WO2017185839A1 - Oled器件及其制备方法、oled显示面板 - Google Patents

Oled器件及其制备方法、oled显示面板 Download PDF

Info

Publication number
WO2017185839A1
WO2017185839A1 PCT/CN2017/071725 CN2017071725W WO2017185839A1 WO 2017185839 A1 WO2017185839 A1 WO 2017185839A1 CN 2017071725 W CN2017071725 W CN 2017071725W WO 2017185839 A1 WO2017185839 A1 WO 2017185839A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
oled device
emitting layer
electron
Prior art date
Application number
PCT/CN2017/071725
Other languages
English (en)
French (fr)
Inventor
董飞
盖欣
陈秀云
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP17764752.6A priority Critical patent/EP3451401B1/en
Priority to US15/560,385 priority patent/US20180182987A1/en
Publication of WO2017185839A1 publication Critical patent/WO2017185839A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/157Hole transporting layers between the light-emitting layer and the cathode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • Embodiments of the present invention relate to an OLED device, a method of fabricating the same, and an OLED display panel.
  • OLED Organic Light Emitting Diode
  • An embodiment of the present invention provides an OLED (Organic Light Emitting Diode) device including an anode disposed on a substrate, a cathode, a hole transport layer and an electron transport layer disposed between the anode and the cathode, and At least two light emitting layers disposed between the hole transport layer and the electron transport layer; wherein the at least two light emitting layers emit white light; further comprising: disposed on the electron transport layer and the at least two An electron blocking layer between the light emitting layers.
  • OLED Organic Light Emitting Diode
  • the material of the electron blocking layer includes mCP (1,3-bis(9H-carbazol-9-yl)benzene).
  • the electron blocking layer has a thickness of 5 nm to 15 nm.
  • the at least two light emitting layers include a red light emitting layer and a blue light emitting layer; the red light emitting layer is disposed adjacent to the electron blocking layer, and the blue light emitting layer is adjacent to the Hole transport layer setting.
  • the material of the electron blocking layer includes an mCP; and the host material of the blue light emitting layer includes an mCP.
  • the at least two light emitting layers further include a green light emitting layer; the green light emitting layer is disposed between the red light emitting layer and the blue light emitting layer.
  • Embodiments of the present invention provide an OLED display panel including the OLED device as described above.
  • Embodiments of the present invention provide a method of fabricating an OLED device, comprising: forming an anode by a patterning process; forming a hole transport layer, at least two light emitting layers, an electron transport layer, and a cathode sequentially by an evaporation process over the anode
  • the at least two luminescent layers emit white light; the method further comprising: forming an electron blocking layer between the at least two luminescent layers and the electron transporting layer.
  • the forming the at least two light emitting layers comprises: forming a red light emitting layer and a blue light emitting layer, the red light emitting layer being close to the electron blocking layer
  • the blue light emitting layer is adjacent to the hole transport layer; the host material of the blue light emitting layer includes an mCP; and the forming the electron blocking layer includes: forming the electron blocking layer by using mCP.
  • the electron blocking layer has a thickness of 5 nm to 15 nm.
  • FIG. 1 is a schematic structural view of a conventional OLED device
  • FIG. 2 is a schematic diagram showing changes in color coordinates of a conventional OLED device at a driving voltage of 7V-21V;
  • FIG. 3 is a schematic structural diagram of an OLED device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an OLED device according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an OLED device according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of color coordinate changes of an OLED device with a driving voltage of 7-21 V according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of an OLED device according to another embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of a method for fabricating an OLED device according to an embodiment of the invention.
  • Reference numerals 100-substrate; 1-anode; 2-cathode; 3-first luminescent layer; 4-second luminescent layer; 5-hole transport layer; 6-electron transport layer; 7-electron barrier layer; 8-hole injection layer; 9-electron injection layer; 10-third light-emitting layer; 11-buffer layer.
  • a conventional white OLED device includes an anode 1 disposed on a substrate 100, a cathode 2, and a first luminescent layer 3 and a second luminescent layer between the anode 1 and the cathode 2. 4.
  • the principle of illumination is that the holes injected from the anode 1 and the electrons injected from the cathode 2 combine to form excitons in the light-emitting layer, the excitons excite the luminescent molecules, and the excited luminescent molecules undergo radiation relaxation. He emits visible light.
  • the voltage is small, the migration rate of electrons is small, causing the number of electrons to migrate into the second light-emitting layer 4 close to the cathode 2 to be larger than the amount of migration into the first light-emitting layer 3 close to the anode 1, so that the second light is emitted.
  • the number of excitons in the layer 4 is greater than the number of excitons in the first luminescent layer 3, so that the second luminescent layer 4 receives more energy and has a higher luminescence intensity, thereby causing the luminescent color of the OLED device to be biased toward the second luminescent layer. 4 colors.
  • the driving voltage increases, the electron migration rate increases faster than the hole mobility rate, causing the difference between the hole migration rate and the electron migration rate to be further reduced, and the electron migration rate is increased due to the increase of the electron mobility rate.
  • the number in one of the light-emitting layers 3 is increased, in the first light-emitting layer 3
  • the number of excitons is also correspondingly increased, the energy received by the first luminescent layer 3 is increased, and the illuminating intensity is increased, so that the illuminating intensities of the first luminescent layer 3 and the second luminescent layer 4 are gradually approached.
  • the luminescent color of the OLED device is unstable, and the color coordinate drift is severe.
  • the CIE (International Commission on Illumination) 1931 color coordinate system when the driving voltage is gradually changed from 7V to 21V, the color coordinate of the OLED device changes greatly, and the color of the light changes from red to red. It is pink to white and has poor color stability.
