WO2017185549A1 - 一种制备烟酰胺单核苷酸的方法2 - Google Patents

一种制备烟酰胺单核苷酸的方法2 Download PDF

Info

Publication number
WO2017185549A1
WO2017185549A1 PCT/CN2016/092458 CN2016092458W WO2017185549A1 WO 2017185549 A1 WO2017185549 A1 WO 2017185549A1 CN 2016092458 W CN2016092458 W CN 2016092458W WO 2017185549 A1 WO2017185549 A1 WO 2017185549A1
Authority
WO
WIPO (PCT)
Prior art keywords
nicotinamide
prset
reaction
amino acid
acid sequence
Prior art date
Application number
PCT/CN2016/092458
Other languages
English (en)
French (fr)
Inventor
傅荣昭
张琦
Original Assignee
邦泰生物工程(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邦泰生物工程(深圳)有限公司 filed Critical 邦泰生物工程(深圳)有限公司
Priority to CN201680003986.5A priority Critical patent/CN108026130B/zh
Priority to PCT/CN2016/092458 priority patent/WO2017185549A1/zh
Priority to US15/574,851 priority patent/US11040996B2/en
Publication of WO2017185549A1 publication Critical patent/WO2017185549A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/048Pyridine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/02Phosphorylation
    • C07H1/04Introducing polyphosphoric acid radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • C07H19/207Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids the phosphoric or polyphosphoric acids being esterified by a further hydroxylic compound, e.g. flavine adenine dinucleotide or nicotinamide-adenine dinucleotide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01015Ribokinase (2.7.1.15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/06Diphosphotransferases (2.7.6)
    • C12Y207/06001Ribose-phosphate diphosphokinase (2.7.6.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/02Pentosyltransferases (2.4.2)
    • C12Y204/02012Nicotinamide phosphoribosyltransferase (2.4.2.12), i.e. visfatin

