WO2019065876A1 - ニコチンアミドモノヌクレオチドの製造方法およびその方法に用いる形質転換体 - Google Patents

ニコチンアミドモノヌクレオチドの製造方法およびその方法に用いる形質転換体 Download PDF

Info

Publication number
WO2019065876A1
WO2019065876A1 PCT/JP2018/036040 JP2018036040W WO2019065876A1 WO 2019065876 A1 WO2019065876 A1 WO 2019065876A1 JP 2018036040 W JP2018036040 W JP 2018036040W WO 2019065876 A1 WO2019065876 A1 WO 2019065876A1
Authority
WO
WIPO (PCT)
Prior art keywords
nmn
reaction
atp
enzyme
cell
Prior art date
Application number
PCT/JP2018/036040
Other languages
English (en)
French (fr)
Inventor
卓理 秋山
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to KR1020237037243A priority Critical patent/KR20230156155A/ko
Priority to KR1020207011819A priority patent/KR102681025B1/ko
Priority to CN201880054836.6A priority patent/CN111051520A/zh
Priority to JP2019545623A priority patent/JP7203744B2/ja
Priority to CN202310846785.3A priority patent/CN117187320A/zh
Priority to CN202410081198.4A priority patent/CN117887788A/zh
Priority to CN202410082787.4A priority patent/CN117904236A/zh
Priority to EP18861086.9A priority patent/EP3690057A4/en
Publication of WO2019065876A1 publication Critical patent/WO2019065876A1/ja
Priority to US16/832,347 priority patent/US20200332332A1/en
Priority to JP2021180410A priority patent/JP2022025128A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/048Pyridine radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1229Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1235Diphosphotransferases (2.7.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2497Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing N- glycosyl compounds (3.2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/32Nucleotides having a condensed ring system containing a six-membered ring having two N-atoms in the same ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/02Pentosyltransferases (2.4.2)
    • C12Y204/02001Purine-nucleoside phosphorylase (2.4.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/02Pentosyltransferases (2.4.2)
    • C12Y204/02012Nicotinamide phosphoribosyltransferase (2.4.2.12), i.e. visfatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/04Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • C12Y207/04001Polyphosphate kinase (2.7.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/06Diphosphotransferases (2.7.6)
    • C12Y207/06001Ribose-phosphate diphosphokinase (2.7.6.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/030055'-Nucleotidase (3.1.3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/02Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2) hydrolysing N-glycosyl compounds (3.2.2)
    • C12Y302/02001Purine nucleosidase (3.2.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/02Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2) hydrolysing N-glycosyl compounds (3.2.2)
    • C12Y302/02003Uridine nucleosidase (3.2.2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/02Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2) hydrolysing N-glycosyl compounds (3.2.2)
    • C12Y302/02014NMN nucleosidase (3.2.2.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01042Nicotinamide-nucleotide amidase (3.5.1.42)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01015Ribokinase (2.7.1.15)

Definitions

  • the present invention relates to a method for producing a nucleic acid compound such as nicotinamide mononucleotide.
  • Nicotinamide mononucleotide is a synthetic intermediate of nicotinamide adenine dinucleotide (NAD +).
  • NAD + nicotinamide adenine dinucleotide
  • NMN controls the activity of the longevity gene "Sirtuin” through conversion to NAD +, and that administration of NMN to mice exhibits anti-aging action.
  • NMN is effective in preventing diseases and improving symptoms of diseases such as diabetes, Alzheimer's disease, and heart failure.
  • Such NMNs are expected to be used as components of functional foods, pharmaceuticals, cosmetics and the like, and research and development of efficient manufacturing methods are being promoted with the aim of improving productivity.
  • Patent Document 1 discloses a method for producing NMN in which cells (yeast, bacteria, etc.) overexpressing nicotinamide phosphoribosyltransferase (Nampt) are isolated, and the cells are cultured in the presence of nicotinamide (NAM). It has been described (claims 1, 13, 15 etc.). Nampt is an enzyme that produces NMN from NAM and phosphoribosyl pyrophosphate (PRPP) that is biosynthesized in cells. Patent Document 1 also describes overexpressing phosphoribosyl pyrophosphate synthase (Prs) in the cells to promote the biosynthesis of PRPP (Claim 3 and the like).
  • Prs phosphoribosyl pyrophosphate synthase
  • Prs is an enzyme that produces PRPP and AMP from ribose-5-phosphate (R5P) and ATP.
  • a target compound such as NMN is produced by an enzyme reaction in a living body while culturing in a medium containing a carbon source, a nitrogen source and the like in a state where cells overexpressing a specific enzyme are used. There is.
  • Patent Document 2 a Prs mutant having reduced sensitivity to a reaction product (that is, capable of increasing the supply amount of PRPP into the system because it is less susceptible to negative feedback by PRPP generated by Prs)
  • a synthetic system of an NAD precursor is described (claim 1, paragraph 0068, etc.). It is also described that this Prs mutant may be recombinantly produced, isolated and purified (claim 6 etc.).
  • Patent Document 2 also describes that the system may further include Nampt, ATP, R5P, and PRPP (claims 10, 20, 21, 23, etc.).
  • Non-Patent Document 1 uses three enzymes: ribokinase (Rbk, which is described as RK in the relevant literature), Prs (also described as PPS) and hypoxanthine phosphoribosyltransferase (8B3).
  • Rbk ribokinase
  • Prs also described as PPS
  • hypoxanthine phosphoribosyltransferase 8B3
  • Rbk is involved in the reaction (i) to generate R5P and ADP from ribose and ATP
  • Prs is involved in the reaction (ii) to generate PRPP and AMP from R5P and ATP
  • 8B3 is (iii) PRPP and inosine It participates in the reaction of producing IMP and pyrophosphate (PPi) from acid.
  • ADP is regenerated from AMP produced in reaction (ii) by adenylate kinase.
  • phosphoenolpyruvate and pyruvate kinase regenerate ATP from the regenerated ADP and ADP generated in reaction (i).
  • Patent Document 3 describes a method for producing ATP by reacting polyphosphate kinase (Ppk) type 2, which is an enzyme capable of synthesizing ATP from AMP alone, with polyphosphate and AMP.
  • Ppk polyphosphate kinase
  • polyphosphate kinase having a specific amino acid sequence derived from a thermophilic bacterium (Thermosynchoccus elongatus etc.) is disclosed.
  • the synthesis reaction of the target compound and the regeneration reaction of ATP are coupled by simultaneously carrying out the above-mentioned production method of ATP, It is also described that ATP regenerated from AMP is utilized for the synthesis of a target compound.
  • Patent Document 4 shows that a typical enzyme of E. coli loses its activity and cell permeability of polyphosphate is obtained in E. coli containing a Ppk gene from a thermophilic bacterium that is not inactivated even by heat treatment at 70 ° C. for 10 minutes. There is described a method of regenerating ATP by heating at 60 to 80 ° C. to destroy the cell membrane of E. coli.
  • Patent Document 5 describes a method for producing nicotinamide mononucleotide, which is produced from NAM, ATP and ribose as raw materials, and is reacted under the catalytic action of nicotinamide phosphoribosyltransferase, ribose phosphate pyrophosphate kinase and ribose kinase.
  • Non-Patent Document 2 describes a method for synthesizing glycerol triphosphate using Ppk derived from a thermophilic bacterium and an ATP regeneration system thereby.
  • a buffer solution containing glycerol, ADP, polyphosphate, glycerol kinase (GK), Ppk and the like is used as a primary reaction solution, and the reaction is allowed to proceed while sequentially adding polyphosphate.
  • Non-Patent Document 3 shows a glutathione synthetase (GshF) derived from Streptococcus sanguinis and an ATP regenerating system by Ppk derived from a thermophilic bacterium Thermosynechococcus elongates BP-1 having an activity similar to that described in Patent Document 3.
  • GshF glutathione synthetase
  • Patent Documents 1 to 5 and Non-patent Documents 1 to 3 have problems in efficiently producing NMN, and can not be said to be excellent methods.
  • NMN is generated by an enzyme reaction in vivo while culturing in a medium containing a carbon source, a nitrogen source, etc. in a state where cells overexpressing a specific enzyme are used alive.
  • the amount produced is 300 nmol-NMN / g-yeast wet cell weight (Example 1). Assuming that the ratio of yeast dry cell weight / yeast wet cell weight ratio is 0.2, about 0.5 g ⁇ NMN / kg ⁇ yeast dry cell weight is obtained, and there is a problem that the amount of production is low.
  • Patent Document 2 describes a system for synthesizing an NAD precursor using a Prs mutant with reduced sensitivity to a reaction product. However, no example showing production of NMN is described, and no specific method for producing NMN or production amount is shown.
  • Patent Document 3 a method for producing ATP, in which a polyphosphate kinase (Ppk) type 2 which is an enzyme capable of independently synthesizing ATP from AMP is reacted with polyphosphate and AMP, is coupled with a synthesis reaction of a target compound.
  • Ppk polyphosphate kinase
  • Methods of making the material are described. However, no specific method for producing NMN or production amount is shown.
  • Patent Document 4 describes a method of heating ATP in which E. coli containing the Ppk gene derived from the thermophilic bacterium is destroyed and the ATP regenerating reaction is performed in a state in which the E. coli cell membrane is destroyed. There is no indication of the production method or amount of
  • Patent Document 5 describes a method for producing nicotinamide mononucleotide which is reacted with nicotinamide phosphoribosyltransferase, ribose phosphate pyrophosphate kinase and ribose kinase as catalysts using nicotinamide, ATP and ribose as raw materials.
  • a large amount of ATP is used for the production of NMN.
  • the number of moles of ATP added to the reaction system for the production of NMN is at least twice the number of moles of NMN to be produced. Since ATP is an expensive raw material, it can not be said that it is a cost-effective production method.
  • An object of the present invention is to provide a method for producing nicotinamide mononucleotide excellent in production efficiency.
  • the present inventors have developed transformants in which the expression of three enzymes, Nampt, Prs and Ppk, are enhanced, a cell-free protein synthesis reaction solution in which the three enzymes are expressed, or their processed products, R5P, NAM, ATP It was found that NMN can be produced more efficiently and inexpensively than conventional methods when the enzyme reaction is allowed to proceed by contacting with polyphosphate and causing the enzyme reaction to proceed (see FIG. 1).
  • NMN NMN could be manufactured more efficiently than the conventional method, and came to complete the 2nd invention group.
  • the present inventors have shown that (d) a gene encoding an enzyme classified into the EC number shown in EC 3.5.1.42, and the following (a) (c) (g) (h) (i) Or a gene encoding an enzyme classified into any one or more EC numbers, and transformants in which expression of nicotinamide phosphoribosyltransferase (Nampt) is enhanced, or their treatment
  • the object of the present invention has been found to be capable of efficiently producing NMN while remarkably suppressing the degradation of NMN by contacting at least nicotinamide (NAM), and the third invention group has been completed.
  • A EC 3.1.3.5
  • C EC 2.4.2.1
  • G EC 3.2.2.1
  • H EC 3.2.2.3
  • I EC 3.2.2.14
  • the present inventors added the total number of moles of ATP, ADP and AMP added to the reaction system for the production of NMN by a single or a combination of multiple means to 0.5 of the number of moles of NMN to be produced. It has been found that the amount can be made equal to or less than the equivalent, and the fourth invention group has been completed.
  • the present invention relates to the following [Item 1] to [Item 17].
  • [Item 1] Transformant in which expression of three enzymes, nicotinamide phosphoribosyltransferase (Nampt), phosphoribosyl pyrophosphate synthase (Prs) and polyphosphate kinase (Ppk) is enhanced, cell-free protein synthesis reaction solution in which the three enzymes are expressed
  • a process for producing nicotinamide mononucleotide (NMN) comprising the step of bringing a treated product thereof into contact with ribose-5-phosphate (R5P), nicotinamide (NAM), ATP, and polyphosphate.
  • [Section 2] A transformant in which expression of two enzymes of ribokinase (Rbk) and polyphosphate kinase (Ppk) is enhanced, a cell-free protein synthesis reaction solution in which the two enzymes are expressed, or their processed products, ribose, ATP,
  • the method for producing NMN according to Item 1 further comprising the step of contacting with polyphosphoric acid to produce the R5P.
  • Item 3 The method for producing NMN according to Item 1 or 2, which is performed under conditions such that the transformant does not substantially grow.
  • [Section 4] The method for producing NMN according to any one of Items 1 to 3, wherein the Nampt is derived from bacteria.
  • FIG. 10 A transformant in which expression of nicotinamide phosphoribosyltransferase (Nampt) is enhanced in the presence of pyrophosphatase (PPase), a cell-free protein synthesis reaction solution in which the enzyme is expressed, or a processed product thereof
  • PPase pyrophosphatase
  • a method of producing nicotinamide mononucleotide (NMN) comprising the steps of contacting (NAM) and phosphoribosyl pyrophosphate (PRPP).
  • NAM nicotinamide mononucleotide
  • PRPP phosphoribosyl pyrophosphate
  • NMN The method for producing NMN according to any one of Items 1 to 14, wherein the total number of moles of ATP, ADP and AMP added to the reaction system is 0.5 equivalents or less of the number of moles of NMN to be produced.
  • the production amount of NMN is dramatically improved over the conventional one (for example, 10 times or more of the production amount described in Patent Document 1) ) Becomes possible.
  • the production method of the present invention utilizing the ATP regeneration reaction, it is possible to produce NMN from inexpensive R5P or ribose as a raw material without adding a large amount of expensive intermediates and ATP as PRPP. Also, the cost of production can be reduced.
  • the third reaction can be efficiently advanced by utilizing the method for producing NMN according to the second invention group of the present invention. This makes it possible to improve the production amount and production rate of NMN, and can suppress the production cost of NMN.
  • a transformant, a resting cell prepared from the transformant, a membrane permeability improving cell, an inactivated cell, a disrupted cell, a disruption When the cell-free extract prepared from the cells and the stabilized product obtained by subjecting the cell-free extract to the stabilization treatment are used to carry out the reaction for producing NMN, the degradation of the product NMN can be suppressed. As a result, it becomes possible to produce NMN with a high yield using cells and cell-free extract which are in a low cost catalytic form, and the production cost of NMN can be suppressed.
  • the amount of ATP to be added for producing NMN can be reduced. Since ATP is expensive, this can reduce the production cost of NMN.
  • FIG. 1 is a schematic view showing a reaction which proceeds in the method for producing NMN of the present invention.
  • FIG. 2 is a graph showing the concentration of NMN in Example 1 and Comparative Example 2.
  • FIG. 3 is a graph showing the concentration of NMN produced in Example 3.
  • FIG. 4 is a graph showing the concentration of NMN produced in Example 4.
  • FIG. 5 is a graph showing the concentration of NMN produced in Example 5.
  • FIG. 6 is a graph showing the concentration of NMN in Example 6 and Comparative Example 2.
  • FIG. 7 is a graph showing the concentration of NMN produced in Example 7.
  • FIG. 8 is a graph showing the concentration of NMN produced in Example 8.
  • FIG. 9 is a diagram showing the disassembly path of NMN.
  • Nampt Nicotinamide phosphoribosyltransferase: Nicotinamide phosphoribosyltransferase Prs (Phosphoribosyl pyrophosphate synthetase): Phosphoribosyl pyrophosphate synthase Rbk (Ribokinase): Ribokinase Ppk (Polyphosphate kinase): Polyphosphate kinase PPase (Pyrophos ophate n) ): Nicotinamide mononucleotide PRPP (Phosphoribosyl pyrophosphate): Phosphoribosyl pyrophosphate NAM (Nicotinamide): Nicotinamide R5P (Ribose-5-phosphate): Ribose-5-phosphate NR (Nicotinamide riboside): Nicotinamide riboside): Nicotinamide riboside): Nico
  • the first invention group is a transformant in which the expression of three enzymes, Nampt, Prs and Ppk, is enhanced, a cell-free protein synthesis reaction solution in which the three enzymes are expressed, or Contacting the processed products with R5P, NAM, ATP, and polyphosphate.
  • the method for producing NMN of the present invention comprises, as the step of producing R5P, a transformant in which the expression of two Rbk and Ppk enzymes is enhanced, a cell-free protein synthesis reaction solution in which the two enzymes are expressed, or
  • the method further includes the step of contacting the treated products with a mixture containing ribose, ATP, and polyphosphate. That is, in the present invention, NMN is produced by advancing a predetermined enzyme reaction while utilizing the ATP regeneration reaction.
  • Such a method for producing NMN of the first invention group is typically referred to as the following steps (1) to (3) (hereinafter referred to as the first step, the second step and the third step, respectively): Is carried out by sequentially performing These steps may be performed by the same person or different persons. In addition, these steps may be performed continuously, or may be performed stepwise with a predetermined period between each step.
  • the method for producing NMN of the present invention will be described in more detail along the embodiments in which the first step, the second step and the third step are performed.
  • the method for producing NMN of the present invention can be performed in an embodiment in which the first step, the second step, and the third step specifically described below are appropriately modified without departing from the spirit of the present invention. It is.
  • Nampt, Prs and Ppk, and optionally, Rbk 4 enzymes are used.
  • Nampt, Prs, Ppk and Rbk are all known enzymes, and their amino acid sequences and the base sequences of the genes encoding them are readily available to those skilled in the art.
  • the above four predetermined enzymes may be naturally occurring enzymes, as long as they can catalyze the respective target reactions, and are preferably produced by modifying the amino acid sequence of the naturally occurring enzymes. May be a mutant enzyme with improved expression level and enzyme activity.
  • various tags proteins or peptides
  • tags include His tag (histidine tag), Strep (II) -tag, GST tag (glutathione-S-transferase tag), MBP tag (maltose binding protein tag), GFP tag (green fluorescent protein tag), SUMO Tags (Small Ubiquitin-related (like) Modifier tag) FLAG tag, HA tag, myc tag, etc. may be mentioned. Furthermore, the four enzymes may be expressed as fusion proteins with one another.
  • Nampt Nampt (EC number: 2.4.2.12) is generally known to be involved in the NAD (nicotinamide adenine dinucleotide) salvage pathway, and in the present invention, the reaction to generate NMN from PRPP and NAM (third) The enzyme used for the reaction).
  • NAD nicotinamide adenine dinucleotide
  • ATP is not essential in the reaction between NMPP by PRMP and NAM by Nampt.
  • Nampt has ATP hydrolysis activity, and that hydrolysis of ATP causes autophosphorylation of Nampt to change enzymatic parameters and chemical equilibrium in a direction favorable to NMN formation. (Biochemistry 2008, 47, 11086-11096).
  • Nampt examples include those derived from human (Homo sapiens) (NP_005737), those derived from mouse (Mus musculus) (NP_067499), those derived from rat (Rattus norvegicus) (NP_808789), and those derived from zebrafish (Danio rerio) Those derived from bacteria such as those (NP_997833), Haemophilus ducreyi (AAR87771), Deinococcus radiodurans (AE001890), Oenococcus oeni (KZD13878), Shewanella oneidensis (NP_717588) and the like can be mentioned.
  • bacteria are a group of prokaryotes that do not have a nuclear envelope, and are a group of organisms including E. coli, Bacillus subtilis, cyanobacteria and the like.
  • Prs Prs (EC number: 2.4.2.17) is an enzyme used for the reaction (second reaction) for producing PRPP and AMP from R5P and ATP in the present invention.
  • Prs for example, those derived from human (Homo sapiens) (NP_002755), those derived from Bacillus subtilis (BAA05286), those derived from Bacillus caldolyticus (CAA58682), those derived from Arabidopsis thaliana (Q680A5), Methanocaldococcus Those from jannaschii (Q58761) can be mentioned.
  • the production of PRPP by the second reaction and the subsequent formation of NMN by the third reaction are continued over a long period of time, particularly when the substrate concentration in the production system is high (that is, the concentration in the production system of the final product NMN It is also possible to use mutant Prs as described in US Pat.
  • mutant Prs for example, a mutant such as Asp 51 His (substituting ASP at position 51 with His for the Prs derived from human, the same applies hereinafter), Asn 113 Ser, Leu 128 Ile, Aspl 82 His, Ala 189 Val, and His 192 Gln, and the like
  • mutant forms of Prs derived from other organisms for example, Bacillus subtilis derived Prs include mutant forms such as Asn120Ser (corresponding to Asn113Ser described above) and Leu135Ile (corresponding to Leu128Ile described above).
  • Rbk Rbk (EC number: 2.7.1.15) is an enzyme used for the reaction (first reaction) for producing R5P and ADP from ribose and ATP in the present invention.
  • Rbk natural Rbk derived from various organisms, or mutant Rbk produced by modifying the amino acid sequence thereof can be used, for example, those derived from human (Homo sapiens) (NP_002755), yeast ( Those derived from Saccharomyces cerevisiae (P25332), those derived from Bacillus subtilis (P36945), those derived from Escherichia coli (AAA51476), and those derived from Haemophilus influenzae (P44331) can be mentioned.
  • ⁇ Ppk Ppk (EC number: 2.7.4.1) is a reaction for regenerating ATP from the ADP produced in the first reaction or the AMP produced in the second reaction and the polyphosphate in the present invention (ATP regeneration reaction) It is an enzyme to be used.
  • Ppk can be classified into two families, polyphosphate kinase type 1 family (Ppk1) and polyphosphate kinase type 2 family (Ppk2), according to differences in amino acid sequence and kinetics.
  • Ppk2 is higher than Ppk1 as an activity to regenerate ATP using polyphosphate as a substrate. Therefore, it is preferable to use Ppk2 as Ppk in the present invention.
  • Ppk2 can be further classified into three subfamilies, class 1, class 2 and class 3. Class 1 and class 2 Ppk2 respectively catalyze the reaction of phosphorylating ADP to generate ATP, and the reaction of phosphorylating AMP to generate ADP. In contrast, class 3 Ppk2 can catalyze both AMP phosphorylation and ADP phosphorylation, so it can produce ATP from AMP alone.
  • Ppk in the present invention a combination of Ppk2 class 1 for regenerating ATP from ADP and Ppk2 class 2 for regenerating ADP from AMP can be used.
  • Ppk2 class 1 or Ppk1 for regenerating ATP from ADP is used as Ppk in the present invention
  • Ppk2 class 3 because of the efficiency with which both reactions of ATP regeneration from ADP and ATP regeneration from AMP can be catalyzed alone.
  • Ppk of the first reaction and Ppk of the second reaction can be made common.
  • Ppk2 class 3 includes, for example, those derived from Deinococcus radiodurans (NP_293858), those derived from Paenarthrobacter aurescens (ABM 08865), those derived from Meiothermus rube (ADD29239), those derived from Deinococcus geothermalis (WP_011531362), those derived from Thermosynechococcus elongatus NP — 682498).
