晶内に存在させてもよい。更には、スピネル型のリチウム・ニッケル・マンガン複合酸化物のOサイトに欠損を生じさせたものを用いてもよい。
スピネル型のリチウム・ニッケル・マンガン複合酸化物のOサイトを置換することのできる他の元素としては、例えば、F及びBを挙げることができる。スピネル型のリチウム・ニッケル・マンガン複合酸化物のOサイトは、1種又は2種以上のこれらの元素で置換してよい。これらの置換可能な元素のうち、スピネル型のリチウム・ニッケル・マンガン複合酸化物の結晶構造の更なる安定化の観点からは、Fを用いるのが好ましい。
スピネル型のリチウム・ニッケル・マンガン複合酸化物のBET比表面積は、0.05m2/g以上2.9m2/g未満であることが好ましく、0.05m2/g以上2.8m2/g未満であることがより好ましく、0.08m2/g以上1.5m2/g未満であることが更に好ましく、0.1m2/g以上1.0m2/g未満であることが特に好ましい。
前処理では、0.05gの測定試料を投入した測定用セルを、真空ポンプで10Pa以下に減圧した後、110℃で加熱し、3時間以上保持した後、減圧した状態を保ったまま常温(25℃)まで自然冷却する。この前処理を行った後、評価温度を77Kとし、評価圧力範囲を相対圧(飽和蒸気圧に対する平衡圧力)にて1未満として測定する。
なお、メジアン径D50は、レーザー回折散乱法により得られた粒度分布から求めることができる。具体的には、純水中に1質量%となるようにリチウム・ニッケル・マンガン複合酸化物を投入し、超音波で15分間分散し、その後、レーザー回折散乱法により測定する。
スピネル型のリチウム・ニッケル・マンガン複合酸化物以外のその他の正極活物質としては、例えば、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1-yO2、LixCoyM1 1-yOz(式中、M1は、Na、Mg、Sc、Y、Mn、Fe、Cu、Zn、Al、Cr、Pb、Sb、V、及びBからなる群より選ばれる少なくとも1種の元素を示す。)、LixNi1-yM2 yOz(式中、M2は、Na、Mg、Sc、Y、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V、及びBからなる群より選ばれる少なくとも1種の元素を示す。)、LixMn2O4、及びLixMn2-yM3 yO4(式中、M3は、Na、Mg、Sc、Y、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V、及びBからなる群より選ばれる少なくとも1種の元素を示す。)が挙げられる。ここで、各式中、xは0<x≦1.2であり、yは0≦y≦0.9であり、zは2.0≦z≦2.3である。リチウムのモル比を示すx値は、充放電により増減する。
その他の正極活物質のBET比表面積は、0.05m2/g以上2.9m2/g未満であることが好ましく、0.05m2/g以上2.8m2/g未満であることがより好ましく、0.08m2/g以上1.5m2/g未満であることが更に好ましく、0.1m2/g以上1.0m2/g未満であることが特に好ましい。
その他の正極活物質のBET比表面積は、スピネル型のリチウム・ニッケル・マンガン複合酸化物と同様の方法により、測定できる。
その他の正極活物質の粒子のメジアン径D50は、スピネル型のリチウム・ニッケル・マンガン複合酸化物の粒子と同様の方法により、測定できる。
本実施形態のリチウムイオン二次電池に用いられる負極活物質は特に制限されない。負極活物質としては、リチウムチタン複合酸化物、酸化モリブデン、硫化鉄、硫化チタン、炭素材料等が挙げられる。これらの中でも、負極活物質は、リチウムチタン複合酸化物を含むことが好ましい。負極活物質に占めるリチウムチタン複合酸化物の含有率は、エネルギー密度をより向上させる観点から、50質量%~100質量%であることが好ましく、70質量%~100質量%であることがより好ましく、80質量%~100質量%であることが更に好ましい。
また、過剰のリチウムをスピネル型のリチウムチタン複合酸化物の結晶内に存在させてもよい。更には、スピネル型のリチウムチタン複合酸化物のOサイトに欠損を生じさせたものを用いてもよい。
スピネル型のリチウムチタン複合酸化物のOサイトを置換することのできる他の元素としては、例えば、F及びBを挙げることができる。スピネル型のリチウムチタン複合酸化物のOサイトは、1種又は2種以上のこれらの元素で置換してよい。
負極活物質のBET比表面積は、0.1m2/g以上40m2/g未満であることが好ましく、0.1m2/g以上30m2/g未満であることがより好ましく、0.5m2/g以上20m2/g未満であることが更に好ましく、1m2/g以上15m2/g未満であることが特に好ましい。