  • Embodiments of the present invention provide an OLED device, as shown in FIGS. 3-5, comprising an anode 1, a cathode 2 disposed on a substrate 100, and a hole transport layer disposed between the anode 1 and the cathode 2. 5 and an electron transport layer 6, and at least two light-emitting layers (3, 4, 10) disposed between the hole transport layer 5 and the electron transport layer 6. Wherein, the at least two luminescent layers (3, 4, 10) emit white light. Further, the OLED device further includes an electron blocking layer 7 disposed between the electron transport layer 6 and the at least two light emitting layers (3, 4, 10).
  • the embodiment of the present invention obtains a stable luminescent color by providing the electron blocking layer 7.
  • the increase of the electron mobility in the embodiment of the present invention is suppressed, and the number of electrons migrating to the respective luminescent layers tends to be the same, so that the number of excitons in each luminescent layer tends to be the same, and the illuminating intensity of each luminescent layer is also
  • the OLED device tends to be the same, and the OLED device emits white light; although the electron migration rate increases faster than the hole mobility rate as the voltage increases, the electron migration to each of the electron blocking layer 7 is blocked by the electron transport layer 7
  • the number of luminescent layers still tends to be the same, the illuminating intensity of each luminescent layer tends to be the same, and the OLED device still emits white light.
  • the hole transport layer 5 is made of a hole transport material, and the hole transport material may be a triarylamine series, a biphenyldiamine derivative, or a cross-linked linking diamine biphenyl.
  • the hole transport material may be NPB (N,N'-diphenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine), TCTA (4,4', 4"-Tri(9-carbazoyl)triphenylamine, 4,4',4"-tris(carbazol-9-yl)triphenylamine), m-MTDATA(4,4',4"-Tris(N-3- methylphenyl-N-phenylamino)triphenylamine, 4,4',4"-tris(N-3-methylphenyl-N-phenylamino)triphenylamine).
  • the electron transport layer 6 is made of an electron transport material, and the electron transport material may be a metal chelate compound, an azole compound, a phenanthroline derivative or the like, and may be, for example, AlQ 3 (tris(8-hydroxyquinoline) aluminum).
  • BPhen 4,7-diphenyl-1,10-phenanthroline
  • TmPyPB 1,3,5-tris[(3-pyridyl)-3-phenyl]benzene
  • OXD-7 2,2'-(1,3-Phenyl)bis[5-(4-tert-butylphenyl)-1,3,4-oxadiazole]).
  • the specific number of layers of the at least two light-emitting layers is not limited as long as white light can be emitted.
  • the structure shown in FIG. 3 and FIG. 5 includes a total of two light-emitting layers of the first light-emitting layer 3 and the second light-emitting layer 4; the structure shown in FIG. 4 includes the first light-emitting layer 3, the second light-emitting layer 4, and the first
  • the three light-emitting layers 10 have a total of three light-emitting layers.
  • the material of each of the at least two light-emitting layers may be a hole transport material or an electron transport material.
  • the light-emitting layer close to the anode 1 uses a hole transport material
  • the light-emitting layer near the cathode 2 employs an electron transport material.
  • the material of the first light-emitting layer 3 is a hole transport material
  • the material of the second light-emitting layer 4 is an electron transport material.
  • the material of the electron blocking layer 7 is not particularly limited as long as it can block electrons.
  • the material of the electron blocking layer may be a hole transport material.
  • a hole injection layer 8 may be provided between the anode 1 and the first light-emitting layer 3, between the cathode 2 and the second light-emitting layer 4.
  • An electron injection layer 9 is provided.
  • Embodiments of the present invention provide an OLED device by which an electron blocking layer 7 is disposed between at least two light emitting layers and an electron transporting layer 6, which can suppress electron migration rate when a driving voltage applied to the OLED device changes.
  • the variation causes the number of electrons to migrate to the respective luminescent layers to be uniform, and the number of excitons in each luminescent layer tends to be uniform, so that the illuminating intensity of each luminescent layer tends to be the same, thereby making the luminescent color of the OLED device stable and color
  • the coordinate drift is small.
  • the material of 7 may include, for example, mCP.
  • Figure 6 shows the CIE1931 color coordinate system.
  • the material of the electron blocking layer 7 includes mCP
  • the driving voltage is gradually changed from 7V to 21V, as shown by the dotted line in Figure 6 (the triangle in the dotted line is The OLED device has a color coordinate of the illuminating color at different driving voltages, and the OLED device has a small color coordinate change and a strong color stability.
  • the electron blocking layer 7 has a thickness of 5 nm to 15 nm.
  • the thickness of the electron blocking layer 7 is set at 5 nm to 15 nm, that is, the electron transport is better blocked. Especially when the thickness of the electron blocking layer 7 is set at 10 nm, the effect of blocking electrons is good and the structure of the entire OLED device is light and thin.
  • the at least two light emitting layers include a red light emitting layer and a blue light emitting layer; the red light emitting layer is disposed adjacent to the electron blocking layer 7, and the blue light emitting layer is disposed adjacent to the hole transport layer 5.
  • the first light-emitting layer 3 is a blue light-emitting layer
  • the second light-emitting layer 4 is a red light-emitting layer
  • the blue light-emitting layer material may be, for example, a host-guest doping system; wherein the guest material may be an Ir(R) type complex such as FIrpic (bis(4,6-difluorophenylpyridine-N, C2) pyridine formyl) Helium), the main material can be CBP (4,4'-Bis(9H-carbazol-9-yl)biphenyl, 4,4'-bis(9-carbazole)biphenyl), UGH3 (1,3-double) (triphenylsilyl) benzene), mCP, and the like.
  • the blue light-emitting layer material is CBP: 9% FIrpic.
  • the red light-emitting layer material may, for example, adopt a host-guest doping system; wherein the guest material may be an Ir(R) type complex such as Ir(MDQ) 2 acac (Bis(2-methyldibenzo[f,h]quinoxaline)(acetylacetonate)iridium ( III), (acetylacetone) bis(2-methyldibenzo[F,H]quinoxaline) ruthenium), and the host material may be CBP or the like.
  • the red light-emitting layer material is CBP: 2% Ir (MDQ) 2 acac.
  • the red light and the blue light are two complementary colors
  • the blue light emitting layer and the red light emitting layer are stacked, and the OLED device can emit white light.
  • the material of the blue light-emitting layer belongs to the hole transporting material, placing it close to the hole transporting layer 5 can reduce the energy level difference between the light-emitting layer and the anode 1 and improve the light-emitting property thereof; since the red light-emitting layer material belongs to the electron
  • the material is transported, and its arrangement close to the electron transport layer 6 can reduce the energy level difference between the light-emitting layer and the cathode 2, and improve its light-emitting performance.