Definitions

  • the present invention relates to the field of molecular biology and biotechnology, and more particularly to a method for preparing a nicotinamide mononucleotide using a biocatalytic technique.
  • Nicotinamide mononucleotide is a biochemical substance present in biological cells, which is transformed into a biological cell after being adenylated by nicotinamide nucleotide adenosyltransferase.
  • nicotinamide mononucleotides have many health care uses such as delaying aging, treating senile diseases such as Parkinson's, regulating insulin secretion, affecting mRNA expression, and the like, and more applications are being continuously developed. .
  • senile diseases such as Parkinson's
  • regulating insulin secretion affecting mRNA expression, and the like
  • mRNA expression affecting mRNA expression
  • the demand for nicotinamide mononucleotides is increasing.
  • the preparation method of NMN mainly includes the following three types: 1. yeast fermentation method; 2. chemical synthesis method; 3. biocatalysis method.
  • the chemical synthesis method has the disadvantages of high cost and the production of chiral compounds; and the NMN produced by the yeast fermentation method contains certain organic solvent residues; the biocatalytic method does not contain the solvent residue, and there is no chiral problem and is prepared.
  • NMN is the same as the same type in the body and has become the most green and environmentally friendly NMN preparation method.
  • the existing biocatalytic method for preparing NMN is generally based on nicotinamide and 5'-phosphoribosyl-1'-pyrophosphate (PRPP), and Nicotinamide e phosphoribosyltransferase (abbreviated to Nampt). Preparation of NMN under catalysis.
  • PRPP nicotinamide and 5'-phosphoribosyl-1'-pyrophosphate
  • Nampt Nicotinamide e phosphoribosyltransferase
  • an object of the present invention is to provide a novel method for preparing NMN by using a biocatalytic technique, which is avoidable PRUse high-priced and limited-source PRPP as a substrate, which has the advantages of low price, environmental protection, pollution-free, and suitable for large-scale industrial production.
  • nicotinamide mononucleotide after long-term experimentation, characterized in that: nicotinamide, ATP and ribose are used as raw materials, and nicotinamide phosphate is used.
  • the reaction of ribose transferase, ribose phosphate pyrophosphate kinase, and ribokinase catalyzes the production of a nicotinamide mononucleotide.
  • the EC numbers of the enzymes used in the above methods are: nicotinamide phosphoribosyltransferase EC 2.4.2.12, ribose phosphate pyrophosphate kinase EC 2.7.6.1, ribokinase EC 2.7. 1.15.
  • the specific forms of the various enzymes used in the above methods include an enzyme solution, an enzyme lyophilized powder, an enzyme-containing cell, and various immobilized enzymes and immobilized enzyme-containing cells, which may be in the form of unpurified crude enzyme. It may also be in a partially purified or fully purified form.
  • an immobilized enzyme in the above method.
  • the immobilized enzyme is prepared by: diluting the enzyme to a protein content of 5-10 mg/ml with a washing enzyme buffer (0.02 M Tris-HCl/0.001 M EDTA, pH 7.0 solution), and then diluting the enzyme with PB solution (2.0 mol / L potassium dihydrogen phosphate, pH 7.5) was mixed in equal volume, then added to the enzyme immobilization carrier (50 mg enzyme / gram carrier), reacted at 25 ° C in a shaker (rotation speed 150 rpm) 20 small Inches.
  • an immobilized enzyme After the reaction is completed, it is filtered with a filter bag and washed with a washing enzyme buffer for 5-6 times to obtain an immobilized enzyme.
  • the enzyme-immobilized carriers epoxy type LX-3000, silica, activated carbon, glass beads, and macroporous poly-N-aminoethyl acrylamide-polyethylene can be used.
  • the reaction is carried out at a temperature of 30 to 50 ° C and a pH of 6.5 to 8.5.
  • the reaction has the highest conversion of hydrazine at a temperature of 35-45 ° C and a pH of 7.0-8.0.
  • the reaction is carried out in the presence of Mg 2+ and K + .
  • the reaction is carried out in Tris-HCl buffer.
  • the concentration of the nicotinamide is 1 to 150 mM
  • the concentration of the ATP is 1 to 50 mM
  • the concentration of the ribose is 1 to 100 mM.
  • the molar ratio of nicotinamide, ATP, and ribose in the raw material is 1-4:1:1-4.
  • ATP can be fully reacted by placing the raw materials in this ratio, and the conversion rate is 80 ⁇ 3 ⁇ 4-100 ⁇ 3 ⁇ 4. Since the price of ATP is the highest among the three raw materials, this ratio can greatly reduce the production cost.
  • the molar ratio of nicotinamide, ATP, and ribose in the raw material is 1.5:1:1.5, and the conversion rate of the reaction in terms of substrate ATP is 100%, and the cost is the lowest.
  • the nicotinamide mononucleotide crude product solution obtained after the completion of the reaction can be subjected to filtration, purification and drying treatment by a conventional technique known in the art, that is, a nicotinamide single nucleotide product can be obtained.
  • the nicotinamide phosphoribosyltransferase used in the above method is a protein of the following (a) or (b):
  • nicotinamide phosphoribosyltransferase is a site-directed mutagenesis of the gene of the parent nicotinamide phosphoribosyltransferase represented by the nucleotide sequence of Meiothermus ruber DSM 1279, as shown in SEQ ID NO: 1, after PCR amplification.
  • a series of highly catalytically active nicotinamide phosphoribosyltransferase mutants were obtained by inserting an appropriate vector and subsequently screening on LB+ kanamycin medium. The high catalytic activity of these mutants can greatly reduce industrial application organisms.
  • the cost of catalytic technology for the production of nicotinamide mononucleotides has high industrial application value.
  • the nicotinamide phosphoribosyltransferase has at least one mutation selected from at least one of the following positions compared to the amino acid sequence set forth in SEQ ID NO: 2: position 180, position 182 , 231rd, 298th, 338th and 377th.
  • the nicotinamide phosphoribosyltransferase has at least one of the following mutations: F180A, F180 W, A182Y, E231A, E231Q, D298A, D298N, D298E, D338N, D338E, D37 7A, D377N and D377E.
  • the method provided by the invention overcomes the defects of the chemical synthesis method and the yeast fermentation method, and successfully avoids the price and the source limitation.
  • the use of PRPP, the conversion rate of the method calculated by the substrate ATP is as high as 100%, and belongs to the preparation method of the current nicotinamide mononucleotide, which is the most environmentally friendly and pollution-free, suitable for large-scale industrial production and low in price.
  • the nicotinamide phosphoribosyltransferase used in the method provided by the present invention is a mutant obtained by artificially induced site-directed mutagenesis, and the enzyme activity of the mutant is greatly improved compared with the existing wild type.
  • the enzymatic activity assay uses nicotinamide and PRPP as substrates.
  • the enzyme has a catalytic activity of 1.2-6.9 times that of the parent. Such high catalytic activity allows it to be used as a crude enzyme without purification, or only a part of it.
  • the preparation method of the nicotinamide mononucleotide provided by the invention may be a one-step feeding method in which all raw materials and enzymes are added together, or a stepwise feeding method, and the one-step feeding method has simple operation and short reaction time. Advantages, step-by-step feeding method has the advantages of thorough reaction and high conversion rate.
  • the specific implementation process is as follows
  • the raw materials were prepared by dissolving each raw material in water, and the composition of the substrate solution was 1-150 mM of nicotinamide, 1-50 mM of ATP, 1-100 mM ribose, and 1-30 mM of MgCl 2 .
  • Step by step feeding method :
  • the raw materials were prepared by dissolving each raw material in water, and the composition of the substrate solution was 1-50 mM ATP, 1-10 OmM ribose, l-30 mM MgCl 2 , l-20 mM KC1, and 50-100 mM. Tris-HCl buffer, adjusted to pH 6.5-8.5. The following catalytic enzymes were then added to the substrate solution: ribose phosphate pyrophosphate kinase 1-100 g/L substrate solution, ribokinase 1-100 g/L substrate solution. After stirring uniformly, the reaction was carried out, stirring was continued during the reaction (stirring speed 50 rpm), the reaction temperature was controlled to 30-50 ° C, and the pH was maintained at 6.5-8.5.
  • reaction solution is separated, and 1-100 mM of nicotinamide and 1-30 mM of MgCl 2 are added to the reaction solution.
  • the enzyme used in the following examples is the parent nicotinamide phosphoribosyltransferase from the nucleotide sequence of Meiother mus ruber DSM 1279, as shown in SEQ ID NO: 1.
  • the remaining nicotinamide phosphoribosyltransferase, ribose phosphate pyrophosphate kinase, and ribokinase are commercially available lyophilized powders.
  • the substrate solution was added to the reaction vessel, containing 1 mM nicotinamide, 1 mM ATP, 1 mM ribose, lm M MgCl 2 , 1 mM KC1, and 50 mM Tris-HCl buffer, adjusted to pH 6.5-7.0 .
  • various enzymes for catalysis are added to the substrate solution, and the amounts of the various enzymes are: nicotinamide phosphoribosyltransferase lg/L substrate solution, ribose phosphate pyrophosphate kinase lg/L substrate solution, ribokinase Lg/L substrate solution.
  • the reaction was carried out, stirring was continued during the reaction (stirring speed 50 rpm), the reaction temperature was controlled at 30 ° C, and the pH was maintained at 6.5-7.0.
  • the nicotinamide mononucleotide crude product solution (including NM) is obtained. N0.5 mM), after filtration, purification, and drying, the finished nicotinamide single nucleotide.
  • a substrate solution containing 15 mM ATP, 100 mM ribose, 10 mM MgCl 2 , 10 mM KC1, and 70 mM Tris-HCl buffer was added to the reaction vessel to adjust the pH to 7.0-7.5.
  • the following catalytic enzymes were then added to the substrate solution: ribose phosphate pyrophosphate kinase 20 g/L substrate solution, ribokinase 20 g/L substrate solution.
  • reaction solution was separated, and the reaction solution was sent to another reaction vessel, and 60 mM of nicotinamide, 10 mM of MgCl 2 , and 70 mM of Tris-HCl buffer were added to the reaction solution.
  • nicotinamide phosphoribosyltransferase 20g / L substrate solution continue to react after stirring, continue stirring during the reaction (mixing speed 50rpm), control the reaction temperature is 35 ° C, maintain the pH value of 7.5-8.0, and then react for 3h After that, a crude nicotinamide mononucleotide solution (containing NMN 7.3 mM) is obtained, which is filtered, purified, and dried to obtain a finished nicotinamide single nucleotide.
  • a substrate solution containing 35 mM ATP, 70 mM ribose, 20 mM MgCl 2 , 15 mM KCl and 100 mM Tris-HCl buffer was added to the reaction vessel to adjust the pH to 7.5-8.0.
  • the following catalytic enzymes were then added to the substrate solution: ribose phosphate pyrophosphate kinase 50 g/L substrate solution, ribokinase 50 g/L substrate solution.
  • reaction solution was separated, and the reaction solution was sent to another reaction vessel, and 60 mM of nicotinamide, 20 mM of MgCl 2 , and 100 mM of Tris-HCl buffer were added to the reaction solution.
  • nicotinamide phosphoribosyltransferase 50g / L substrate solution continue to react after stirring, continue stirring during the reaction (mixing speed 50rpm), control the reaction temperature is 40 ° C, maintain the pH value of 7.5-8.0, and then react for 5h After that, a crude nicotinamide mononucleotide solution (containing NMN 17.2 mM) is obtained, which is filtered, purified, and dried to obtain a finished nicotinamide single nucleotide.
  • a substrate solution containing 150 mM of nicotinamide, 50 mM ATP, 100 mM ribose, 30 mM MgCl 2 , 20 mM KC1, and 100 mM Tris-HCl buffer was added to the reaction vessel to adjust the pH to 8.0-8.5.
  • various enzymes for catalysis are added to the substrate solution, and the amounts of the various enzymes are: nicotinamide phosphoribosyltransferase 100 g/L substrate solution, ribose phosphate pyrophosphate kinase 100 g/L substrate solution, ribokinase 10 Og/L substrate solution.
  • Preparation of immobilized enzyme Dilution of nicotinamide phosphoribosyltransferase, ribose phosphate pyrophosphate kinase and ribokinase to protein content using a washing enzyme buffer (0.02 M Tris-HCl/0.001 M EDTA, pH 7.0 solution) 5-10 mg/ml, and the enzyme dilution was mixed with PB solution (2.0 mol/L potassium dihydrogen phosphate, pH 7.5) in an equal volume, and then the enzyme immobilized carrier epoxy type LX-3000 (50 mg enzyme/ The gram carrier was reacted at 25 ° C for 20 hours in a shaker (rotation speed 150 rpm).
  • the mixture was filtered through a filter bag and washed with a washing enzyme buffer for 5 to 6 times to obtain immobilized nicotinamide phosphoribosyltransferase, immobilized ribose phosphate pyrophosphate kinase, and immobilized ribokinase, respectively.
  • a substrate solution containing 30 mM of nicotinamide, 20 mM of ATP, 30 mM of ribose, 15 mM of MgCl 2 , 15 mM of KCl and 100 mM of Tris-HCl buffer was added to the reaction vessel to adjust the pH to 7.0-7.5.
  • various enzymes for catalysis are added to the substrate solution, and the amounts of the various enzymes are as follows: immobilized nicotinamide phosphoribosyltransferase 10 g/L substrate solution, immobilized ribose phosphate pyrophosphate kinase 10 g/L substrate Solution, immobilized ribokinase 10 g/L substrate solution.
  • immobilized nicotinamide phosphoribosyltransferase 10 g/L substrate solution immobilized ribose phosphate pyrophosphate kinase 10 g/L substrate Solution
  • immobilized ribokinase 10 g/L substrate solution After stirring uniformly, the reaction was carried out, stirring was continued during the reaction (stirring speed 50 rpm), the reaction temperature was controlled at 37 ° C, and the pH was maintained at 7.0-7.5. After 4 hours of reaction, a crude nicotinamide mononucleotide solution (containing
  • Mutant gene The full-length mutant gene is then cloned into a suitable vector and transformed into an appropriate host cell, and a positive clone having nicotinamide phosphoribosyltransferase activity is selected by culture. Finally, the plasmid DNA is extracted from the positive clone, and the DNA sequence analysis is performed to determine the introduced mutation. After the target fragment is inserted into the vector, the LB+ kanamycin medium is selected for screening, thereby obtaining a series of high catalytic activity. Nicotinamide phosphoribosyltransferase mutant.
  • any suitable vector may be employed, for example, it may be a prokaryotic expression vector such as pRSET and pES21, etc.; and may be a cloning vector such as pUC18/19 and pBluscript-SK.
  • pRSET-A is preferably used as a vector, and the host cell of the vector may be a prokaryotic cell including Escherichia coli, or a eukaryotic cell including Saccharomyces cerevisiae and P. pastoris.