  • Ppk2 class 1 includes, for example, those derived from Rhodobacter sphaeroides (CS 253 628), those derived from Sinorhizobium meliloti (NP 384613), PA 0141 derived from Pseudomonas aeruginosa (NP 24 8831), PA 2428 derived from Pseudomonas aeruginosa (NP 2511 118), and derived from Francisella tularensis (AJI 69883).
  • Ppk2 class 2 includes, for example, PA3455 (NP — 252145) derived from Pseudomonas aeruginosa.
  • examples of adenylate kinase include those derived from Bacillus cereus (AAP07232).
  • the transformant used in the present invention is one in which the expression of each of the predetermined enzymes is enhanced as compared to the (wild type) cells or cells before transformation. It is not unambiguously determined how "expression is enhanced” means how much the expression level of each enzyme is enhanced, and as described later, in the reaction solvent of each enzyme (within the production system)
  • the amount of expression in transformants can be adjusted so that the concentration of the protein is in the appropriate range, but at least by artificial manipulation, it is expressed more than (wild-type) cells or cells before transformation. Should be strengthened.
  • the artificial manipulation is not particularly limited, and uses an expression vector as described below, introduces multiple copies of a gene expression unit encoding a predetermined enzyme into the genome, and originally designates the predetermined enzyme present on the genome Manipulations such as replacing the promoter of the gene encoding.
  • the transformant used in the present invention may be composed only of (i) a transformant containing all of the genes encoding each of the predetermined enzymes, or (ii) a gene encoding each of the predetermined enzymes.
  • a combination of transformants in which expression of Nampt and Prs is enhanced and a transformant in which expression of Ppk is enhanced may be used as a combination of transformants that are separately included.
  • the host of the transformant is not particularly limited as long as it is a cell capable of expressing a predetermined enzyme by a protein expression system using an expression vector or the like.
  • bacteria such as Escherichia coli, Bacillus subtilis, actinomycetes (e.g. Rhodococcus, Corynebacterium), etc .
  • yeasts e.g. Saccharomyces), Candida (such as Saccharomyces) Candida), genus Pichia
  • filamentous fungi plant cells; animal cells such as insect cells and mammalian cells.
  • Escherichia coli, Corynebacterium bacteria and Rhodococcus bacteria, and Saccharomyces yeast, Candida yeast and Pichia yeast are preferable, and Escherichia coli is more preferable.
  • E. coli examples include, for example, E. coli strains K12 and B, and W3110 strain, JM109 strain, XL1-Blue strain (eg, XL1-Blue MRF '), K802 strain, C600 strain, BL21 strain derived from a wild strain thereof.
  • the strain, BL21 (DE3) strain and the like can be mentioned.
  • an expression vector it is not particularly limited as long as it contains a gene of each of the predetermined enzymes used in the present invention in an expressible state, and a vector suitable for each host can be used. Details of the construction of the expression vector will be described later.
  • the method for introducing the expression vector into the host is not particularly limited as long as it is a method suitable for the host.
  • methods that can be used include electroporation, methods using calcium ions, spheroplast methods, lithium acetate methods, calcium phosphate methods, and lipofection methods.
  • the transformant into which the expression vector has been introduced may be cultured by a method suitable for the cells (bacterial cells) used as the host to express the predetermined enzymes.
  • a method suitable for the cells (bacterial cells) used as the host to express the predetermined enzymes As described above, when combining transformants separately containing a gene encoding each predetermined enzyme, for example, a transformant in which expression of Nampt and Prs is enhanced and a transformant in which expression of Ppk is enhanced When producing and combining them, each transformant may be cultured in the same medium, or may be mixed after being cultured in separate media.
  • Transformants resting cells prepared from transformants, membrane permeability improving cells, inactivated cells, disrupted cells, cell-free extracts prepared from disrupted cells, and stabilization treatment thereof
  • the reaction to form NMN is carried out using the stabilized product (for details, refer to the matter regarding the second step below)
  • decomposition or side reaction of the reaction product (substrate) ribose or NAM, product NMN It may happen that NMN can not be manufactured efficiently.
  • a host in which a gene causing degradation or a side reaction is destroyed or deleted can be used.
  • a host in which a gene encoding an enzyme classified into any one or more of the EC numbers shown in the following (a) to (i) is deleted or destroyed can be used.
  • the enzyme classified into EC 3.1.3.5 is 5'-nucleotidase and includes an enzyme which catalyzes a reaction of hydrolyzing NMN to form nicotinamide riboside (NR) and phosphate.
  • Examples of the gene encoding 5'-nucleotidase include Escherichia coli ushA, surE, yrfG, yjjG and the like.
  • UshA which is a 5'-nucleotidase, is reported as an enzyme playing a major role in NAD degradation in E. coli. It is disclosed to have degradation activity.
  • ushA or its homolog gene is particularly preferable.
  • nicotinamide The enzyme classified into EC 3.5.1.19 is nicotinamide, which is involved in the degradation of NAM.
  • Examples of a gene encoding nicotinamide include pncA of E. coli.
  • An enzyme classified into EC 2.4.2.1 is purine-nucleoside phosphorylase, which catalyzes a reaction of phosphorolysis of NR to form NAM and ribose-1-phosphate (R1P) including.
  • Examples of a gene encoding purine-nucleoside phosphorylase include deoD of E. coli. Molecular and General Genetics, 104 (1969), 351-359 disclose deoD as one of a group of genes related to the metabolism of nucleosides.
  • deoD or a homolog gene thereof is preferable.
  • nicotinamide mononucleotide Deaminase is an enzyme that hydrolyzes NMN to generate NaMN and ammonia.
  • Examples of the gene encoding nicotinamide mononucleotide deamidase include pncC of E. coli. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 286 (2011), 40365-40375 discloses findings on Shencella oneidensis and pncC of E. coli.
  • pncC or a homolog gene thereof is preferable.
  • the enzymes classified into (e) EC 1.17.2.1 and (f) EC 1.17.1.5 are nicotinate dehydrogenase, which may be involved in the by-production of hydroxynicotinic acid from NAM.
  • purine nucleosidase An enzyme classified into EC 3.2.2.1 is purine nucleosidase, which includes an enzyme that catalyzes a reaction of hydrolyzing NR to generate NAM and ribose.
  • the gene encoding purine nucleosidase includes, for example, Pu-N of Ochrobactrum anthropi (Applied and Environmental Microbiology, 67 (2001), 1783-1787).
  • Pu-N or a homolog gene thereof is preferable.
  • uridine nucleosidase An enzyme classified into EC 3.2.2.3 is uridine nucleosidase, which includes an enzyme capable of catalyzing the reaction of hydrolyzing NR to form NAM and ribose.
  • Examples of the gene encoding uridine nucleosidase include URH1 of Arabidopsis thaliana (Plant Cell, 21 (2009), 876-91).
  • URH1 or its homolog gene is preferable.
  • NMN nucleosidase The enzyme classified into EC 3.2.2.14 is NMN nucleosidase, which catalyzes a reaction of hydrolyzing NMN to generate NAM and R5P. Biochem. Biophys. Res. Commun., 49 (1972), 264-9 disclose the NMN nuclease activity of E. coli. In the present invention, it is preferable to disrupt or delete a gene encoding an enzyme having an NMN nuclease activity.
  • the gene to be deleted or destroyed is a gene encoding an enzyme classified into the EC number shown in (d), and any one or more of (a) (c) (g) (h) (i)
  • a gene encoding an enzyme classified into the EC number of SEQ ID NO: 2 and a gene encoding an enzyme classified into the EC number shown in (d) and an EC number shown in (a) More preferably, it is a gene encoding an enzyme. Details are described in the description of the third invention group described later.
  • the method of disrupting or deleting a gene is not particularly limited, and can be performed by a known method of disrupting or deleting a gene.
  • a method using a linearized gene disruption or deletion fragment a method using a circular gene disruption or deletion plasmid without an origin of replication, a method using a group II intron, a Red-ET homologous recombination method, ZFN Methods using genome editing such as TALEN, CRISPR / Cas9 etc. can be mentioned.
  • the gene encoding each of the predetermined enzymes used in the present invention is typically introduced into the host of the transformant as it is contained in an expression vector.
  • one expression vector may contain all of the genes encoding the respective enzymes to be expressed, or two or more coexistence in the host. Genes encoding each enzyme to be expressed may be appropriately distributed and contained in the expression vector. For example, when preparing transformants in which expression of Nampt, Prs and Ppk is enhanced, one expression vector may be used which includes all the genes encoding Nampt, Prs and Ppk, or encoding Nampt and Prs. And the expression vector containing the gene encoding Ppk may be comprised by the combination of two vectors of an expression vector.
  • the expression vector used in the present invention can be produced by a known method.
  • a transcription promoter and in some cases, a terminator may be inserted upstream of a gene encoding a predetermined enzyme to construct an expression cassette, and this cassette may be inserted into an expression vector.
  • a transcription promoter and / or terminator is already present in the expression vector, a gene encoding the enzyme of interest using the transcription promoter and / or terminator of the vector without constructing the expression cassette. Just insert it.
  • those genes may all be inserted under the same promoter, or may be inserted under different promoters. Good.
  • the type of promoter is not particularly limited as long as it enables appropriate expression in the host, but for example, as usable in E. coli host, T7 promoter, trp promoter, lac promoter, lambda phage derived Examples include PL promoter and PR promoter, tac promoter, and trc promoter.
  • the gene (nucleic acid) encoding each predetermined enzyme can also be obtained, for example, by preparing primers according to (i) base sequence information and amplifying the genome etc. as a template, or (ii) amino acid sequence of the enzyme It can also be obtained by synthesizing DNA in an organic synthetic manner according to the information.
  • the gene may be optimized depending on the cell serving as the host of the transformant.
  • a method using a restriction enzyme, a method using topoisomerase, or the like can be used.
  • Appropriate linkers may be added if necessary for the insertion.
  • ribosome binding sequences such as SD sequence and Kozak sequence are known as base sequences important for translation into amino acids, and these sequences may be inserted upstream of a gene. A part of the amino acid sequence encoded by the gene may be replaced upon insertion.
  • the vector contains a factor (selection marker) for selecting a target transformant.
  • Selection markers include drug resistance genes, auxotrophic complementation genes, assimilability imparting genes, and the like, and may be selected according to the purpose or host.
  • drug resistance genes used as selection markers in E. coli include ampicillin resistance gene, kanamycin gene, dihydrofolate reductase gene, and neomycin resistance gene.
  • an appropriate expression vector selected from plasmid DNA, bacteriophage DNA, retrotransposon DNA, artificial chromosome DNA and the like may be used according to the host.
  • E. coli E. coli is used as a host
  • pTrc99A GE Healthcare Biosciences
  • pACYC184 Nippon Gene
  • pMW118 Nippon Gene
  • pET series vector Novagen
  • pETDuet-1 Novagen
  • a method of enhancing expression of a predetermined enzyme a method using an expression vector as described above is typical, but other methods can also be used.
  • expression of a predetermined enzyme can be enhanced by inserting an expression cassette in which an appropriate promoter, terminator, marker gene or the like is linked to a gene encoding a predetermined enzyme on the genome of the host.
  • a known method can be used as a method for obtaining a transformant in which the expression cassette has been inserted into the genome.
  • transformation is carried out using a plasmid which has an expression cassette of a predetermined enzyme and an arbitrary genomic region and is not replicable in the host.
  • transformants into which the entire plasmid or expression cassette has been inserted can be obtained.
  • a plasmid carrying a negative selection marker such as SacB gene (encoding levansucrase) or a plasmid having a temperature-sensitive replication mechanism (ts) only the expression cassette is genomically obtained by two homologous recombinations. It is also possible to efficiently obtain transformed transformants.
  • transformation may be performed using a DNA fragment consisting only of an expression cassette, whereby a transformant in which the expression cassette is inserted at random positions on the genome can also be obtained.
  • the expression may be enhanced by replacing the promoter of the enzyme gene on the genome with a strong one. it can.
  • the promoter used in the expression vector mentioned above can be utilized similarly.
  • Cell-free protein synthesis reaction solution The cell-free protein synthesis system is expressed not by living microorganisms or cells but by cell-free extracts extracted from various organisms, amino acids, energy molecules such as ATP, energy regeneration systems, salts such as magnesium ions, and so on. This system is for synthesizing a protein in vitro by a cell-free protein synthesis reaction solution to which a gene (DNA or RNA) encoding a protein of interest is added.
  • Cell-free extracts include translational components such as ribosomes, tRNAs, aminoacylated tRNA synthetases, translation initiation factors, translation elongation factors, translation termination factors and the like.
  • a solution for carrying out a protein synthesis reaction by a cell-free protein synthesis system is referred to as a cell-free protein synthesis reaction solution including before and after the reaction.
  • the cell-free protein synthesis system used in the present invention may be any system as long as it can be expressed in a state in which each predetermined enzyme has an original function, for example, a wheat germ-derived synthesis system, Escherichia coli-derived synthesis A system, a rabbit reticulocyte-derived system, an insect cell-derived synthetic system, or a human cell-derived synthetic system can be used.
  • a wheat germ-derived synthesis system Escherichia coli-derived synthesis A system, a rabbit reticulocyte-derived system, an insect cell-derived synthetic system, or a human cell-derived synthetic system
  • PURE Protein synthesis using recombinant elements
  • a batch method As a protein synthesis reaction process in a cell-free system, a batch method, a continuous-flow cell-free (CFCF) method, a continuous exchange cell-free (CECF) method, an overlay method or the like can be used.
  • the template of the enzyme gene to be expressed may be RNA or DNA.
  • RNA is used as a template, total RNA, mRNA, in vitro transcripts and the like can be used.
  • the second step is, if necessary, a step of preparing a treated product from the transformant or cell-free protein synthesis reaction solution that has undergone the first step.
  • processed products of transformants include resting cells prepared from transformants, membrane permeability improving cells, inactivated cells, disrupted cells and the like.
  • cell-free extracts and purified enzymes prepared from disrupted cells are also included in the treated product of the present invention.
  • the processed product of the cell-free protein synthesis reaction include purified enzymes prepared from the cell-free protein synthesis reaction.
  • transformants, cell-free protein synthesis reaction solutions, and stabilized products obtained by subjecting these processed products to stabilization processing are also included in the processed products of the present invention.
  • Resting cells mean cells whose growth has been substantially stopped. Specifically, after the transformant grown by culture is recovered from the culture medium, the transformant is suspended in a buffer or the like containing no readily available carbon source, or the recovered transformant is frozen. It can be prepared by drying or drying to powder. Any method may be used to recover the transformant from the culture medium, and examples include a method using centrifugation, a method using membrane filtration, and the like. Centrifugation is not particularly limited as long as it can supply a centrifugal force to precipitate the transformant, and a cylindrical type, a separation plate type, or the like can be used. The centrifugal force can be, for example, about 500 G to 20,000 G.
  • Membrane filtration may be performed using either a microfiltration (MF) membrane or an ultrafiltration (UF) membrane, as long as the transformant can be recovered from the culture medium.
  • the buffer for suspending the transformant may be any buffer as long as the growth of the transformant is substantially stopped and the function of each predetermined enzyme is maintained, for example, phosphate buffer Solution, acrylic acid buffer solution, tris (tris (hydroxymethyl) aminomethane) -hydrochloric acid buffer solution, HEPES (2- (4- (2-Hydroxyethyl) -1-piperidinyl) ethanesulfonic acid) and other Good's buffer solution (Good 's buffers) etc. can be used.
  • the transformant When freezing the transformant, it may be frozen in a state in which most of the water has been removed by the above-mentioned operation such as centrifugation or suspended in an appropriate buffer.
  • the freezing temperature varies depending on the components of the buffer in which the transformant is suspended, but may be any temperature that substantially freezes the transformant, for example, in the range of -210 ° C to 0 ° C, etc. You can do it in
  • any method may be used as long as the growth of the transformant is substantially stopped and the functions of the predetermined enzymes are maintained. Drying methods, spray drying methods and the like can be mentioned.
  • Preparation of membrane permeability improving cells can be performed using a known method. For example, by treating the transformant with an organic solvent or surfactant, the substrate or product can easily pass through the cell membrane or cell wall of the transformant.
  • organic solvent and surfactant used is not particularly limited as long as the membrane permeability is improved and the function of each predetermined enzyme can be maintained, and if it is an organic solvent, it is toluene
  • surfactant include Triton-X 100 and benzethonium chloride.
  • Preparation of inactivated cells can be performed using a known method. For example, it can be carried out by drug treatment or heat treatment.
  • a drug for example, cationic surfactants such as benzethonium chloride, cetyl pyridinium chloride, methyl stearoyl chloride, cetyltrimethyl ammonium bromide, and zwitterionic surfactants such as alkyldiaminoethylglycine hydrochloride may be used.
  • zwitterionic surfactants such as alkyldiaminoethylglycine hydrochloride
  • alcohols such as ethanol, thiols such as 2-mercaptoethanol, amines such as ethylene diamine, amino acids such as cysteine, ornithine, citrulline and the like can also be mentioned.
  • the heat treatment may be performed at a temperature and for a time at which the target enzyme is not inactivated.
  • Preparation of disrupted cells can be performed using a known method. For example, ultrasonication, high pressure treatment with a French press or homogenizer, grinding treatment with a bead mill, collision treatment with an impact crusher, enzyme treatment with lysozyme, cellulase, pectinase etc., freeze-thaw treatment, hypotonic solution treatment, lysis with phage Induction treatment and the like can be mentioned, and any of the methods can be used alone or in combination as needed.
  • high pressure treatment, grinding treatment, collision treatment, or treatment combining these treatments with enzyme treatment etc. should be performed in consideration of operability, recovery rate, cost, etc. preferable.
  • the beads used have a density of 2.5 to 6.0 g / cm 3 and a size of 0.1 to 1.0 mm and are usually crushed by about 80 to 85%.
  • a driving method either a batch system or a continuous system can be adopted.
  • the treatment pressure is not particularly limited as long as the target protein recovery rate from cells is sufficiently high, but for example, about 40 to 200 MPa, preferably about 60 to 150 MPa, more preferably about 80 to 120 MPa Crushing can be performed at a pressure of
  • multistage processing can be performed to improve crushing and operation efficiency by arranging the apparatuses in series or using an apparatus having a multi-stage structure.
  • a temperature rise of 2 to 3 ° C. occurs at a treatment pressure of 10 MPa, it is preferable to carry out a cooling treatment as necessary.
  • cell slurry is previously frozen into fine particles (for example, 50 ⁇ m or less) by spray freezing (for example, freezing speed: several thousand ° C. per minute) and the like, and this is high speed (for example, about 300 m / s)
  • spray freezing for example, freezing speed: several thousand ° C. per minute
  • high speed for example, about 300 m / s
  • the cell-free extract can be prepared by removing disrupted debris (insoluble fraction including cell membrane, cell wall, etc.) from disrupted cells.
  • the removal of the crushing residue can be performed by a known method, and for example, centrifugation, membrane filtration, filter cloth filtration, etc. can be used. Centrifugation can be performed as described above, but if the crush residue of the transformant is fine and it is difficult to easily settle, use a flocculant etc. to increase the residue precipitation efficiency if necessary. It can also be done.
  • Membrane filtration can also be performed as described above, but in particular ultrafiltration (UF) membranes can be used if the crush residue of the transformant is fine.
  • UF ultrafiltration
  • a filter aid and a coagulant can be used in combination.
  • a filter aid diatomaceous earth, cellulose powder, activated carbon and the like can be mentioned.
  • the aggregating agent include cationic aggregating agents, anionic aggregating agents, amphoteric aggregating agents, nonionic aggregating agents and the like.
  • the cell-free extract containing each of the predetermined enzymes can be prepared by recovering the supernatant in the absence of bacterial cells and decellularizing (making it cell-free) by any of the above operations.
  • Preparation of the purified enzyme can be carried out by general biochemical methods such as ammonium sulfate precipitation, various chromatography (eg gel filtration chromatography (Sephadex column etc), ion exchange chromatography (DEAE-Toyopearl etc), affinity chromatography (TALON) Metal Affinity Resin etc., hydrophobic chromatography (butyl Toyopearl etc.), anion chromatography (MonoQ column etc.)), SDS polyacrylamide gel electrophoresis etc. can be carried out by using alone or in combination.
  • various chromatography eg gel filtration chromatography (Sephadex column etc), ion exchange chromatography (DEAE-Toyopearl etc), affinity chromatography (TALON) Metal Affinity Resin etc.
  • hydrophobic chromatography butyl Toyopearl etc.
  • anion chromatography MonoQ column etc.
  • SDS polyacrylamide gel electrophoresis etc. can be carried
  • the above-described transformant, cell-free protein synthesis reaction solution, and the treated product thereof may be used after the stabilization treatment (stabilized treatment product).
  • the stabilization treatment may be any treatment as long as the stability of each predetermined enzyme against environmental factors (temperature, pH, chemical concentration, etc.) is improved or the stability during storage is improved compared to the untreated state.
  • inclusion in gels such as acrylamide, treatment with aldehydes such as glutaraldehyde (including CLEA: Cross-linked enzyme aggregate), and treatment onto an inorganic carrier (alumina, silica, zeolite, diatomaceous earth, etc.) can be mentioned.
  • the substrates and products used in the present invention are relatively polar, and cell membranes and cell walls may be rate-limiting for mass transfer. Therefore, in view of the permeability of the substrate and the product, it is particularly preferable in the present invention to use disrupted cells, cell-free extracts, purified enzymes, or their stabilized products.
  • the transformant described above, the cell-free protein synthesis reaction solution, or the processed product thereof can be stored under any conditions as long as the enzyme activity is maintained. If desired, the solutions may be frozen under appropriate conditions (eg, -80 ° C. to -20 ° C., 1 day to 1 year) and stored until used (when performing the third step).
  • each of the transformants may be separately treated, and then the treated products may be mixed, or (ii) the transformants may be mixed. After the process, each process may be performed collectively.
  • the third step is a step of bringing the transformant or cell-free protein synthesis reaction solution that has undergone the first step, or, if necessary, those treated products that have undergone the second step, into contact with the substrates used as various raw materials for the enzyme reaction. It is.
  • the second reaction by Prs and the third reaction by Nampt are performed in conjunction with the ATP regeneration reaction by Ppk.
  • the substrate is phosphorylated using ATP as a phosphate source, and in the third reaction by Nampt, ATP is consumed because it is autophosphorylated by the ATP hydrolysis activity possessed by Nampt itself.
  • Ru is a step of bringing the transformant or cell-free protein synthesis reaction solution that has undergone the first step, or, if necessary, those treated products that have undergone the second step, into contact with the substrates used as various raw materials for the enzyme reaction. It is.
  • the second reaction by Prs and the third reaction by Nampt are performed in conjunction with the ATP regeneration reaction by Ppk.