  • the material of the electron blocking layer 7 includes mCP; the host material of the blue light emitting layer includes mCP.
  • the main material of the electron blocking layer 7 and the blue light emitting layer are made of the same material, which can reduce the number of times of material replacement in the vapor deposition process, thereby reducing manufacturing steps and improving production efficiency.
  • the at least two light emitting layers include a red light emitting layer, a blue light emitting layer, and a green light emitting layer; and the green light emitting layer is disposed between the red light emitting layer and the blue light emitting layer.
  • the first light-emitting layer 3 is a blue light-emitting layer
  • the second light-emitting layer 4 is a red light-emitting layer
  • the third light-emitting layer 10 is a green light-emitting layer.
  • An OLED device further including a green light-emitting layer has a higher color rendering index than an OLED device including only a red light-emitting layer and a blue light-emitting layer.
  • the OLED device further includes a buffer layer 11 disposed on a surface of the cathode 2 facing the side of the electron transport layer 6, which serves to match the energy levels of the cathode 2 and the electron transport layer 6.
  • the material of the buffer layer 11 is not particularly limited as long as the energy level transition between the cathode 2 and the electron transport layer 6 can be achieved.
  • the material of the buffer layer 11 may be LiF or the like.
  • Embodiments of the present invention provide an OLED display panel including the above OLED device.
  • the electron migration can be suppressed when the driving voltage applied to the OLED device changes.
  • the change of the rate causes the number of electrons to migrate to the respective luminescent layers to be uniform, and the number of excitons in each luminescent layer tends to be uniform, so that the illuminating intensity of each luminescent layer tends to be the same, thereby making the luminescent color of the OLED device stable.
  • the color coordinate drift is small, which improves the display effect of the OLED display panel.
  • Embodiments of the present invention provide a method for fabricating an OLED device. As shown in FIG. 8, the method includes:
  • the anode 1 is formed on the substrate 100 by a patterning process.
  • the substrate 100 may be, for example, transparent glass, and the material of the anode 1 may be, for example, ITO (Indium Tin Oxide).
  • the surface treatment of the substrate 100 is critical in view of the fact that the surface state of the anode 1 directly affects the injection of holes and the interfacial electron state between the organic film layers, and the film formation property of the organic material. Based on this, before the anode 1 is formed, the substrate 100 needs to be surface-treated, for example, including: the cleaned substrate 100 is placed in clean water, absolute ethanol, acetone, absolute ethanol, acetone, isopropanol, It is treated with an ultrasonic cleaner and stored in absolute ethanol after washing.
  • a hole transport layer 5 is formed on the anode 1 by an evaporation process.
  • the hole transporting material may be a triarylamine series, a biphenyldiamine derivative, or a cross-linked linking diamine biphenyl.
  • it may be NPB, TCTA, m-MTDATA, or the like.
  • At least two light emitting layers are the first light emitting layer 3 and the second light emitting layer 4.
  • at least two of the light emitting layers are the first light emitting layer 3, the second light emitting layer 4, and the third light emitting layer 10.
  • the first luminescent layer 3 may be a blue luminescent layer, and the second luminescent layer 4 may be red illuminating.
  • the third luminescent layer 10 may be a green luminescent layer.
  • the material of the electron blocking layer 7 is not particularly limited as long as it can block electrons.
  • the electron blocking layer material can be a hole transporting material.
  • the electron transport layer 6 is made of an electron transport material, and the electron transport material may be a metal chelate compound, an azole compound, a phenanthroline derivative or the like, and may be, for example, AlQ 3 , BPhen, TmPyPB, or OXD-7.
  • the cathode 2 is formed on the electron transport layer 6 by an evaporation process.
  • the material of the cathode 2 may be a metal material such as Al (aluminum), Au (gold), Ag (silver), Mg (magnesium)-Ag alloy or the like.
  • the vapor deposition process may include, for example, using an electric current heating method to evaporate a desired material into atoms or molecules, and the atoms and molecules may move away from the material itself due to thermal motion, and move upward during movement.
  • the substrate 100 is in contact and accumulates on the substrate 100 to form respective film layers.
  • the process of preparing each film layer by high-temperature evaporation is carried out in an environment higher than a vacuum of 4 ⁇ 10 -4 Pa.
  • Embodiments of the present invention provide a method for fabricating an OLED device.
  • an electron blocking layer 7 between at least two light emitting layers and an electron transport layer 6, electron migration can be suppressed when a driving voltage applied to the OLED device changes.
  • the change of the rate causes the number of electrons to migrate to the respective luminescent layers to be uniform, and the number of excitons in each luminescent layer tends to be uniform, so that the illuminating intensity of each luminescent layer tends to be the same, thereby making the luminescent color of the OLED device stable.
  • the color coordinate drift is small.
  • forming the at least two light emitting layers includes: forming a red light emitting layer and a blue light emitting layer, the red light emitting layer is formed adjacent to the electron blocking layer 7, and the blue light emitting layer is formed adjacent to the hole transport layer 5; the blue light emitting layer
  • the main material includes mCP.
  • the formation of the electron blocking layer 7 includes forming the electron blocking layer 7 using an mCP material.
  • the main material of the electron blocking layer 7 and the blue light emitting layer are made of the same material, which can reduce the number of times of material replacement in the vapor deposition process, thereby reducing manufacturing steps and improving production efficiency.
  • it also includes forming a green light-emitting layer between the red light-emitting layer and the blue light-emitting layer.
  • the electron blocking layer 7 has a thickness of 5 nm to 15 nm.
  • the thickness of the electron blocking layer 7 is set at 5 nm to 15 nm, electron transport can be better blocked. Especially when the thickness of the electron blocking layer 7 is set at 10 nm, the effect of blocking electrons is good and the structure of the entire OLED device is light and thin.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED器件及其制备方法、OLED显示面板,该OLED器件包括设置在衬底(100)上的阳极(1)、阴极(2)、设置在阳极(1)和阴极(2)之间的空穴传输层(5)和电子传输层(6),以及设置在空穴传输层(5)和电子传输层(6)之间的至少两个发光层(3,4),其中,该至少两个发光层(3,4)发白光;该OLED器件还包括设置在电子传输层(6)和该至少两个发光层(3,4)之间的电子阻挡层(7)。OLED器件的色稳定性得到提高。