  • the synthesized product was digested with restriction endonucleases Ndel and BamHI and ligated with the vector pRSET-A (derived from Invitrogen, USA) digested with the same restriction endonucleases Ndel and BamHI to obtain plasmid pRSET- n ampt.
  • the nucleotide sequence of the cloned parent nicotinamide phosphoribosyltransferase was determined by DNA sequencing as shown in SEQ ID NO: 1, and the amino acid sequence thereof is shown in SEQ ID NO: 2.
  • the PCR amplification reaction system is: 20 mM Tris-HCl (pH 8.8), 10 mM KCl, 10 mM (NH 4 ) 2 SO 4 , 2 mM MgS0 4 , 0.1% Triton X-100, 50 mM dATP, 50 mM dTTP, 50 mM dCTP, 50 mM dGTP, 1.5 U Pfu DNA polymerase (Promega, USA), 20 ng DNA template, and 400 nM upstream primer and 400 nM downstream primer, adjusted to 50 ⁇ m with sterile water Rise.
  • the PCR amplification reaction conditions were: 95 ° C for 3 minutes, 35 cycles of 95 ° C for 50 seconds, 52 ° C for 30 seconds, and 72 ° C for 3 minutes, and finally 72 ° C for 5 minutes.
  • the plasmid pRSET-F180W was transformed into competent bacterial cell E. coli BL21, and a clone having nicotinamide phosphoribosyltransferase activity was screened on a Luria broth (LB) plate (containing 50 mg/L kanamycin) from the clone.
  • the DNA of the plasmid pRSET-F180W was extracted, and the point mutation introduced was confirmed by DNA sequencing.
  • the amino acid sequence of the F180W mutant was mutated from Phe (F) to Trp (w) at the 180th position as compared to the parent amino acid sequence as shown in SEQ ID NO: 2.
  • the following primer pair A182Y-F 5'
  • the plasmid pRSET-nampt constructed in the first part was used as a template, and the A182Y mutant gene was amplified by high-fidelity PCR using the above PCR amplification reaction system and PCR amplification reaction conditions, separated by 1% agarose gel electrophoresis and recovered by commercial kit.
  • the product was ligated with the vector pRSET-A (specific reference to the first part of Example 6) to obtain the plasmid pRSET-A182Y.
  • the plasmid pRSET-A182Y was transformed into competent bacterial cell E.
  • plasmid pRSET-A182Y was extracted, and the point mutation introduced was confirmed by DNA sequencing.
  • the amino acid sequence of the A182Y mutant was mutated from Ala (A) to Tyr (Y) at position 182 compared to the parent amino acid sequence set forth in SEQ ID NO: 2.
  • plasmid pRSET-E231A was extracted, and the point mutation introduced was confirmed by DNA sequencing.
  • the amino acid sequence of the E231A mutant was mutated from Glu (E) to Ala (A) at position 231 compared to the parent amino acid sequence as shown in SEQ ID NO: 2.
  • E231Q-F 5' CTCTATCCCGGCTATGCAGCACTCTACCGTTACC 3'
  • E231Q-R 5' GGTAACGGTAGAGTGCTGCATAGCCGGGATAGAG 3'
  • High-fidelity PCR amplification of the E231Q mutant gene separation by 1% agarose gel electrophoresis and recovery of the amplified product with a commercial kit, and then the amplification product was ligated with the vector pRSET-A (specific reference) Example 6 Part 1), plasmid pRSET-E231Q was obtained.
  • the plasmid pRSET-D298A was obtained.
  • the plasmid pRSET-D298A was transformed into competent bacterial cell E. coli BL21, and a clone having nicotinamide phosphoribosyltransferase activity was screened on a Luria broth (LB) plate (containing 50 mg/L kanamycin) from the clone.
  • the DNA of the plasmid pRSET-D298A was extracted, and the point mutation introduced was confirmed by DNA sequencing.
  • the amino acid sequence of the D298A mutant was changed from Asp (D) to Ala (A) at the 298th position as compared with the parent amino acid sequence as shown in SEQ ID NO: 2.
  • the PCR amplification reaction was carried out using the plasmid pRSET-nampt constructed in the first part of Example 6 using the following plasmid pair D298N-F: 5' GTTGTTATCCGTCCGAATTCTGGTGACCCGCCG 3' and D298N-R: 5' CGGCGGGTCACCAGAATTCGGACGGATAACAAC 3' System and PC R amplification reaction conditions High-fidelity PCR amplification of the D298N mutant gene, separation by 1% agarose gel electrophoresis and recovery of the amplified product with a commercial kit, and then the amplification product was ligated with the vector pRSET-A (specific reference) Example 6 Part I), plasmid pRSET-D298N was obtained.
  • the plasmid pRSET-D298N was transformed into competent bacterial cell E. coli BL21, and a clone having nicotinamide phosphoribosyltransferase activity was screened on a Luria broth (LB) plate (containing 50 mg/L kanamycin) from the clone.
  • the DNA of the plasmid pRSET-D298N was extracted, and the point mutation introduced was confirmed by DNA sequencing.
  • the amino acid sequence of the D298N mutant was mutated from Asp (D) to Asn at position 298 compared to the parent amino acid sequence set forth in SEQ ID NO: 2. N).
  • D298E-R 5' GAACGGCGGGTCACCAGATTCCGGACGGATAACAAC 3', using the plasmid pRSET-nampt constructed in the first step of Example 6 as a template, using the above PCR amplification reaction system and PCR amplification reaction conditions for high-fidelity PCR amplification
  • the D298E mutant gene was isolated by electrophoresis on a 1% agarose gel and the amplified product was recovered using a commercial kit, and the amplified product was ligated with the vector pRSET-A (specific reference to the first part of Example 6) to obtain a plasmid pRSET-D298E.
  • the plasmid pRSET-D298E was transformed into competent bacterial cell E. coli BL21, and a clone having nicotinamide phosphoribosyltransferase activity was screened on a Luria broth (LB) plate (containing 50 mg/L kanamycin) from the clone.
  • the DNA of the plasmid pRSET-D298E was extracted, and the point mutation introduced was confirmed by DN A sequencing.
  • the amino acid sequence of the D298E mutant was mutated from Asp (D) to Glu (E) at position 298 as compared to the parent amino acid sequence as shown in SEQ ID NO: 2.
  • D338E-R 5' GTCAGCGTTAACACCTTCACCCTGGATAAC 3', with Example 6
  • a part of the constructed plasmid pRSET-nampt was used as a template, and the D338E mutant gene was amplified by high-fidelity PCR using the above PCR amplification reaction system and PCR amplification reaction conditions, separated by 1% agarose gel electrophoresis and the amplified product was recovered by a commercial kit.
  • the amplified product was ligated with the vector pRSET-A (specific reference to the first part of Example 6) to obtain the plasmid pRSET-D338E.
  • the plasmid pRSET-D338E was transformed into competent bacterial cell E.
  • D377A-R 5' GAATTTCTGGGTCGCACGGTGCGGGTG 3', using the plasmid pRSET-nampt constructed in the first step of Example 6 as a template, using the above PCR amplification reaction system and PCR amplification reaction conditions for high-fidelity PCR amplification of D377A
  • the mutant gene was separated by electrophoresis on a 1% agarose gel and the amplified product was recovered by a commercial kit, and the amplified product was ligated with the vector pRSET-A (specific reference to the first part of Example 6) to obtain a plasmid pRSET-D377A.
  • the plasmid pRSET-D377A was transformed into competent bacterial cell E.
  • plasmid pRSET-D377A was extracted, and the point mutation introduced was confirmed by DNA sequencing.
  • the amino acid sequence of the D377A mutant was mutated from Asp (D) to Ala (A) at position 377 as compared to the parent amino acid sequence as shown in SEQ ID NO: 2.
  • D377E-R 5' CGAATTTCTGGGTTTCACGGTGCGGG 3', using the plasmid pRSET-nampt constructed in the first part of Example 6 as a template, using the above PCR amplification reaction system and PCR amplification reaction conditions for high-fidelity PCR amplification of D377E mutant
  • the gene was isolated by electrophoresis on a 1% agarose gel and the amplified product was recovered using a commercial kit, and the amplified product was ligated with the vector pRSET-A (specific reference to the first part of Example 6) to obtain a plasmid pRSET-D377E.
  • the plasmid pRSET-D377E was transformed into competent bacterial cell E.
  • D338E-R 5' GTCAGCGTTAACACCTTCACCCTGGATAAC 3', using the plasmid pRSET-E231Q constructed in the fifth subsection of Example 6, Part 2, as a template, using the above PCR amplification reaction system and PCR amplification reaction conditions for high fidelity PCR
  • the E231Q/D338E mutant gene was amplified, separated by 1% agarose gel electrophoresis and the amplified product was recovered by a commercial kit, and the amplified product was ligated with the vector pRSET-A (specific reference to the first part of Example 6) to obtain a plasmid pRSET. -twenty one.
  • the plasmid pRSET-21 was transformed into competent bacterial cell E. coli BL21, and a clone having nicotinamide phosphoribosyltransferase activity was screened on a Luria broth (LB) plate (containing 50 mg/L kanamycin) from the clone.
  • the DNA of the plasmid pRSET-2 1 was extracted, and the point mutation introduced was confirmed by DNA sequencing.
  • the amino acid sequence of the E231Q/D338E mutant was mutated from Glu (E) to Gin (Q) at position 231 and by Asp (D) at position 338, compared to the parent amino acid sequence set forth in SEQ ID NO: 2. ) Mutation to Glu (E).
  • the plasmid pRSET-22 was transformed into competent bacterial cell E. coli BL21, and a clone having nicotinamide phosphoribosyltransferase activity was screened on a Luria broth (LB) plate (containing 50 mg/L kanamycin) from the clone.
  • the DNA of the plasmid pRSET-22 was extracted, and the point mutation introduced was confirmed by DNA sequencing.
  • the amino acid sequence of the E231Q/D377E mutant was mutated from Glu (E) to Gin (Q) at position 231 and by Asp (D) at position 377, compared to the parent amino acid sequence as shown in SEQ ID NO: 2. ) Mutation to Glu (E).
  • D377E-R 5' CGAATTTCTGGGTTTCACGGTGCGGG 3', using the plasmid pRSET-D338E constructed in the 10th subsection of the second part of Example 6 as a template, using the above PCR amplification reaction system and P CR amplification reaction conditions for high fidelity
  • the D338E/D377E mutant gene was amplified by PCR, separated by 1% agarose gel electrophoresis and the amplified product was recovered by a commercial kit, and the amplified product was ligated with the vector pRSET-A (refer to the first part of Example 6 for specific reference) to obtain a plasmid.
  • pRSET-23 5' CGAATTTCTGGGTTTCACGGTGCGGG 3'
  • the plasmid pRSET-23 was transformed into competent bacterial cell E. coli BL21, and a clone having nicotinamide phosphoribosyltransferase activity was screened on a Luria broth (LB) plate (containing 50 mg/L kanamycin) from the clone.
  • the DN A of the plasmid pRSET-23 was extracted, and the point mutation introduced was confirmed by DNA sequencing.
  • the amino acid sequence of the D338E/D377E mutant was mutated from Asp (D) to G1 u (E) at position 338 and by Asp at position 377 ( D) Mutation to Glu (E).
  • D377E-R 5' CGAATTTCTGGGTTTCACGGTGCGGG 3'
  • the plasmid pRSET-21 constructed in the 14th subsection of the second part of Example 6 was used as a template, and the above PCR amplification reaction system and PCR amplification reaction conditions were subjected to high fidelity PCR.
  • the E231Q/D338E/D377E mutant gene was amplified, separated by 1% agarose gel electrophoresis and the amplified product was recovered using a commercial kit, and the amplified product was ligated with the vector pRSET-A.
  • the plasmid pRSET-31 was obtained by referring specifically to the first part of Example 6.
  • the plasmid pRSET-31 was transformed into competent bacterial cell E. coli BL21, and a clone having nicotinamide phosphoribosyltransferase activity was screened on a Luria broth (LB) plate (containing 50 mg/L kanamycin) from the clone.
  • the DNA of the plasmid pRSET-31 was extracted, and the point mutation introduced was confirmed by DNA sequencing.
  • the amino acid sequence of the E231Q/D338E/D377E mutant was mutated from Glu (E ) to Gin (Q) at position 231 and from Asp at position 338, compared to the parent amino acid sequence as shown in SEQ ID NO: 2.
  • D Mutation to Glu (E), mutation from Asp (D) to Glu (E) at position 377.
  • the plasmid pRSET-31 constructed in the 17th subsection of the second part of Example 6 was used as a template, using the above PCR
  • the amplification reaction system and the PCR amplification reaction conditions were subjected to high-fidelity PCR amplification of the E231Q/D298A/D338E/D377E mutant gene, which was separated by 1% agarose gel electrophoresis and the amplified product was recovered by a commercial kit, and then the amplification product was used.
  • the vector pRSET-A was ligated (specifically with reference to the first part of Example 6) to obtain plasmid pRSET-41.
  • the plasmid pRSET-41 was transformed into competent bacterial cell E. coli BL21, and a clone having nicotinamide phosphoribosyltransferase activity was screened on a Luria broth (LB) plate (containing 50 mg/L kanamycin) from the clone.
  • LB Luria broth
  • the DNA of the plasmid pRSET-41 was extracted, and the point mutation introduced was confirmed by DNA sequencing.
  • the amino acid sequence of the E231Q/D298A/D338E/D377E mutant was mutated from Glu (E ) to Gin (Q) at position 231, at position 298, compared to the parent amino acid sequence set forth in SEQ ID NO: 2. It was mutated from Asp (D) to Ala (A), from Asp (D) to Glu (E) at position 338, and from Asp (D) to Glu (E) at position 377.
  • E231Q ⁇ pRSET-D298A, pRSET-D298N, pRSET-D298E, pRSET-D338N, pRSET-D338E, pRSET-D377A, pRSET-D377N, pRSET-D377E, pRSET-21, pRSET-22, pRSET-23, pRSET-31 and pRSET-41 was transformed into competent bacterial cells E. coli BL21, respectively, and cultured on a Luria broth (LB) plate (containing 50 mg/L kanamycin) for 24 hours at 37 °C.
  • LB Luria broth
  • nicotinamide mononucleotide (NMN) in the reaction solution was determined by high performance liquid chromatography (HPL C), and The specific enzyme activity of each enzyme was calculated, and the specific activity of the parent nicotinamide phosphoribosyltransferase was referred to as reference 100.
  • the relative activities of the parent and each mutant are shown in Table 1.
  • a substrate solution containing 30 mM of nicotinamide, 20 mM of ATP, 30 mM of ribose, 15 mM of MgCl 2 , 15 mM of KCl and 100 mM of Tris-HCl buffer was added to the reaction vessel to adjust the pH to 7.0-7.5.
  • Various enzymes for catalysis were added to the substrate solution, and the amounts of the various enzymes were as follows:
  • the supernatant protein solution of the nicotinamide phosphoribosyltransferase mutant (F180A) obtained in the third part of Example 6 was 10 ml/L.
  • Substrate solution ribose phosphate pyrophosphate kinase 20 g/L substrate solution, ribokinase 20 g/L substrate solution.
  • stirring was continued during the reaction (stirring speed 50 rpm), the reaction temperature was controlled at 37 ° C, and the pH was maintained at 7.0-7.5.
  • a crude nicotinamide mononucleotide solution (containing NMN10 mM) was obtained, which was filtered, purified and dried to obtain a finished nicotinamide single nucleotide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