  • the substrate
  • ADP or AMP may be added to the reaction solvent instead of ATP. This is because the added ADP and AMP are immediately regenerated to ATP in the system by the ATP regeneration system, so that substantially the same state as adding a proper amount of ATP is obtained. Moreover, you may add the mixture which contains these in arbitrary ratios.
  • the second reaction and the third reaction may be combined with the first reaction with Rbk coupled with the ATP regeneration reaction with Ppk, if necessary.
  • the first reaction with Rbk may be performed first
  • the second reaction with Prs and the third reaction with Nampt may be performed using the reaction solution as a raw material, or the first reaction with Rbk and the second reaction with Prs
  • the reaction and the third reaction by Nampt may be performed in the same reaction system.
  • the second reaction by Prs and the third reaction by Nampt are transformants in which expression of three enzymes of Nampt, Prs and Ppk is enhanced, cell-free protein synthesis reaction solution in which the three enzymes are expressed, or processed products thereof By contacting with R5P, NAM, ATP, and polyphosphate.
  • the first reaction with Rbk is a transformant in which the expression of Rbk and Ppk 2 enzymes is enhanced, a cell-free protein synthesis reaction solution in which the 2 enzymes are expressed, or their processed products, ribose, ATP, and polyline It is carried out by contacting with an acid.
  • the raw material used in the third step can be one purchased from a general supplier, or one synthesized by self-reacting.
  • R5P may be a commercially available product, from the viewpoint of raw material cost
  • the first reaction with Rbk that is, a transformant in which expression of two enzymes of Rbk and Ppk is enhanced, the above two enzymes are expressed It is preferable to use a cell-free protein synthesis reaction solution, or a product synthesized by contacting the reaction product with ribose and polyphosphate.
  • Polyphosphoric acid which is one of the above-mentioned raw materials is known in various chain lengths.
  • the chain length of the polyphosphate used in the present invention may be any chain length as long as the ATP regeneration reaction can be performed efficiently, but from the viewpoint of the viscosity and cost of the solution when dissolved, the chain length is 3 It is preferably about -100, and more preferably about 3-30.
  • a compound other than the above-mentioned raw material is transformed with a transformant in which expression of each predetermined enzyme is enhanced, a cell-free protein synthesis reaction solution in which each predetermined enzyme is expressed, or a treatment thereof It may be in contact with a substance, or may be contained in a reaction solvent (in the production system).
  • a metal ion such as magnesium ion
  • the transformant to be used is substantially alive, ie, maintaining cell proliferation ability
  • the substrate or product in this reaction can be produced as a target product in a high yield without being used for the growth of transformants or being degraded. I can expect it.
  • the conditions under which the transformants do not substantially proliferate may be any conditions that do not substantially increase the number of transformants in the reaction system.
  • the reaction may be performed in a solution which does not contain a carbon source (such as glucose) which is easily available to transformants.
  • concentrations of the above-mentioned substances in the reaction solvent (within the production system) are as follows.
  • the concentration of Nampt is, for example, 1 ⁇ g / L to 10 g / L.
  • the concentration of Prs is, for example, 1 ⁇ g / L to 10 g / L.
  • the concentration of Rbk is, for example, 1 ⁇ g / L to 10 g / L.
  • the concentration of Ppk is, for example, 1 ⁇ g / L to 10 g / L.
  • Each enzyme is prepared by appropriately adjusting the amount of the transformant in which the expression of each of the predetermined enzymes is enhanced, the cell-free protein synthesis reaction solution in which each of the predetermined enzymes is expressed, or the processed product thereof.
  • the concentration in the reaction solvent of can be adjusted to the above range.
  • the concentration of R5P is, for example, 1 ⁇ g / L to 100 g / L.
  • the concentration of ribose is, for example, 1 ⁇ g / L to 100 g / L.
  • the concentration of NAM is, for example, 1 ⁇ g / L to 500 g / L.
  • the concentration of ATP is, for example, 1 ⁇ g / L to 100 g / L.
  • the concentration of polyphosphoric acid is, for example, 1 ⁇ g / L to 200 g / L.
  • the concentration of each raw material in the reaction solvent can be adjusted to the above-mentioned range by adjusting the addition amount of these raw materials to the reaction solvent and the like. For addition to the reaction solvent, depending on the raw materials, a predetermined amount may be charged at once at the beginning of the third step, or a predetermined amount is sequentially added at an appropriate stage at the beginning and / or during the third step. You may do so.
  • Conditions for advancing the enzyme reaction other than the concentration of each substance as described above for example, temperature, time, and the like can also be appropriately adjusted.
  • the reaction temperature is preferably adjusted within the range in which the catalytic efficiency of each enzyme is optimal.
  • the reaction time can be made until the production amount of the target compound NMN reaches a predetermined amount.
  • the generated NMN can be recovered from the production system according to a conventional method, appropriately concentrated and purified.
  • any method can be used as long as it can improve the purity of NMN and can efficiently recover NMN.
  • the following methods It can be mentioned.
  • the reaction is performed using bacterial cells after the NMN synthesis reaction, the bacterial cells can be removed by means such as centrifugation or membrane filtration.
  • the reaction is carried out using a cell-free extract or a purified enzyme, proteins, etc. are removed by filtration using an ultrafiltration membrane or precipitation after addition of perchloric acid etc. can do.
  • the pH is returned to weak acidity by potassium hydroxide or the like, and the formed precipitate of potassium perchlorate is again removed by centrifugation.
  • a washing treatment by activated carbon adsorption can be performed.
  • An aqueous solution containing NMN is brought into contact with activated carbon to adsorb the NMN.
  • certain impurities can be removed by washing with a solvent such as isoamyl alcohol. Subsequently, further purification can be performed by treatment with an anion exchange resin.
  • the solution containing NMN can be passed through an anion exchange resin such as Dowex et al, and the adsorbed NMN can be eluted with water. Furthermore, the pH of the obtained aqueous solution of NMN can be acidified, and a large amount of acetone can be added to obtain NMN as a precipitate. The precipitate can be dried to obtain purified NMN.
  • an anion exchange resin such as Dowex et al
  • the present invention can be carried out such that the total number of moles of ATP, ADP and AMP added to the reaction system is equal to or less than 0.5 equivalent of the number of moles of NMN to be produced.
  • any method can be used as long as the amount of ATP or the like added for the production of NMN can be reduced as a result, for example, the means shown below alone or It can carry out combining suitably. The details of these means are described in the description of the fourth invention group described later.
  • Conjugation of ATP regeneration system (2) Coexistence of PPase (3) Use of bacteria-derived Nampt (4) Use of host in which unwanted genes are destroyed or deleted (5) Appropriate substrate concentration
  • the second invention group relates to a transformant in which the expression of Nampt is enhanced in the presence of PPase, a cell-free protein synthesis reaction solution in which the enzyme is expressed, or the like. Contacting the product with the NAM and PRPP.
  • the method for producing NMN according to the second invention group is carried out by sequentially performing the first step, the second step and the third step in the same manner as the first invention group except for the following points. That is, in the first and second steps, a transformant in which expression of at least Nampt is enhanced, a cell-free protein synthesis reaction solution in which the enzyme is expressed, or a processed product thereof is prepared, and expression of PPase is A cell-free protein synthesis reaction solution in which the enzyme or the like is expressed, or a treated product thereof is prepared, such as a microorganism which expresses PPase as an endogenous enzyme although the transformant or the enhanced transformant is not particularly enhanced.
  • the transformant, the cell-free protein synthesis reaction solution or the processed product thereof obtained through the first and second steps may be brought into contact with at least NAM and PRPP. It is.
  • ⁇ PPase PPase (EC number: 3.6.1.1) is an enzyme that hydrolyzes pyrophosphate into two molecules of phosphate.
  • the third reaction can be advanced extremely efficiently by performing the third reaction in the presence of PPase.
  • Nampt In the third reaction by Nampt, pyrophosphate is by-produced together with NMN. From the viewpoint of a general enzyme reaction, it is predicted that the addition of PPase to the third reaction system results in the decomposition of the by-product pyrophosphate into phosphoric acid and the promotion of the reaction in the direction of NMN formation. However, in the case of Nampt, that is not necessarily obvious. The reason is that once pyrophosphate is decomposed, the Nampt reaction may not proceed continuously. Nampt is known to hydrolyze ATP and be activated by autophosphorylation.
  • PPases for example, those derived from yeast (P00817), those derived from E. coli (NP_418647), those derived from Bacillus subtilis (P37487), those derived from Thermus thermophilus (P38576), those derived from Streptococcus gordonii (P95765), Streptococcus mutans (O68579) and the like.
  • PPase may be in any form as long as it can be added to the third reaction system, and may be prepared by any method. Specifically, first, as in the first step of the first invention group, a transformant containing a gene encoding PPase is prepared and cultured, or a cell-free protein containing a gene encoding each of the enzymes The protein synthesis reaction is carried out in the synthesis reaction solution to express the respective enzymes. In addition, since PPase is expressed in a constant amount as an enzyme necessary for survival in ordinary microorganisms and the like, microorganisms and the like whose expression is not particularly enhanced can be cultured and used as it is.
  • the treated product can be prepared from the transformant that has undergone the first step, a microorganism or the like whose expression is not particularly enhanced, or a cell-free protein synthesis reaction solution .
  • a commercially available PPase-purified enzyme can also be used as an embodiment of the treated product.
  • Examples of commercially available PPase-purified enzymes include yeast-derived PPase-purified enzymes from Sigma-Aldrich (Product No. 10108987001).
  • the method for producing NMN according to the second invention group can be carried out.
  • the third reaction can be advanced extremely efficiently, and NMN can be efficiently produced.
  • the third reaction according to the second invention group can be performed by the third reaction alone, it may be performed in the same reaction system in combination with one or more of the first reaction, the second reaction, and the ATP regeneration reaction. You can also.
  • the embodiment of the third reaction in the first invention group of the present invention the third reaction defined in the second invention group of the present invention, the first invention group and the second invention It is also possible to carry out a method of manufacturing an integrated MNN.
  • the transformant to be used is substantially alive, ie, maintaining cell proliferation ability
  • the substrate or product in this reaction can be produced as a target product in a high yield without being used for the growth of transformants or being degraded. I can expect it.
  • the conditions under which the transformants do not substantially proliferate may be any conditions that do not substantially increase the number of transformants in the reaction system.
  • the reaction may be performed in a solution which does not contain a carbon source (such as glucose) which is easily available to transformants.
  • the treated product is preferably a purified enzyme.
  • the purified enzyme By using the purified enzyme, the decomposition or side reaction of the reactant (substrate) or the product can be suppressed, so that the promoting effect of the third reaction according to the present invention can be further enjoyed.
  • the third invention group comprises (d) a gene encoding an enzyme classified into the EC number shown in EC 3.5.1.42, and the following (a) (c) (g) (H) a gene encoding an enzyme classified into any one or more of the EC numbers shown in (h) is destroyed or deleted, and expression of nicotinamide phosphoribosyltransferase (Nampt) is enhanced Contacting the transformant or the treated product thereof with at least nicotinamide (NAM).
  • A EC 3.1.3.5
  • C EC 2.4.2.1
  • G EC 3.2.2.1
  • H EC 3.2.2.3
  • I EC 3.2.2.14
  • the method for producing NMN according to the third invention group is carried out by sequentially performing the first step, the second step and the third step in the same manner as the first invention group except for the following points. That is, in the first and second steps, a transformant in which a gene encoding an enzyme classified into various EC numbers is disrupted or deleted, and expression of nicotinamide phosphoribosyltransferase (Nampt) is enhanced Or in the third step, the transformant obtained through the first and second steps or the treated product thereof may be brought into contact with at least the NAM in the third step. is there.
  • NMN When NMN is synthesized using a transformant such as E. coli or a processed product thereof, these enzymes degrade the generated NMN, which results in a reduction in the production of NMN.
  • a degradation pathway of NMN possessed by the host two are known: a degradation pathway producing NAM and a degradation pathway producing nicotinic acid mononucleotide (NaMN) (FIG. 9).
  • the present inventors jump the degradation of NMN rather than attenuating one pathway by attenuating both pathways (destruction or deletion of a gene encoding one or more enzymes present in the pathway). Found that it could be suppressed, and the third invention group was completed.
  • any one or more EC numbers shown in the following (a) (c) (g) (h) (i) The gene encoding the enzyme to be classified may be disrupted or deleted.
  • the method for disrupting or deleting the gene is not particularly limited, and is as described in the description of the first invention group.
  • the third invention group of the present invention can be integrated into one or both of the first and second invention groups of the present invention to carry out the method for producing NMN.
  • the sum of the number of moles of ATP, ADP and AMP added to the reaction system for producing NMN is 0.5 of the number of moles of NMN to be produced. It can be less than or equal to the equivalent weight.
  • ATP is required in the production of NMN by the first reaction, the second reaction and the third reaction described so far. That is, in the first reaction, since ATP is converted to ADP along with the formation of R5P from ribose, one mole of ATP is used for the production of one mole of R5P. In the second reaction, 1 mol of ATP is used for the production of 1 mol of PRPP since ATP is converted to AMP along with the production of PRPP from R5P. In the third reaction, ATP is not essential for the reaction itself when generating NMN from PRPP.
  • Nampt has an ATP hydrolysis activity, and the hydrolysis of ATP results in the autophosphorylation of Nampt, and changes the enzymatic parameters and chemical equilibrium in a direction favorable to the formation of NMN. Therefore, when there is sufficient ATP in the third reaction system, one or more moles of ATP will be used substantially for the production of 1 mole of PRPP, along with the production of NMN from PRPP. .
  • a total of 2 moles or more of ATP per one reaction of the second reaction and the second reaction using ribose as a raw material per generation of 1 mol of NMN In the production of NMN by the third reaction, a total of 3 moles or more of ATP will be used for production of 1 mole of NMN.
  • ATP is an expensive compound
  • the amount used be as small as possible when attempting to produce NMN inexpensively.
  • the total number of moles of ATP, ADP and AMP to be added to the reaction system for producing NMN the number of moles of NMN to be produced Less than 0.5 equivalents of
  • the method for producing NMN according to the fourth invention group can be carried out using any method as long as the amount of ATP or the like added for the production of NMN can be reduced.
  • the means shown below can be It can carry out alone or in combination as appropriate.
  • Coupling of ATP Regeneration System For the production of NMN, at least a system capable of regenerating by-produced ADP or AMP into ATP is coupled with an NMN generation reaction system including a second reaction and a third reaction. The total number of moles of ATP, ADP and AMP added to the reaction system can be reduced.
  • the ATP regeneration system may be any system as long as it can regenerate ATP from AMP and ADP.
  • a system using Ppk with polyphosphate as a phosphate source, pyruvate kinase with phosphoenolpyruvate as a phosphate source A system to be used, a system using creatine phosphate kinase using creatine phosphate as a phosphate source, and the like can be mentioned, but from the viewpoint of the cost of the phosphate source, a system using Ppk as a phosphate source is preferable.
  • an NMN generation reaction in which an ATP regeneration system using polyphosphate and Ppk is coupled can be carried out as described in the third step in the first invention group.
  • bacteria-derived Nampt As the enzyme Nampt that catalyzes the third reaction, generation of NMN proceeds efficiently, and as a result, it is added to the reaction system for NMN production.
  • the total number of moles of ATP, ADP and AMP can be reduced.
  • Nampt derived from bacteria those described in the first step in the first invention group can be used.
  • a host in which an unnecessary gene has been disrupted or deleted A transformant, a resting cell prepared from the transformant, a membrane permeability improving cell, an inactivated cell, a disrupted cell, a disrupted cell
  • a gene causing decomposition of the reaction product (substrate) or product or side reaction It is possible to use a host which has been disrupted or deleted.
  • a host in which any one or more of the genes described in the first step in the first invention group are disrupted or deleted can be used.
  • the gene disrupted or deleted host described in the third invention group can be used.
  • ATP can also be expected to have the same effect by increasing the concentration in the reaction system, but even if ATP is added more than necessary, if there is no increase in the amount of NMN production corresponding to it, 1 mole of NMN is produced The number of moles of ATP used to cause this increase.
  • the number of moles of ATP added to the reaction system is preferably 1 equivalent or less of the number of moles of NMN to be produced, more preferably 0.5 equivalents or less, and still more preferably 0.1 equivalents or less.
  • the fourth invention group of the present invention can be integrated into one or more of the first, second and third invention groups of the present invention to carry out the method for producing NMN.
  • Nampt from Haemophilus ducreyi (AAR 87771)
  • Prs derived from Bacillus subtilis (BAA05286), Homo sapiens (NP_002755)
  • Ppk Ppk2 class 3
  • Rbk derived from Saccharomyces cerevisiae (P 25332)
  • NMN synthesis reaction The cell-free extract prepared in (4) was used to carry out an NMN synthesis reaction.
  • the reaction liquid volume was 100 ⁇ L, each reaction liquid was prepared with the composition shown in Table 2 (Nos. 1-2, 1-4), and stationary reaction was performed at 37 ° C.
  • Comparative Example 1 ⁇ Synthesis of NMN from Ribose without Using ATP Regeneration System> (1) Preparation of recombinant, culture and preparation of cell-free extract In this comparative example, a cell-free extract of each enzyme was prepared by the same operation as in Example 1 (2) to (4).
  • Example 2 ⁇ Synthesis of NMN by Cryopreserved Cell-free Extract> (1) Preparation of recombinant, culture and preparation of cell-free extract In this example, the same as Example 1 (2) to (4) except using only Bacillus subtilis derived (BsPrs) as Prs. Cell-free extracts of each enzyme were prepared by the procedure. Immediately after preparation, the NMN synthesis reaction described later in (2) was performed. In addition, each obtained cell-free extract was stored at -20 ° C. One month later, the stored cell-free extract was used to perform the NMN synthesis reaction again.
  • BsPrs Bacillus subtilis derived
  • Example 3 ⁇ Synthesis of NMN Using Prs Mutant>
  • Nampt from Haemophilus ducreyi (AAR 87771)
  • Prs Bacillus subtilis (BAA05286) Asn120Ser mutant (BsPrsN120S) and Leu135Ile mutant (BsPrsL135I)
  • Ppk Ppk2 class 3: derived from Deinococcus radiodurans (NP_293858)
  • Rbk derived from Saccharomyces cerevisiae (P 25332)
  • BsPrsN120S and BsPrsL135I 120th asparagine is substituted to serine and 135th leucine to isoleucine.
  • the derived species of both mutants, SEQ ID NO showing the amino acid sequence, SEQ ID NO showing the base sequence of DNA, and expression plasmid name are shown in Table 4, respectively.
  • Prs Mutant Expression Plasmid A plasmid expressing Prs mutant was prepared as follows. Mutagenesis PCR reaction was performed using pEBsPrs described in Table 1 as a template. Table 5 shows the names of primers for introducing a mutation and SEQ ID NOs indicating the nucleotide sequences thereof, and the names of Prs mutants.
  • the mutagenic PCR reaction was carried out under the reaction solution composition shown in Table 6 and the reaction conditions shown in Table 7.
  • the PCR product was purified according to the attached protocol using QIAquick PCR Purification Kit (Qiagen).
  • E. coli HST08 (Takara Bio) was transformed using a reaction solution obtained by digesting the generated PCR product with DpnI (New England Biolabs). The extracted colonies were subjected to plasmid extraction, and the nucleotide sequences were confirmed using primers T7-PP (SEQ ID NO: 19) and T7-TP (SEQ ID NO: 20).
  • Each plasmid into which a mutation was correctly introduced was designated as each mutant Prs expression plasmid described in Table 4.
  • Example 4 ⁇ Examination of substrate concentration> (1) Preparation of recombinant, culture and preparation of cell-free extract In this example, the same as Example 1 (2) to (4) except that BsPrsN120S described in Example 3 is used as Prs. Cell-free extracts of each enzyme were prepared by the procedure.
  • Nampt Haemophilus ducreyi derived (AAR 87771) Nampt with His tag added (HdNampt-His), Deinococcus radiodurans derived (AE001890) Namt added with His tag (DrNampt-His), Shewanella oneidensis derived from (NP_717588) Nampt His tag added (SoNampt-His) and human (Homo sapiens) derived (NP_005737) Nampt added His tag (HsNampt-His) Prs: Asn120Ser mutant (BsPrsN120S) derived from Bacillus subtilis (BAA05286) Prs Ppk (Ppk2 class 3): derived from Deinococcus radiodurans (NP_293858) Ppk Rbk: derived from
  • a plasmid expressing a protein in which His tag was added to various Nampts derived from bacteria was prepared as follows. First, for each of the enzymes derived from Deinococcus radiodurans (AE001890) and Shewanella oneidensis (NP_717588), a DNA encoding each enzyme protein consisting of the amino acid sequence represented by each SEQ ID NO: listed in “Amino acid sequence” in Table 10 ( Were synthesized and cloned into the NdeI-XhoI site of the expression vector pET-26b (+) (Novagen) (gene synthesis is as described below) Conducted at Genscript Japan). The resulting plasmids were designated as indicated in Table 10 under "Expression Plasmids".
  • the mixed eluate was placed in a boiling and washed dialysis tube (Sanko Pure Chemical Industries, Ltd.) and dialyzed with 50 mM HEPES-NaOH buffer (pH 7.5). The solution after dialysis was collected and used as a purified enzyme solution of His-tagged Nampt derived from each bacterium.
  • Example 6 NMN Synthesis from R5P Using ATP Regeneration System (1) Preparation of recombinant, culture and preparation of cell-free extract
  • a cell-free extract of each enzyme was prepared by the same procedure as in Example 1 (2) to (4).
  • Example 7 ⁇ NMN synthesis using cell-free extract prepared in unwanted gene disruption host> (1) Preparation of unwanted gene disruption host In order to suppress the decomposition or side reaction of the reactant (substrate) NAM and the product NMN, the gene encoding each enzyme causing decomposition or side reaction is disrupted The host shown in Table 14 was produced.
  • the generation of the unwanted gene disrupting host was basically performed according to the attached protocol using TargeTron Gene Knockout System (Sigma Aldrich).
  • BN1 strain in which the ushA gene was disrupted using E. coli BL21 (DE3) as a host was prepared as follows. First, using the primers shown in SEQ ID NO: 31 (IBS primer), SEQ ID NO: 32 (EBS1d primer) and SEQ ID NO: 33 (EBS2 primer), and the EBS Universal primer attached to TargeTron Gene Knockout System, the reaction liquid composition shown in Table 15 And PCR was performed on the reaction conditions shown in Table 16.
  • PCR reaction After completion of the PCR reaction, 3 ⁇ L of the reaction solution was electrophoresed on a 4% agarose gel to confirm amplification of the approximately 350 bp DNA fragment.