Description

OLED器件及其制备方法、OLED显示面板 技术领域
本发明的实施例涉及一种OLED器件及其制备方法、OLED显示面板。
背景技术
有机电致发光二极管(Organic Light Emitting Diode,简称OLED)是一种有机薄膜电致发光器件,其具有制备工艺简单、成本低、易形成柔性结构、视角宽等优点。因此,利用有机电致发光二极管的显示技术已成为一种重要的显示技术。
发明内容
本发明的实施例提供一种OLED(Organic Light Emitting Diode)器件,包括设置在衬底上的阳极、阴极、设置在所述阳极和所述阴极之间的空穴传输层和电子传输层、以及设置在所述空穴传输层和所述电子传输层之间的至少两个发光层;其中,所述至少两个发光层发白光;还包括设置在所述电子传输层和所述至少两个发光层之间的电子阻挡层。
根据本发明的一种实施方式,例如,所述电子阻挡层的材料包括mCP(1,3-二(9H-咔唑-9-基)苯)。
根据本发明的一种实施方式,例如,所述电子阻挡层的厚度为5nm-15nm。
根据本发明的一种实施方式,例如,所述至少两个发光层包括红色发光层和蓝色发光层;所述红色发光层靠近所述电子阻挡层设置,所述蓝色发光层靠近所述空穴传输层设置。
根据本发明的一种实施方式,例如,所述电子阻挡层的材料包括mCP;所述蓝色发光层的主体材料包括mCP。
根据本发明的一种实施方式,例如,所述至少两个发光层还包括绿色发光层;所述绿色发光层设置在所述红色发光层和所述蓝色发光层之间。
根据本发明的一种实施方式,例如,还包括设置在所述阴极面向所述电 子传输层一侧表面的缓冲层,所述缓冲层的能级介于所述阴极和所述电子传输层的能级之间。
本发明的实施例提供一种OLED显示面板,包括如上所述的OLED器件。
本发明的实施例提供一种OLED器件的制备方法,包括:通过构图工艺形成阳极;在所述阳极上方,通过蒸镀工艺依次形成空穴传输层、至少两个发光层、电子传输层以及阴极;所述至少两个发光层发白光;所述方法还包括:在所述至少两个发光层和所述电子传输层之间形成电子阻挡层。
根据本发明的一种实施方式,例如,在所述方法中,所述形成所述至少两个发光层包括:形成红色发光层和蓝色发光层,所述红色发光层靠近所述电子阻挡层,所述蓝色发光层靠近所述空穴传输层;所述蓝色发光层的主体材料包括mCP;所述形成所述电子阻挡层包括:采用mCP形成所述电子阻挡层。
根据本发明的一种实施方式,例如,在所述方法中,所述电子阻挡层的厚度为5nm-15nm。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为一种常规OLED器件的结构示意图;
图2为一种常规OLED器件在驱动电压为7V-21V时色坐标变化的示意图;
图3为本发明一实施例提供的OLED器件的结构示意图;
图4为本发明另一实施例提供的OLED器件的结构示意图;
图5为本发明另一实施例提供的OLED器件的结构示意图;
图6为本发明一实施例提供的OLED器件在驱动电压为7-21V时色坐标变化的示意图;
图7为本发明另一实施例提供的OLED器件结构示意图;
图8为本发明一实施例提供的OLED器件制备方法的流程示意图。
附图标记:100-衬底;1-阳极;2-阴极;3-第一发光层;4-第二发光层; 5-空穴传输层;6-电子传输层;7-电子阻挡层;8-空穴注入层;9-电子注入层;10-第三发光层;11-缓冲层。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。
如图1所示,常规的白光OLED器件包括:设置在衬底100上的阳极1、阴极2、以及位于所述阳极1和所述阴极2之间的第一发光层3、第二发光层4。其发光原理为:从阳极1注入的空穴(hole)和从阴极2注入的电子(electron)在发光层内相结合形成激子,激子使发光分子激发,激发后的发光分子经过辐射弛豫而发出可见光。
然而,研究人员发现空穴的迁移速率远大于电子的迁移速率(相差三个数量级左右),但是当施加在OLED器件上的驱动电压增加时,空穴、电子的迁移速率都会增大,且电子的迁移速率较空穴的迁移速率增大的更快,因而会使得空穴的迁移速率和电子的迁移速率差值缩小。例如,当电压较小时,电子的迁移速率较小,导致电子迁移到靠近阴极2的第二发光层4中的数量大于迁移到靠近阳极1的第一发光层3中的数量,使得第二发光层4中的激子的数量大于第一发光层3中激子的数量,从而使得第二发光层4接受的能量较多,发光强度较大,进而使得OLED器件的发光颜色偏向第二发光层4的颜色。随着驱动电压的增大,电子的迁移速率比空穴迁移速率增加的快,导致空穴的迁移速率和电子的迁移速率差值进一步缩小,而由于电子迁移速率的提高,使得电子迁移到第一发光层3中的数量增加,第一发光层3中的 激子的数量也相应的增加,第一发光层3接受的能量增加,发光强度增加,从而使得第一发光层3和第二发光层4的发光强度逐渐接近。
因此,对于常规白光OLED器件而言,当施加在OLED器件上的电压变化时,OLED器件的发光颜色不稳定,色坐标漂移严重。例如如图2所示为CIE(International Commission on Illumination,国际发光照明委员会)1931色坐标体系,当驱动电压从7V逐渐变化到21V时,该OLED器件的色坐标变化较大,发光颜色由红色变为粉红色再到白色,色稳定性差。
本发明的实施例提供一种OLED器件,如图3-5所示,该OLED器件包括设置在衬底100上的阳极1、阴极2、设置在阳极1和阴极2之间的空穴传输层5和电子传输层6,以及设置在空穴传输层5和电子传输层6之间的至少两个发光层(3、4、10)。其中,上述至少两个发光层(3、4、10)发射白光。进一步的,该OLED器件还包括设置在电子传输层6和上述至少两个发光层(3、4、10)之间的电子阻挡层7。
本发明实施例通过设置电子阻挡层7而获得稳定的发光颜色。当电压较小时,本发明实施例中电子迁移速率的增加受到抑制,电子迁移到各发光层的数量趋于相同,从而各发光层中的激子数量趋于相同,各发光层的发光强度也趋于相同,该OLED器件发白光;随着电压的增大,虽然电子的迁移速率比空穴迁移速率增加的快,但是由于电子阻挡层7的对电子传输的阻挡作用,使得电子迁移到各发光层的数量仍然趋于相同,各发光层的发光强度趋于相同,该OLED器件仍然发白光。
空穴传输层5采用空穴传输材料制成,空穴传输材料可以为三芳香胺类系列、联苯二胺衍生物、交叉结构链接二胺联苯。例如可以为NPB(N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺)、TCTA(4,4’,4”-Tri(9-carbazoyl)triphenylamine,4,4',4”-三(咔唑-9-基)三苯胺)、m-MTDATA(4,4',4”-Tris(N-3-methylphenyl-N-phenylamino)triphenylamine,4,4',4”-三(N-3-甲基苯基-N-苯基氨基)三苯胺)等。
电子传输层6采用电子传输材料制成,电子传输材料可以为金属螯合物、唑类化合物、二氮菲衍生物等,例如可以为:AlQ3(三(8-羟基喹啉)铝)、BPhen(4,7-二苯基-1,10-邻二氮杂菲)、TmPyPB(1,3,5-三[(3-吡啶基)-3-苯基]苯)、OXD-7(2,2'-(1,3-苯基)二[5-(4-叔丁基苯基)-1,3,4-恶二唑])等。
需要说明的是,第一,不对上述至少两个发光层的具体层数进行限定,只要能发出白光即可。其中,图3和图5所示的结构包括第一发光层3和第二发光层4共2个发光层;图4所示的结构则包括第一发光层3、第二发光层4和第三发光层10共3个发光层。
其中,上述至少两个发光层中每层发光层的材料可以为空穴传输材料或者电子传输材料。
例如,靠近阳极1的发光层采用空穴传输材料,靠近阴极2的发光层采用电子传输材料。如图3所示,例如,第一发光层3的材料为空穴传输材料,第二发光层4的材料为电子传输材料。