負極活物質のBET比表面積は、スピネル型のリチウム・ニッケル・マンガン複合酸化物と同様の方法により、測定できる。
負極活物質の粒子のメジアン径D50は、スピネル型のリチウム・ニッケル・マンガン複合酸化物の粒子と同様の方法により、測定できる。
本実施形態のリチウムイオン二次電池は、正極、負極、及び電解液を有する。正極及び負極の間にはセパレータが介在する。
正極は、例えば、集電体と、集電体の両面又は片面に形成された正極合剤層とを有する。正極合剤層は、上述の正極活物質を含有する。
導電材の含有率は、正極合剤の固形分全量を基準として、3質量%~10質量%であることが好ましく、4質量%~9質量%であることがより好ましく、4.5質量%~8.5質量%であることが更に好ましい。
結着剤の含有率は、正極合剤の固形分全量を基準として、0.1質量%~30質量%であることが好ましく、1質量%~20質量%であることがより好ましく、2質量%~10質量%であることが更に好ましい。
正極合剤層の密度は、エネルギー密度及び入出力特性をより向上させる観点から、正極合剤の固形分として、1.8g/cm3~3.3g/cm3であることが好ましく、2.0g/cm3~3.2g/cm3であることがより好ましく、2.2g/cm3~2.8g/cm3であることが更に好ましい。
負極は、例えば、集電体と、集電体の両面又は片面に形成された負極合剤層とを有する。負極合剤層は、上述の負極活物質を含有する。
導電材の含有率は、入出力特性をより向上させる観点から、負極合剤の固形分全量を基準として、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、3質量%以上であることが更に好ましい。電池容量をより高める観点からは、導電材の含有率は、負極合剤の固形分全量を基準として、15質量%以下であることが好ましく、12質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。
導電材の含有率は、負極合剤の固形分全量を基準として、1質量%~15質量%であることが好ましく、2質量%~12質量%であることがより好ましく、3質量%~10質量%であることが更に好ましい。
結着剤の含有率は、負極活物質を十分に結着して負極の機械的強度をより高め、充放電サイクル特性等の電池性能をより安定化させる観点から、負極合剤の固形分全量を基準として、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることが更に好ましい。電池容量をより高め、導電性をより向上させる観点からは、結着剤の含有率は、負極合剤の固形分全量を基準として、40質量%以下であることが好ましく、25質量%以下であることがより好ましく、15質量%以下であることが更に好ましい。
結着剤の含有率は、負極合剤の固形分全量を基準として、0.1質量%~40質量%であることが好ましく、0.5質量%~25質量%であることがより好ましく、1質量%~15質量%であることが更に好ましい。
負極合剤層の密度は、エネルギー密度及び入出力特性をより向上させる観点から、負極合剤の固形分として、1.0g/cm3~3.3g/cm3であることが好ましく、1.2g/cm3~3.2g/cm3であることがより好ましく、1.4g/cm3~2.8g/cm3であることが更に好ましい。
セパレータは、正極及び負極の間を電子的には絶縁しつつもイオン透過性を有し、かつ、正極側における酸化性及び負極側における還元性に対する耐性を備えるものであれば特に制限されない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物等が用いられる。
また、例えば、繊維形状又は粒子形状の上記無機物を、樹脂等の結着剤を用いて複合多孔層としたものをセパレータとして用いてよい。なお、この複合多孔層は、正極又は負極の表面に形成してもよい。或いは、この複合多孔層を他のセパレータの表面に形成し、多層セパレータとしてもよい。例えば、90%粒径(D90)が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として結着させた複合多孔層を、正極の表面又はセパレータの正極と対向する面に形成してもよい。
電解液は、リチウム塩(電解質)と、これを溶解する非水溶媒とを含む。電解液は、ジメチルカーボネート(DMC)を非水溶媒として含み、ジメチルカーボネートの含有率は、非水溶媒の全量に対して、70体積%を超える。ジメチルカーボネートの含有率が非水溶媒の全量に対して70体積%を超えることで、充放電サイクル特性が向上する傾向にある。
これらの中でも、非水溶媒に対する溶解性、リチウムイオン二次電池とした場合の充放電特性、入出力特性、充放電サイクル特性等を総合的に判断すると、LiPF6が好ましい。