  • the remaining PCR reaction was purified by QIAquick PCR Purification Kit (Qiagen). To 8 ⁇ L of the purified PCR reaction solution, 2 ⁇ L of 103 Restriction Enzyme Buffer (provided with the kit), 1 ⁇ L of HindIII, 1 ⁇ L of BsrGI, and 8 ⁇ L of sterile water were added. After digestion for 30 minutes at 37 ° C., followed by 30 minutes at 60 ° C., treatment was carried out at 80 ° C. for 10 minutes.
  • the resulting digested product (3 ⁇ l) was heat-treated at 60 ° C. for 30 seconds, and then cooled on ice for 1 minute. After 1 ⁇ L of pACD4K-C Linear Vector (supplied with the kit) and 4 ⁇ L of DNA Ligation Kit ⁇ Mighty Mix> (Takara Bio) were added and mixed, a ligation reaction was performed at 16 ° C. for 1 hour. 5 ⁇ L of the ligation reaction mixture was mixed with 50 ⁇ L of E. coli JM109 competent cells (Takara Bio), and allowed to stand on ice for 30 minutes. After incubating for 45 seconds at 42 ° C., it was again placed on ice for 5 minutes.
  • the resulting plasmid DNA was digested with HindIII, and electrophoresed on a 1% agarose gel, and the plasmid for which a band of about 7.7 kbp was identified was designated as pACD4K-C-ushA.
  • SEQ ID NO: 34 (pACD4K-C-dKm-F2) and SEQ ID NO: 35 (pACD4K-C-dKm) using pACD4K-C-ushA as a template.
  • SEQ ID NO: 34 (pACD4K-C-dKm-F2) and SEQ ID NO: 35 (pACD4K-C-dKm) using pACD4K-C-ushA as a template.
  • a PCR reaction was performed under the reaction liquid composition shown in Table 17 and the reaction conditions shown in Table 18.
  • the primer shown in SEQ ID NO: 34 had a 5 'end phosphorylated.
  • the resulting plasmid DNA was digested with MluI and electrophoresed on a 1% agarose gel, and the plasmid in which a band of about 6.3 kbp was identified was designated as pACD4K-C-ushA ⁇ Km.
  • the Colony PCR was performed using a Forward primer (SEQ ID NO: 36) and a Reverse primer (SEQ ID NO: 37) on a plurality of emerging colonies.
  • the reaction liquid composition was as shown in Table 19, and the reaction conditions were as shown in Table 18.
  • the original host (BL21 (DE3)) amplified a band of about 1.1 kbp, whereas a clone was obtained in which a band of about 1.8 kbp was amplified.
  • strain BN1 This clone was designated as strain BN1 as a host in which the ushA gene was disrupted.
  • E. Competent cells of strain BN1 were prepared using E. coli Transformation Kit, Mix & Go (ZYMO RESEARCH) according to the attached protocol.
  • a BN3 strain in which the pncA gene was disrupted using the BN1 strain as a host was prepared as follows. Reaction liquid composition and table shown in Table 15 using each primer shown in SEQ ID NO: 38 (IBS primer), SEQ ID NO: 39 (EBS1d primer) and SEQ ID NO: 40 (EBS2 primer) and EBS Universal primer attached to TargeTron Gene Knockout System PCR was performed under the reaction conditions shown in 16. Purification of the PCR reaction solution, restriction enzyme treatment with HindIII and BsrGI, ligation reaction with vector pACD4K-C, transformation of E.
  • coli JM109 and plasmid extraction were performed in the same manner as in the BN1 strain preparation.
  • the resulting plasmid DNA was digested with HindIII and electrophoresed on a 1% agarose gel, and the plasmid for which a band of about 7.7 kbp was identified was designated as pACD4K-C-pncA.
  • a plasmid for pncA gene disruption that did not contain the kanamycin resistance gene was prepared. The same procedure as in the preparation of pACD4K-C-ushA ⁇ Km was performed except that pACD4K-C-pncA was used as a template for PCR reaction. The resulting plasmid was designated pACD4K-C-pncA ⁇ Km.
  • BN3 strain in which the pncA gene was disrupted was prepared.
  • the procedure was the same as the preparation of the BN1 strain described above except that pACD4K-C-pncA ⁇ Km was used as the gene disruption plasmid and BN1 strain competent cells were used as the competent cells.
  • Colony PCR was performed using the Forward primer (SEQ ID NO: 41) and the Reverse primer (SEQ ID NO: 42) for the multiple colonies that appeared.
  • the reaction liquid composition was as shown in Table 19, and the reaction conditions were as shown in Table 18.
  • the original host (BL21 (DE3)) amplified a band of about 2.2 kbp, whereas a clone was obtained in which a band of about 2.9 kbp was amplified.
  • This clone was designated as strain BN3 as a host in which the ushA gene and the pncA gene were disrupted.
  • E. Competent cells of BN3 strain were prepared using E. coli Transformation Kit, Mix & Go (ZYMO RESEARCH) according to the attached protocol.
  • BN6 strain in which the pncC gene was disrupted using the BN3 strain as a host was prepared as follows. Reaction liquid composition and table shown in Table 15 using each primer shown in SEQ ID NO: 43 (IBS primer), SEQ ID NO: 44 (EBS1d primer) and SEQ ID NO: 45 (EBS2 primer) and EBS Universal primer attached to TargeTron Gene Knockout System PCR was performed under the reaction conditions shown in 16. Purification of the PCR reaction solution, restriction enzyme treatment with HindIII and BsrGI, ligation reaction with vector pACD4K-C, transformation of E.
  • coli JM109 and plasmid extraction were performed in the same manner as in the BN1 strain preparation.
  • the obtained plasmid DNA was digested with HindIII, and electrophoresed on a 1% agarose gel, and the plasmid in which a band of about 7.7 kbp was confirmed was designated as pACD4K-C-pncC.
  • a plasmid for pncC gene disruption that did not contain the kanamycin resistance gene was prepared. The same procedure as in the preparation of pACD4K-C-ushA ⁇ Km was performed except that pACD4K-C-pncC was used as a template for PCR reaction. The resulting plasmid was designated pACD4K-C-pncC ⁇ Km.
  • a BN6 strain in which the pncC gene was disrupted was prepared using the BN3 strain as a host. The procedure was the same as that for the BN1 strain described above, except that pACD4K-C-pncC ⁇ Km was used as a gene disruption plasmid. Colony PCR was performed using a Forward primer (SEQ ID NO: 46) and a Reverse primer (SEQ ID NO: 47) for a plurality of emerging colonies. The reaction liquid composition was as shown in Table 19, and the reaction conditions were as shown in Table 18.
  • the original host (BL21 (DE3)) amplified a band of about 0.5 kbp, whereas a clone was obtained in which a band of about 1.2 kbp was amplified.
  • This clone was designated as strain BN6 as a host in which the ushA gene, the pncA gene and the pncC gene were disrupted.
  • E. Competent cells of BN6 strain were prepared using E. coli Transformation Kit, Mix & Go (ZYMO RESEARCH) according to the attached protocol.
  • BN8 strain in which the yrfG gene was disrupted using BN6 strain as a host was prepared as follows. Reaction liquid composition and table shown in Table 15 using each primer shown in SEQ ID NO: 48 (IBS primer), SEQ ID NO: 49 (EBS1d primer) and SEQ ID NO: 50 (EBS2 primer) and EBS Universal primer attached to TargeTron Gene Knockout System PCR was performed under the reaction conditions shown in 16. Purification of the PCR reaction solution, restriction enzyme treatment with HindIII and BsrGI, ligation reaction with vector pACD4K-C, transformation of E.
  • coli JM109 and plasmid extraction were performed in the same manner as in the BN1 strain preparation.
  • the resulting plasmid DNA was digested with HindIII and electrophoresed on a 1% agarose gel, and the plasmid for which a band of about 7.7 kbp was confirmed was designated as pACD4K-C-yrfG.
  • a plasmid for yrfG gene disruption not containing the kanamycin resistance gene was prepared. The same procedure as in the preparation of pACD4K-C-ushA ⁇ Km was performed except that pACD4K-C-yrfG was used as a template for PCR reaction. The resulting plasmid was designated pACD4K-C-yrfG ⁇ Km.
  • BN8 strain in which the yrfG gene was disrupted was prepared.
  • the procedure was the same as the preparation of the BN1 strain described above, except that pACD4K-C-yrfG ⁇ Km was used as the gene disruption plasmid and that the BN6 strain competent cell was used as the competent cell.
  • Colony PCR was performed using a Forward primer (SEQ ID NO: 51) and a Reverse primer (SEQ ID NO: 52) on a plurality of emerging colonies.
  • the reaction liquid composition was as shown in Table 19, and the reaction conditions were as shown in Table 18.
  • the original host (BL21 (DE3)) amplified a band of about 0.4 kbp, whereas a clone was obtained in which a band of about 1.1 kbp was amplified.
  • This clone was designated as strain BN8 as a host in which the ushA gene, the pncA gene, the pncC gene and the yrfG gene were disrupted.
  • E. Competent cells of BN8 strain were prepared using E. coli Transformation Kit, Mix & Go (ZYMO RESEARCH) according to the attached protocol.
  • Example 3 BsPrsN120S described in Example 3 is used as Prs, and as a host for enzyme expression described in Example (1).
  • Cell-free extracts of each enzyme were prepared in the same manner as in Example 1 (2) to (4) except that strains BN3 and BN8 were used.
  • the number of moles of added ATP (0.01 ⁇ mol) was 0.043 equivalent of the number of moles of NMN (0.23 ⁇ mol) formed. Also in the case of using the cell-free extract prepared with BN8 strain in which the ushA gene, pncA gene, pncC gene and yrfG gene were disrupted as a host (Sample No. 7-3), the generation of 2.3 mM NMN was similarly recognized It was done.
  • the number of moles of added ATP (0.01 ⁇ mol) was 0.043 equivalent of the number of moles of NMN (0.23 ⁇ mol) formed. That is, when the production of NMN proceeds, using cell-free extract prepared with BN3 strain and BN8 strain as host is more effective than using cell-free extract prepared with BL21 (DE3) as host. It turned out that the amount of production goes up.
  • the step of appropriately recovering the generated NMN is carried out at a time (for example, 6 hours) before the decomposition of the NMN proceeds, the generated NMN can be produced regardless of which host cell-derived extract is used. It can be acquired properly.
  • Nampt (AAR87771) Nampt derived from Haemophilus ducreyi with His tag added (HdNampt-His)
  • Prs An Asn120Ser mutant of Bacillus subtilis (BAA05286) Prs with His tag added (BsPrsN120S-His)
  • Ppk (Ppk2 class 3): Deinococcus radiodurans origin (NP_293858) Ppk with His tag added (DrPpk-His)
  • Rbk Saccharomyces cerevisiae-derived (P25332)
  • Rbk with His tag added (ScRbk-His)
  • a plasmid expressing a protein in which His tag was added to Prs, Ppk and Rbk was prepared as follows. Using pEBsPrsN120S prepared in Example 3 and pEDrPpk and pEScRbk prepared in Example 1 as templates, a mutagenic PCR reaction for adding a His tag to each enzyme was performed. Table 21 shows the name of the template plasmid, the name of the primer for introducing a mutation, the SEQ ID NO showing the nucleotide sequence thereof, and the name of the His-tagged enzyme expression plasmid.
  • NMN synthesis reaction analysis of NMN Using various purified enzymes obtained in (3), an NMN synthesis reaction in the presence or absence of PPase (from yeast, Sigma-Aldrich, product number 10108987001) and Analysis was carried out.
  • SEQ ID NO: 15 Primer for introducing a mutation in Prs mutant BsPrsN120S (forward)
  • SEQ ID NO: 16 Primer for introducing a mutation in Prs mutant BsPrsN120S (reverse)
  • SEQ ID NO: 17 Primer for introducing a mutation in Prs mutant BsPrsL135I (forward)
  • SEQ ID NO: 18 Primer for introducing a mutation in Prs mutant BsPrsL135I (reverse)
  • SEQ ID NO: 19 Primer T7-PP SEQ ID NO: 20: Primer T7-TP
  • SEQ ID NO: 25 Primer for introducing a mutation into His-tagged Nampt expression plasmid pEHdNampt-His (forward)
  • SEQ ID NO: 26 Primer for introducing a mutation into His-tagged Nampt expression plasmid pEHdNampt-His (reverse)
  • SEQ ID NO: 27 Primer for mutagenesis of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、生産効率に優れたニコチンアミドモノヌクレオチド(NMN)の製造方法を提供することを課題とする。本発明(第一の発明群)に係るNMNの製造方法は、ニコチンアミドホスホリボシルトランスフェラーゼ(Nampt)、ホスホリボシルピロリン酸シンターゼ(Prs)、ポリリン酸キナーゼ(Ppk)の各酵素の発現が強化された形質転換体、前記3酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、リボース-5-リン酸(R5P)、ニコチンアミド(NAM)、ATP、およびポリリン酸を含む混合物と接触させる工程を含む。

Description

ニコチンアミドモノヌクレオチドの製造方法およびその方法に用いる形質転換体
 本発明は、ニコチンアミドモノヌクレオチド等の核酸系化合物の製造方法に関する。
 ニコチンアミドモノヌクレオチド(NMN)は、ニコチンアミドアデニンジヌクレオチド(NAD+)の合成中間体である。近年、NMNはNAD+への変換を通じて長寿遺伝子「サーチュイン」の活性をコントロールすること、NMNをマウスに投与すると抗老化作用が示されることが明らかにされた。さらに、NMNは糖尿病、アルツハイマー病、心不全などの疾患の予防や症状の改善に効果があることも報告されている。このようなNMNには、機能性食品、医薬品、化粧品等の成分としての用途が期待されており、生産性の向上を目指して、効率的な製造方法の研究開発が進められている。
 特許文献1には、ニコチンアミドホスホリボシルトランスフェラーゼ(Nampt)を過剰発現させた細胞(酵母、細菌等)を単離し、その細胞をニコチンアミド(NAM)の存在化で培養する、NMNの製造方法が記載されている(請求項1,13,15等)。Namptは、NAMと細胞内で生合成されるホスホリボシルピロリン酸(PRPP)とからNMNを生成する酵素である。特許文献1には、PRPPの生合成を促進するため、前記細胞にさらにホスホリボシルピロリン酸シンターゼ(Prs)を過剰発現させることも記載されている(請求項3等)。Prsは、リボース-5-リン酸(R5P)およびATPから、PRPPおよびAMPを生成する酵素である。特許文献1では、特定の酵素を過剰発現する細胞を生かした状態で、炭素源、窒素源等を含有する培地で培養させながら、生体内での酵素反応によりNMN等の目的化合物を生成させている。
 特許文献2には、反応生成物に対する感受性が弱められた(つまり、Prsにより生成するPRPPによる負のフィードバックを受けにくいため、系内へのPRPPの供給量を増加させることができる)Prs変異体を用いた、NAD前駆体の合成システムが記載されている(請求項1、段落0068等)。このPrs変異体は、組換え体において生成され、単離、精製されたものであってもよいことも記載されている(請求項6等)。特許文献2には、システムがさらにNampt、ATP、R5P、PRPPを含んでいてもよいことも記載されている(請求項10、20、21、23等)。
 一方、非特許文献1には、リボキナーゼ(Rbk、当該文献ではRKと表記されている)、Prs(同じくPPSと表記されている)およびヒポキサンチンホスホリボシルトランスフェラーゼ(8B3)の3つの酵素を用いて、リボースからイノシン一リン酸(IMP)を合成する方法が記載されている。Rbkは、リボースおよびATPからR5PおよびADPを生成する反応(i)に関与し、Prsは、R5PおよびATPからPRPPおよびAMPを生成する反応(ii)に関与し、8B3は(iii)PRPPおよびイノシン酸からIMPおよびピロリン酸(PPi)を生成する反応に関与する。上記の非特許文献1に記載の方法では、反応(ii)で生成するAMPから、アデニル酸キナーゼによりADPが再生される。また、その再生されたADPおよび反応(i)で生成するADPから、ホスホエノールピルビン酸およびピルビン酸キナーゼにより、ATPが再生される。
 特許文献3には、単独でAMPからATPを合成可能な酵素であるポリリン酸キナーゼ(Ppk)2型を、ポリリン酸およびAMPと反応させる、ATPの製造方法が記載されている。そのようなポリリン酸キナーゼ2型として、好熱菌(Thermosynechococcus elongatus等)に由来する、特定のアミノ酸配列を有するポリリン酸キナーゼが開示されている。特許文献3にはさらに、ATPを利用して物質(目的化合物)を製造する方法において、上記のATPの製造方法を同時に実施することにより、目的化合物の合成反応とATPの再生反応を共役させ、AMPから再生されたATPが目的化合物の合成に利用されるようにすることも記載されている。
 特許文献4には、70℃、10分間の熱処理でも失活しない好熱菌由来のPpkの遺伝子を含む大腸菌を、大腸菌の通常の酵素が活性を失い、かつポリリン酸の細胞透過性が得られる、60~80℃で加熱して、大腸菌の細胞膜が破壊された状態で、ATPの再生反応を行う方法が記載されている。
 特許文献5には、NAM、ATPおよびリボースを原料とし、ニコチンアミドホスホリボシルトランスフェラーゼ、リボースリン酸ピロリン酸キナーゼおよびリボースキナーゼの触媒作用下で反応させるニコチンアミドモノヌクレオチドの製造方法が記載されている。
 非特許文献2には、好熱菌由来のPpkおよびそれによるATP再生系を利用した、グリセロール三リン酸の合成方法が記載されている。その方法では、グリセロール、ADP、ポリリン酸、グリセロールキナーゼ(GK)、Ppk等を含む緩衝液を初発反応液として用い、逐次ポリリン酸を添加しながら、反応を進行させている。
 非特許文献3には、Streptococcus sanguinis由来のグルタチオンシンターゼ(GshF)と、特許文献3に記載されているものと同様の活性を有する、好熱菌Thermosynechococcus elongates BP-1由来のPpkによるATP再生系とを共役させた、カスケード反応によるグルタチオンの製造方法が記載されている。
国際公開2015/069860号 国際公開2016/198948号 特開2013-021967号 特開2007-143463号 国際公開2017/185549号
Scism, Robert A. and Bachmann, Brian O. "Five‐component cascade synthesis of nucleotide analogues in an engineeredself‐immobilized enzymeaggregate." ChemBioChem 11.1 (2010): 67-70. Restiawaty, Elvi et al. "Feasibility ofthermophilic adenosine triphosphate-regeneration system using Thermusthermophilus polyphosphate kinase." Process Biochemistry 46.9 (2011):1747-1752. Zhang, Xing et al. "One-pot synthesis ofglutathione by a two-enzyme cascade using a thermophilic ATP regenerationsystem." Journal of Biotechnology 241 (2017): 163-169.