提供了一种制备烟酰胺单核苷酸的方法,其是以烟酰胺、ATP和核糖为原料,在烟酰胺磷酸核糖转移酶、核糖磷酸焦磷酸激酶以及核糖激酶的催化作用下发生反应,制得烟酰胺单核苷酸。

Description

一种制备烟酰胺单核苷酸的方法 2 技术领域
[0001] 本发明涉及分子生物学与生物技术领域, 特别涉及一种利用生物催化技术制备 烟酰胺单核苷酸的方法。
背景技术
[0002] 烟酰胺单核苷酸 (Nicotinamide mononucleotide, 缩写成 NMN) 是生物细胞内 存在的一种生化物质, 它在被烟酰胺核苷酸腺苷转移酶腺苷化后即转化成生物 细胞所赖以生存的重要物质烟酰胺腺嘌呤二核苷酸 (NAD, 又称辅酶 I) , 并且 同吋直接参与体内腺苷转移, 其在生物细胞内的水平直接影响到 NAD的浓度, 在生物细胞能量生成中扮演着重要角色, 并且对人体无危害。
[0003] 截至目前, 人们已经发现烟酰胺单核苷酸具有诸如延缓衰老、 治疗帕金森等老 年病、 调节胰岛素分泌、 影响 mRNA的表达等诸多医疗保健用途, 更多的用途还 在不断研发出来。 随着人们对烟酰胺单核苷酸药用及保健效果认知的增加, 以 及作为一种反应底物在化工方面的广泛应用, 市场上对烟酰胺单核苷酸的需求 量与日俱增。
[0004] 目前, NMN的制备方法主要包括以下三种: 1、 酵母菌发酵法; 2、 化学合成 法; 3、 生物催化法。 其中, 化学合成法具有成本较高且产生手性化合物的缺点 ; 而酵母菌发酵法生产的 NMN含一定有机溶剂残留; 生物催化法因不含机溶剂 残留, 也不存在手性问题且制备的 NMN与机体内的同型而成为目前最绿色环保 无公害的 NMN的制备方法。 现有的制备 NMN的生物催化法一般是以烟酰胺和 5'- 磷酸核糖基 -1'-焦磷酸 (PRPP) 为底物, 在烟酰胺磷酸核糖转移酶 (Nicotinamid e phosphoribosyltransferase, 缩写成 Nampt) 的催化下制备 NMN。 但是, 因 PRPP 的市场价格较高且来源受限, 导致该生物催化法的生产成本较高, 严重制约了 其应用和发展。
[0005] 因此, 有必要幵发一种无需使用 PRPP作为底物的利用生物催化技术制备 NMN 的新方法。 技术问题
[0006] 针对上述背景技术中提到的现有的烟酰胺单核苷酸的制备方法存在的诸多问题 , 本发明的目的在于提供一种利用生物催化技术制备 NMN的新方法, 该方法可 避幵使用价格较高且来源受限的 PRPP作为底物, 具有价格低廉、 绿色环保无公 害、 适宜大规模工业化生产等优点。
问题的解决方案
技术解决方案
[0007] 为实验上述目的, 发明人经过长期大量的实验摸索, 终于幵发出一种制备烟酰 胺单核苷酸的方法, 其特征在于: 以烟酰胺、 ATP和核糖为原料, 在烟酰胺磷酸 核糖转移酶、 核糖磷酸焦磷酸激酶以及核糖激酶的催化作用下发生反应, 制得 烟酰胺单核苷酸。
[0008] 根据酶的国际系统命名法, 上述方法中所使用的酶的 EC编号分别为: 烟酰胺 磷酸核糖转移酶 EC 2.4.2.12, 核糖磷酸焦磷酸激酶 EC 2.7.6.1, 核糖激酶 EC 2.7.1.15。
[0009] 上述方法中所使用的各种酶的具体存在形式包括酶液、 酶冻干粉、 含酶细胞以 及各种固定化酶和固定化含酶细胞, 可以是未经纯化的粗酶形式, 也可以是经 部分纯化或完全纯化的形式。
[0010] 为提高所使用酶的稳定性和重复利用率, 以更好地完成上述催化反应并更进一 步降低成本, 上述方法中优选使用固定化酶。 该固定化酶的制备方法大致为: 用洗酶缓冲液 (0.02M Tris-HCl/0.001M EDTA, pH7.0溶液) 将酶稀释至蛋白含 量为 5-10mg/ml, 再将酶稀释液与 PB溶液 (2.0mol/L磷酸二氢钾, pH7.5) 等体积 混合, 然后加入酶固定化载体 (50毫克酶 /克载体) , 于摇床 (转速 150rpm) 中 2 5°C反应 20小吋。 反应完成后用滤袋过滤, 用洗酶缓冲液清洗 5-6次, 即得固定化 酶。 其中的酶固定化载体可以选用环氧型 LX-3000、 二氧化硅、 活性炭、 玻璃珠 以及大孔型聚 N-氨乙基丙烯酰胺 -聚乙烯等。
[0011] 优选地, 所述反应在温度为 30-50°C, pH值为 6.5-8.5的条件下进行。
[0012] 更优选地, 所述反应在温度为 35-45°C, pH值为 7.0-8.0的条件下进行吋转化率 最高。 [0013] 优选地, 所述反应在 Mg 2+和 K +存在的条件下进行。
[0014] 优选地, 所述反应在 Tris-HCl缓冲液中进行。
[0015] 优选地, 所述烟酰胺的浓度为 l-150mM, 所述 ATP的浓度为 l-50mM, 所述核 糖的浓度为 l-100mM。
[0016] 优选地, 所述原料中烟酰胺、 ATP、 核糖的摩尔比为 1-4:1:1-4。 按照此种配比 投放原料可使 ATP得到充分反应, 其转化率为 80<¾-100<¾。 因为在三种原料中, 以 ATP的售价为最高, 故而此种配比可较大程度地降低生产成本。 更优选地, 所 述原料中烟酰胺、 ATP、 核糖的摩尔比为 1.5:1:1.5, 反应以底物 ATP计算的转化 率为 100%, 且成本最低。
[0017] 反应完成后得到的烟酰胺单核苷酸粗产品溶液可采用本领域已知的常规技术手 段进行过滤、 纯化和干燥处理, 即得烟酰胺单核苷酸成品。
[0018] 优选地, 上述方法中所使用的烟酰胺磷酸核糖转移酶为如下 (a) 或 (b) 的蛋 白质:
[0019] (a) 其氨基酸序列如 SEQ ID NO: 3所示的蛋白质,
[0020] (b) 在 (a) 限定的氨基酸序列中经过取代、 缺失或添加一个或几个氨基酸并 且以烟酰胺和 PRPP为底物具有比氨基酸序列如 SEQ ID NO: 2所示的亲本高的烟 酰胺磷酸核糖转移酶催化活性的由 ) 衍生的蛋白质。
[0021] 上述烟酰胺磷酸核糖转移酶是发明人对来自 Meiothermus ruber DSM 1279的核 苷酸序列如 SEQ ID NO: 1所示的亲本烟酰胺磷酸核糖转移酶的基因进行定点突 变, PCR扩增后插入适当的载体, 随后在 LB+卡那霉素培养基上筛选而获得的一 系列具有高催化活性的烟酰胺磷酸核糖转移酶突变体, 这些突变体的高催化活 性可极大地降低工业上应用生物催化技术生产烟酰胺单核苷酸的成本, 具有较 高的工业应用价值。
[0022] 优选地, 所述烟酰胺磷酸核糖转移酶与如 SEQ ID NO: 2所示的氨基酸序列相 比在选自至少一个下述位点处具有至少一个突变: 第 180位、 第 182位、 第 231位 、 第 298位、 第 338位以及第 377位。
[0023] 更优选地, 所述烟酰胺磷酸核糖转移酶具有至少一个下述突变: F180A、 F180 W、 A182Y、 E231A、 E231Q、 D298A、 D298N、 D298E、 D338N、 D338E、 D37 7A、 D377N以及 D377E。
发明的有益效果
有益效果
[0024] 1、 与现有的烟酰胺单核苷酸的制备方法相比, 本发明提供的方法既克服了化 学合成法和酵母菌发酵法的缺陷, 又成功避免了价格昂贵且来源受限的 PRPP的 使用, 该方法以底物 ATP计算的转化率高达 100%, 属于现今烟酰胺单核苷酸的 制备方法中最为绿色环保无公害、 适宜大规模工业化生产且价格低廉的一种。
[0025] 2、 本发明提供的方法中使用的烟酰胺磷酸核糖转移酶是一种经人工诱导定点 突变获得的突变体, 与现有的野生型相比, 该突变体的酶活力大大提高, 经酶 活测定, 以烟酰胺和 PRPP为底物, 该突变体的酶催化活性是亲本的 1.2-6.9倍, 如此高的催化活性使其可以未经纯化以粗酶形式使用, 或者只须部分纯化, 这 就使得应用本发明提供的烟酰胺磷酸核糖转移酶突变体催化生产 NMN的成本大 大降低, 具有较高的市场竞争力, 能够满足将 NMN的生物催化方法应用于大规 模工业化生产的需求。
本发明的实施方式
[0026] 下面结合具体实施例对本发明做进一步的详细说明, 以下实施例是对本发明的 解释, 本发明并不局限于以下实施例, 实施例中未注明具体条件者, 按常规条 件或制造商建议的条件进行。
[0027] 本发明提供的烟酰胺单核苷酸的制备方法可以是将所有原料及酶一并加入的一 步投料方式也可以是分步投料方式, 一步投料方式具有操作简单、 反应吋间短 的优点, 分步投料方式具有反应彻底、 转化率高的优点, 其具体实施过程如下
[0028] 一步投料方式:
[0029] 将各原料溶解于水中配制底物溶液, 该底物溶液的组成为 l-150mM的烟酰胺、 l-50mM的 ATP、 1-lOOmM的核糖、 l-30mM的 MgCl 2
、 l-20mM的 KC1以及 50-100mM的 Tris-HCl缓冲液, 调 pH至 6.5-8.5。 然后向底物 溶液中加入催化用的各种酶, 各种酶的加入量分别为: 烟酰胺磷酸核糖转移酶 1- lOOg/L底物溶液, 核糖磷酸焦磷酸激酶 1- 100g/L底物溶液, 核糖激酶 1- 100g/L底 物溶液。 搅拌均匀后进行反应, 反应过程中持续搅拌 (搅拌速度 50rpm) , 控制 反应温度为 30-50°C, 维持 pH值为 6.5-8.5。 反应 l-8h后即得烟酰胺单核苷酸粗产 品溶液, 再经过滤、 纯化、 干燥后即得烟酰胺单核苷酸成品。
[0030] 分步投料方式:
[0031] 将各原料溶解于水中配制底物溶液, 该底物溶液的组成为 l-50mM的 ATP、 1-10 OmM的核糖、 l-30mM的 MgCl 2、 l-20mM的 KC1以及 50-100mM的 Tris-HCl缓冲液 , 调 pH至 6.5-8.5。 然后向底物溶液中加入以下催化用酶: 核糖磷酸焦磷酸激酶 1- 100g/L底物溶液, 核糖激酶 l-100g/L底物溶液。 搅拌均匀后进行反应, 反应过程 中持续搅拌 (搅拌速度 50rpm) , 控制反应温度为 30-50°C, 维持 pH值为 6.5-8.5。
[0032] 待上述反应进行 l-8h后, 分离出反应液, 再向反应液中加入 1-lOOmM的烟酰胺 、 l-30mM的 MgCl 2
、 50- lOOmM的 Tris-HCl缓冲液以及烟酰胺磷酸核糖转移酶 1- 100g/L底物溶液, 搅 拌均匀后继续反应, 反应过程中持续搅拌 (搅拌速度 50rpm) , 控制反应温度为 30-50°C, 维持 pH值为 6.5-8.5, 再反应 l-8h后即得烟酰胺单核苷酸粗产品溶液, 再经过滤、 纯化、 干燥后即得烟酰胺单核苷酸成品。
[0033] 以下实施例中所使用的酶, 除烟酰胺磷酸核糖转移酶突变体是从来自 Meiother mus ruber DSM 1279的核苷酸序列如 SEQ ID NO: 1所示的亲本烟酰胺磷酸核糖 转移酶经人工诱导定点突变获得的之外, 其余烟酰胺磷酸核糖转移酶、 核糖磷 酸焦磷酸激酶以及核糖激酶均是从市场上直接购入的酶冻干粉。
[0034] 实施例 1
[0035] 烟酰胺单核苷酸的制备
[0036] 向反应釜中加入底物溶液, 含 ImM的烟酰胺、 ImM的 ATP、 ImM的核糖、 lm M的 MgCl 2、 ImM的 KC1以及 50mM的 Tris-HCl缓冲液, 调 pH至 6.5-7.0。 然后向底 物溶液中加入催化用的各种酶, 各种酶的加入量分别为: 烟酰胺磷酸核糖转移 酶 lg/L底物溶液, 核糖磷酸焦磷酸激酶 lg/L底物溶液, 核糖激酶 lg/L底物溶液。 搅拌均匀后进行反应, 反应过程中持续搅拌 (搅拌速度 50rpm) , 控制反应温度 为 30°C, 维持 pH值为 6.5-7.0。 反应 lh后即得烟酰胺单核苷酸粗产品溶液 (含 NM N0.5mM) , 再经过滤、 纯化、 干燥后即得烟酰胺单核苷酸成品。
[0037] 实施例 2
[0038] 烟酰胺单核苷酸的制备
[0039] 向反应釜中加入底物溶液, 含 15mM的 ATP、 lOOmM的核糖、 10mM的 MgCl 2 、 10mM的 KC1以及 70mM的 Tris-HCl缓冲液, 调 pH至 7.0-7.5。 然后向底物溶液中 加入以下催化用酶: 核糖磷酸焦磷酸激酶 20g/L底物溶液, 核糖激酶 20g/L底物溶 液。 搅拌均匀后进行反应, 反应过程中持续搅拌 (搅拌速度 50rpm) , 控制反应 温度为 35°C, 维持 pH值为 7.0-7.5。
[0040] 待上述反应进行 3h后, 分离出反应液, 并将反应液送入另一反应釜中, 再向反 应液中加入 60mM的烟酰胺、 10mM的 MgCl 2、 70mM的 Tris-HCl缓冲液以及烟酰 胺磷酸核糖转移酶 20g/L底物溶液, 搅拌均匀后继续反应, 反应过程中持续搅拌 (搅拌速度 50rpm) , 控制反应温度为 35°C, 维持 pH值为 7.5-8.0, 再反应 3h后即 得烟酰胺单核苷酸粗产品溶液 (含 NMN7.3mM) , 再经过滤、 纯化、 干燥后即 得烟酰胺单核苷酸成品。
[0041] 实施例 3
[0042] 烟酰胺单核苷酸的制备
[0043] 向反应釜中加入底物溶液, 含 35mM的 ATP、 70mM的核糖、 20mM的 MgCl 2 、 15mM的 KC1以及 lOOmM的 Tris-HCl缓冲液, 调 pH至 7.5-8.0。 然后向底物溶液 中加入以下催化用酶: 核糖磷酸焦磷酸激酶 50g/L底物溶液, 核糖激酶 50g/L底物 溶液。 搅拌均匀后进行反应, 反应过程中持续搅拌 (搅拌速度 50rpm) , 控制反 应温度为 40°C, 维持 pH值为 7.5-8.0。
[0044] 待上述反应进行 5h后, 分离出反应液, 并将反应液送入另一反应釜中, 再向反 应液中加入 60mM的烟酰胺、 20mM的 MgCl 2、 lOOmM的 Tris-HCl缓冲液以及烟 酰胺磷酸核糖转移酶 50g/L底物溶液, 搅拌均匀后继续反应, 反应过程中持续搅 拌 (搅拌速度 50rpm) , 控制反应温度为 40°C, 维持 pH值为 7.5-8.0, 再反应 5h后 即得烟酰胺单核苷酸粗产品溶液 (含 NMN17.2mM) , 再经过滤、 纯化、 干燥后 即得烟酰胺单核苷酸成品。
[0045] 实施例 4 [0046] 烟酰胺单核苷酸的制备
[0047] 向反应釜中加入底物溶液, 含 150mM的烟酰胺、 50mM的 ATP、 lOOmM的核糖 、 30mM的 MgCl 2、 20mM的 KC1以及 lOOmM的 Tris-HCl缓冲液, 调 pH至 8.0-8.5。 然后向底物溶液中加入催化用的各种酶, 各种酶的加入量分别为: 烟酰胺磷酸 核糖转移酶 100g/L底物溶液, 核糖磷酸焦磷酸激酶 100g/L底物溶液, 核糖激酶 10 Og/L底物溶液。 搅拌均匀后进行反应, 反应过程中持续搅拌 (搅拌速度 50rpm) , 控制反应温度为 50°C, 维持 pH值为 8.0-8.5。 反应 8h后即得烟酰胺单核苷酸粗 产品溶液 (含 NMN24.9mM) , 再经过滤、 纯化、 干燥后即得烟酰胺单核苷酸成 p
[0048] 实施例 5
[0049] 烟酰胺单核苷酸的制备