添加剤としては、リチウムイオン二次電池の電解液用の添加剤であれば特に制限されない。具体的には、例えば、窒素、硫黄、又は窒素及び硫黄を含有する複素環化合物、環状カルボン酸エステル、フッ素含有環状カーボネート、含フッ素ホウ酸エステル、並びに分子内に不飽和結合を有する化合物が挙げられる。また、上記添加剤以外に、求められる機能に応じて、過充電防止剤、負極皮膜形成剤、正極保護剤、高入出力剤等の他の添加剤を用いてもよい。
本実施形態のリチウムイオン二次電池では、充放電サイクル特性及びエネルギー密度を向上させる観点から、負極の負極容量と正極の正極容量との容量比(負極容量/正極容量)が1以下とされる。負極容量と正極容量との容量比(負極容量/正極容量)が1以下であれば、正極が高電位になることによる電解液の分解反応が生じにくく、リチウムイオン二次電池の充放電サイクル特性が向上する傾向がある。
負極容量と正極容量との容量比(負極容量/正極容量)は0.6以上1未満であることが好ましい。負極容量と正極容量との容量比(負極容量/正極容量)が0.6以上の場合は、電池容量がより高まり、体積エネルギー密度がより向上する傾向にある。負極容量と正極容量との容量比(負極容量/正極容量)は、0.7~0.98であることがより好ましく、体積エネルギー密度及び入力特性をより向上させる観点から、0.75~0.95であることが更に好ましい。
また、負極容量とは、[負極の放電容量]を示し、正極容量とは、[正極の放電容量]を示す。ここで、[負極の放電容量]とは、負極活物質に挿入されているリチウムイオンが脱離されるときに充放電装置で算出される容量と定義する。また、[正極の放電容量]とは、正極活物質からリチウムイオンが脱離されるときに充放電装置で算出される容量と定義する。
例えば、正極活物質にスピネル型のリチウム・ニッケル・マンガン複合酸化物を、負極活物質にリチウムチタン複合酸化物を用いた場合には、「正極容量」及び「負極容量」は、上記電気化学セルにおいて、電圧範囲をそれぞれ4.95V~3.5V及び1.0V~2.0Vとし、定電流充電及び定電流放電時の電流密度を0.1mA/cm2とする上記充放電を行って評価した場合に得られる容量とする。
本実施形態のリチウムイオン二次電池は、ラミネート型、巻回型(円筒型)、コイン型等の種々の形状としてよい。いずれの形状であっても、正極及び負極にセパレータを介在させ電極体とし、正極の集電体及び負極の集電体から外部に通ずる正極端子及び負極端子までの間を、集電用リード等を用いて接続し、この電極体を電解液とともに電池ケースに密閉してリチウムイオン二次電池が完成する。
なお、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。また、実質的に同一の機能を有する部材には全図面を通して同じ符号を付与し、重複する説明は省略する場合がある。
そして、図2に示すように、電極群20は、正極集電タブ2を取り付けた正極板1、セパレータ5、及び負極集電タブ4を取り付けた負極板3を積層したものである。なお、正極板、負極板、セパレータ、電極群、及び電池の大きさ、形状等は任意のものとすることができ、図1及び図2に示されるものに限定される訳ではない。
電池外装体6の材質としては、アルミニウム、銅、ステンレス鋼等が挙げられる。
本実施形態のリチウムイオン二次電池システムは、本実施形態のリチウムイオン二次電池と、本実施形態の充電方法により本実施形態のリチウムイオン二次電池を充電する充電制御部と、を備える。充電制御部は、制御IC(Integrated Circuit)等により構成することができる。本実施形態のリチウムイオン二次電池システムによれば、本実施形態のリチウムイオン二次電池の充放電サイクル特性を向上させることが可能である。
本実施形態の電力貯蔵装置は、本実施形態のリチウムイオン二次電池システムを備える。上述したとおり、本実施形態のリチウムイオン二次電池システムによれば、本実施形態のリチウムイオン二次電池の充放電サイクル特性を向上させることが可能である。したがって、本実施形態の電力貯蔵装置によれば、リチウムイオン二次電池に貯蔵された電力を各種機器へと効率的に供給することが可能である。
(正極板及び負極板の作製)
正極活物質であるスピネル型のリチウム・ニッケル・マンガン複合酸化物(LiNi0.5Mn1.5O4)を93質量部、導電材としてアセチレンブラック(デンカ株式会社製)を5質量部、結着剤としてポリアクリロニトリル骨格にアクリル酸及び直鎖エーテル基を付加した共重合体(合成例1のバインダ樹脂組成物)を2質量部混合し、適量のN-メチル-2-ピロリドンを添加して混練することで、ペースト状の正極合剤を得た。この正極合剤を正極用の集電体である厚さ20μmのアルミニウム箔の片面に実質的に均等かつ均質に正極合剤の固形分として140g/m2となるように塗布した。その後、乾燥処理を施し、乾燥塗膜を得た。この乾燥塗膜を、正極合剤の固形分として密度が2.3g/cm3になるまでプレスにより圧密化し、シート状の正極を作製した。正極合剤層の厚さは60μmであった。この正極を幅31mm、長さ46mmに切断して正極板とし、図2に示すようにこの正極板に正極集電タブを取り付けた。