 しかしながら、特許文献1~5および非特許文献1~3に開示された方法は、NMNを効率的に製造するうえで問題があり、優れた方法とは言えない。具体的には、特許文献1では、特定の酵素を過剰発現する細胞を生かした状態で、炭素源、窒素源等を含有する培地で培養させながら、生体内での酵素反応によりNMNを生成させているが、その生成量は300nmol-NMN/g-酵母湿菌体重量(実施例1)である。仮に、酵母乾燥菌体重量/酵母湿菌体重量の比が0.2と仮定すると、約0.5g-NMN/kg―酵母乾燥菌体重量となり、生成量が低いという問題がある。
 特許文献2には、反応生成物に対する感受性が弱められたPrs変異体を用いた、NAD前駆体の合成システムが記載されている。しかし、NMNの生成を示す実施例は記載されておらず、具体的なNMNの製造方法や生成量は示されていない。
 特許文献3には、単独でAMPからATPを合成可能な酵素であるポリリン酸キナーゼ(Ppk)2型をポリリン酸およびAMPと反応させるATPの製造方法と、目的化合物の合成反応とを共役させる、物質の製造方法が記載されている。しかし、具体的なNMNの製造方法や生成量は示されていない。
 特許文献4には、好熱菌由来のPpkの遺伝子を含む大腸菌を加熱して、大腸菌の細胞膜が破壊された状態で、ATPの再生反応を行う方法が記載されているが、具体的なNMNの製造方法や生成量は示されていない。
 特許文献5には、ニコチンアミド、ATPおよびリボースを原料とし、ニコチンアミドホスホリボシルトランスフェラーゼ、リボースリン酸ピロリン酸キナーゼおよびリボースキナーゼの触媒作用下で反応させるニコチンアミドモノヌクレオチドの製造方法が記載されている。しかし、特許文献5では、NMNの製造に多量のATPを使用している。具体的には、NMN製造のために反応系に添加するATPのモル数が、生成するNMNのモル数の2倍以上となっている。ATPは高価な原料であるため、コスト的に効率的な製造方法とは言えない。
 従って、これまでにも多くのNMNの製造法は示されているが、NMNの生成量およびNMNの製造ために必要となるATPの量の観点から、いずれも十分なものではなかった。
 本発明は、生産効率に優れたニコチンアミドモノヌクレオチドの製造方法を提供することを課題とする。
 本発明者らは、Nampt、PrsおよびPpkの3酵素の発現が強化された形質転換体、前記3酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、R5P、NAM、ATP、およびポリリン酸と接触させて酵素反応を進行させた場合(図1参照)、従来の方法よりも効率的に、また安価にNMNを生産することができることを見出した。さらに、前記R5Pを、RbkおよびPpkの2酵素の発現が強化された形質転換体、前記2酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、リボース、ATP、およびポリリン酸と接触させて製造する場合は、一層効率的かつ安価にNMNを生産することができることを見出し、第一の発明群を完成させるに至った。
 また、本発明者らは、ピロホスファターゼ(PPase)の存在下で、Namptの発現が強化された形質転換体、前記酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、NAMおよびPRPPと接触させて酵素反応を進行させた場合、従来の方法よりも効率的にNMNを生産することができることを見出し、第二の発明群を完成させるに至った。
 さらに、本発明者らは、(d)EC 3.5.1.42に示されるEC番号に分類される酵素をコードする遺伝子と、以下の(a)(c)(g)(h)(i)に示されるいずれか一つ以上のEC番号に分類される酵素をコードする遺伝子とが破壊または欠失され、かつ、ニコチンアミドホスホリボシルトランスフェラーゼ(Nampt)の発現が強化されている形質転換体またはそれらの処理物を、少なくともニコチンアミド(NAM)と接触させることで、NMNの分解を顕著に抑制しながら、効率的にNMNを生産することができることを見出し、第三の発明群を完成させるに至った。
(a)EC 3.1.3.5
(c)EC 2.4.2.1
(g)EC 3.2.2.1
(h)EC 3.2.2.3
(i)EC 3.2.2.14
 さらに、本発明者らは、単独または複数の手段の組み合わせにより、NMNの製造のために反応系に添加するATP、ADPおよびAMP各モル数の総和を、生成するNMNのモル数の0.5当量以下にすることができることを見出し、第四の発明群を完成させるに至った。
 すなわち、本発明は下記[項1]~[項17]に関する。
[項1]
 ニコチンアミドホスホリボシルトランスフェラーゼ(Nampt)、ホスホリボシルピロリン酸シンターゼ(Prs)およびポリリン酸キナーゼ(Ppk)の3酵素の発現が強化された形質転換体、前記3酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、リボース-5-リン酸(R5P)、ニコチンアミド(NAM)、ATP、およびポリリン酸と接触させる工程を含む、ニコチンアミドモノヌクレオチド(NMN)の製造方法。
[項2]
 リボキナーゼ(Rbk)およびポリリン酸キナーゼ(Ppk)の2酵素の発現が強化された形質転換体、前記2酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、リボース、ATP、およびポリリン酸と接触させて前記R5Pを製造する工程をさらに含む、項1に記載のNMNの製造方法。
[項3]
 実質的に形質転換体が増殖しない条件で行う、項1または2に記載のNMNの製造方法。
[項4]
 前記Namptがバクテリア由来のものである、項1~3のいずれか一項に記載のNMNの製造方法。
[項5]
 前記Ppkが、ポリリン酸キナーゼ2型ファミリーである、項1~4のいずれか一項に記載のNMNの製造方法。
[項6]
 前記Ppkが、ポリリン酸キナーゼ2型ファミリーのクラス3サブファミリー(Ppk2クラス3)である、項1~5のいずれか一項に記載のNMNの製造方法。
[項7]
 前記形質転換体の宿主が、大腸菌、コリネバクテリウム属細菌、ロドコッカス属細菌、または酵母である、項1~6のいずれか一項に記載のNMNの製造方法。
[項8]
 ニコチンアミドホスホリボシルトランスフェラーゼ(Nampt)、ホスホリボシルピロリン酸シンターゼ(Prs)およびポリリン酸キナーゼ(Ppk)の3酵素の発現が強化された形質転換体。
[項9]
 リボキナーゼ(Rbk)およびポリリン酸キナーゼ(Ppk)の2酵素の発現が強化された形質転換体。
[項10]
 ピロホスファターゼ(PPase)の存在下で、ニコチンアミドホスホリボシルトランスフェラーゼ(Nampt)の発現が強化された形質転換体、前記酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、ニコチンアミド(NAM)およびホスホリボシルピロリン酸(PRPP)と接触させる工程を含む、ニコチンアミドモノヌクレオチド(NMN)の製造方法。
[項11]
 実質的に形質転換体が増殖しない条件で行う、項10に記載のNMNの製造方法。
[項12]
 前記処理物が精製酵素である、項10または11に記載のNMNの製造方法。
[項13]
 前記Namptがバクテリア由来のものである、項10~12のいずれか一項に記載のNMNの製造方法。
[項14]
 (d)EC 3.5.1.42に示されるEC番号に分類される酵素をコードする遺伝子と、以下の(a)(c)(g)(h)(i)に示されるいずれか一つ以上のEC番号に分類される酵素をコードする遺伝子とが破壊または欠失され、かつ、ニコチンアミドホスホリボシルトランスフェラーゼ(Nampt)の発現が強化されている形質転換体またはそれらの処理物を、少なくともニコチンアミド(NAM)と接触させる工程を含む、NMNの製造方法。
(a)EC 3.1.3.5
(c)EC 2.4.2.1
(g)EC 3.2.2.1
(h)EC 3.2.2.3
(i)EC 3.2.2.14
[項15]
 反応系に添加するATP、ADPおよびAMP各モル数の総和が、生成するNMNのモル数の0.5当量以下である、項1~14のいずれか一項に記載のNMNの製造方法。
[項16]
 ニコチンアミドホスホリボシルトランスフェラーゼ(Nampt)およびホスホリボシルピロリン酸シンターゼ(Prs)の2酵素の発現が強化された形質転換体、前記2酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、リボース-5-リン酸(R5P)、ニコチンアミド(NAM)およびATPと接触させる工程を含む、ニコチンアミドモノヌクレオチド(NMN)の製造方法であって、反応系に添加するATP、ADPおよびAMP各モル数の総和が、生成するNMNのモル数の0.5当量以下である、NMNの製造方法。
[項17]
 リボキナーゼ(Rbk)の発現が強化された形質転換体、前記酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、リボースおよびATPと接触させて前記R5Pを製造する工程をさらに含む、項16に記載のNMNの製造方法。
 本発明の第一の発明群によるNMNの製造方法を利用することにより、NMNの生産量を従来よりも飛躍的に向上させる(例えば、特許文献1に記載された生産量の10倍以上にする)ことが可能となる。また、ATP再生反応を利用する本発明の製造方法により、PRPPのように高価な中間体やATPを多量に投入せずとも、より安価なR5Pまたはリボースを原料としてNMNを生産することができるため、生産コストの抑制も可能となる。
 本発明の第二の発明群によるNMNの製造方法を利用することにより、第3反応を効率的に進行させることができる。これにより、NMNの生産量や生成速度を向上させることが可能になり、NMNの生産コストを抑制することができる。
 本発明の第三の発明群によるNMNの製造方法を利用することにより、形質転換体、形質転換体から調製した休止菌体、膜透過性向上菌体、不活化菌体、破砕菌体、破砕菌体から調製した無細胞抽出物およびこれらに対して安定化処理を行った安定化処理物を用いてNMNの生成反応を行う際、生成物であるNMNの分解を抑制することができる。これにより、安価な触媒形態である菌体や無細胞抽出物などを用いて、高い収率でNMNを生産することが可能になり、NMNの生産コストを抑制することができる。
 本発明の第四の発明群によるNMNの製造方法を利用することにより、NMNの製造のために添加するATPの量を削減することができる。ATPは高価であるため、これにより、NMNの生産コストを抑制することができる。
図1は、本発明のNMNの製造方法において進行する反応を示した概略図である。 図2は、実施例1および比較例2におけるNMNの生成濃度を表すグラフである。 図3は、実施例3におけるNMNの生成濃度を表すグラフである。 図4は、実施例4におけるNMNの生成濃度を表すグラフである。 図5は、実施例5におけるNMNの生成濃度を表すグラフである。 図6は、実施例6および比較例2におけるNMNの生成濃度を表すグラフである。 図7は、実施例7におけるNMNの生成濃度を表すグラフである。 図8は、実施例8におけるNMNの生成濃度を表すグラフである。 図9は、NMNの分解経路を示す図である。
 本明細書で用いられる略語の定義はそれぞれ次の通りである。
 Nampt(Nicotinamide phosphoribosyltransferase):ニコチンアミドホスホリボシルトランスフェラーゼ
 Prs(Phosphoribosyl pyrophosphate synthetase):ホスホリボシルピロリン酸シンターゼ
 Rbk(Ribokinase):リボキナーゼ
 Ppk(Polyphosphate kinase):ポリリン酸キナーゼ
 PPase(Pyrophosphatase):ピロホスファターゼ
 NMN(Nicotinamide mononucleotide):ニコチンアミドモノヌクレオチド
 PRPP(Phosphoribosyl pyrophosphate):ホスホリボシルピロリン酸
 NAM(Nicotinamide):ニコチンアミド
 R5P(Ribose-5-phosphate):リボース-5-リン酸
 NR(Nicotinamide riboside):ニコチンアミドリボシド
 NaMN(Nicotinic acid mononucleotide):ニコチン酸モノヌクレオチド
 NAD(Nicotinamide adenine dinucleotide):ニコチンアミドアデニンジヌクレオチド
 PPi(Pyrophosphate):ピロリン酸
 PolyP(Polyphosphate):ポリリン酸
 -第一の発明群-
 本発明のNMNの製造方法のうち、第一の発明群は、Nampt、PrsおよびPpkの3酵素の発現が強化された形質転換体、前記3酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、R5P、NAM、ATP、およびポリリン酸と接触させる工程を含む。好ましくは、本発明のNMNの製造方法は、前記R5Pの製造工程として、RbkおよびPpkの2酵素の発現が強化された形質転換体、前記2酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、リボース、ATP、およびポリリン酸を含む混合物と接触させる工程をさらに含む。つまり、本発明では、ATP再生反応を利用しながら、所定の酵素反応を進行させることによりNMNを製造する。
 このような第一の発明群のNMNの製造方法は、典型的には、下記(1)~(3)の工程(本明細書において、それぞれ第1工程、第2工程および第3工程と称する)を順次行うことにより実施される。これらの工程は、同一の者が実施してもよいし、異なる者が実施してもよい。また、これらの工程は、連続的に行ってもよいし、各工程の間に所定の期間をおいて段階的に行ってもよい。
(1)Nampt、Prs、RbkおよびPpkの各酵素をコードする遺伝子を含む形質転換体を作製して培養し、または当該各酵素をコードする遺伝子を含む無細胞タンパク質合成反応液でタンパク質合成反応を行い、当該各酵素を発現させる工程(第1工程);
(2)必要に応じ、第1工程を経た形質転換体または無細胞タンパク質合成反応液から、処理物を調製する工程(第2工程);および
(3)第1、第2工程を経た形質転換体、無細胞タンパク質合成反応液、またはそれらの処理物を、各基質化合物と接触させる工程(第3工程、図1参照)。
 以下、本発明のNMNの製造方法について、第1工程、第2工程および第3工程を行う実施形態に沿って、さらに詳細に説明する。ただし、本発明のNMNの製造方法は、本発明の趣旨を逸脱しない範囲で、以下に具体的に記載する第1工程、第2工程および第3工程を適宜改変した実施形態で行うことも可能である。
 [第1工程]
 第1工程は、Nampt、Prs、RbkおよびPpkの各酵素をコードする遺伝子を含む形質転換体を作製して培養し、または当該各酵素をコードする遺伝子を含む無細胞タンパク質合成反応液でタンパク質合成反応を行い、当該各酵素を発現させる工程である。
 (酵素)
 本発明では、Nampt、PrsおよびPpkと、必要によりさらにRbkの4酵素を利用する。Nampt、Prs、PpkおよびRbkはいずれも既知の酵素であり、そのアミノ酸配列およびそれをコードする遺伝子の塩基配列は当業者であれば容易に入手可能である。上記所定の4酵素は、それぞれの目的反応を触媒することができるものであれば、天然型の酵素であってもよいし、天然型の酵素のアミノ酸配列を改変することにより作製された、好ましくは発現量や酵素活性が向上した、変異型の酵素であってもよい。また、精製の簡略化や可溶性発現の促進、抗体による検出等を目的として、各酵素には種々のタグ(タンパク質またはペプチド)が付加されていてもよい。タグの種類としては、Hisタグ(ヒスチジンタグ)、Strep(II)-tag、GSTタグ(グルタチオン‐S‐トランスフェラーゼタグ)、MBPタグ(マルトース結合タンパク質タグ)、GFPタグ(緑色蛍光タンパク質タグ)、SUMOタグ(Small Ubiquitin-related(like) Modifierタグ)FLAGタグ、HAタグ、mycタグ等が挙げられる。さらに、4酵素は、互いに融合タンパク質として発現されていてもよい。
 ・Nampt
 Nampt(EC number: 2.4.2.12)は、一般的にNAD(ニコチンアミドアデニンジヌクレオチド)サルベージ経路に関与することが知られており、本発明において、PRPPおよびNAMからNMNを生成させる反応(第3反応)のために利用される酵素である。NamptによるPRPPとNAMからのNMN合成反応において、本来、ATPは必須ではない。しかし、NamptにはATP加水分解活性があり、ATPの加水分解によってNamptが自己リン酸化されることで、NMN生成に有利な方向に酵素学的パラメータや化学平衡が変化することが報告されている(Biochemistry 2008, 47, 11086-11096)。
 Namptとしては、例えば、ヒト(Homo sapiens)由来のもの(NP_005737)、マウス(Mus musculus)由来のもの(NP_067499)、ラット(Rattus norvegicus)由来のもの(NP_808789)、ゼブラフィッシュ(Danio rerio)由来のもの(NP_997833)、Haemophilus ducreyi(AAR87771)、Deinococcus radiodurans(AE001890)、Oenococcus oeni(KZD13878)、Shewanella oneidensis(NP_717588)等バクテリア由来のものが挙げられる。本発明では、第3反応における酵素活性に優れることから、バクテリア由来のものを用いることが好ましい。ここで、バクテリアとは、核膜を有さない原核生物の一群であり、大腸菌、枯草菌、シアノバクテリアなどを含む生物群である。
 ・Prs
 Prs(EC number: 2.4.2.17)は、本発明において、R5PおよびATPからPRPPおよびAMPを生成させる反応(第2反応)のために利用される酵素である。
 Prsとしては、例えば、ヒト(Homo sapiens)由来のもの(NP_002755)、枯草菌(Bacillus subtilis)由来のもの(BAA05286)、Bacillus caldolyticus由来のもの(CAA58682)、Arabidopsis thaliana由来のもの(Q680A5)、Methanocaldococcus jannaschii由来のもの(Q58761)が挙げられる。長時間にわたって、特に製造系内の基質濃度が高い場合に、第2反応によるPRPPの生成およびそれに続く第3反応によるNMNの生成を継続させる(つまり最終産物であるNMNの製造系内の濃度を上昇させ続ける)ことができるよう、特許文献2に記載されているような変異型Prsを用いることもできる。変異型Prsとしては、例えば、ヒト由来のPrsについての、Asp51His(51位のASPのHisへの置換、以下同様)、Asn113Ser、Leu128Ile、Aspl82His、Ala189Val、およびHisl92Glnなどの変異型、ならびにそれらに対応する他の生物由来のPrsにおける変異型、例えば、枯草菌由来のPrsについて、Asn120Ser(上記Asn113Serに対応)、Leu135Ile(上記Leu128Ileに対応)などの変異型が挙げられる。
 ・Rbk
 Rbk(EC number: 2.7.1.15)は、本発明において、リボースおよびATPからR5PおよびADPを生成させる反応(第1反応)のために利用される酵素である。Rbkとしては、各種の生物に由来する天然型Rbk、またはそのアミノ酸配列を改変して作製された変異型Rbkを用いることができ、例えば、ヒト(Homo sapiens)由来のもの(NP_002755)、酵母(Saccharomyces cerevisiae)由来のもの(P25332)、枯草菌(Bacillus subtilis)由来のもの(P36945)、大腸菌(Escherichia coli)由来のもの(AAA51476)、Haemophilus influenzae由来のもの(P44331)が挙げられる。
 ・Ppk
 Ppk(EC number: 2.7.4.1)は、本発明において、第1反応で生成するADPまたは第2反応で生成するAMPと、ポリリン酸とから、ATPを再生する反応(ATP再生反応)のために利用される酵素である。
 Ppkはアミノ酸配列およびキネティクスの違いにより2つのファミリー、ポリリン酸キナーゼ1型ファミリー(Ppk1)およびポリリン酸キナーゼ2型ファミリー(Ppk2)に分類することができる。ポリリン酸を基質としてATPを再生する活性としては、Ppk1よりもPpk2のほうが高い。従って、本発明におけるPpkとしては、Ppk2を用いることが好ましい。
 Ppk2はさらに、3つのサブファミリー、クラス1、クラス2およびクラス3に分類することができる。クラス1およびクラス2のPpk2はそれぞれ、ADPをリン酸化してATPを生成する反応、およびAMPをリン酸化してADPを生成する反応を触媒する。これに対してクラス3のPpk2は、AMPのリン酸化反応およびADPのリン酸化反応の両方を触媒することができるため、単独でAMPからATPを生成することができる。
 本発明におけるPpkとしては、ADPからATPを再生するためのPpk2クラス1と、AMPからのADPを再生するためのPpk2クラス2の組み合わせを用いることができる。または、AMPからのADPを再生するためにアデニル酸キナーゼ(AMP+ATP→2ADPという反応を触媒する)を併用する場合は、ADPからATPを再生するためのPpk2クラス1またはPpk1のみを本発明におけるPpkとして用いることも可能である。しかし、ADPからのATPの再生と、AMPからのATPの再生の、両方の反応を単独で触媒することができるという効率性の良さから、Ppk2クラス3を用いることが好ましい。このようなPpKを用いる場合は、第1反応のPpkと第2反応のPpkを共通化することができる。
 Ppk2クラス3としては、例えば、Deinococcus radiodurans由来のもの(NP_293858)、Paenarthrobacter aurescens由来のもの(ABM08865)、Meiothermus rube由来のもの(ADD29239)、Deinococcus geothermalis由来のもの(WP_011531362)、Thermosynechococcus elongatus由来のもの(NP_682498)が挙げられる。一方、Ppk2クラス1としては、例えばRhodobacter sphaeroides由来のもの(CS253628)、Sinorhizobium meliloti由来のもの(NP_384613)、Pseudomonas aeruginosa由来のPA0141(NP_248831)、Pseudomonas aeruginosa由来のPA2428(NP_251118)、Francisella tularensis由来のもの(AJI69883)が挙げられる。Ppk2クラス2としては、例えばPseudomonas aeruginosa由来のPA3455(NP_252145)が挙げられる。また、アデニル酸キナーゼとしては、例えばBacillus cereus由来のもの(AAP07232)が挙げられる。
 (形質転換体)
 本発明で用いられる形質転換体は、形質転換を行う前の(野生型の)細胞ないし菌体と比較して、所定の各酵素の発現が強化されたものである。「発現が強化された」とは、各酵素の発現量がどの程度強化されたかを意味するかは一概に決定されるものではなく、後述するように各酵素の反応溶媒中(製造系内)の濃度が適切な範囲となるよう、形質転換体における発現量は調節することができるが、少なくとも、人為的な操作によって、形質転換を行う前の(野生型の)細胞ないし菌体よりも発現が強化されていればよい。人為的な操作としては、特に限定されず、次に述べるように発現ベクターを利用する、ゲノム上に所定の酵素をコードする遺伝子発現ユニットを多コピー導入する、元々ゲノム上に存在する所定の酵素をコードする遺伝子のプロモーターを強力なものに置き換える等の操作が挙げられる。
 本発明で用いられる形質転換体は、(i)所定の各酵素をコードする遺伝子の全てを含む形質転換体のみから構成されていてもよいし、(ii)所定の各酵素をコードする遺伝子を別個に含む形質転換体同士の組み合わせとして、例えば、NamptとPrsの発現が強化された形質転換体およびPpkの発現が強化された形質転換体からなる組み合わせによって、構成されていてもよい。
 形質転換体の宿主は、発現ベクター等を利用したタンパク質発現システムによって所定の酵素を発現することができる細胞であれば特に限定されるものではない。例えば、大腸菌(Escherichia coli)、枯草菌(Bacillus subtilis)、放線菌(例えばロドコッカス属(Rhodococcus)、コリネバクテリウム属(Corynebacterium))などの細菌;酵母(例えばサッカロマイセス属(Saccharomyces)、キャンディダ属(Candida)、ピキア属(Pichia));糸状菌;植物細胞;昆虫細胞、哺乳類細胞などの動物細胞が挙げられる。これらの中でも、大腸菌、コリネバクテリウム属細菌およびロドコッカス属細菌、ならびにサッカロマイセス属酵母、キャンディダ属酵母およびピキア属酵母が好ましく、大腸菌がより好ましい。