[0050] 制备固定化酶: 用洗酶缓冲液 (0.02M Tris-HCl/0.001M EDTA, pH7.0溶液) 分别将烟酰胺磷酸核糖转移酶、 核糖磷酸焦磷酸激酶以及核糖激酶稀释至蛋白 含量为 5-10mg/ml, 再将酶稀释液与 PB溶液 (2.0mol/L磷酸二氢钾, pH7.5) 等体 积混合, 然后加入酶固定化载体环氧型 LX-3000 (50毫克酶 /克载体) , 于摇床 ( 转速 150rpm) 中 25°C反应 20小吋。 反应完成后用滤袋过滤, 用洗酶缓冲液清洗 5- 6次, 即分别得到固定化烟酰胺磷酸核糖转移酶、 固定化核糖磷酸焦磷酸激酶以 及固定化核糖激酶。
[0051] 向反应釜中加入底物溶液, 含 30mM的烟酰胺、 20mM的 ATP、 30mM的核糖、 15mM的 MgCl 2、 15mM的 KC1以及 lOOmM的 Tris-HCl缓冲液, 调 pH至 7.0-7.5。 然 后向底物溶液中加入催化用的各种酶, 各种酶的加入量分别为: 固定化烟酰胺 磷酸核糖转移酶 10g/L底物溶液, 固定化核糖磷酸焦磷酸激酶 10g/L底物溶液, 固 定化核糖激酶 10g/L底物溶液。 搅拌均匀后进行反应, 反应过程中持续搅拌 (搅 拌速度 50rpm) , 控制反应温度为 37°C, 维持 pH值为 7.0-7.5。 反应 4h后即得烟酰 胺单核苷酸粗产品溶液 (含 NMNlOmM) , 再经过滤、 纯化、 干燥后即得烟酰 胺单核苷酸成品。
[0052] 实施例 6
[0053] 烟酰胺磷酸核糖转移酶突变体的制备 [0054] 本发明提供的方法中用到的人工诱导定点突变的烟酰胺磷酸核糖转移酶的制备 过程大致为: 首先构建含有亲本烟酰胺磷酸核糖转移酶基因的载体质粒, 然后 设定定点突变的位点以及突变后的氨基酸种类, 再合成适当的引物, 以含亲本 烟酰胺磷酸核糖转移酶基因的载体质粒为模板, PCR扩增 DNA片段、 装配所扩 增的 DNA片段以及 PCR扩增全长突变基因。 然后将该全长突变基因克隆到适当 的载体上并转化适当的宿主细胞, 经培养筛选出具有烟酰胺磷酸核糖转移酶活 性的阳性克隆。 最后从阳性克隆中提取质粒 DNA, 进行 DNA序列测定分析, 以 确定引入的突变, 在确定目的片段插入到载体上后, 通过 LB+卡那霉素培养基筛 选, 从而获得一系列具有高催化活性的烟酰胺磷酸核糖转移酶突变体。
[0055] 在上述制备方法中, 可采用任何适用的载体, 例如: 可以为原核表达载体, 如 pRSET和 pES21等; 可以为克隆载体, 如 pUC18/19和 pBluscript-SK等。 本发明 优先选用 pRSET-A为载体, 载体的宿主细胞可以是包括大肠杆菌在内的原核细 胞, 也可以是包括酿酒酵母和毕赤巴斯德酵母在内的真核细胞。
[0056] 一、 含有亲本烟酰胺磷酸核糖转移酶基因的载体质粒的构建
[0057] 对基因库公布的来自 Meiothermus ruber DSM 1279的亲本烟酰胺磷酸核糖转移 酶的基因序列 (GenBank登录号: CP001743.1) 进行全序列人工合成 (由商业合 成公司完成) 。 合成的的产物经限制性内切酶 Ndel和 BamHI酶切后与经同样限制 性内切酶 Ndel和 BamHI酶切的载体 pRSET-A (源自 Invitrogen, USA) 连接, 得质 粒 pRSET-nampt。 经 DNA测序, 确定该被克隆的亲本烟酰胺磷酸核糖转移酶的核 苷酸序列如 SEQ ID NO: 1所示, 其氨基酸序列如 SEQ ID NO: 2所示。
[0058] 二、 烟酰胺磷酸核糖转移酶突变体的制备
[0059] PCR扩增反应体系为: 20 mM Tris-HCl (pH 8.8), lO mM KCl, 10 mM (NH 4) 2 SO 4, 2 mM MgS0 4, 0.1% Triton X-100, 50 mM dATP, 50 mM dTTP, 50 mM dCTP, 50 mM dGTP, 1.5 U Pfu DNA聚合酶(Promega, USA) , 20 ng DNA模板 , 以及 400 nM上游引物和 400 nM下游引物, 用无菌水调反应体积至 50微升。
[0060] PCR扩增反应条件为: 95°C 3分钟, 35圈循环: 95°C 50秒、 52°C 30秒和 72°C 3 分钟, 最后 72°C 5分钟。
[0061] 1、 F180A突变体的制备 [0062] 用如下引物对 F180A-F: 5'
GTTCAAACTGCACGACGCGGGTGCTCGTGGTGTTTC 3'和 F180A-R: 5'
GAAACACCACGAGCACCCGCGTCGTGCAGTTTGAAC 3', 以实施例 6第一部 分构建的质粒 pRSET-nampt为模板, 利用上述 PCR扩增反应体系和 PCR扩增反应 条件进行高保真 PCR扩增 F180A突变体基因, 经 1%琼脂糖胶电泳分离并用商业 试剂盒回收扩增产物, 再将扩增产物用载体 pRSET-A连接 (具体参考实施例 6第 一部分) , 得到质粒 pRSET-F180A。 将质粒 pRSET-F180A转化感受态细菌细胞 E. coli BL21 , 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉素) 上筛选出具有烟酰 胺磷酸核糖转移酶活性的克隆, 从克隆中提取质粒 pRSET-F180A的 DNA, 经 DN A测序确定引入的点突变无误。 与如 SEQ ID NO: 2所示的亲本氨基酸序列相比 , F180A突变体的氨基酸序列在第 180位点由 Phe (F) 突变为 Ala (A) , 其氨基 酸序列如 SEQ ID NO: 3所示。
[0063] 2、 F180W突变体的制备
[0064] 用如下引物对 F180W-F: 5'
GTTCAAACTGCACGACTGGGGTGCTCGTGGTGTTTC 3'和 F180W-R: 5' GAAACACCACGAGCACCCCAGTCGTGCAGTTTGAAC 3', 以实施例 6第一部 分构建的质粒 pRSET-nampt为模板, 利用上述 PCR扩增反应体系和 PCR扩增反应 条件进行高保真 PCR扩增 F180W突变体基因, 经 1%琼脂糖胶电泳分离并用商业 试剂盒回收扩增产物, 再将扩增产物用载体 pRSET-A连接 (具体参考实施例 6第 一部分) , 得到质粒 pRSET-F180W。 将质粒 pRSET-F180W转化感受态细菌细胞 E. coli BL21 , 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉素) 上筛选出具有烟 酰胺磷酸核糖转移酶活性的克隆, 从克隆中提取质粒 pRSET-F180W的 DNA, 经 DNA测序确定引入的点突变无误。 与如 SEQ ID NO: 2所示的亲本氨基酸序列相 比, F180W突变体的氨基酸序列在第 180位点由 Phe (F) 突变为 Trp (w) 。
[0065] 3、 A182Y突变体的制备
[0066] 用如下引物对 A182Y-F: 5' 第一部分构建的质粒 pRSET-nampt为模板, 利用上述 PCR扩增反应体系和 PCR扩 增反应条件进行高保真 PCR扩增 A182Y突变体基因, 经 1%琼脂糖胶电泳分离并 用商业试剂盒回收扩增产物, 再将扩增产物用载体 pRSET-A连接 (具体参考实 施例 6第一部分) , 得到质粒 pRSET-A182Y。 将质粒 pRSET-A182Y转化感受态细 菌细胞 E. coli BL21, 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉素) 上筛选出 具有烟酰胺磷酸核糖转移酶活性的克隆, 从克隆中提取质粒 pRSET-A182Y的 DN A, 经 DNA测序确定引入的点突变无误。 与如 SEQ ID NO: 2所示的亲本氨基酸 序列相比, A182Y突变体的氨基酸序列在第 182位点由 Ala (A) 突变为 Tyr (Y)
[0067] 4、 E231A突变体的制备
[0068] 用如下弓 I物对 Ε231 A-F: 5' CTATCCCGGCTATGGCGCACTCTACCGTTAC
3'和 Ε231 A-R: 5' GTAACGGTAGAGTGCGCCATAGCCGGGATAG 3', 以实施例 6 第一部分构建的质粒 pRSET-nampt为模板, 利用上述 PCR扩增反应体系和 PCR扩 增反应条件进行高保真 PCR扩增 E231A突变体基因, 经 1%琼脂糖胶电泳分离并 用商业试剂盒回收扩增产物, 再将扩增产物用载体 pRSET-A连接 (具体参考实 施例 6第一部分) , 得到质粒 pRSET-E231A。 将质粒 pRSET-E231A转化感受态细 菌细胞 E. coli BL21, 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉素) 上筛选出 具有烟酰胺磷酸核糖转移酶活性的克隆, 从克隆中提取质粒 pRSET-E231A的 DN A, 经 DNA测序确定引入的点突变无误。 与如 SEQ ID NO: 2所示的亲本氨基酸 序列相比, E231A突变体的氨基酸序列在第 231位点由 Glu (E) 突变为 Ala (A)
[0069] 5、 E231Q突变体的制备
[0070] 用如下弓 I物对 E231Q-F: 5' CTCTATCCCGGCTATGCAGCACTCTACCGTTACC 3'和 E231Q-R: 5' GGTAACGGTAGAGTGCTGCATAGCCGGGATAGAG 3', 以实 施例 6第一部分构建的质粒 pRSET-nampt为模板, 利用上述 PCR扩增反应体系和 P CR扩增反应条件进行高保真 PCR扩增 E231Q突变体基因, 经 1%琼脂糖胶电泳分 离并用商业试剂盒回收扩增产物, 再将扩增产物用载体 pRSET-A连接 (具体参 考实施例 6第一部分) , 得到质粒 pRSET-E231Q。 将质粒 pRSET-E231Q转化感受 态细菌细胞 E. coli BL21, 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉素) 上筛 选出具有烟酰胺磷酸核糖转移酶活性的克隆, 从克隆中提取质粒 pRSET-E231Q 的 DNA, 经 DNA测序确定引入的点突变无误。 与如 SEQ ID NO: 2所示的亲本氨 基酸序列相比, E231Q突变体的氨基酸序列在第 231位点由 Glu (E) 突变为 Gin (
Q) 。
[0071] 6、 D298A突变体的制备
[0072] 用如下弓 I物对 D298A-F: 5' TATCCGTCCGGCGTCTGGTGACCC 3'和 D298A-R:
5' GGGTCACCAGACGCCGGACGGATA
3', 以实施例 6第一部分构建的质粒 pRSET-nampt为模板, 利用上述 PCR扩增反应 体系和 PCR扩增反应条件进行高保真 PCR扩增 D298A突变体基因, 经 1%琼脂糖 胶电泳分离并用商业试剂盒回收扩增产物, 再将扩增产物用载体 pRSET-A连接
(具体参考实施例 6第一部分) , 得到质粒 pRSET-D298A。 将质粒 pRSET-D298A 转化感受态细菌细胞 E. coli BL21, 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉 素) 上筛选出具有烟酰胺磷酸核糖转移酶活性的克隆, 从克隆中提取质粒 pRSET -D298A的 DNA, 经 DNA测序确定引入的点突变无误。 与如 SEQ ID NO: 2所示 的亲本氨基酸序列相比, D298A突变体的氨基酸序列在第 298位点由 Asp (D) 突 变为 Ala (A) 。
[0073] 7、 D298N突变体的制备
[0074] 用如下弓 I物对 D298N-F: 5' GTTGTTATCCGTCCGAATTCTGGTGACCCGCCG 3'和 D298N-R: 5' CGGCGGGTCACCAGAATTCGGACGGATAACAAC 3', 以实施 例 6第一部分构建的质粒 pRSET-nampt为模板, 利用上述 PCR扩增反应体系和 PC R扩增反应条件进行高保真 PCR扩增 D298N突变体基因, 经 1%琼脂糖胶电泳分离 并用商业试剂盒回收扩增产物, 再将扩增产物用载体 pRSET-A连接 (具体参考 实施例 6第一部分) , 得到质粒 pRSET-D298N。 将质粒 pRSET-D298N转化感受态 细菌细胞 E. coli BL21, 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉素) 上筛选 出具有烟酰胺磷酸核糖转移酶活性的克隆, 从克隆中提取质粒 pRSET-D298N的 D NA, 经 DNA测序确定引入的点突变无误。 与如 SEQ ID NO: 2所示的亲本氨基 酸序列相比, D298N突变体的氨基酸序列在第 298位点由 Asp (D) 突变为 Asn ( N) 。
[0075] 8、 D298E突变体的制备
[0076] 用如下引物对 D298E-F: 5'
GTTGTTATCCGTCCGGAATCTGGTGACCCGCCGTTC 3'和 D298E-R: 5' GAACGGCGGGTCACCAGATTCCGGACGGATAACAAC 3', 以实施例 6第一咅 分构建的质粒 pRSET-nampt为模板, 利用上述 PCR扩增反应体系和 PCR扩增反应 条件进行高保真 PCR扩增 D298E突变体基因, 经 1%琼脂糖胶电泳分离并用商业 试剂盒回收扩增产物, 再将扩增产物用载体 pRSET-A连接 (具体参考实施例 6第 一部分) , 得到质粒 pRSET-D298E。 将质粒 pRSET-D298E转化感受态细菌细胞 E . coli BL21 , 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉素) 上筛选出具有烟酰 胺磷酸核糖转移酶活性的克隆, 从克隆中提取质粒 pRSET-D298E的 DNA, 经 DN A测序确定引入的点突变无误。 与如 SEQ ID NO: 2所示的亲本氨基酸序列相比 , D298E突变体的氨基酸序列在第 298位点由 Asp (D) 突变为 Glu (E) 。
[0077] 9、 D338N突变体的制备
[0078] 用如下引物对 D338N-F: 5'
GAGTCAGCGTTAACACCATTACCCTGGATAACACGAAC 3', 以实施例 6第一 部分构建的质粒 pRSET-nampt为模板, 利用上述 PCR扩增反应体系和 PCR扩增反 应条件进行高保真 PCR扩增 D338N突变体基因, 经 1%琼脂糖胶电泳分离并用商 业试剂盒回收扩增产物, 再将扩增产物用载体 pRSET-A连接 (具体参考实施例 6 第一部分) , 得到质粒 pRSET-D338N。 将质粒 pRSET-D338N转化感受态细菌细 胞 E. coli BL21, 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉素) 上筛选出具有 烟酰胺磷酸核糖转移酶活性的克隆, 从克隆中提取质粒 pRSET-D338N的 DNA, 经 DNA测序确定引入的点突变无误。 与如 SEQ ID N0: 2所示的亲本氨基酸序列 相比, D338N突变体的氨基酸序列在第 338位点由 Asp (D) 突变为 Asn (N) 。