第二,对电子阻挡层7的材料不作特别的限定,只要其能实现对电子的阻挡即可。例如,电子阻挡层的材料可以为空穴传输材料。
第三,如图5所示,为了增加电子和空穴的注入效率,还可以在阳极1和第一发光层3之间设置空穴注入层8,在阴极2和第二发光层4之间设置电子注入层9。
本发明的实施例提供一种OLED器件,通过在至少两个发光层和电子传输层6之间设置电子阻挡层7,可在施加到该OLED器件上的驱动电压变化时,抑制电子迁移速率的变化,使得电子迁移到各发光层的数量趋于一致,各发光层中激子的数量趋于一致,从而使得各发光层的发光强度趋于相同,进而使得该OLED器件的发光颜色稳定,色坐标漂移较小。
考虑到mCP(9,9'-(1,3-苯基)二-9H-咔唑)材料是较好的空穴传输材料,能够较好的达到阻挡电子传输的效果,因此,电子阻挡层7的材料例如可以包括mCP。
图6所示为CIE1931色坐标体系,在电子阻挡层7的材料包括mCP的情况下,当驱动电压从7V逐渐变化到21V时,如图6中虚线框所示(虚线框中的三角标号为该OLED器件发光颜色在不同驱动电压下的色坐标),该OLED器件的色坐标变化较小,色稳定性强。
例如,电子阻挡层7的厚度为5nm-15nm。
电子阻挡层7的厚度设置在5nm-15nm时,即较好地阻挡电子传输。尤其当电子阻挡层7的厚度设置在10nm时,阻挡电子的效果较好且整个OLED器件结构轻薄。
例如,所述至少两个发光层包括红色发光层和蓝色发光层;红色发光层靠近电子阻挡层7设置,蓝色发光层靠近空穴传输层5设置。
即,如图3所示,第一发光层3为蓝色发光层,第二发光层4为红色发光层。
其中,蓝色发光层材料例如可以采用主客体掺杂系统;其中客体材料可以采用铱(Ir)类配合物例如FIrpic(双(4,6-二氟苯基吡啶-N,C2)吡啶甲酰合铱),主体材料可以采用CBP(4,4'-Bis(9H-carbazol-9-yl)biphenyl,4,4'-二(9-咔唑)联苯)、UGH3(1,3-双(三苯基硅)苯)、mCP等。例如蓝色发光层材料为CBP:9%FIrpic。
红色发光层材料例如可以采用主客体掺杂系统;其中客体材料可以采用铱(Ir)类配合物例如Ir(MDQ)2acac(Bis(2-methyldibenzo[f,h]quinoxaline)(acetylacetonate)iridium(III),(乙酰丙酮)双(2-甲基二苯并[F,H]喹喔啉)合铱),主体材料可以采用CBP等。例如红色发光层材料为CBP:2%Ir(MDQ)2acac。
本发明实施例中,由于红光和蓝光为两种互补颜色,因此将蓝色发光层和红色发光层层叠设置,可使OLED器件发白光。其中,由于蓝色发光层的材料属于空穴传输材料,将其靠近空穴传输层5设置可减小发光层和阳极1之间的能级差,提升其发光性能;由于红色发光层材料属于电子传输材料,将其靠近电子传输层6设置可减小发光层和阴极2之间的能级差,提升其发光性能。
例如,电子阻挡层7的材料包括mCP;蓝色发光层的主体材料包括mCP。
本发明实施例中,电子阻挡层7和蓝色发光层的主体材料采用相同的材料,可减少蒸镀过程中材料的更换次数,从而减少制造环节,提高生产效率。
例如,所述至少两个发光层包括红色发光层、蓝色发光层和绿色发光层;绿色发光层设置在红色发光层和蓝色发光层之间。
即,如图4所示,第一发光层3为蓝色发光层,第二发光层4为红色发光层,第三发光层10为绿色发光层。
与只包括红色发光层和蓝色发光层的OLED器件相比,进一步包括绿色发光层的OLED器件具有较高的显色指数。
基于上述,考虑到阴极2和电子传输层6之间的能级差较大,电子传输 效率低,因此例如,如图7所示,OLED器件还包括设置在阴极2面向电子传输层6一侧表面的缓冲层11,缓冲层11用于匹配阴极2和电子传输层6的能级。
缓冲层11的材料没有特别的限定,只要能实现阴极2和电子传输层6之间的能级过渡即可。例如,缓冲层11的材料可为LiF等。
本发明实施例提供一种OLED显示面板,包括上述的OLED器件。
本发明实施例提供的OLED显示面板,通过在OLED器件的至少两个发光层和电子传输层6之间设置电子阻挡层7,可在施加到该OLED器件上的驱动电压变化时,抑制电子迁移速率的变化,使得电子迁移到各发光层的数量趋于一致,各发光层中激子的数量趋于一致,从而使得各发光层的发光强度趋于相同,进而使得该OLED器件的发光颜色稳定,色坐标漂移较小,提高了OLED显示面板的显示效果。
本发明实施例提供一种OLED器件的制备方法,如图8所示,该方法包括:
S01、参考图3-4,在衬底100上通过构图工艺形成阳极1。
其中,衬底100例如可以为透明玻璃,阳极1的材料例如可为ITO(氧化铟锡)。
考虑到阳极1表面状态直接影响空穴的注入和各有机膜层间的界面电子状态、及有机材料的成膜性,因此,衬底100的表面处理工作至关重要。基于此,在形成阳极1之前,需对衬底100进行表面处理,例如包括:将清洗好的衬底100分别放在清水、无水乙醇、丙酮、无水乙醇、丙酮、异丙醇中,用超声波清洗机处理,清洗完成后放入无水乙醇中保存。
S02、参考图3-4,在阳极1上通过蒸镀工艺形成空穴传输层5。
其中,空穴传输材料可以为三芳香胺类系列、联苯二胺衍生物、交叉结构链接二胺联苯。例如可以为NPB、TCTA、m-MTDATA等。
S03、在空穴传输层5上通过蒸镀工艺形成上述至少两个发光层。
如图3所示,至少两个发光层为第一发光层3和第二发光层4。或者,如图4所示,至少两个发光层为第一发光层3、第二发光层4和第三发光层10。
其中,第一发光层3可以为蓝色发光层,第二发光层4可以为红色发光 层,第三发光层10可以为绿色发光层。
S04、在上述至少两个发光层上通过蒸镀工艺形成电子阻挡层7。
其中,电子阻挡层7的材料不受特别的限定,只要其能阻挡电子即可。例如,电子阻挡层材料可以为空穴传输材料。
S05、在电子阻挡层7上通过蒸镀工艺形成电子传输层6。
其中,电子传输层6采用电子传输材料制成,电子传输材料可以为金属螯合物、唑类化合物、二氮菲衍生物等,例如可以为:AlQ3、BPhen、TmPyPB、OXD-7。
S06、在电子传输层6上通过蒸镀工艺形成阴极2。
其中,阴极2的材料可以为金属材料,如Al(铝)、Au(金)、Ag(银)、Mg(镁)-Ag合金等。
本发明的实施例中,蒸镀工艺例如可以包括:利用电流加热的方法,把所需要材料蒸发成原子或者分子,这些原子和分子由于热运动,会脱离材料本身,向上运动,运动过程中与衬底100接触,在衬底100上积累凝结,形成各膜层。其中,通过高温蒸镀制备各个膜层的过程均在高于4×10-4Pa真空度的环境中进行。
本发明实施例提供一种OLED器件的制备方法,通过在至少两个发光层和电子传输层6之间形成电子阻挡层7,可在施加到该OLED器件上的驱动电压变化时,抑制电子迁移速率的变化,使得电子迁移到各发光层的数量趋于一致,各发光层中激子的数量趋于一致,从而使得各发光层的发光强度趋于相同,进而使得该OLED器件的发光颜色稳定,色坐标漂移较小。
例如,形成上述至少两个发光层,包括:形成红色发光层和蓝色发光层,红色发光层靠近所述电子阻挡层7形成,蓝色发光层靠近空穴传输层5形成;蓝色发光层的主体材料包括mCP。在此基础上,形成电子阻挡层7,包括:采用mCP材料形成电子阻挡层7。
本发明实施例中,电子阻挡层7和蓝色发光层的主体材料采用相同的材料,可减少蒸镀过程中材料的更换次数,从而减少制造环节,提高生产效率。
例如,还包括形成绿色发光层,该绿色发光层位于红色发光层和蓝色发光层之间。
例如,电子阻挡层7的厚度为5nm-15nm。
电子阻挡层7的厚度设置在5nm-15nm时,即可较好地阻挡电子传输。尤其当电子阻挡层7的厚度设置在10nm时,阻挡电子的效果较好且整个OLED器件结构轻薄。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2016年4月28日递交的中国专利申请第201610279225.4号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (11)