<合成例1>
撹拌機、温度計、冷却管、及び窒素ガス導入管を装備した3リットルのセパラブルフラスコに、精製水1804gを仕込み、窒素ガス通気量200mL/分の条件下、撹拌しながら、74℃まで昇温した後、窒素ガスの通気を止めた。次いで、重合開始剤の過硫酸アンモニウム0.968gを精製水76gに溶かした水溶液を添加し、直ちに、ニトリル基含有単量体であるアクリロニトリル183.8g、カルボキシ基含有単量体であるアクリル酸9.7g(アクリロニトリル1モルに対して0.039モルの割合)、及び直鎖エーテル基含有単量体であるメトキシトリエチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルAM-30G)6.5g(アクリロニトリル1モルに対して0.0085モルの割合)の混合液を、系の温度を74℃±2℃に保ちながら、2時間かけて滴下した。続いて、懸濁した反応系に、過硫酸アンモニウム0.25gを精製水21.3gに溶かした水溶液を追加添加し、84℃まで昇温した後、系の温度を84℃±2℃に保ちながら、2.5時間反応を進めた。その後、1時間かけて40℃まで冷却した後、撹拌を止めて一晩室温で放冷し、バインダ樹脂組成物が沈殿した反応液を得た。この反応液を吸引濾過し、回収した湿潤状態の沈殿を精製水1800gで3回洗浄した後、80℃で10時間真空乾燥して、単離及び精製し、バインダ樹脂組成物を得た。
作製した正極板と負極板とを、厚さ30μm、幅35mm、長さ50mmのポリプロピレン/ポリエチレン/ポリプロピレンの三層セパレータを介して対向させ、積層状の電極群を作製した。
エチレンカーボネート(EC)とジメチルカーボネート(DMC)とを混合した非水溶媒(EC:DMCは体積比で1:9)に、電解質であるLiPF6を2.0mol/Lの濃度で溶解し、電解液を調製した。
上記電極群を、図1に示すように、アルミニウム製のラミネートフィルムで構成された電池外装体内に収容させるとともに、この電池外装体内に、電解液を注入後、上記の正極集電タブと負極集電タブとを外部に取り出すようにして電池容器の開口部を封口させて、リチウムイオン二次電池を作製した。なお、アルミニウム製のラミネートフィルムは、ポリエチレンテレフタレート(PET)フィルム/アルミニウム箔/シーラント層(ポリプロピレン等)の積層体である。
-正極容量の測定-
幅31mm、長さ46mmに切断した厚さ0.5mmのリチウム箔を、幅31mm、長さ46mmに切断した銅メッシュに貼り付け、対極とした。対極には、集電タブを取り付けた。作製した正極板と対極とを、厚さ30μm、幅35mm、長さ50mmのポリエチレン微多孔膜からなるセパレータを介して対向させ、積層状の電極群を作製した。この電極群を、図1に示すように、アルミニウム製のラミネートフィルムで構成された電池外装体内に収容させ、この電池外装体内に、電解液を注入後、正極集電タブと対極の集電タブとを外部に取り出すようにして電池外装体の開口部を封口させて、正極容量測定用の電池を作製した。なお、アルミニウム製のラミネートフィルムは、ポリエチレンテレフタレート(PET)フィルム/アルミニウム箔/シーラント層(ポリプロピレン等)の積層体である。電解液としては、LiPF6濃度が1.2mol/LのEC/DMC混合溶媒(EC:DMCは体積比で3:7)を用いた。
正極容量は、電圧範囲を4.95V~3.5Vとし、定電流充電及び定電流放電時の電流を3.5mAとする充放電を行って評価した場合に得られる放電容量とした。測定の結果、正極容量は24mAhであった。
正極板の代わりに負極板を用いた以外は正極容量の測定と同様にして、負極容量測定用の電池を作製した。
負極容量は、電圧範囲を1.0V~2.0Vとし、定電流充電及び定電流放電時の電流を3.5mAとする充放電を行って評価した場合に得られる放電容量とした。測定の結果、負極容量は17mAhであった。