 大腸菌としては、例えば、大腸菌K12株およびB株、ならびにそれらの野生株由来の派生株であるW3110株、JM109株、XL1-Blue株(例えば、XL1-BlueMRF')、K802株、C600株、BL21株、BL21(DE3)株等が挙げられる。
 発現ベクターを用いる場合は、本発明で用いる所定の各酵素の遺伝子を発現可能な状態で含むものであれば特に限定されず、それぞれの宿主に適したベクターを用いることができる。発現ベクターの構成の詳細については後述する。
 宿主への発現ベクターの導入方法は、宿主に適した方法であれば特に限定されるものではない。利用可能な方法としては、例えば、エレクトロポレーション法、カルシウムイオンを用いる方法、スフェロプラスト法、酢酸リチウム法、リン酸カルシウム法、リポフェクション法が挙げられる。
 発現ベクターが導入された形質転換体は、宿主として用いた細胞(菌体)に適した方法で培養して、所定の各酵素を発現させればよい。前述したように、所定の各酵素をコードする遺伝子を別個に含む形質転換体同士を組み合わせる場合、例えば、NamptとPrsの発現が強化された形質転換体とPpkの発現が強化された形質転換体を作製して組みあわせる場合は、それぞれの形質転換体を同一の培地で培養してもよいし、別々の培地で培養した後に混合してもよい。
 形質転換体、形質転換体から調製した休止菌体、膜透過性向上菌体、不活化菌体、破砕菌体、破砕菌体から調製した無細胞抽出物およびこれらに対して安定化処理を行った安定化処理物(詳細は後記第2工程に関する事項を参照)を用いてNMNの生成反応を行う場合、反応物(基質)であるリボースやNAM、生成物であるNMNの分解または副反応が起き、NMNが効率的に製造できないことがある。その場合、分解や副反応の原因となる遺伝子を破壊または欠失させた宿主を用いることができる。具体的には、以下の(a)~(i)に示されるいずれか一つ以上のEC番号に分類される酵素をコードする遺伝子が、欠損または破壊されている宿主を用いることができる。
(a)EC 3.1.3.5
(b)EC 3.5.1.19
(c)EC 2.4.2.1
(d)EC 3.5.1.42
(e)EC 1.17.2.1
(f)EC 1.17.1.5
(g)EC 3.2.2.1
(h)EC 3.2.2.3
(i)EC 3.2.2.14
 (a)EC 3.1.3.5に分類される酵素は、5'-nucleotidaseであり、NMNを加水分解してニコチンアミドリボシド(NR)とリン酸を生成する反応を触媒する酵素を含む。5'-nucleotidaseをコードする遺伝子としては、例えば、大腸菌のushA、surE、yrfG、yjjG等が挙げられる。例えば、Enzyme and Microbial Technology, 58-59(2014), 75-79には、大腸菌におけるNAD分解の主要な役割を担う酵素として、5'-nucleotidaseであるUshAが報告されており、同酵素がNMN分解活性を有することが開示されている。本発明において破壊または欠失させる5'-nucleotidaseとしては、特にushAまたはそのホモログ遺伝子が好ましい。
 (b)EC 3.5.1.19に分類される酵素は、nicotinamidaseであり、NAMの分解に関与する。nicotinamidaseをコードする遺伝子としては、例えば、大腸菌のpncAが挙げられる。
 (c)EC 2.4.2.1に分類される酵素は、purine-nucleoside phosphorylaseであり、NRを加リン酸分解して、NAMとリボース-1-リン酸(R1P)とを生成する反応を触媒する酵素を含む。purine-nucleoside phosphorylaseをコードする遺伝子としては、例えば、大腸菌のdeoDが挙げられる。Molecular and General Genetics, 104(1969), 351-359には、ヌクレオシドの代謝に関する遺伝子群の一つとして、deoDが開示されている。本発明において破壊または欠失させるpurine-nucleoside phosphorylaseとしては、deoDまたはそのホモログ遺伝子が好ましい。
 (d)EC 3.5.1.42に分類される酵素は、nicotinamide mononucleotide
deamidaseであり、NMNを加水分解して、NaMNとアンモニアを生成する酵素である。nicotinamide mononucleotide deamidaseをコードする遺伝子としては、例えば、大腸菌のpncCが挙げられる。THE JOURNAL OF BIOLOGICAL CHEMISTRY, 286(2011), 40365-40375には、Shewanella oneidensisおよび大腸菌のpncCに関する知見が開示されている。本発明において破壊または欠失させるnicotinamide mononucleotide deamidaseとしては、pncCまたはそのホモログ遺伝子が好ましい。
 (e)EC 1.17.2.1および(f)EC 1.17.1.5に分類される酵素は、nicotinate dehydrogenaseであり、NAMからのヒドロキシニコチン酸の副生に関与する可能性が考えられる。
 (g)EC 3.2.2.1に分類される酵素は、purine nucleosidaseであり、NRを加水分解して、NAMとリボースを生成する反応を触媒する酵素を含む。purine nucleosidaseをコードする遺伝子としては、例えば、Ochrobactrum anthropiのPu-Nが挙げられる(Applied and Environmental Microbiology, 67(2001), 1783-1787)。本発明において破壊または欠失させるpurine nucleosidaseとしては、Pu-Nまたはそのホモログ遺伝子が好ましい。
 (h)EC 3.2.2.3に分類される酵素は、uridine nucleosidaseであり、NRを加水分解して、NAMとリボースを生成する反応を触媒しうる酵素を含む。uridine nucleosidaseをコードする遺伝子としては、例えば、Arabidopsis thalianaのURH1が挙げられる(Plant Cell, 21(2009), 876-91)。本発明において破壊または欠失させるuridine nucleosidaseとしては、URH1またはそのホモログ遺伝子が好ましい。
 (i)EC 3.2.2.14に分類される酵素は、NMN nucleosidaseであり、NMNを加水分解して、NAMとR5Pを生成する反応を触媒する酵素である。Biochem. Biophys. Res. Commun., 49(1972), 264-9には、大腸菌のNMN nucleosidase活性が開示されている。本発明においては、NMN nucleosidase活性を有する酵素をコードする遺伝子を破壊または欠失させることが好ましい。
 欠損または破壊されるのは、(d)に示されるEC番号に分類される酵素をコードする遺伝子と、(a)(c)(g)(h)(i)に示されるいずれか一つ以上のEC番号に分類される酵素をコードする遺伝子とであることが好ましく、(d)に示されるEC番号に分類される酵素をコードする遺伝子と、(a)に示されるEC番号に分類される酵素をコードする遺伝子とであることがより好ましい。詳細は、後述する第三の発明群の説明に記載する。
 遺伝子を破壊または欠失させる方法は、特段限定されるものではなく、公知の遺伝子破壊または欠失方法で行うことができる。例えば、線状にした遺伝子破壊または欠失用断片を用いる方法、複製起点を含まない環状の遺伝子破壊または欠失プラスミドを用いる方法、グループIIイントロンを用いる方法、Red-ET相同組換え法、ZFN、TALEN、CRISPR/Cas9等のゲノム編集を用いる方法などが挙げられる。
 (発現ベクター)
 本発明で用いられる、所定の各酵素をコードする遺伝子は、典型的には、発現ベクターに含まれた状態で形質転換体の宿主に導入される。一つの形質転換体において2つ以上の酵素を発現させる場合、1つの発現ベクターに、発現させる各酵素をコードする遺伝子の全てが含まれていてもよいし、宿主内で共存可能な2以上の発現ベクターに、発現させる各酵素をコードする遺伝子が適宜振り分けられて含まれていてもよい。例えば、Nampt、PrsおよびPpkの発現が強化された形質転換体を作製する場合、Nampt、PrsおよびPpkをコードする遺伝子全てが含まれる1つの発現ベクターを用いてもよいし、NamptとPrsをコードする遺伝子を含む発現ベクターとPpkをコードする遺伝子を含む発現ベクターの2つのベクターの組み合わせによって構成されていてもよい。
 本発明で用いられる発現ベクターは、公知の手法により作製することができる。一般的には、所定の酵素をコードする遺伝子の上流に転写プロモーター、場合によっては下流にターミネーターを挿入して発現カセットを構築し、このカセットを発現ベクターに挿入すればよい。あるいは、発現ベクターに転写プロモーターおよび/またはターミネーターがすでに存在する場合には、発現カセットを構築することなく、そのベクターの転写プロモーターおよび/またはターミネーターを利用して、その間に所定の酵素をコードする遺伝子を挿入すればよい。上述したように、1つの発現ベクターに2つ以上の酵素をコードする遺伝子を含める場合、それらの遺伝子は全て同一のプロモーター下に挿入されていてもよいし、異なるプロモーター下に挿入されていてもよい。プロモーターの種類は宿主において適切な発現を可能にするものであれば特に限定されるものではないが、例えば、大腸菌宿主において利用できるのものとしては、T7プロモーター、trpプロモーター、lacプロモーター、ラムダファージ由来PLプロモーター及びPRプロモーター、tacプロモーター、trcプロモーターが挙げられる。
 所定の各酵素をコードする遺伝子(核酸)は、例えば、(i)塩基配列情報に従い、プライマーを作製し、ゲノム等を鋳型として増幅することによって得ることもできるし、(ii)酵素のアミノ酸配列情報に従い、有機合成的にDNAを合成することによって得ることもできる。形質転換体の宿主となる細胞に応じて、遺伝子は最適化されていてもよい。
 発現ベクターに所定の酵素をコードする遺伝子を挿入するには、制限酵素を用いる方法、トポイソメラーゼを用いる方法等を利用することができる。挿入の際に必要であれば、適当なリンカーを付加してもよい。また、アミノ酸への翻訳にとって重要な塩基配列として、SD配列やKozak配列などのリボソーム結合配列が知られており、これらの配列を遺伝子の上流に挿入してもよい。挿入にともない、遺伝子がコードするアミノ酸配列の一部を置換してもよい。また、ベクターには目的とする形質転換体を選別するための因子(選択マーカー)が含めることが好ましい。選択マーカーとしては、薬剤耐性遺伝子や栄養要求性相補遺伝子、資化性付与遺伝子などが挙げられ、目的や宿主に応じて選択されうる。大腸菌で選択マーカーとして用いられる薬剤耐性遺伝子としては、例えばアンピシリン耐性遺伝子、カナマイシン遺伝子、ジヒドロ葉酸還元酵素遺伝子、ネオマイシン耐性遺伝子が挙げられる。
 発現ベクターは、宿主に応じて、プラスミドDNA、バクテリオファージDNA、レトロトランスポゾンDNA、人工染色体DNAなどから選ばれる適切なものを用いればよい。例えば、大腸菌を宿主とする場合には、pTrc99A(GEヘルスケア バイオサイエンス)、pACYC184(ニッポンジーン)、pMW118(ニッポンジーン)、pETシリーズベクター(Novagen)などを挙げることができる。また2以上の挿入箇所を有するベクターとしてはpETDuet-1(Novagen)等を挙げることができる。必要に応じて、これらのベクターを改変したものを用いることもできる。
 所定の酵素の発現を強化する方法としては、上述のような発現ベクターを用いる方法が典型的であるが、それ以外の方法を利用することもできる。例えば、所定の酵素をコードする遺伝子に、適切なプロモーターやターミネーター、マーカー遺伝子等を連結させた発現カセットを宿主のゲノム上に挿入することで、所定の酵素の発現を強化することができる。発現カセットがゲノム上に挿入された形質転換体を取得する方法としては、公知の方法を用いることができる。例えば、相同組換えにより発現カセットをゲノム上に挿入する場合は、所定の酵素の発現カセットと任意のゲノム領域の配列を有し、宿主内で複製不可能なプラスミドを用いて形質転換を行うことで、当該プラスミド全体または発現カセットが挿入された形質転換体を得ることができる。その際、SacB遺伝子(レバンスクラーゼをコード)等のネガティブ選択マーカーを搭載したプラスミドや、複製機構が温度感受性(ts)のプラスミドを用いることで、2回の相同組換えにより発現カセットのみがゲノム上にされた形質転換体を効率的に取得することもできる。また、発現カセットのみから成るDNA断片を用いて形質転換を行うことで、ゲノム上のランダムな位置に発現カセットが挿入された形質転換体を得ることもできる。
 また、所定の酵素として宿主がゲノム上に元々有する酵素(内因性酵素)を利用する場合は、ゲノム上の当該酵素遺伝子のプロモーターを強力なものに置換することで、その発現を強化することもできる。プロモーターとしては、上述した発現ベクターにおいて用いるプロモーターを同様に利用することができる。
 (無細胞タンパク質合成反応液)
 無細胞タンパク質合成系は、生きた微生物や細胞等ではなく、種々の生物から抽出した無細胞抽出物に、アミノ酸、ATP等のエネルギー分子、エネルギー再生系、マグネシウムイオン等の塩類、そして、発現させたいタンパク質をコードする遺伝子(DNAあるいはRNA)を添加した無細胞タンパク質合成反応液により、タンパク質を試験管内(in vitro)で合成するシステムである。無細胞抽出物には、リボソーム、tRNA、アミノアシル化tRNA合成酵素、翻訳開始因子、翻訳伸長因子、翻訳終結因子などの翻訳成分が含まれる。本明細書中では、無細胞タンパク質合成系によるタンパク質合成反応を行うための溶液を、反応の前後を含めて、無細胞タンパク質合成反応液と呼ぶ。
 本発明で用いる無細胞タンパク質合成系としては、所定の各酵素が本来の機能を有する状態で発現することができるものであればいかなる系でもよいが、例えば、コムギ胚芽由来合成系、大腸菌由来合成系、ウサギ網状赤血球由来系、昆虫細胞由来合成系、ヒト細胞由来合成系を用いることができる。また、必要な可溶性タンパク質因子を組換えタンパク質として調製するPURE(Protein synthesis Using Recombinant Elements) System等を用いてもよい。無細胞系でのタンパク質合成反応プロセスとしては、バッチ法、CFCF(Continuous-Flow Cell-Free)法、CECF(Continuous Exchange Cell-Free)法、重層法等を用いることができる。また、発現させる酵素遺伝子の鋳型としては、RNAでもDNAでもよい。鋳型としてRNAを用いる場合は、Total RNA、mRNA、in vitro転写産物などを用いることができる。
 [第2工程]
 第2工程は、必要に応じ、第1工程を経た形質転換体または無細胞タンパク質合成反応液から処理物を調製する工程である。形質転換体の処理物としては、形質転換体から調製した休止菌体、膜透過性向上菌体、不活化菌体、破砕菌体等が挙げられる。また、破砕菌体から調製した無細胞抽出物および精製酵素も本発明の処理物に含まれる。無細胞タンパク質合成反応液の処理物としては、無細胞タンパク質合成反応液から調製した精製酵素が挙げられる。さらには、形質転換体、無細胞タンパク質合成反応液およびこれら処理物に対して安定化処理を行った安定化処理物も、本発明の処理物に含まれる。
 休止菌体の調製は、公知の方法を用いて行うことができる。休止菌体とは、その増殖が実質的に停止した状態に置かれた菌体を意味する。具体的には、培養により増殖させた形質転換体を培地から回収した後、形質転換体が容易に利用可能な炭素源等を含まない緩衝液等に懸濁したり、回収した形質転換体を凍結させたり、乾燥させて粉末化したりすることにより調製することができる。形質転換体を培地から回収する方法は如何なる方法でもよく、例えば、遠心分離を用いた方法、膜ろ過を用いた方法等が挙げられる。遠心分離は、形質転換体を沈降させる遠心力が供給できるものであれば特に限定されることはなく、円筒型や分離板型などを利用することができる。遠心力としては、例えば、500G~20,000G程度で行うことができる。膜ろ過は、形質転換体を培地から回収することができれば、精密ろ過(MF)膜、限外ろ過(UF)膜いずれを用いて行ってもよい。形質転換体を懸濁する緩衝液としては、形質転換体の増殖が実質的に停止し、かつ、所定の各酵素の機能が保たれるものであれば如何なるものでもよく、例えば、リン酸緩衝液、アクリル酸緩衝液、トリス(トリス(ヒドロキシメチル)アミノメタン)‐塩酸緩衝液、HEPES(2-(4-(2-Hydroxyethyl)-1-piperazinyl)ethanesulfonic acid)やその他グッドの緩衝液(Good’s buffers)等を用いることができる。形質転換体を凍結する場合は、上記の遠心分離等の操作により大半の水分を除去した状態、または適当な緩衝液に懸濁された状態で凍結すればよい。凍結する温度は、形質転換体を懸濁する緩衝液の成分によっても異なるが、実質的に形質転換体が凍結する温度であれば如何なる温度でもよく、例えば、-210℃~0℃等の範囲で行えばよい。また、形質転換体を乾燥する場合、その乾燥方法としては、形質転換体の増殖が実質的に停止し、かつ、所定の各酵素の機能が保たれる方法であれば如何なる方法でもよく、凍結乾燥法や噴霧乾燥法等が挙げられる。
 膜透過性向上菌体の調製は、公知の方法を用いて行うことができる。例えば、有機溶媒や界面活性剤で形質転換体を処理することにより、基質や生成物が、形質転換体の細胞膜や細胞壁を通過しやすくなる。使用する有機溶媒や界面活性剤の種類としては、膜透過性が向上し、かつ、所定の各酵素の機能が保たれるものであれば特段限定されることはなく、有機溶媒であればトルエンやメタノール等、界面活性剤であればTriton‐X 100や塩化ベンゼトニウム等が挙げられる。
 不活化菌体の調製は、公知の手法を用いて行うことができる。例えば薬剤処理や加熱処理により行うことができる。薬剤による処理は、例えば、塩化ベンゼトニウム、塩化セチルピリジニウム、塩化メチルステアロイル、臭化セチルトリメチルアンモニウム等の陽イオン系界面活性剤、塩酸アルキルジアミノエチルグリシンなどの両性イオン系界面活性剤などを用いることができる。また、エタノール等のアルコール類、2-メルカプトエタノール等のチオール類、エチレンジアミン等のアミン類、システイン、オルニチン、シトルリン等のアミノ酸類なども挙げられる。加熱による処理は、目的の酵素が失活しない温度と時間で熱処理を行えばよい。
 破砕菌体の調製は、公知の手法を用いて行うことができる。例えば、超音波処理、フレンチプレスやホモジナイザーによる高圧処理、ビーズミルによる磨砕処理、衝撃破砕装置による衝突処理、リゾチーム、セルラーゼ、ペクチナーゼ等を用いる酵素処理、凍結融解処理、低張液処理、ファージによる溶菌誘導処理等が挙げられ、いずれかの方法を単独または必要に応じ組み合わせて利用することができる。工業的規模で細胞の破砕を行う場合は、操作性、回収率、コスト等を勘案し、例えば、高圧処理や磨砕処理、衝突処理あるいはこれら処理に酵素処理等を組み合わせた処理を行うことが好ましい。
 ビーズミルによる磨砕処理を行う場合、用いられるビーズは、例えば、密度2.5~6.0g/cm、サイズ0.1~1.0mmのものを通常80~85%程度充填することにより破砕を行うことができ、運転方式としては回分式、連続式いずれをも採用することができる。
 高圧処理を行う場合、処理圧力は、細胞からの目的タンパク質回収率が十分高いものであれば特段限定されないが、例えば、40~200MPa程度、好ましくは60~150MPa程度、より好ましくは80~120MPa程度の圧力で破砕を行うことができる。必要に応じて、装置を直列に配置したり、複数ステージ構造の装置を用いたりすることにより、多段階処理を行い、破砕および操作効率を向上させることも可能である。通常、処理圧力10MPaあたり2~3℃の温度上昇が生じることから、必要に応じて冷却処理を行うことが好ましい。
 衝突処理の場合、例えば、細胞スラリーを予め噴霧急速凍結処理(凍結速度:例えば1分間当たり数千℃)等によって凍結微細粒子(例えば50μm以下)にしておき、これを高速(例えば約300m/s)の搬送ガスによって衝突板に衝突させることで効率的に細胞を破砕することができる。
 無細胞抽出物は、破砕菌体から破砕残渣(細胞膜や細胞壁等を含む不溶性画分)を除去することによって調製することができる。破砕残渣の除去は、公知の手法により行うことができ、例えば、遠心分離や膜ろ過、ろ布ろ過等を利用することができる。遠心分離操作は、上述したように行うことができるが、形質転換体の破砕残渣が微細であり、容易に沈降し難い場合は、必要に応じて凝集剤等を使用して残渣沈殿効率を上げることもできる。膜ろ過も、上述のように行うことができるが、形質転換体の破砕残渣が微細である場合には、特に限外ろ過(UF)膜を使用することができる。ろ布ろ過を行う場合には、ろ過助剤や凝集剤を併用して行うことができる。ろ過助剤としては、珪藻土やセルロースパウダー、活性炭などが挙げられる。凝集剤としては、カチオン系凝集剤、アニオン系凝集剤、両性系凝集剤、ノニオン系凝集剤等が挙げられる。上記いずれかの操作により、菌体が存在しない上清を回収し、無細胞化する(セルフリーにする)ことで、所定の各酵素を含む無細胞抽出物を調製することができる。
 精製酵素の調製は、一般的な生化学的方法、例えば硫酸アンモニウム沈殿、各種クロマトグラフィー(例えば、ゲル濾過クロマトグラフィー(Sephadexカラム等)、イオン交換クロマトグラフィー(DEAE-Toyopearl等)、アフィニティークロマトグラフィー(TALON Metal Affinity Resin等)、疎水性クロマトグラフィー(butyl Toyopearl等)、陰イオンクロマトグラフィー(MonoQカラム等))、SDSポリアクリルアミドゲル電気泳動等を、単独でまたは適宜組み合わせて用いることにより行うことができる。
 本発明においては、上述した形質転換体、無細胞タンパク質合成反応液、およびそれらの処理物に対して、安定化処理を行ったもの(安定化処理物)を用いることもできる。安定化処理は、未処理の状態よりも、環境因子(温度、pH、化学物質濃度等)に対する所定の各酵素の安定性、あるいは保存時の安定性が向上する処理であればいかなる処理でもよい。例えばアクリルアミド等のゲルへの包含、グルタルアルデヒド等のアルデヒド類による処理(CLEA:Cross-linked enzyme aggregateを含む)、無機担体(アルミナ、シリカ、ゼオライト、珪藻土等)への担持処理等が挙げられる。
 本発明で用いる基質や生成物は、極性が比較的高く、細胞膜や細胞壁が物質移動の律速となる可能性がある。従って、基質や生成物の透過性の観点から、本発明では、特に、破砕菌体、無細胞抽出物、精製酵素、またはそれらの安定化処理物を用いることが好ましい。
 上述した形質転換体、無細胞タンパク質合成反応液、またはそれらの処理物は、その酵素活性が保持される限り、如何なる条件で保存することもできる。所望により適切な条件下で(例えば-80℃~-20℃、1日~1年)それらの溶液を凍結し、使用時(第3工程の実施時)まで保存するようにしてもよい。
 前述したように、所定の各酵素をコードする遺伝子を別個に含む形質転換体同士を組み合わせる場合、例えば、NamptとPrsの発現が強化された形質転換体およびPpkの発現が強化された形質転換体を作製して組み合わせる場合は、(i)それぞれの形質転換体について別々に各処理を行ったのち、それらの処理物を混合するようにしてもよいし、(ii)それらの形質転換体を混合した後、一括して当該各処理を行ってもよい。
 [第3工程]
 第3工程は、第1工程を経た形質転換体または無細胞タンパク質合成反応液、または必要に応じてさらに第2工程を経たそれらの処理物を、酵素反応の各種原料となる基質と接触させる工程である。この工程においては、Prsによる第2反応とNamptによる第3反応がPpkによるATP再生反応と共役して行われる。Prsによる第2反応では、ATPをリン酸源として基質がリン酸化されるため、また、Namptによる第3反応では、Nampt自身が有するATP加水分解活性により自己リン酸化されるため、ATPが消費される。従って、両反応をATP再生反応と共役して行うことで、消費されたATPを補いながら効率的に反応を進行させることができる。また、Prsによる第2反応の生成物であるホスホリボシルピロリン酸(PRPP)は比較的不安定な化合物であるため、第2反応と第3反応を同一系内で行うことで、PRPP生成後、速やかにNamptによる第3反応を行うことができる。本発明においては、ATP再生反応によりADPおよび/またはAMPからATPが再生されるので、ATPは枯渇することはないが、反応中に維持したいATP濃度に応じて、適度な量のATPを反応溶媒中に添加することが必要となる。この際、必要に応じて、ATPの代わりに、ADPまたはAMPを反応溶媒中に添加してもよい。添加したADPやAMPは、ATP再生系によって系内ですぐにATPに再生されるため、実質的に、適度な量のATPを添加したのと同じ状態になるためである。また、これらを任意の割合で含有する混合物を添加してもよい。