  1. 一种OLED(Organic Light Emitting Diode)器件,包括设置在衬底上的阳极、阴极、设置在所述阳极和所述阴极之间的空穴传输层和电子传输层、以及设置在所述空穴传输层和所述电子传输层之间的至少两个发光层;其中,所述至少两个发光层发白光;
    还包括设置在所述电子传输层和所述至少两个发光层之间的电子阻挡层。
  2. 根据权利要求1所述的OLED器件,其中,所述电子阻挡层的材料包括mCP(1,3-二(9H-咔唑-9-基)苯)。
  3. 根据权利要求1或2所述的OLED器件,其中,所述电子阻挡层的厚度为5nm-15nm。
  4. 根据权利要求1-3的任一项所述的OLED器件,其中,所述至少两个发光层包括红色发光层和蓝色发光层;
    所述红色发光层靠近所述电子阻挡层设置,所述蓝色发光层靠近所述空穴传输层设置。
  5. 根据权利要求1-4的任一项所述的OLED器件,其中,所述电子阻挡层的材料包括mCP;
    所述蓝色发光层的主体材料包括mCP。
  6. 根据权利要求4所述的OLED器件,其中,所述至少两个发光层还包括绿色发光层;
    所述绿色发光层设置在所述红色发光层和所述蓝色发光层之间。
  7. 根据权利要求1所述的OLED器件,其中,还包括设置在所述阴极面向所述电子传输层一侧表面的缓冲层,所述缓冲层的能级介于所述阴极和所述电子传输层的能级之间。
  8. 一种OLED显示面板,包括权利要求1-7任一项所述的OLED器件。
  9. 一种OLED器件的制备方法,包括:
    通过构图工艺形成阳极;
    在所述阳极上方,通过蒸镀工艺依次形成空穴传输层、至少两个发光层、电子传输层以及阴极;所述至少两个发光层发白光;
    所述方法还包括:在所述至少两个发光层和所述电子传输层之间形成电子阻挡层。
  10. 根据权利要求9所述的制备方法,其中,所述形成所述至少两个发光层包括:
    形成红色发光层和蓝色发光层,所述红色发光层靠近所述电子阻挡层,所述蓝色发光层靠近所述空穴传输层;所述蓝色发光层的主体材料包括mCP;
    所述形成所述电子阻挡层,包括:
    采用mCP形成所述电子阻挡层。
  11. 根据权利要求10所述的制备方法,其中,所述电子阻挡层的厚度为5nm-15nm。
PCT/CN2017/071725 2016-04-28 2017-01-19 Oled器件及其制备方法、oled显示面板 WO2017185839A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17764752.6A EP3451401B1 (en) 2016-04-28 2017-01-19 Oled device and method for manufacturing same, and oled display panel
US15/560,385 US20180182987A1 (en) 2016-04-28 2017-01-19 Organic Light-Emitting Diode (OLED), Manufacturing Method Thereof and OLED Display Panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610279225.4A CN105895819B (zh) 2016-04-28 2016-04-28 一种oled器件及其制备方法、oled显示面板
CN201610279225.4 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017185839A1 true WO2017185839A1 (zh) 2017-11-02