上記のリチウムイオン二次電池を、充放電装置(BATTERY TEST UNIT、株式会社IEM製)を用いて、25℃において電流値0.2C、充電終止電圧3.4Vで定電流充電を行った。15分間休止後、電流値0.2C、放電終止電圧2.0Vで定電流放電した。上記の充放電条件で充放電を2回繰り返した。次いで、50℃において電流値1C、充電終止電圧3.4Vで定電流充電を行った後、充電電圧3.4Vで表1に示す時間だけ定電圧充電を行った。表1中、定電圧充電時間が「0分間」であるとは、定電圧充電を行わず、定電流充電のみで終了したことを意味する。15分間休止後、電流値1C、放電終止電圧2.0Vで定電流放電を行った。このときの放電容量を初期放電容量とし、この操作を200回繰り返した際の放電容量を測定した(200サイクル後の放電容量)。そして、以下の式から200サイクル後の劣化率を算出し、充放電サイクル特性とした。結果を表1に示す。
充放電サイクル特性(%)=(200サイクル後の放電容量/初期放電容量)×100
ジメチルカーボネート(DMC)とジエチルカーボネート(DEC)とを混合した非水溶媒(DMC:DECは体積比で3:7)を用いた以外は、実施例1と同様にして、リチウムイオン二次電池を作製し、充放電サイクル特性の評価を行った。結果を表1に示す。
プロピレンカーボネート(PC)とジエチルカーボネート(DEC)とを混合した非水溶媒(PC:DECは体積比で3:7)を用いた以外は、実施例1と同様にして、リチウムイオン二次電池を作製し、充放電サイクル特性の評価を行った。結果を表1に示す。
ジメチルカーボネート(DMC)とジエチルカーボネート(DEC)とを混合した非水溶媒(DMC:DECは体積比で3:7)を用いた以外は、実施例5と同様にして、リチウムイオン二次電池を作製し、充放電サイクル特性の評価を行った。結果を表1に示す。
充電終止電圧(定電圧充電電圧)を3.5Vに変更した以外は、それぞれ実施例1~6及び比較例1~5と同様にして、充放電サイクル特性の評価を行った。結果を表2に示す。
充電終止電圧(定電圧充電電圧)を3.8Vに変更した以外は、それぞれ実施例1~6及び比較例1~5と同様にして、充放電サイクル特性の評価を行った。結果を表3に示す。
一方、定電流充電後の定電圧充電時間が45分間である比較例1、比較例6、及び比較例11、並びに定電流充電後の定電圧充電時間が60分間である比較例2、比較例7、及び比較例12では、実施例1~18と比較して、充放電サイクル特性が大幅に低下した。
また、定電圧充電時間が30分間以内であっても、非水溶媒がジメチルカーボネートを含まないか、又はジメチルカーボネートの含有率が非水溶媒の全量に対して70体積%以下である比較例3~5、比較例8~10、及び比較例13~15では、実施例1~18と比較して、充放電サイクル特性が大幅に低下した。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
Claims (6)
- スピネル型のリチウム・ニッケル・マンガン複合酸化物を正極活物質として含む正極、負極、及びジメチルカーボネートを非水溶媒として含む電解液を有し、前記ジメチルカーボネートの含有率が前記非水溶媒の全量に対して70体積%を超え、前記負極の負極容量と前記正極の正極容量との容量比(負極容量/正極容量)が1以下であるリチウムイオン二次電池を用い、
設定電圧に達するまで定電流充電を行うか、又は設定電圧に達するまで定電流充電を行った後に前記設定電圧で30分間以内の定電圧充電を行うことにより、前記リチウムイオン二次電池を充電する、リチウムイオン二次電池の充電方法。 - 前記負極が、負極活物質として、リチウム電位に対して1.2V以上の電位にてリチウムイオンが挿入及び脱離する活物質を含む、請求項1に記載のリチウムイオン二次電池の充電方法。
- 前記負極が、負極活物質としてリチウムチタン複合酸化物を含む、請求項1又は請求項2に記載のリチウムイオン二次電池の充電方法。
- 前記設定電圧が3.4V~3.8Vである、請求項3に記載のリチウムイオン二次電池の充電方法。
- スピネル型のリチウム・ニッケル・マンガン複合酸化物を正極活物質として含む正極、負極、及びジメチルカーボネートを非水溶媒として含む電解液を有し、前記ジメチルカーボネートの含有率が前記非水溶媒の全量に対して70体積%を超え、前記負極の負極容量と前記正極の正極容量との容量比(負極容量/正極容量)が1以下であるリチウムイオン二次電池と、
請求項1~請求項4のいずれか1項に記載の充電方法により前記リチウムイオン二次電池を充電する充電制御部と、を備える、リチウムイオン二次電池システム。 - 請求項5に記載のリチウムイオン二次電池システムを備える、電力貯蔵装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/096,000 US20190131623A1 (en) | 2016-04-28 | 2017-02-07 | Method for charging lithium-ion secondary battery, lithium-ion secondary battery system, and power storage device |