 第2反応および第3反応は、必要に応じて、PpkによるATP再生反応を共役させたRbkによる第1反応と組み合わせてもよい。両者を組み合わせる場合、Rbkによる第1反応をまず行い、その反応液を原料として、Prsによる第2反応とNamptによる第3反応を行ってもよいし、Rbkによる第1反応と、Prsによる第2反応およびNamptによる第3反応を同じ反応系で行ってもよい。
 Prsによる第2反応とNamptによる第3反応は、Nampt、PrsおよびPpkの3酵素の発現が強化された形質転換体、前記3酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、R5P、NAM、ATP、およびポリリン酸と接触させることにより行われる。
 Rbkによる第1反応は、RbkおよびPpkの2酵素の発現が強化された形質転換体、前記2酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、リボース、ATP、およびポリリン酸と接触させることにより行われる。
 第3工程で用いる上記原料は、一般的な供給業者から購入したものを用いることもできるし、自ら反応を行って合成したものを用いることもできる。例えば、R5Pは、市販品を用いることもできるが、原料コストの観点から、Rbkによる第1反応、すなわち、RbkおよびPpkの2酵素の発現が強化された形質転換体、前記2酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、リボースおよびポリリン酸と接触させることにより合成したものを用いることが好ましい。
 上記原料の一つであるポリリン酸は、種々の鎖長のものが知られている。本発明において使用するポリリン酸の鎖長は、ATP再生反応が効率的に行えるものであれば如何なる鎖長のものでもよいが、溶解した際の溶液の粘度やコストの観点から、鎖長は3~100程度が好ましく、3~30程度がさらに好ましい。
 第3工程では、必要に応じて、上記原料以外の化合物を、所定の各酵素の発現が強化された形質転換体、所定の各酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物と接触させ、あるいは反応溶媒中(製造系内)に含めるようにしてもよい。例えば、各酵素が機能を発揮するための成分として、マグネシウムイオン等の金属イオンを含めることが適切である。また、バッファー成分を含めることも好ましい。
 用いる形質転換体が実質的に生きている場合、すなわち、細胞増殖能を維持している場合、実質的に形質転換体が増殖しない条件で反応を行うことが好ましい。そのような条件で反応を行うことにより、本反応における基質や生成物が、形質転換体の増殖に利用されたり、分解されたりすることなく、高い収率で目的生成物として生産されることが期待できる。実質的に形質転換体が増殖しない条件とは、実質的に反応系内の形質転換体の数が増加しない条件であれば如何なる条件でもよい。例えば、形質転換体が容易に利用可能な炭素源(グルコース等)を含まない溶液中で反応を行うことが挙げられる。
 反応溶媒中(製造系内)に含まれる、所定の各酵素の発現が強化された形質転換体、所定の各酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物の量、すなわち、より具体的にはNampt、Prs、RbkおよびPpkそれぞれの量は、適宜調節することができる。同様に、反応媒体中に含まれる、R5P、NAM、ATP、ポリリン酸、リボース、さらに必要に応じて用いられるその他の原料の量も、適宜調節することができる。反応溶媒中(製造系内)の上記各物質の濃度は次の通りである。
 Namptの濃度は、例えば1μg/L~10g/Lである。Prsの濃度は、例えば1μg/L~10g/Lである。Rbkの濃度は、例えば1μg/L~10g/Lである。Ppkの濃度は、例えば1μg/L~10g/Lである。所定の各酵素の発現が強化された形質転換体、所定の各酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物の反応溶媒への添加量を適宜調整することにより、各酵素の反応溶媒中の濃度を上記の範囲に調節することが可能である。
 R5Pの濃度は、例えば1μg/L~100g/Lである。リボースの濃度は、例えば1μg/L~100g/Lである。NAMの濃度は、例えば1μg/L~500g/Lである。ATPの濃度は、例えば1μg/L~100g/Lである。ポリリン酸の濃度は、例えば1μg/L~200g/Lである。これらの原料の反応溶媒への添加量などの調整により、各原料の反応溶媒中の濃度を上記範囲に調節することが可能である。反応溶媒への添加は、原料に応じて、第3工程の最初に一括で所定量を仕込むようにしてもよいし、第3工程の最初および/または途中の適切な段階で、順次所定量を添加するようにしてもよい。
 上述したような各物質の濃度以外の、酵素反応を進行させるための条件、例えば温度、時間なども、適宜調節することができる。反応温度は、各酵素の触媒効率が最適となる範囲で調節することが好ましい。反応時間は、目的化合物であるNMNの生成量が所定の量に到達するまでとすることができる。
 生成したNMNは、常法に従い、製造系から回収し、適宜濃縮、精製することができる。回収・精製の方法は、NMNの純度を向上させることができ、かつ効率的にNMNを回収することができる方法であれば、如何なる方法を用いることもできるが、例えば、以下のような方法が挙げられる。NMN合成反応後、菌体を用いて反応を行った場合は、遠心分離や膜ろ過等の手段により、菌体を除去することができる。あるいは、無細胞抽出物や精製酵素を用いて反応を行った場合は、限外ろ過膜によるろ過や、過塩素酸等を添加して沈殿させた後に遠心分離を行うこと等によってタンパク質等を除去することができる。過塩素酸による処理を行った場合は、水酸化カリウムなどによりpHを弱酸性に戻し、生じた過塩素酸カリウムの沈殿を再度遠心分離により除去する。菌体またはタンパク質を除去した後、必要に応じて、活性炭吸着による洗浄処理を行うことができる。NMNを含む水溶液を活性炭と接触させ、NMNを吸着させる。ろ紙等を用いてNMNが吸着した活性炭をろ過した後、イソアミルアルコール等の溶媒で洗浄することで、一定の不純物を除去することができる。続いて、陰イオン交換樹脂により処理することで、さらに精製を行うことができる。NMNを含む溶液をDowex等の陰イオン交換樹脂に通し、吸着されたNMNを水で溶出することができる。さらに、得られたNMN水溶液のpHを酸性にし、大量のアセトンを加えることで、NMNを沈殿として得ることができる。この沈殿を乾燥することで、精製されたNMNを得ることができる。
 本発明は、反応系に添加するATP、ADPおよびAMP各モル数の総和が、生成するNMNのモル数の0.5当量以下となるように行うことができる。これを行うための手段としては、結果として、NMN製造のために添加するATP等の使用量を削減することができれば、如何なる方法を用いることもできるが、例えば、以下に示す手段を単独でまたは適宜組み合わせて、実施することができる。これら手段の詳細は、後述する第四の発明群の説明に記載する。
(1)ATP再生系の共役
(2)PPaseの共存
(3)バクテリア由来Namptの利用
(4)不要遺伝子を破壊または欠失させた宿主の利用
(5)適切な基質濃度
 -第二の発明群-
 本発明のNMNの製造方法のうち、第二の発明群は、PPaseの存在下で、Namptの発現が強化された形質転換体、前記酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、NAMおよびPRPPと接触させる工程を含む。
 第二の発明群によるNMNの製造方法は、以下の点を除き、第一の発明群と同様に、第1工程、第2工程および第3工程を順次行うことにより実施される。すなわち、第1工程および第2工程は、少なくともNamptの発現が強化された形質転換体、当該酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を調製するとともに、PPaseの発現が強化された形質転換体乃至は特段発現は強化されていないが内在性酵素としてPPaseを発現している微生物等、当該酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を調製するための工程とし、第3工程において、そのような第1工程および第2工程を経た形質転換体、無細胞タンパク質合成反応液またはそれらの処理物を、少なくともNAMおよびPRPPと接触させればよい点である。
 ・PPase
 PPase(EC number: 3.6.1.1)は、ピロリン酸を2分子のリン酸に加水分解する酵素である。本発明のNMNの製造方法のうち、第二の発明群では、PPaseの存在下で、第3反応を行うことにより、第3反応を極めて効率的に進行させることができる。
 Namptによる第3反応では、NMNとともにピロリン酸が副生する。一般的な酵素反応の見地からは、第3反応系にPPaseを加えることで、副生物であるピロリン酸がリン酸に分解され、NMN生成方向の反応が促進されることは予測される。しかし、Namptの場合、必ずしもそれは自明ではない。なぜならば、ピロリン酸を分解してしまうと、Nampt反応が継続的に進行しない可能性があるからである。Namptは、ATPを加水分解して、自己リン酸化によって活性化されることが知られている。Namptによる第3反応が継続するためには、反応毎に自己リン酸化されたNamptの脱リン酸化が必要であり、ピロリン酸は、その脱リン酸化のトリガー物質であるとされている(Biochemistry 47, 11086-11096(2008))。従って、PPaseによりピロリン酸を除去してしまうと、Namptの脱リン酸化が起きず、反応が継続しない可能性が十分に考えられる。しかし、第二の発明群では、第3反応をPPaseの存在下で行うことにより、顕著に第3反応を促進することができる。
 PPaseとしては、例えば、酵母由来のもの(P00817)、大腸菌由来のもの(NP_418647)、枯草菌由来のもの(P37487)、Thermus thermophilus由来のもの(P38576)、Streptococcus gordonii由来のもの(P95765)、Streptococcus mutans(O68579)などが挙げられる。
 PPaseは、第3反応系に加えることが可能であればいかなる形態でもよく、またいかなる方法で調製してもよい。具体的には、まず、第一の発明群における第1工程と同様に、PPaseをコードする遺伝子を含む形質転換体を作製して培養し、または当該各酵素をコードする遺伝子を含む無細胞タンパク質合成反応液でタンパク質合成反応を行い、当該各酵素を発現させる。また、PPaseは、通常の微生物等においては、生存に必要な酵素として一定量発現しているため、特段発現が強化されていない微生物等を培養して、そのまま用いることができる。続いて、第一の発明群における第2工程と同様に、第1工程を経た形質転換体、特段発現が強化されていない微生物等または無細胞タンパク質合成反応液から処理物を調製することができる。あるいは、処理物の一態様として市販のPPase精製酵素を利用することもできる。市販のPPase精製酵素としては、シグマ・アルドリッチ社の酵母由来PPase精製酵素(製品番号10108987001)などが挙げられる。
 上記のようにして得られたPPaseの存在下で、Namptの発現が強化された形質転換体、前記酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、NAMおよびPRPPと接触させることで、第二の発明群によるNMNの製造方法を実施することができる。第二の発明群により、第3反応を極めて効率的に進行させることができ、NMNを効率的に製造することができる。第二の発明群による第3反応は、第3反応単独で行うこともできるが、第1反応、第2反応およびATP再生反応の一つ以上の反応と組み合わせて、同一の反応系で行うこともできる。換言すれば、本発明の第一の発明群における第3反応の実施形態を、本発明の第二の発明群で規定する第3反応とすることにより、第一の発明群および第二の発明群を統合したNMNの製造方法を実施することも可能である。
 用いる形質転換体が実質的に生きている場合、すなわち、細胞増殖能を維持している場合、実質的に形質転換体が増殖しない条件で反応を行うことが好ましい。そのような条件で反応を行うことにより、本反応における基質や生成物が、形質転換体の増殖に利用されたり、分解されたりすることなく、高い収率で目的生成物として生産されることが期待できる。実質的に形質転換体が増殖しない条件とは、実質的に反応系内の形質転換体の数が増加しない条件であれば如何なる条件でもよい。例えば、形質転換体が容易に利用可能な炭素源(グルコース等)を含まない溶液中で反応を行うことが挙げられる。
 本発明における第2工程の形態としては、特に処理物が精製酵素であることが好ましい。精製酵素を用いることで、反応物(基質)や生成物の分解または副反応が抑制できるため、本発明による第3反応の促進効果をより享受することができる。
 -第三の発明群-
 本発明のNMNの製造方法のうち、第三の発明群は、(d)EC 3.5.1.42に示されるEC番号に分類される酵素をコードする遺伝子と、以下の(a)(c)(g)(h)(i)に示されるいずれか一つ以上のEC番号に分類される酵素をコードする遺伝子とが破壊または欠失され、かつ、ニコチンアミドホスホリボシルトランスフェラーゼ(Nampt)の発現が強化されている形質転換体またはそれらの処理物を、少なくともニコチンアミド(NAM)と接触させる工程を含む。
(a)EC 3.1.3.5
(c)EC 2.4.2.1
(g)EC 3.2.2.1
(h)EC 3.2.2.3
(i)EC 3.2.2.14
 第三の発明群によるNMNの製造方法は、以下の点を除き、第一の発明群と同様に、第1工程、第2工程および第3工程を順次行うことにより実施される。すなわち、第1工程および第2工程は、各種EC番号に分類される酵素をコードする遺伝子が破壊または欠失され、かつ、ニコチンアミドホスホリボシルトランスフェラーゼ(Nampt)の発現が強化されている形質転換体またはそれらの処理物を調製するための工程とし、第3工程において、そのような第1工程および第2工程を経た形質転換体またはそれらの処理物を、少なくともNAMと接触させればよい点である。
 各種EC番号に分類される酵素については、前述の通りである。大腸菌等の形質転換体またはそれらの処理物を用いてNMNを合成する場合、これらの酵素は、生成したNMNを分解し、結果としてNMNの生産量を低下させる要因となる。宿主が有するNMNの分解経路としては、NAMを生じる分解経路と、ニコチン酸モノヌクレオチド(NaMN)を生じる分解経路の2つが知られている(図9)。本発明者らは、両方の経路を弱化する(経路上にある一つ以上の酵素をコードする遺伝子を破壊または欠失する)ことで、片方の経路を弱化するよりも、NMNの分解を飛躍的に抑制できることを見出し、第三の発明群を完成させた。
NMNからNaMNを生じる分解経路を弱化するためには、図9に示すように、(d)EC 3.5.1.42に示されるEC番号に分類される酵素をコードする遺伝子を破壊または欠失させればよい。
NMNからNAMを生じる分解経路を弱化するためには、図9に示すように、以下の(a)(c)(g)(h)(i)に示されるいずれか一つ以上のEC番号に分類される酵素をコードする遺伝子を破壊または欠失させればよい。
(a)EC 3.1.3.5
(c)EC 2.4.2.1
(g)EC 3.2.2.1
(h)EC 3.2.2.3
(i)EC 3.2.2.14
 NMNの分解に直接的に関わる酵素であることから、(a)EC 3.1.3.5または(i)EC 3.2.2.14に示されるEC番号に分類される酵素をコードする遺伝子を破壊または欠失させることが好ましく、(a)EC 3.1.3.5に示されるEC番号に分類される酵素をコードする遺伝子を破壊または欠失させることがより好ましい。
 遺伝子を破壊または欠失させる方法は、特段限定されるものではなく、第一の発明群の説明に記載した通りである。本発明の第三の発明群は、本発明の第一および第二の発明群の一方または両方に統合して、NMNの製造方法を実施することも可能である。
 -第四の発明群-
 本発明のNMNの製造方法のうち、第四の発明群では、NMNの製造のために反応系に添加するATP、ADPおよびAMP各モル数の総和を、生成するNMNのモル数の0.5当量以下にすることができる。
 これまで述べてきた第1反応、第2反応および第3反応によるNMNの製造においてはATPが必要となる。すなわち、第1反応では、リボースからのR5Pの生成に伴い、ATPがADPに変換されるため、1モルのR5Pの生成につき、1モルのATPが使用される。第2反応では、R5PからのPRPPの生成に伴い、ATPがAMPに変換されるため、1モルのPRPPの生成につき、1モルのATPが使用される。第3反応では、PRPPからのNMNの生成に際し、その反応自体にATPは必須ではない。しかし、先述のように、NamptにはATP加水分解活性があり、ATPの加水分解によってNamptが自己リン酸化され、NMN生成に有利な方向に酵素学的パラメータや化学平衡が変化する。従って、第3反応系内にATPが十分に存在する場合は、PRPPからのNMNの生成に伴い、実質的に、1モルのPRPPの生成につき、1モル以上のATPが使用されることになる。すなわち、R5Pを原料とした第2反応および第3反応によるNMNの製造においては、1モルのNMNの生成につき、計2モル以上のATPが、リボースを原料とした第1反応、第2反応および第3反応によるNMNの製造においては、1モルのNMNの生成につき、計3モル以上のATPが使用されることになる。
 ATPは高価な化合物であるため、NMNを安価に製造しようとする場合、その使用量はできるだけ少ないほうが望ましい。本発明のNMNの製造方法のうち、第四の発明群を利用することで、NMNの製造のために反応系に添加するATP、ADPおよびAMP各モル数の総和を、生成するNMNのモル数の0.5当量以下にすることができる。
 第四の発明群によるNMNの製造方法は、NMN製造のために添加するATP等の使用量を削減することができれば、如何なる方法を用いて行うこともできるが、例えば、以下に示す手段を、単独でまたは適宜組み合わせて、実施することができる。
(1)ATP再生系の共役
 副生したADPまたはAMPをATPに再生することができる系を、少なくとも、第2反応および第3反応を含むNMN生成反応系と共役させることで、NMN製造のために反応系に添加するATP、ADPおよびAMP各モル数の総和を削減することができる。ATP再生系としては、AMPおよびADPからATPを再生できる系であればいかなる系でもよく、例えば、ポリリン酸をリン酸源としてPpkを用いる系、ホスホエノールピルビン酸をリン酸源としてピルビン酸キナーゼを用いる系、クレアチンリン酸をリン酸源としてクレアチンリン酸キナーゼを用いる系等が挙げられるが、リン酸源のコストの観点からは、ポリリン酸をリン酸源としてPpkを用いる系が好ましい。ポリリン酸とPpkを用いたATP再生系を共役させたNMN生成反応は、具体的には、第一の発明群における第3工程に記載されたように実施することができる。
(2)PPaseの共存
 NMN生成反応系にPPaseを共存させることにより、副生物であるピロリン酸がリン酸に分解され、NMN生成方向の反応が促進されることで、結果として、NMN製造のために反応系に添加するATP、ADPおよびAMP各モル数の総和を削減することができる。PPaseを共存させたNMN生成反応は、具体的には、第二の発明群に記載されたように実施することができる。
(3)バクテリア由来Namptの利用
 第3反応を触媒する酵素Namptとして、バクテリア由来のNamptを用いることにより、NMNの生成が効率的に進行し、結果として、NMN製造のために反応系に添加するATP、ADPおよびAMP各モル数の総和を削減することができる。バクテリア由来のNamptとしては、第一の発明群における第1工程に記載されたものを利用することができる。
(4)不要遺伝子を破壊または欠失させた宿主の利用
 形質転換体、形質転換体から調製した休止菌体、膜透過性向上菌体、不活化菌体、破砕菌体、破砕菌体から調製した無細胞抽出物およびこれらに対して安定化処理を行った安定化処理物を用いてNMNの生成反応を行う場合、反応物(基質)や生成物の分解、あるいは副反応の原因となる遺伝子を破壊または欠失させた宿主を用いることができる。具体的には、第一の発明群における第1工程に記載された遺伝子のいずれか一つ以上を、破壊または欠失させた宿主を用いることができる。好ましくは、第三の発明群に記載された遺伝子破壊または欠失させた宿主を用いることができる。
(5)適切な基質濃度
 化学平衡や酵素の基質親和性の観点から、反応系内のリボースやNAM濃度を高めることによって、NMN生成速度や生成量の向上が期待でき、結果として、NMN製造のために反応系に添加するATP、ADPおよびAMP各モル数の総和を削減することができる。一方、ATPも、反応系内の濃度を高めることによって、同様の効果は期待できるが、必要以上にATPを添加しても、それに見合ったNMN生成量の増加がなければ、NMNを1モル生成させるために用いるATPのモル数は増加してしまう。すなわち、適切な量のATPを反応系に添加することで、効率的にNMNを製造することができる。反応系に添加するATPのモル数は、生成するNMNのモル数の1当量以下が好ましく、0.5当量以下がより好ましく、0.1当量以下がさらに好ましい。
 本発明の第四の発明群は、本発明の第一、第二および第三の発明群の一つまたは二つ以上に統合して、NMNの製造方法を実施することも可能である。
[実施例1]<ATP再生系を利用したリボースからのNMN合成>
 本実施例では、所定の各酵素として下記のものを用いた。
 Nampt:Haemophilus ducreyi由来(AAR87771)
 Prs:Bacillus subtilis由来(BAA05286)、Homo sapiens由来(NP_002755)
 Ppk(Ppk2クラス3):Deinococcus radiodurans由来(NP_293858)
 Rbk:Saccharomyces cerevisiae由来(P25332)
 (1)発現プラスミドの作製
 各酵素の発現プラスミドを以下のように作製した。表1の「由来」に記載された生物種由来の各酵素について、同表中の「アミノ酸配列」に記載された各配列番号で示されるアミノ酸配列から成る各酵素タンパク質をコードするDNA(表1の「塩基配列」に記載された各配列番号で示される塩基配列から成る)を合成し、それぞれ発現ベクターpET-26b(+)(Novagen)のNdeI-XhoIサイトにクローニングした(遺伝子合成はジェンスクリプトジャパンで実施、大腸菌発現用にコドンを最適化)。得られた各プラスミドを、表1の「発現プラスミド」に示されるように命名した。
Figure JPOXMLDOC01-appb-T000001
 (2)各酵素の発現が強化された形質転換体の作製
 大腸菌(E. coli)BL21(DE3)株のコンピテントセル(Zip Competent Cell BL21 (DE3)、フナコシ)を氷上で融解し、(1)で作製した各プラスミドDNA溶液を混合して氷上で10分間静置した。42℃で45秒間ヒートショックを加えた後、再度氷冷し、SOC培地を添加した。37℃で1時間振とう培養を行った後、LB寒天培地(カナマイシン硫酸塩50mg/L含有)に塗布し、37℃で一晩静置培養を行った。得られたコロニーを各酵素の発現が強化された組換え体とした。
 (3)組換え体の培養
 各酵素の発現が強化された組換え体のコロニーを、Overnight Express Autoinduction system 1(Merck)を添付プロトコールに従って添加したLB培地(カナマイシン硫酸塩50mg/Lを含む)2mlに植菌した。温度37℃、振とう回転数200rpmで3時間培養を行った後、温度17℃、回転振とう数200rpmに変更して、さらに18時間培養を行った。
 (4)無細胞抽出物の調製
 (3)で得られた培養液を遠心分離(5,000×g、10分間)し、上清を廃棄した。沈殿した菌体に、50mM HEPES-NaOHバッファー(pH 7.5)を添加し、波長630nmの濁度が10となるように調整した。ただし、Prs発現菌体については、50mM リン酸カリウムバッファー(pH7.5)を用いて行った。バッファー菌体懸濁液0.5mlをBioruptor(コスモバイオ)で15分間破砕した。破砕液を遠心分離(5,000×g、10分間)し、得られた上清を無細胞抽出物とした。無細胞抽出物のタンパク質濃度は、BSA(牛血清アルブミン、バイオラッド)を標準タンパク質として、Bio-Rad protein assay(バイオラッド)を用いて測定した。
 (5)NMN合成反応
 (4)で調製した無細胞抽出物を用いてNMN合成反応を行った。反応液量を100μLとし、表2(No.1-2、1-4)に示す組成で各反応液を調製し、37℃で静置反応を行った。
Figure JPOXMLDOC01-appb-T000002
 反応開始直後(0時間後)、3時間後および6時間後に、反応液10μLずつをサンプリングした。サンプリングした反応液を(6)に記載するHPLC移動相90μLと混合し、すぐに氷冷することで反応を停止した。希釈液を限外ろ過膜(セントリカット超ミニ、分画分子量10,000、クラボウ)でろ過し(5,000×g、10分間)、ろ液をHPLCで分析した。