[0079] 10、 D338E突变体的制备
[0080] 用如下弓 I物对 D338E-F: 5' GTTATCCAGGGTGAAGGTGTTAACGCTGAC
3'和 D338E-R: 5' GTCAGCGTTAACACCTTCACCCTGGATAAC 3', 以实施例 6第 一部分构建的质粒 pRSET-nampt为模板, 利用上述 PCR扩增反应体系和 PCR扩增 反应条件进行高保真 PCR扩增 D338E突变体基因, 经 1%琼脂糖胶电泳分离并用 商业试剂盒回收扩增产物, 再将扩增产物用载体 pRSET-A连接 (具体参考实施 例 6第一部分) , 得到质粒 pRSET-D338E。 将质粒 pRSET-D338E转化感受态细菌 细胞 E. coli BL21, 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉素) 上筛选出具 有烟酰胺磷酸核糖转移酶活性的克隆, 从克隆中提取质粒 pRSET-D338E的 DNA , 经 DNA测序确定引入的点突变无误。 与如 SEQ ID NO: 2所示的亲本氨基酸序 列相比, D338E突变体的氨基酸序列在第 338位点由 Asp (D) 突变为 Glu (E) 。
[0081] 11、 D377A突变体的制备
[0082] 用如下弓 I物对 D377A-F: 5' CACCCGCACCGTGCGACCCAGAAATTC
3'和 D377A-R: 5' GAATTTCTGGGTCGCACGGTGCGGGTG 3', 以实施例 6第一咅 分构建的质粒 pRSET-nampt为模板, 利用上述 PCR扩增反应体系和 PCR扩增反应 条件进行高保真 PCR扩增 D377A突变体基因, 经 1%琼脂糖胶电泳分离并用商业 试剂盒回收扩增产物, 再将扩增产物用载体 pRSET-A连接 (具体参考实施例 6第 一部分) , 得到质粒 pRSET-D377A。 将质粒 pRSET-D377A转化感受态细菌细胞 E. coli BL21 , 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉素) 上筛选出具有烟 酰胺磷酸核糖转移酶活性的克隆, 从克隆中提取质粒 pRSET-D377A的 DNA, 经 DNA测序确定引入的点突变无误。 与如 SEQ ID NO: 2所示的亲本氨基酸序列相 比, D377A突变体的氨基酸序列在第 377位点由 Asp (D) 突变为 Ala (A) 。
[0083] 12、 D377N突变体的制备
[0084] 用如下引物对 D377N-F: 5'
GAGCGAATTTCTGGGTATTACGGTGCGGGTGTTGC 3', 以实施例 6第一咅吩 构建的质粒 pRSET-nampt为模板, 利用上述 PCR扩增反应体系和 PCR扩增反应条 件进行高保真 PCR扩增 D377N突变体基因, 经 1%琼脂糖胶电泳分离并用商业试 剂盒回收扩增产物, 再将扩增产物用载体 pRSET-A连接 (具体参考实施例 6第一 部分) , 得到质粒 pRSET-D377N。 将质粒 pRSET-D377N转化感受态细菌细胞 E. coli BL21 , 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉素) 上筛选出具有烟酰 胺磷酸核糖转移酶活性的克隆, 从克隆中提取质粒 pRSET-D377N的 DNA, 经 DN A测序确定引入的点突变无误。 与如 SEQ ID NO: 2所示的亲本氨基酸序列相比 , D377N突变体的氨基酸序列在第 377位点由 Asp (D) 突变为 Asn (N) 。
[0085] 13、 D377E突变体的制备
[0086] 用如下弓 I物对 D377E-F: 5' CCCGCACCGTGAAACCCAGAAATTCG
3'和 D377E-R: 5' CGAATTTCTGGGTTTCACGGTGCGGG 3', 以实施例 6第一部 分构建的质粒 pRSET-nampt为模板, 利用上述 PCR扩增反应体系和 PCR扩增反应 条件进行高保真 PCR扩增 D377E突变体基因, 经 1%琼脂糖胶电泳分离并用商业 试剂盒回收扩增产物, 再将扩增产物用载体 pRSET-A连接 (具体参考实施例 6第 一部分) , 得到质粒 pRSET-D377E。 将质粒 pRSET-D377E转化感受态细菌细胞 E . coli BL21 , 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉素) 上筛选出具有烟酰 胺磷酸核糖转移酶活性的克隆, 从克隆中提取质粒 pRSET-D377E的 DNA, 经 DN A测序确定引入的点突变无误。 与如 SEQ ID NO: 2所示的亲本氨基酸序列相比 , D377E突变体的氨基酸序列在第 377位点由 Asp (D) 突变为 Glu (E) 。
[0087] 14、 E231Q/D338E突变体的制备
[0088] 用如下引物对 D338E-F: 5' GTTATCCAGGGTGAAGGTGTTAACGCTGAC
3'和 D338E-R: 5' GTCAGCGTTAACACCTTCACCCTGGATAAC 3', 以实施例 6 第二部分的第 5小节构建的质粒 pRSET-E231Q为模板, 利用上述 PCR扩增反应体 系和 PCR扩增反应条件进行高保真 PCR扩增 E231Q/D338E突变体基因, 经 1%琼 脂糖胶电泳分离并用商业试剂盒回收扩增产物, 再将扩增产物用载体 pRSET-A 连接 (具体参考实施例 6第一部分) , 得到质粒 pRSET-21。 将质粒 pRSET-21转 化感受态细菌细胞 E. coli BL21, 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉素 ) 上筛选出具有烟酰胺磷酸核糖转移酶活性的克隆, 从克隆中提取质粒 pRSET-2 1的 DNA, 经 DNA测序确定引入的点突变无误。 与如 SEQ ID NO: 2所示的亲本 氨基酸序列相比, E231Q/D338E突变体的氨基酸序列在第 231位点由 Glu (E) 突 变为 Gin (Q) 、 在第 338位点由 Asp (D) 突变为 Glu (E) 。
[0089] 15、 E231Q/D377E突变体的制备
[0090] 用如下引物对 D377E-F: 5' CCCGCACCGTGAAACCCAGAAATTCG 3'和 D377E-R: 5' CGAATTTCTGGGTTTCACGGTGCGGG 3', 以实施例 6第二部 分的第 5小节构建的质粒 pRSET-E231Q为模板, 利用上述 PCR扩增反应体系和 PC R扩增反应条件进行高保真 PCR扩增 E231Q/D377E突变体基因, 经 1%琼脂糖胶电 泳分离并用商业试剂盒回收扩增产物, 再将扩增产物用载体 pRSET-A连接 (具 体参考实施例 6第一部分) , 得到质粒 pRSET-22。 将质粒 pRSET-22转化感受态 细菌细胞 E. coli BL21, 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉素) 上筛选 出具有烟酰胺磷酸核糖转移酶活性的克隆, 从克隆中提取质粒 pRSET-22的 DNA , 经 DNA测序确定引入的点突变无误。 与如 SEQ ID NO: 2所示的亲本氨基酸序 列相比, E231Q/D377E突变体的氨基酸序列在第 231位点由 Glu (E) 突变为 Gin (Q) 、 在第 377位点由 Asp (D) 突变为 Glu (E) 。
[0091] 16、 D338E/D377E突变体的制备
[0092] 用如下引物对 D377E-F: 5' CCCGCACCGTGAAACCCAGAAATTCG
3'和 D377E-R: 5' CGAATTTCTGGGTTTCACGGTGCGGG 3', 以实施例 6第二部 分的第 10小节构建的质粒 pRSET-D338E为模板, 利用上述 PCR扩增反应体系和 P CR扩增反应条件进行高保真 PCR扩增 D338E/D377E突变体基因, 经 1%琼脂糖胶 电泳分离并用商业试剂盒回收扩增产物, 再将扩增产物用载体 pRSET-A连接 ( 具体参考实施例 6第一部分) , 得到质粒 pRSET-23。 将质粒 pRSET-23转化感受 态细菌细胞 E. coli BL21, 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉素) 上筛 选出具有烟酰胺磷酸核糖转移酶活性的克隆, 从克隆中提取质粒 pRSET-23的 DN A, 经 DNA测序确定引入的点突变无误。 与如 SEQ ID NO: 2所示的亲本氨基酸 序列相比, D338E/D377E突变体的氨基酸序列在第 338位点由 Asp (D) 突变为 G1 u (E) 、 在第 377位点由 Asp (D) 突变为 Glu (E) 。
[0093] 17、 E231Q/D338E/D377E突变体的制备
[0094] 用如下引物对 D377E-F: 5' CCCGCACCGTGAAACCCAGAAATTCG
3'和 D377E-R: 5' CGAATTTCTGGGTTTCACGGTGCGGG 3', 以实施例 6第二部 分的第 14小节构建的质粒 pRSET-21为模板, 禾 上述 PCR扩增反应体系和 PCR 扩增反应条件进行高保真 PCR扩增 E231Q/D338E/D377E突变体基因, 经 1%琼脂 糖胶电泳分离并用商业试剂盒回收扩增产物, 再将扩增产物用载体 pRSET-A连 接 (具体参考实施例 6第一部分) , 得到质粒 pRSET-31。 将质粒 pRSET-31转化 感受态细菌细胞 E. coli BL21, 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉素) 上筛选出具有烟酰胺磷酸核糖转移酶活性的克隆, 从克隆中提取质粒 pRSET-31 的 DNA, 经 DNA测序确定引入的点突变无误。 与如 SEQ ID NO: 2所示的亲本氨 基酸序列相比, E231Q/D338E/D377E突变体的氨基酸序列在第 231位点由 Glu (E ) 突变为 Gin (Q) 、 在第 338位点由 Asp (D) 突变为 Glu (E) 、 在第 377位点由 Asp (D) 突变为 Glu (E) 。
[0095] 18、 E231Q/D298A/D338E/D377E突变体的制备
[0096] 用如下引物对 D298A-F: 5' TATCCGTCCGGCGTCTGGTGACCC 3'和 D298A-R : 5' GGGTCACCAGACGCCGGACGGATA 3', 以实施例 6第二部分的第 17小节 构建的质粒 pRSET-31为模板, 利用上述 PCR扩增反应体系和 PCR扩增反应条件 进行高保真 PCR扩增 E231Q/D298A/D338E/D377E突变体基因, 经 1%琼脂糖胶电 泳分离并用商业试剂盒回收扩增产物, 再将扩增产物用载体 pRSET-A连接 (具 体参考实施例 6第一部分) , 得到质粒 pRSET-41。 将质粒 pRSET-41转化感受态 细菌细胞 E. coli BL21, 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉素) 上筛选 出具有烟酰胺磷酸核糖转移酶活性的克隆, 从克隆中提取质粒 pRSET-41的 DNA , 经 DNA测序确定引入的点突变无误。 与如 SEQ ID NO: 2所示的亲本氨基酸序 列相比, E231Q/D298A/D338E/D377E突变体的氨基酸序列在第 231位点由 Glu (E ) 突变为 Gin (Q) 、 在第 298位点由 Asp (D) 突变为 Ala (A) 、 在第 338位点由 Asp (D) 突变为 Glu (E) 、 在第 377位点由 Asp (D) 突变为 Glu (E) 。
[0097] 三、 酶的提取
[0098] 将含亲本烟酰胺磷酸核糖转移酶基因的质粒 pRSET-nampt以及含烟酰胺磷酸核 糖转移酶突变体基因的质粒 pRSET-F180A、 pRSET-F180W、 pRSET-A182Y、 pR SET-E231A、 pRSET-E231Q^ pRSET-D298A、 pRSET-D298N、 pRSET-D298E、 pRSET-D338N、 pRSET-D338E、 pRSET-D377A、 pRSET-D377N、 pRSET-D377E 、 pRSET-21、 pRSET-22、 pRSET-23、 pRSET-31以及 pRSET-41分别转化感受态 细菌细胞 E. coli BL21, 在 Luria broth (LB) 平板 (含 50 mg/L卡那霉素) 上 37°C 培养 24小吋。 接种单个克隆于 50毫升 LB液体培养基 (含 50 mg/L卡那霉素) 中于 30°C培养 16-20小吋。 离心收集菌体, 称量等同量菌体按照 1 :4比例悬浮破菌液 (pH
7.5) 中。 然后用超声波裂解细菌细胞。 离心 (4-10°C, 12000rpm, 10分钟) 并 收集上清液, 即分别得到亲本烟酰胺磷酸核糖转移酶以及一系列烟酰胺磷酸核 糖转移酶突变体的上清蛋白溶液, 可用于酶活性的测定以及烟酰胺单核苷酸的 的生物催化制备。
[0099] 四、 酶活性的测定
[0100] 配制底物溶液: 含 60mM的烟酰胺、 25mM的 PRPP、 18mM的 MgCl 2
、 15mM的 KC1和 lOOmM的 Tris buffer缓冲液, 调 pH至 7.5。 分别取底物溶液 900微 升各 19份, 然后分别加入 100微升等浓度的实施例 6第三部分得到的亲本烟酰胺 磷酸核糖转移酶以及各烟酰胺磷酸核糖转移酶突变体的上清蛋白溶液, 于 37°C进 行 10分钟反应, 加入 10(VL25<¾三氯乙酸终止反应。 通过高效液相色谱仪 (HPL C) 测定反应液中烟酰胺单核苷酸 (NMN) 的含量, 并计算每种酶的比酶活, 以亲本烟酰胺磷酸核糖转移酶的比酶活为参比 100, 亲本及各突变体的相对比活 性如表 1所示。
[0101] 表 1烟酰胺磷酸核糖转移酶的酶活
[表 1]
Figure imgf000019_0001
[0102] 五、 烟酰胺单核苷酸的制备
[0103] 向反应釜中加入底物溶液, 含 30mM的烟酰胺、 20mM的 ATP、 30mM的核糖、 15mM的 MgCl 2、 15mM的 KC1以及 lOOmM的 Tris-HCl缓冲液, 调 pH至 7.0-7.5。 然 后向底物溶液中加入催化用的各种酶, 各种酶的加入量分别为: 实施例 6第三部 分得到的烟酰胺磷酸核糖转移酶突变体 (F180A) 的上清蛋白溶液 10ml /L底物 溶液, 核糖磷酸焦磷酸激酶 20g/L底物溶液, 核糖激酶 20g/L底物溶液。 搅拌均匀 后进行反应, 反应过程中持续搅拌 (搅拌速度 50rpm) , 控制反应温度为 37°C, 维持 pH值为 7.0-7.5。 反应 4h后即得烟酰胺单核苷酸粗产品溶液 (含 NMNlOmM ) , 再经过滤、 纯化、 干燥后即得烟酰胺单核苷酸成品。