CN201780026379.5A CN109075404A (zh) | 2016-04-28 | 2017-02-07 | 锂离子二次电池的充电方法、锂离子二次电池系统、和电力储存装置 |
EP17788996.1A EP3451437B1 (en) | 2016-04-28 | 2017-02-07 | Lithium ion secondary cell charging method, lithium ion secondary cell system, and power storage device |
JP2018514126A JPWO2017187707A1 (ja) | 2016-04-28 | 2017-02-07 | リチウムイオン二次電池の充電方法、リチウムイオン二次電池システム、及び電力貯蔵装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-091353 | 2016-04-28 | ||
JP2016091353 | 2016-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017187707A1 true WO2017187707A1 (ja) | 2017-11-02 |
Family
ID=60161394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/004449 WO2017187707A1 (ja) | 2016-04-28 | 2017-02-07 | リチウムイオン二次電池の充電方法、リチウムイオン二次電池システム、及び電力貯蔵装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20190131623A1 (ja) |
EP (1) | EP3451437B1 (ja) |
JP (1) | JPWO2017187707A1 (ja) |
CN (1) | CN109075404A (ja) |
WO (1) | WO2017187707A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019148274A1 (en) * | 2018-01-30 | 2019-08-08 | The University Of British Columbia | Manganese oxide composition and method for preparing manganese oxide composition |
WO2019156172A1 (ja) * | 2018-02-08 | 2019-08-15 | 積水化学工業株式会社 | リチウムイオン二次電池、リチウムイオン二次電池用負極構造体、及びリチウムイオン二次電池の製造方法 |
WO2019221145A1 (ja) * | 2018-05-17 | 2019-11-21 | 日本碍子株式会社 | リチウム二次電池 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113875112A (zh) * | 2020-12-25 | 2021-12-31 | 宁德新能源科技有限公司 | 充电方法、电子装置以及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01144330A (ja) * | 1987-11-27 | 1989-06-06 | Shin Kobe Electric Mach Co Ltd | 密閉形鉛蓄電池の充電方法 |
JPH06315234A (ja) * | 1993-04-28 | 1994-11-08 | Sanyo Electric Co Ltd | 電池の充電方法 |
JPH07296853A (ja) * | 1994-04-22 | 1995-11-10 | Sony Corp | 充電方法 |
JP2009162750A (ja) * | 2007-12-13 | 2009-07-23 | Panasonic Corp | リチウム二次電池の寿命推定方法と劣化抑制方法、寿命推定器と劣化抑制器、それを用いた電池パック、充電器 |
WO2016060253A1 (ja) * | 2014-10-17 | 2016-04-21 | 日立化成株式会社 | リチウムイオン電池 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001176545A (ja) * | 1999-12-14 | 2001-06-29 | Sony Corp | 二次電池 |