Family

ID=56703021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071725 WO2017185839A1 (zh) 2016-04-28 2017-01-19 Oled器件及其制备方法、oled显示面板

Country Status (4)

Country Link
US (1) US20180182987A1 (zh)
EP (1) EP3451401B1 (zh)
CN (1) CN105895819B (zh)
WO (1) WO2017185839A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895819B (zh) * 2016-04-28 2018-07-06 京东方科技集团股份有限公司 一种oled器件及其制备方法、oled显示面板
CN111740021A (zh) * 2020-06-28 2020-10-02 昆山国显光电有限公司 发光器件和显示面板
CN114512617A (zh) * 2020-11-17 2022-05-17 京东方科技集团股份有限公司 一种发光器件、显示装置和发光器件的制作方法
CN113540373B (zh) * 2021-07-14 2023-07-11 京东方科技集团股份有限公司 发光器件及其制作方法、显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101180304A (zh) * 2005-05-06 2008-05-14 通用显示公司 稳定性oled材料和具有改进的稳定性的器件
US20090026929A1 (en) * 2007-07-24 2009-01-29 Song Jung-Bae White organic light emitting device
CN102945928A (zh) * 2012-12-06 2013-02-27 吉林大学 一种光谱可调且色坐标稳定的白光有机电致发光器件
CN103329621A (zh) * 2011-01-20 2013-09-25 出光兴产株式会社 有机电致发光元件
CN105895819A (zh) * 2016-04-28 2016-08-24 京东方科技集团股份有限公司 一种oled器件及其制备方法、oled显示面板