Claims

权利要求书
[权利要求 1] 一种制备烟酰胺单核苷酸的方法, 其特征在于: 以烟酰胺、 ATP和核 糖为原料, 在烟酰胺磷酸核糖转移酶、 核糖磷酸焦磷酸激酶以及核糖 激酶的催化作用下发生反应, 制得烟酰胺单核苷酸。
[权利要求 2] 根据权利要求 1所述的制备烟酰胺单核苷酸的方法, 其特征在于: 所 述反应在温度为 30-50°C, pH值为 6.5-8.5的条件下进行。
[权利要求 3] 根据权利要求 1所述的制备烟酰胺单核苷酸的方法, 其特征在于: 所 述反应在 Mg 2+和 K +存在的条件下进行。
[权利要求 4] 根据权利要求 1所述的制备烟酰胺单核苷酸的方法, 其特征在于: 所 述反应在 Tris-HCl缓冲液中进行。
[权利要求 5] 根据权利要求 1所述的制备烟酰胺单核苷酸的方法, 其特征在于: 所 述烟酰胺的浓度为 l-150mM, 所述 ATP的浓度为 l-50mM, 所述核糖 的浓度为 l-100mM。
[权利要求 6] 根据权利要求 1所述的制备烟酰胺单核苷酸的方法, 其特征在于: 所 述原料中烟酰胺、 ATP、 核糖的摩尔比为 1-4:1:1-4。
[权利要求 7] 根据权利要求 7所述的制备烟酰胺单核苷酸的方法, 其特征在于: 所 述原料中烟酰胺、 ATP、 核糖的摩尔比为 1.5:1:1.5。
[权利要求 8] 根据权利要求 1至 7任一项所述的制备烟酰胺单核苷酸的方法, 其特征 在于所述烟酰胺磷酸核糖转移酶为如下 ) 或 (b) 的蛋白质:
(a) 其氨基酸序列如 SEQ ID NO: 3所示的蛋白质,
(b) 在 (a) 限定的氨基酸序列中经过取代、 缺失或添加一个或几个 氨基酸并且以烟酰胺和 PRPP为底物具有比氨基酸序列如 SEQ ID NO
: 2所示的亲本高的烟酰胺磷酸核糖转移酶催化活性的由 (a) 衍生的 蛋白质。
[权利要求 9] 根据权利要求 8所述的制备烟酰胺单核苷酸的方法, 其特征在于所述 烟酰胺磷酸核糖转移酶与如 SEQ ID NO: 2所示的氨基酸序列相比在 选自至少一个下述位点处具有至少一个突变: 第 180位、 第 182位、 第 231位、 第 298位、 第 338位以及第 377位。 [权利要求 10] 根据权利要求 9所述的制备烟酰胺单核苷酸的方法, 其特征在于所述 烟酰胺磷酸核糖转移酶具有至少一个下述突变: F180A、 F180W、 Al 82Y、 Ε231Α、 E231Q、 D298A、 D298N、 D298E、 D338N、 D338E、 D377A、 D377N以及 D377E。
PCT/CN2016/092458 2016-07-30 2016-07-30 一种制备烟酰胺单核苷酸的方法2 WO2017185549A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680003986.5A CN108026130B (zh) 2016-07-30 2016-07-30 一种制备烟酰胺单核苷酸的方法
PCT/CN2016/092458 WO2017185549A1 (zh) 2016-07-30 2016-07-30 一种制备烟酰胺单核苷酸的方法2
US15/574,851 US11040996B2 (en) 2016-07-30 2016-07-30 Method for preparing nicotinamide mononucleotide (NMN)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/092458 WO2017185549A1 (zh) 2016-07-30 2016-07-30 一种制备烟酰胺单核苷酸的方法2