JP3795886B2 (ja) * | 2003-11-20 | 2006-07-12 | Tdk株式会社 | リチウムイオン二次電池の充電方法、充電装置および電力供給装置 |
JP3769291B2 (ja) * | 2004-03-31 | 2006-04-19 | 株式会社東芝 | 非水電解質電池 |
JP2005293950A (ja) * | 2004-03-31 | 2005-10-20 | Tdk Corp | リチウムイオン二次電池、及び、リチウムイオン二次電池の充電方法 |
JP4245532B2 (ja) * | 2004-08-30 | 2009-03-25 | 株式会社東芝 | 非水電解質二次電池 |
CN101232110B (zh) * | 2007-01-25 | 2010-05-26 | 华为技术有限公司 | 电池充电方法和装置 |
JP5318356B2 (ja) * | 2007-02-23 | 2013-10-16 | 三洋電機株式会社 | 非水電解質二次電池 |
JP2009099523A (ja) * | 2007-09-27 | 2009-05-07 | Sanyo Electric Co Ltd | リチウム二次電池 |
US20100207583A1 (en) * | 2008-06-12 | 2010-08-19 | Ryoichi Tanaka | Charging method and charging/discharging method of lithium ion secondary battery |
CN101740816A (zh) * | 2009-12-24 | 2010-06-16 | 苏州星恒电源有限公司 | 一种以钛酸锂为负极的锂离子二次电池化成方法 |
CN103247821A (zh) * | 2012-02-10 | 2013-08-14 | 联想(北京)有限公司 | 一种电池及其充电、放电方法 |
CN104282878B (zh) * | 2013-07-10 | 2016-12-28 | 万向A一二三系统有限公司 | 高性能钛酸锂动力电池 |
JP5835514B1 (ja) * | 2015-05-27 | 2015-12-24 | 宇部興産株式会社 | リチウム塩化合物、並びにそれを用いた非水電解液、リチウムイオン二次電池、及びリチウムイオンキャパシタ |
-
2017
- 2017-02-07 CN CN201780026379.5A patent/CN109075404A/zh active Pending
- 2017-02-07 JP JP2018514126A patent/JPWO2017187707A1/ja active Pending
- 2017-02-07 US US16/096,000 patent/US20190131623A1/en not_active Abandoned
- 2017-02-07 EP EP17788996.1A patent/EP3451437B1/en active Active
- 2017-02-07 WO PCT/JP2017/004449 patent/WO2017187707A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01144330A (ja) * | 1987-11-27 | 1989-06-06 | Shin Kobe Electric Mach Co Ltd | 密閉形鉛蓄電池の充電方法 |
JPH06315234A (ja) * | 1993-04-28 | 1994-11-08 | Sanyo Electric Co Ltd | 電池の充電方法 |
JPH07296853A (ja) * | 1994-04-22 | 1995-11-10 | Sony Corp | 充電方法 |
JP2009162750A (ja) * | 2007-12-13 | 2009-07-23 | Panasonic Corp | リチウム二次電池の寿命推定方法と劣化抑制方法、寿命推定器と劣化抑制器、それを用いた電池パック、充電器 |
WO2016060253A1 (ja) * | 2014-10-17 | 2016-04-21 | 日立化成株式会社 | リチウムイオン電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3451437A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019148274A1 (en) * | 2018-01-30 | 2019-08-08 | The University Of British Columbia | Manganese oxide composition and method for preparing manganese oxide composition |