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405709A (en) * 1993-09-13 1995-04-11 Eastman Kodak Company White light emitting internal junction organic electroluminescent device
US5683823A (en) * 1996-01-26 1997-11-04 Eastman Kodak Company White light-emitting organic electroluminescent devices
SG118110A1 (en) * 2001-02-01 2006-01-27 Semiconductor Energy Lab Organic light emitting element and display device using the element
CN101916829B (zh) * 2001-06-15 2012-05-09 佳能株式会社 有机电致发光元件
AU2002329813A1 (en) * 2001-08-29 2003-03-18 The Trustees Of Princeton University Organic light emitting devices having carrier blocking layers comprising metal complexes
TW556446B (en) * 2002-09-11 2003-10-01 Opto Tech Corp Organic light-emitting device and the manufacturing method thereof
JP2004200141A (ja) * 2002-10-24 2004-07-15 Toyota Industries Corp 有機el素子
JP4531342B2 (ja) * 2003-03-17 2010-08-25 株式会社半導体エネルギー研究所 白色有機発光素子および発光装置
US7211823B2 (en) * 2003-07-10 2007-05-01 Universal Display Corporation Organic light emitting device structure for obtaining chromaticity stability
KR100712098B1 (ko) * 2004-01-13 2007-05-02 삼성에스디아이 주식회사 백색 발광 유기전계발광소자 및 그를 구비하는유기전계발광표시장치
US20060115673A1 (en) * 2004-12-01 2006-06-01 Au Optronics Corporation Organic light emitting device with improved electrode structure
US8148891B2 (en) * 2005-10-04 2012-04-03 Universal Display Corporation Electron impeding layer for high efficiency phosphorescent OLEDs
JP5549228B2 (ja) * 2009-01-09 2014-07-16 三菱化学株式会社 有機el素子及び有機発光デバイス
JP2013200939A (ja) * 2010-06-08 2013-10-03 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
KR101419247B1 (ko) * 2010-12-28 2014-07-16 엘지디스플레이 주식회사 백색 유기 발광 소자 및 이를 이용한 표시 장치
JPWO2012099219A1 (ja) * 2011-01-20 2014-06-30 出光興産株式会社 有機エレクトロルミネッセンス素子
JP5889280B2 (ja) * 2011-03-25 2016-03-22 出光興産株式会社 有機エレクトロルミネッセンス素子
CN102195003B (zh) * 2011-04-25 2014-07-02 中国科学院苏州纳米技术与纳米仿生研究所 色稳定白光oled器件及其制法
KR101884199B1 (ko) * 2011-06-29 2018-08-02 삼성디스플레이 주식회사 발광 구조물, 발광 구조물을 포함하는 표시 장치 및 표시 장치의 제조 방법
DE102012200224A1 (de) * 2012-01-10 2013-07-11 Osram Opto Semiconductors Gmbh Optoelektronisches bauelement, verfahren zum herstellen eines optoelektronischen bauelements, vorrichtung zum abtrennen eines raumes und möbelstück
DE112013007607B3 (de) * 2012-03-14 2018-02-08 Semiconductor Energy Laboratory Co., Ltd. Licht emittierende Vorrichtung, elektronisches Gerät und Beleuchtungsvorrichtung
US9577221B2 (en) * 2012-09-26 2017-02-21 Universal Display Corporation Three stack hybrid white OLED for enhanced efficiency and lifetime
DE102014100993A1 (de) * 2013-12-05 2015-06-11 Osram Opto Semiconductors Gmbh Organisches lichtemittierendes Bauelement und Verfahren zur Herstellung des organischen lichtemittierenden Bauelements
TWI729649B (zh) * 2014-05-30 2021-06-01 日商半導體能源研究所股份有限公司 發光元件,發光裝置,電子裝置以及照明裝置
KR102256932B1 (ko) * 2014-09-18 2021-05-28 삼성디스플레이 주식회사 유기 발광 소자
CN104362255B (zh) * 2014-10-21 2018-07-10 深圳市华星光电技术有限公司 白光oled器件结构
CN104795507B (zh) * 2015-04-16 2017-03-22 京东方科技集团股份有限公司 有机电致发光器件及其制造方法、电子设备
CN105679956A (zh) * 2016-04-05 2016-06-15 深圳市华星光电技术有限公司 有机电致发光器件及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101180304A (zh) * 2005-05-06 2008-05-14 通用显示公司 稳定性oled材料和具有改进的稳定性的器件
US20090026929A1 (en) * 2007-07-24 2009-01-29 Song Jung-Bae White organic light emitting device
CN103329621A (zh) * 2011-01-20 2013-09-25 出光兴产株式会社 有机电致发光元件
CN102945928A (zh) * 2012-12-06 2013-02-27 吉林大学 一种光谱可调且色坐标稳定的白光有机电致发光器件
CN105895819A (zh) * 2016-04-28 2016-08-24 京东方科技集团股份有限公司 一种oled器件及其制备方法、oled显示面板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3451401A4 *

Also Published As

Publication number Publication date
EP3451401B1 (en) 2022-01-19
EP3451401A1 (en) 2019-03-06
US20180182987A1 (en) 2018-06-28
EP3451401A4 (en) 2019-12-11
CN105895819B (zh) 2018-07-06
CN105895819A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5476061B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
TWI485899B (zh) 有機電致發光元件
Zhu et al. Reduced efficiency roll-off in all-phosphorescent white organic light-emitting diodes with an external quantum efficiency of over 20%
US20110240967A1 (en) Organic light emitting diode device
WO2017185839A1 (zh) Oled器件及其制备方法、oled显示面板
JP2008028371A (ja) 有機発光装置
KR20100047126A (ko) 유기발광 다이오드 장치 및 그 제조 방법
US20170213875A1 (en) Tandem organic light-emitting diode, array substrate and display device
JP2017533594A (ja) 白色有機エレクトロルミネッセンス素子およびその製造方法
Liu et al. Simultaneous achievement of low efficiency roll-off and stable color in highly efficient single-emitting-layer phosphorescent white organic light-emitting diodes
KR20090105072A (ko) 유기 발광 소자
KR101419809B1 (ko) 인버티드 유기 발광 소자 및 이를 포함하는 디스플레이 장치
Zhao et al. Non-doped white organic light-emitting diodes with superior efficiency/color stability by employing ultra-thin phosphorescent emitters
Miao et al. Simplified phosphorescent organic light-emitting devices using heavy doping with an Ir complex as an emitter
Shao et al. Efficient top-emitting white organic light emitting device with an extremely stable chromaticity and viewing-angle
Jiang et al. High-efficiency white organic light-emitting diodes based on phosphorescent iridium complex and 4, 4'-bis [N-1-napthyl-N-phenyl-amino] biphenyl emitters
CN112750958B (zh) 利用蓝光染料和激基复合物实现的白光有机电致发光器件
CN105633303A (zh) 一种有机磷光器件的制备方法
CN107293645B (zh) 一种白光顶发光型有机发光二极管及其制备方法
Pode et al. Solution processed efficient orange phosphorescent organic light-emitting device with small molecule host
Liu et al. Effect of Al: Ag alloy cathode on the performance of transparent organic light-emitting devices
TWI406441B (zh) 白光有機發光二極體構造
TW201316583A (zh) 白光有機發光二極體構造
TWI311031B (en) Organic light emitting diode apparatus and manufacturing method thereof
Lü et al. Emission spectra dependence on voltage and emissive layer layout in organic light-emitting diodes

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2017764752

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15560385

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17764752

Country of ref document: EP

Kind code of ref document: A1