Publications (1)

Publication Number Publication Date
WO2017185549A1 true WO2017185549A1 (zh) 2017-11-02

Family

ID=60160665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092458 WO2017185549A1 (zh) 2016-07-30 2016-07-30 一种制备烟酰胺单核苷酸的方法2

Country Status (3)

Country Link
US (1) US11040996B2 (zh)
CN (1) CN108026130B (zh)
WO (1) WO2017185549A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108949865A (zh) * 2018-08-17 2018-12-07 尚科生物医药(上海)有限公司 固定化全细胞一步酶法催化制备β-烟酰胺单核苷酸
WO2019065876A1 (ja) 2017-09-29 2019-04-04 三菱ケミカル株式会社 ニコチンアミドモノヌクレオチドの製造方法およびその方法に用いる形質転換体
US10392416B2 (en) 2015-10-02 2019-08-27 Metro International Biotech, Llc Crystal forms of beta-nicotinamide mononucleotide
US10548913B2 (en) 2015-08-05 2020-02-04 Metro International Biotech, Llc Nicotinamide mononucleotide derivatives and their uses
US10618927B1 (en) 2019-03-22 2020-04-14 Metro International Biotech, Llc Compositions and methods for modulation of nicotinamide adenine dinucleotide
US11180521B2 (en) 2018-01-30 2021-11-23 Metro International Biotech, Llc Nicotinamide riboside analogs, pharmaceutical compositions, and uses thereof
WO2022114105A1 (ja) 2020-11-27 2022-06-02 ミライラボバイオサイエンス株式会社 高純度βニコチンアミドモノヌクレオチド(NMN)及びその製造方法
US11787830B2 (en) 2021-05-27 2023-10-17 Metro International Biotech, Llc Crystalline solids of nicotinic acid mononucleotide and esters thereof and methods of making and use
US11939348B2 (en) 2019-03-22 2024-03-26 Metro International Biotech, Llc Compositions comprising a phosphorus derivative of nicotinamide riboside and methods for modulation of nicotinamide adenine dinucleotide
US11959116B2 (en) 2021-10-27 2024-04-16 Asahi Kasei Pharma Corporation Method for producing nicotinamide mononucleotide

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202039823A (zh) * 2018-12-18 2020-11-01 日商帝人股份有限公司 用以製造菸鹼醯胺衍生物之重組微生物及方法,以及其所使用之載體
CN110195089A (zh) * 2019-06-13 2019-09-03 叁爻生物科技(上海)有限公司 烟酰胺单核苷酸及其制备方法
CN111635917A (zh) * 2020-06-11 2020-09-08 辽宁天华生物药业有限公司 一种β-烟酰胺核糖二核苷酸的制备方法
CN112159831B (zh) * 2020-09-30 2022-06-03 湖州颐盛生物科技有限公司 一种制备烟酰胺单核苷酸的方法
CN112280762B (zh) * 2020-11-13 2022-11-01 中山俊凯生物技术开发有限公司 一种烟酰胺核糖激酶突变体及其编码基因和应用
CN113122594B (zh) * 2021-04-13 2023-04-25 百瑞全球有限公司 烟酸或其衍生物的单核苷酸及其生物产物的制备方法
CN114672530B (zh) * 2022-04-22 2024-01-23 江苏信佑生物有限公司 一种制备β-烟酰胺单核苷酸的方法
CN116875578A (zh) * 2023-08-25 2023-10-13 康盈红莓(中山)生物科技有限公司 一种三联体融合酶及其制备方法和以之制备烟酰胺单核苷酸的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101601679A (zh) * 2009-03-17 2009-12-16 中国人民解放军第二军医大学 一种烟酰胺单核苷酸的应用
CN104367587A (zh) * 2013-12-06 2015-02-25 中国人民解放军第二军医大学 烟酰胺单核苷酸在制备促脑缺血后神经再生药物中的应用
WO2015069860A1 (en) * 2013-11-06 2015-05-14 President And Fellows Of Harvard College Biological production of nad precursors and analogs
CN104814974A (zh) * 2015-03-16 2015-08-05 邦泰生物工程(深圳)有限公司 烟酰胺单核苷酸在制备抗衰老药物或保健品的应用
CN104817604A (zh) * 2015-03-16 2015-08-05 邦泰生物工程(深圳)有限公司 一种β-烟酰胺单核苷酸的纯化方法
WO2015148522A1 (en) * 2014-03-24 2015-10-01 Seals Douglas R Methods for treatment of vascular endothelial dysfunction using nicotinamide mononucleotide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268575B2 (en) * 2004-09-20 2012-09-18 Washington University NAD biosynthesis systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101601679A (zh) * 2009-03-17 2009-12-16 中国人民解放军第二军医大学 一种烟酰胺单核苷酸的应用
WO2015069860A1 (en) * 2013-11-06 2015-05-14 President And Fellows Of Harvard College Biological production of nad precursors and analogs
CN104367587A (zh) * 2013-12-06 2015-02-25 中国人民解放军第二军医大学 烟酰胺单核苷酸在制备促脑缺血后神经再生药物中的应用
WO2015148522A1 (en) * 2014-03-24 2015-10-01 Seals Douglas R Methods for treatment of vascular endothelial dysfunction using nicotinamide mononucleotide
CN104814974A (zh) * 2015-03-16 2015-08-05 邦泰生物工程(深圳)有限公司 烟酰胺单核苷酸在制备抗衰老药物或保健品的应用
CN104817604A (zh) * 2015-03-16 2015-08-05 邦泰生物工程(深圳)有限公司 一种β-烟酰胺单核苷酸的纯化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUN, YET ET AL.: "Nicotinamide Mononucleotide, a Key NAD+ Intermediate, Treats the Pathophysiology of Diet-and Age-Induced Diabetes in Mice", CELL METABOLISM, vol. 14, 5 October 2011 (2011-10-05), pages 528 - 536, XP028308487, ISSN: 1550-4131 *
SHENG, FEIFENGET ET AL.: "Effect of Nicotinamide Mononucleotide on Insulin Secretion and Gene Expressions of PDX-1 and FoxOl in RIN-m5f Cells", JOURNAL OF CENTRAL SOUTH UNIVERSITY (MEDICIAL SCIENCES, vol. 36, no. 10, 31 December 2011 (2011-12-31), pages 958 - 963, XP055435584, ISSN: 1672-7347 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11464796B2 (en) 2015-08-05 2022-10-11 Metro International Biotech, Llc Nicotinamide mononucleotide derivatives and their uses
US10548913B2 (en) 2015-08-05 2020-02-04 Metro International Biotech, Llc Nicotinamide mononucleotide derivatives and their uses
US11878027B2 (en) 2015-08-05 2024-01-23 Metro International Biotech, Llc Nicotinamide mononucleotide derivatives and their uses
US10392416B2 (en) 2015-10-02 2019-08-27 Metro International Biotech, Llc Crystal forms of beta-nicotinamide mononucleotide
US11059847B2 (en) 2015-10-02 2021-07-13 Metro International Biotech, Llc Crystal forms of β-nicotinamide mononucleotide
WO2019065876A1 (ja) 2017-09-29 2019-04-04 三菱ケミカル株式会社 ニコチンアミドモノヌクレオチドの製造方法およびその方法に用いる形質転換体
US11180521B2 (en) 2018-01-30 2021-11-23 Metro International Biotech, Llc Nicotinamide riboside analogs, pharmaceutical compositions, and uses thereof
CN108949865A (zh) * 2018-08-17 2018-12-07 尚科生物医药(上海)有限公司 固定化全细胞一步酶法催化制备β-烟酰胺单核苷酸
US10618927B1 (en) 2019-03-22 2020-04-14 Metro International Biotech, Llc Compositions and methods for modulation of nicotinamide adenine dinucleotide
US11939348B2 (en) 2019-03-22 2024-03-26 Metro International Biotech, Llc Compositions comprising a phosphorus derivative of nicotinamide riboside and methods for modulation of nicotinamide adenine dinucleotide
WO2022114105A1 (ja) 2020-11-27 2022-06-02 ミライラボバイオサイエンス株式会社 高純度βニコチンアミドモノヌクレオチド(NMN)及びその製造方法
US11787830B2 (en) 2021-05-27 2023-10-17 Metro International Biotech, Llc Crystalline solids of nicotinic acid mononucleotide and esters thereof and methods of making and use
US11952396B1 (en) 2021-05-27 2024-04-09 Metro International Biotech, Llc Crystalline solids of nicotinic acid mononucleotide and esters thereof and methods of making and use
US11959116B2 (en) 2021-10-27 2024-04-16 Asahi Kasei Pharma Corporation Method for producing nicotinamide mononucleotide

Also Published As

Publication number Publication date
CN108026130A (zh) 2018-05-11
CN108026130B (zh) 2021-04-02
US11040996B2 (en) 2021-06-22
US20180162895A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
WO2017185549A1 (zh) 一种制备烟酰胺单核苷酸的方法2
WO2018023209A1 (zh) 一种制备烟酰胺单核苷酸的方法
WO2018023207A1 (zh) 一种制备烟酰胺单核苷酸的方法
WO2018023208A1 (zh) 一种制备烟酰胺单核苷酸的方法
WO2018023210A1 (zh) 一种制备烟酰胺单核苷酸的方法
US10174298B2 (en) Nicotinamide phosphoribosyltransferase (NAMPT) mutant and use thereof
CN111718915B (zh) 一种烟酰胺磷酸核糖转移酶突变体、包含该突变体的重组表达载体和重组菌及应用
CN109609474B (zh) 一种氨基酸脱氢酶突变体及其在合成l-草铵膦中的应用
CN109750009B (zh) 一种草铵膦脱氢酶突变体及其应用
US10519429B2 (en) Nicotinamide phosphoribosyltransferase (NAMPT) mutant and use thereof
CN105543201B (zh) 一种头孢菌素c酰化酶突变体
CN113151198B (zh) 一种γ-谷酰胺甲胺合成酶的突变体,其编码基因、氨基酸序列及其应用
JP2021530216A (ja) 操作されたパントテン酸キナーゼ改変体酵素
JP2020536508A (ja) トランスアミナーゼ突然変異体及びその使用
CN110885812A (zh) 一种酶法制备尿苷酸的方法
CN112980906B (zh) 一种用于制备β-烟酰胺单核苷酸的酶组合物及其应用
CN113151199B (zh) 一种具有热稳定性的γ-谷酰胺甲胺合成酶的突变体,其编码基因、氨基酸序列及其应用
CN116200353A (zh) 一种羰基还原酶突变体、重组菌及其应用
CN114736884A (zh) 一种胞苷单磷酸激酶突变体及其基因和应用
CN116426499B (zh) 一种甲基转移酶突变体、生物材料和应用
CN110452899B (zh) 一种葡萄糖异构酶、突变体及其在制备d-果糖中的应用
CN117946998A (zh) 一种烟酰胺单核苷酸腺苷转移酶突变体及其应用
CN115820588A (zh) 一种来源于亚麻荠的糖基转移酶及其应用
CN117143844A (zh) 一种适用于碱性pH的NADH焦磷酸酶及其应用
CN110951717A (zh) 一种l-阿拉伯糖异构酶异构体及其应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15574851

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16900058

Country of ref document: EP

Kind code of ref document: A1