WO2019156172A1 (ja) * | 2018-02-08 | 2019-08-15 | 積水化学工業株式会社 | リチウムイオン二次電池、リチウムイオン二次電池用負極構造体、及びリチウムイオン二次電池の製造方法 |
WO2019221145A1 (ja) * | 2018-05-17 | 2019-11-21 | 日本碍子株式会社 | リチウム二次電池 |
JPWO2019221145A1 (ja) * | 2018-05-17 | 2021-05-20 | 日本碍子株式会社 | リチウム二次電池 |
JP7022207B2 (ja) | 2018-05-17 | 2022-02-17 | 日本碍子株式会社 | リチウム二次電池 |
US12046711B2 (en) | 2018-05-17 | 2024-07-23 | Ngk Insulators, Ltd. | Lithium secondary battery |
Also Published As
Publication number | Publication date |
---|---|
EP3451437A4 (en) | 2019-11-27 |
CN109075404A (zh) | 2018-12-21 |
US20190131623A1 (en) | 2019-05-02 |
EP3451437A1 (en) | 2019-03-06 |
JPWO2017187707A1 (ja) | 2019-03-07 |
EP3451437B1 (en) | 2021-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10062925B2 (en) | Electrolyte solution for lithium secondary battery and lithium secondary battery | |
JP6350673B2 (ja) | リチウムイオン電池 | |
WO2018038122A1 (ja) | リチウムイオン二次電池 | |
WO2017187707A1 (ja) | リチウムイオン二次電池の充電方法、リチウムイオン二次電池システム、及び電力貯蔵装置 | |
JP6210166B2 (ja) | リチウムイオン電池 | |
JP6562082B2 (ja) | リチウムイオン二次電池 | |
JP2012221681A (ja) | リチウム二次電池及びその製造方法 | |
JP2017010716A (ja) | リチウムイオン電池及びリチウムイオン電池システム | |
WO2020202661A1 (ja) | リチウムイオン二次電池 | |
JP2012252951A (ja) | 非水電解質二次電池 | |
JP2018063916A (ja) | リチウムイオン二次電池 | |
JP6406267B2 (ja) | リチウムイオン電池システム | |
JP6766863B2 (ja) | リチウムイオン二次電池 | |
JP6992362B2 (ja) | リチウムイオン二次電池 | |
JP6668848B2 (ja) | リチウムイオン二次電池 | |
WO2016171276A1 (ja) | リチウムイオン電池 | |
JP2006156021A (ja) | 非水電解質二次電池 | |
WO2013125465A1 (ja) | 正極活物質 | |
JP6701801B2 (ja) | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池 | |
KR101991057B1 (ko) | 리튬 이차전지 및 그의 구동방법 | |
JP2015201335A (ja) | リチウムイオン電池 | |
JP2010205547A (ja) | 非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018514126 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017788996 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017788996 Country of ref document: EP Effective date: 20181128 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17788996 Country of ref document: EP Kind code of ref document: A1 |