 (6)NMNの分析
 NMN合成反応サンプルの分析は、HPLCにより以下の条件で行った。
カラム:SUPELCOSIL LC-18-T(シグマ・アルドリッチ)
移動相:0.05M KHPO/KHPO(pH 7)
流速:1ml/min
検出:UV261nm
カラム温度:30℃
 (7)実験結果
 実験結果を図2に示す。Ppkを添加したサンプルNo.1-2とNo.1-4では、それぞれ0.5mM、0.6mMのNMNの生成が認められた。添加したATPのモル数(0.01μmol)は、生成したNMNのモル数(0.05μmol、0.06μmol)のそれぞれ0.2当量、0.17当量であった。また、Prsは、Bacillus subtilis由来(BsPrs)、Homo sapiens由来(HsPrs)のいずれでもNMNが生成することが確認された。以上の結果から、ATP再生酵素であるPpkを共存させることで、リボースから効率的にNMNを合成することが可能であることが示された。
[比較例1]<ATP再生系を利用しないリボースからのNMN合成>
 (1)組換え体の作製・培養および無細胞抽出物の調製
 本比較例では、実施例1(2)~(4)と同様の操作により、各酵素の無細胞抽出物を調製した。
 (2)NMN合成反応、NMNの分析
 (1)で得られた無細胞抽出物を用いて、NMN合成反応および分析を行った。反応液量を100μLとし、表2(No.1-1、1-3)に示す組成で各反応液を調製すること以外は、実施例1(5)および(6)と同様に行った。
 (3)実験結果
 実験結果を図2に示す。Ppkを添加しなかったサンプルNo.1-1およびNo.1-3では、NMNの生成は検出限界以下であった。
[実施例2]<冷凍保存した無細胞抽出物によるNMNの合成>
 (1)組換え体の作製・培養および無細胞抽出物の調製
 本実施例では、PrsとしてBacillus subtilis由来(BsPrs)のみを用いること以外は、実施例1(2)~(4)と同様の操作により、各酵素の無細胞抽出物を調製した。調製直後に、(2)で後述するNMN合成反応を行った。また、得られた各無細胞抽出物を-20℃で保存した。1か月間後、保存しておいた無細胞抽出物を用いて、再度NMN合成反応を行った。
 (2)NMN合成反応、NMNの分析
 (1)で得られた調製直後および1か月間保存後(-20℃保存)の無細胞抽出物を用いて、NMN合成反応および分析を行った。各反応液を表3に示す組成で調製すること、および反応開始後6時間でサンプリングすること以外は、実施例1(5)および(6)と同様に行った。
Figure JPOXMLDOC01-appb-T000003
 (3)実験結果
 無細胞抽出物を-20℃で保存したNo.2-2は、無細胞抽出物調製直後のサンプルNo.2-1と同様、反応6時間後で0.5mMのNMN生成が認められた。添加したATPのモル数(0.01μmol)は、生成したNMNのモル数(0.05μmol)の0.2当量であった。従って、凍結保存することで、NMN合成能を有した状態で、無細胞抽出物が保存可能であることが示された。
[実施例3]<Prs変異体を利用したNMNの合成>
 本実施例では、所定の各酵素として下記のものを用いた。
 Nampt:Haemophilus ducreyi由来(AAR87771)
 Prs:Bacillus subtilis由来(BAA05286)Asn120Ser変異体(BsPrsN120S)およびLeu135Ile変異体(BsPrsL135I)
 Ppk(Ppk2クラス3):Deinococcus radiodurans由来(NP_293858)
 Rbk:Saccharomyces cerevisiae由来(P25332)
 BsPrsN120SおよびBsPrsL135Iは、120番目のアスパラギンがセリンに、135番目にロイシンがイソロイシンにそれぞれ置換されている。両変異体の生物種由来、アミノ酸配列を示す配列番号、DNAの塩基配列を示す配列番号、発現プラスミド名をそれぞれ表4に示す。
Figure JPOXMLDOC01-appb-T000004
 (1)Prs変異体発現プラスミドの作製
 Prs変異体を発現するプラスミドを以下のように作製した。表1に記載したpEBsPrsを鋳型として、変異導入PCR反応を行った。変異導入用プライマー名およびその塩基配列を示す配列番号、Prs変異体名を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 変異導入PCR反応は、表6に示す反応液組成および表7に示す反応条件にて行った。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 PCR反応終了後、QIAquick PCR Purification Kit(キアゲン)を用い、添付プロトコールに従ってPCR産物を精製した。生成したPCR産物をDpnI(New England Biolabs)で消化した反応液を用いて、大腸菌HST08(タカラバイオ)を形質転換した。出現したコロニーからプラスミド抽出を行い、プライマーT7-PP(配列番号19)およびT7-TP(配列番号20)を用いて塩基配列の確認を行った。正しく変異が導入された各プラスミドを表4に記載した各変異体Prs発現プラスミドとした。
 (2)組換え体の作製・培養および無細胞抽出物の調製
 Prsとして、BsPrsN120SおよびBsPrsL135Iを用いること以外は、実施例1(2)~(4)と同様の操作により、各酵素の無細胞抽出物を調製した。
 (3)NMN合成反応、NMNの分析
 (1)で得られた無細胞抽出物を用いて、NMN合成反応および分析を行った。各反応液を表8に示す組成で調製すること以外は、実施例1(5)および(6)と同様に行った。
Figure JPOXMLDOC01-appb-T000008
 (4)実験結果
 実験結果を図3に示す。BsPrsN120SおよびBsPrsL135Iを用いた場合、反応6時間後には野生型よりも高いNMN生成量を示した。Prsを添加しない場合、NMNの生成は認められなかった。以上の結果から、Prs変異体を用いることで、効率的にNMNを合成できることが示された。
[実施例4]<基質濃度の検討>
 (1)組換え体の作製・培養および無細胞抽出物の調製
 本実施例では、Prsとして、実施例3記載のBsPrsN120Sを用いること以外は、実施例1(2)~(4)と同様の操作により、各酵素の無細胞抽出物を調製した。
 (2)NMN合成反応、NMNの分析
 (1)で得られた無細胞抽出物を用いて、NMN合成反応および分析を行った。各反応液を表9に示す組成で調製すること、および反応開始後18時間でサンプリングすること以外は、実施例1(5)および(6)と同様に行った。
Figure JPOXMLDOC01-appb-T000009
 (3)実験結果
 実験結果を図4に示す。ポリリン酸(Poly-P)濃度は10mMよりも5mMとしたほうが、全体的にNMNの生成量が多いことが確認された。ポリリン酸濃度が5mMで、基質リボース濃度が30mMの場合、もう一つの基質であるニコチンアミド濃度は6mMの場合(サンプルNo.4-1、4-4)よりも20mMの場合(サンプルNo.4-2、4-5)のほうが、NMN生成量は1.7倍以上高くなることが確認された。ただし、マグネシウム濃度による影響はほとんど見られなかった。一方、両基質を同じ比率で2倍濃度とした場合(サンプルNo.4-3、4-6)、マグネシウム濃度10mM(サンプルNo.4-3)ではNMN生成量は微増に留まったが、マグネシウム濃度20mM(サンプルNo.4-6)では、NMN生成量が増加し、2.6mM生成した。サンプルNo.4-6では、添加したATPのモル数(0.1μmol)は、生成したNMNのモル数(0.26μmol)の0.38当量であった。以上の結果から、NMNの効率的な生成には、リボース、ニコチンアミド、ポリリン酸、マグネシウムの濃度を適切に設定することが重要であることが示された。
[実施例5]<バクテリア由来およびヒト由来Nampt精製酵素を用いたNMN合成>
 本実施例では、所定の各酵素として下記のものを用いた。
 Nampt:Haemophilus ducreyi由来(AAR87771)NamptにHisタグを付加したもの(HdNampt-His)、Deinococcus radiodurans由来(AE001890)NamptにHisタグを付加したもの(DrNampt-His)、Shewanella oneidensis由来(NP_717588)NamptにHisタグを付加したもの(SoNampt-His)およびヒト(Homo sapiens)由来(NP_005737)NamptにHisタグを付加したもの(HsNampt-His)
 Prs:Bacillus subtilis由来(BAA05286)PrsのAsn120Ser変異体(BsPrsN120S)
 Ppk(Ppk2クラス3):Deinococcus radiodurans由来(NP_293858)Ppk
 Rbk:Saccharomyces cerevisiae由来(P25332)Rbk
 (1)Hisタグ付加Nampt発現プラスミドの作製
 バクテリア由来の各種NamptにHisタグが付加されたタンパク質を発現するプラスミドを以下のように作製した。まず、Deinococcus radiodurans由来(AE001890)およびShewanella oneidensis由来(NP_717588)の各酵素について、表10中の「アミノ酸配列」に記載された各配列番号で示されるアミノ酸配列から成る各酵素タンパク質をコードするDNA(表10の「塩基配列」に記載された各配列番号で示される塩基配列から成る)を合成し、それぞれ発現ベクターpET-26b(+)(Novagen)のNdeI-XhoIサイトにクローニングした(遺伝子合成はジェンスクリプトジャパンで実施)。得られた各プラスミドを、表10の「発現プラスミド」に示されるように命名した。
Figure JPOXMLDOC01-appb-T000010
 続いて、作成したpEDrNampt、pESoNamptおよびpEHdNampt(実施例1記載)を鋳型として、NamptにHisタグを付加するための変異導入PCR反応を行った。鋳型プラスミド名、変異導入用プライマー名およびその塩基配列を示す配列番号、Hisタグ付加Nampt発現プラスミド名を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 Hisタグ付加Nampt発現プラスミドの作製は、表11に示す各種鋳型プラスミドと変異導入プライマーを用いる以外は、実施例3(1)と同様の操作により、変異導入PCR反応から塩基配列確認までを行った。正しくHisタグが付加されたプラスミドを表11に記載した各プラスミドとした。
 (2)組換え体の作製・培養および無細胞抽出物の調製
 実施例4(1)と同様の操作により、各酵素を発現する組換え体の作製、培養および無細胞抽出物の調製を行った。ただし、バクテリア由来Namptについては、(1)で作製したHisタグ付加発現プラスミドを用いて組換え体の作製および培養を行い、Hisタグ付加Namptを含む無細胞抽出物を調製した。その際、菌体を懸濁するバッファーとしては、50mM HEPES-NaOHバッファー(pH 8.0)を用いた。
 (3)Nampt精製酵素の調製
 (2)で調製したバクテリア由来Hisタグ付加Namptを含む無細胞抽出物を用いて、固定化金属アフィニティークロマトグラフィーにより、Hisタグ付加Namptの精製を行った。TALON Metal Affinity Resin(タカラバイオ)200μLを1.5mlチューブに採取し、遠心分離(5000g、2分間)により樹脂を沈殿させた。上清を捨て、蒸留水1mlを加えて懸濁した後、再度遠心分離を行った。この一連の洗浄操作を計2回行った後、50mM HEPES-NaOHバッファー(pH 8.0)を用いて同様に、2回洗浄を行った。洗浄後の樹脂に、各バクテリア由来Hisタグ付加Namptの無細胞抽出物1mlを添加し、4℃で1時間穏やかに振とうした。遠心分離により無細胞抽出物を除いた後、Washバッファー(50mM リン酸ナトリウム、300mM 塩化ナトリウム、pH7.0)を用いて2回洗浄を行った。遠心分離によりWashバッファーを除いた後、Elutionバッファー(50mM リン酸ナトリウム、300mM 塩化ナトリウム、150mM イミダゾール、pH7.0)を100μL添加した。遠心分離により上清を回収した後、再度、Elutionバッファーを100μL添加した。この一連の操作を3回行い、得られた溶出液を混合した。混合した溶出液を、煮沸洗浄した透析チューブ(三光純薬)に入れ、50mM HEPES-NaOHバッファー(pH 7.5)を用いて透析を行った。透析後の溶液を回収し、各バクテリア由来Hisタグ付加Namptの精製酵素溶液とした。
 (4)NMN合成反応、NMNの分析
 (2)で得られたNampt以外の各酵素の無細胞抽出物と、Nampt精製酵素を用いてNMN合成反応および分析を行った。バクテリア由来のNampt精製酵素としては、(3)で調製した3種のHisタグ付加Nampt精製酵素を用いた。ヒト由来Nampt精製酵素(HsNampt-His)としては、市販されているヒト由来Hisタグ付加Nampt精製酵素(CY-E1251、MBL)を用いた。各反応液を表12に示す組成で調製すること、反応開始後12時間にサンプリングすること以外は、実施例1(5)および(6)と同様に行った。
Figure JPOXMLDOC01-appb-T000012
 (5)実験結果
 実験結果を図5に示す。バクテリア由来Nampt(HdNampt-His、DrNampt-His、SoNampt-His)を用いた場合、1.4mMから2.4mMのNMNが生成した。添加したATPのモル数(0.01μmol)は、生成したNMNのモル数(0.14~0.24μmol)の0.042~0.071当量であった。一方、ヒト由来Nampt(HsNampt-His)を用いた場合、NMNの生成量は0.6mMであった。添加したATPのモル数(0.01μmol)は、生成したNMNのモル数(0.06μmol)の0.17当量であった。以上の結果から、バクテリア由来、ヒト由来いずれのNamptでもNMNの合成は可能であるが、特にバクテリア由来Namptを用いることで、効率的にNMNを合成することが可能であることが示された。
[実施例6]<ATP再生系を利用したR5PからのNMN合成>
 (1)組換え体の作製・培養および無細胞抽出物の調製
 本実施例では、実施例1(2)~(4)と同様の操作により、各酵素の無細胞抽出物を調製した。
 (2)NMN合成反応、NMNの分析
 (1)で得られた無細胞抽出物を用いて、NMN合成反応および分析を行った。反応液量を100μLとし、表13(No.6-2)に示す組成で各反応液を調製すること、およびサンプリングを反応開始直後(0時間後)と6時間後に行うこと以外は、実施例1(5)および(6)と同様に行った。
Figure JPOXMLDOC01-appb-T000013
 (3)実験結果
 実験結果を図6に示す。Ppkを添加したサンプルNo.6-2では、2.4mMのNMNの生成が認められた。添加したATPのモル数(0.01μmol)は、生成したNMNのモル数(0.24μmol)の0.042当量であった。以上の結果から、ATP再生酵素であるPpkを共存させることで、R5Pから効率的にNMNを合成することが可能であることが示された。
[比較例2]<ATP再生系を利用しないR5PからのNMN合成>
 (1)組換え体の作製・培養および無細胞抽出物の調製
 本比較例では、実施例1(2)~(4)と同様の操作により、各酵素の無細胞抽出物を調製した。
 (2)NMN合成反応、NMNの分析
 (1)で得られた無細胞抽出物を用いて、NMN合成反応および分析を行った。反応は、反応液量を100μLとし、表13(No.6-1)に示す組成で各反応液を調製すること、およびサンプリングを反応開始直後(0時間後)と6時間後に行うこと以外は、実施例1(5)および(6)と同様に行った。
 (3)実験結果
 実験結果を図6に示す。Ppkを添加しなかったサンプルNo.6-1では、NMNの生成は検出限界以下であった。
[実施例7]<不要遺伝子破壊宿主で調製した無細胞抽出液を用いたNMN合成>
 (1)不要遺伝子破壊宿主の作製
 反応物(基質)であるNAM、および生成物であるNMNの分解または副反応を抑制するため、分解や副反応の原因となる各酵素をコードする遺伝子を破壊した表14の宿主を作製した。
Figure JPOXMLDOC01-appb-T000014
 不要遺伝子破壊宿主の作製は、TargeTron Gene Knockout System(シグマ・アルドリッチ)を用い、基本的に添付プロトコールに従って行った。
 ・BN1株の作製
 最初に、大腸菌BL21(DE3)を宿主としてushA遺伝子が破壊された、BN1株を以下のように作成した。まず、配列番号31(IBSプライマー)、配列番号32(EBS1dプライマー)および配列番号33(EBS2プライマー)に示す各プライマー、およびTargeTron Gene Knockout System添付のEBS Universalプライマーを用い、表15に示す反応液組成および表16に示す反応条件にてPCRを行った。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 PCR反応終了後、反応液の3μLを、4%アガロースゲルにて電気泳動を行い、約350bpDNA断片の増幅を確認した。残りのPCR反応液を、QIAquick PCR Purification Kit(Qiagen)により精製した。精製したPCR反応液8μLに、103Restriction Enzyme Buffer(キット添付) 2μL、HindIII 1μL、BsrGI 1μL、滅菌水8μLを加えた。37℃で30分間、続いて60℃で30分間消化を行った後、80℃で10分間処理を行った。得られた消化産物3μLを60℃で30秒間熱処理した後、氷上で1分間冷却した。pACD4K-C Linear Vector(キット添付)1μL、DNA Ligation Kit <Mighty Mix>(タカラバイオ)4μLを加えて混合した後、16℃で1時間、ライゲーション反応を行った。ライゲーション反応液5μLを、大腸菌JM109コンピテントセル(タカラバイオ)50μLと混合し、氷上で30分間静置した。42℃で45秒間インキュベートした後、再び氷上で5分間静置した。SOC培地を500μL加え、37℃で1時間、200rpmで振とう培養を行った後、LB寒天培地(クロラムフェニコール25μg/mL含有)に適量を塗布した。37℃で一晩培養を行った後、生育したコロニーをLB液体培地(クロラムフェニコール25μg/mL含有)に植菌し、37℃で16時間、200rpmで振とう培養を行った。培養液を遠心して菌体を回収し、QIAprep Spin Miniprep Kit(Qiagen)を用い、添付プロトコールに従ってプラスミド抽出を行った。得られたプラスミドDNAをHindIIIで消化後、1%アガロースゲルにて電気泳動を行い、約7.7kbpのバンドが確認されたプラスミドを、pACD4K-C-ushAとした。
 続いて、カナマイシン耐性遺伝子を含まないushA遺伝子破壊用プラスミドを作製するため、pACD4K-C-ushAを鋳型として、配列番号34(pACD4K-C-dKm-F2)および配列番号35(pACD4K-C-dKm-R)に示すプライマーを用いて、表17に示す反応液組成および表18に示す反応条件にて、PCR反応を行った。なお、配列番号34に示すプライマーは、5’末端にリン酸化修飾がされたものを用いた。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 PCR反応終了後、反応液に1μLのDpnI(タカラバイオ)を添加し、37℃で1時間反応を行った。QIAquick PCR Purification Kit(Qiagen)により精製した反応液2μLに、DNA Ligation Kit <Mighty Mix>(タカラバイオ)2μLを加えて混合した後、16℃で1時間、ライゲーション反応を行った。ライゲーション反応液を、大腸菌JM109コンピテントセル(タカラバイオ)40μLと混合し、氷上で30分間静置した。42℃で45秒間インキュベートした後、再び氷上で5分間静置した。SOC培地を500μL加え、37℃で1時間、200rpmで振とう培養を行った後、LB寒天培地(クロラムフェニコール25μg/mL含有)に適量を塗布した。37℃で一晩培養を行った後、生育したコロニーをLB液体培地(クロラムフェニコール25μg/mL含有)に植菌し、37℃で16時間、200rpmで振とう培養を行った。培養液を遠心して菌体を回収し、QIAprep Spin Miniprep Kit(Qiagen)を用い、添付プロトコールに従ってプラスミド抽出を行った。得られたプラスミドDNAをMluIで消化後、1%アガロースゲルにて電気泳動を行い、約6.3kbpのバンドが確認されたプラスミドを、pACD4K-C-ushAΔKmとした。
 1μLのpACD4K-C-ushAΔKmプラスミド溶液を、大腸菌BL21(DE3)コンピテントセル(バイオダイナミクス研究所)50μLに添加し、氷上で10分間静置した。42℃で45秒間ヒートショックを行い、再び氷上で5分間静置した。室温にしたSOC培地450 μLを添加し、37℃で1時間、200rpmで振とう培養を行った。振とう後の培養液100μLを、3mLのLB液体培地(1%グルコース、25μg/mlクロラムフェニコール含有)に添加し、37℃で一晩、200rpmで振とう培養を行った。得られた培養液40μLを、2mLのLB液体培地(1%グルコース、25μg/mlクロラムフェニコール含有)に添加し、OD600が約0.2になるまで37℃で培養を継続した。OD600が約0.2になった後、10μLの100mM IPTG溶液を培養液に添加し、30℃で30分間、200rpmで振とう培養を行った。その後、マイクロ遠心機を用いて最大速度で1分間遠心分離を行い、菌体を1mLのLB液体培地(1%グルコース含有、クロラムフェニコール非含有)に再懸濁した。30℃で1時間、20rpmで振とう培養を行った後、100μLの培養液を、予め100μLの100mM IPTG溶液を塗布しておいたLB寒天プレートに塗布し、30℃で3日間、培養を行った。出現した複数のコロニーに対し、Forwardプライマー(配列番号36)およびReverseプライマー(配列番号37)を用いて、コロニーPCRを行った。反応液組成は表19、反応条件は表18とした。元の宿主(BL21(DE3))では約1.1kbpのバンドが増幅するのに対し、約1.8kbpのバンドが増幅したクローンが得られた。このクローンを、ushA遺伝子が破壊された宿主としてBN1株とした。E.coli Transformation Kit, Mix & Go(ZYMO RESEARCH)を用い、添付プロトコールに従って、BN1株のコンピテントセルを作製した。
Figure JPOXMLDOC01-appb-T000019
 ・BN3株の作製
 続いて、BN1株を宿主としてpncA遺伝子が破壊された、BN3株を以下のように作成した。配列番号38(IBSプライマー)、配列番号39(EBS1dプライマー)および配列番号40(EBS2プライマー)に示す各プライマー、およびTargeTron Gene Knockout System添付のEBS Universalプライマーを用い、表15に示す反応液組成および表16に示す反応条件にてPCRを行った。BN1株作製時と同様に、PCR反応液の精製、HindIIIとBsrGIによる制限酵素処理、ベクターpACD4K-Cとのライゲーション反応、大腸菌JM109の形質転換およびプラスミド抽出を行った。得られたプラスミドDNAをHindIIIで消化後、1%アガロースゲルにて電気泳動を行い、約7.7kbpのバンドが確認されたプラスミドを、pACD4K-C-pncAとした。
 カナマイシン耐性遺伝子を含まないpncA遺伝子破壊用プラスミドを作製した。PCR反応時のテンプレートとしてpACD4K-C-pncAを用いること以外は、pACD4K-C-ushAΔKm作製時と同様の操作により行った。得られたプラスミドをpACD4K-C-pncAΔKmとした。
 BN1株を宿主として、pncA遺伝子が破壊されたBN3株を作製した。遺伝子破壊プラスミドとしてpACD4K-C-pncAΔKmを用いること、およびコンピテントセルとしてBN1株コンピテントセルを用いること以外は、上述のBN1株の作製と同様の操作により作製した。出現した複数のコロニーに対し、Forwardプライマー(配列番号41)およびReverseプライマー(配列番号42)を用いて、コロニーPCRを行った。反応液組成は表19、反応条件は表18とした。
 元の宿主(BL21(DE3))では約2.2kbpのバンドが増幅するのに対し、約2.9kbpのバンドが増幅したクローンが得られた。このクローンを、ushA遺伝子とpncA遺伝子が破壊された宿主として、BN3株とした。E.coli Transformation Kit, Mix & Go(ZYMO RESEARCH)を用い、添付プロトコールに従って、BN3株のコンピテントセルを作製した。
 ・BN6株の作製
 続いて、BN3株を宿主としてpncC遺伝子が破壊された、BN6株を以下のように作成した。配列番号43(IBSプライマー)、配列番号44(EBS1dプライマー)および配列番号45(EBS2プライマー)に示す各プライマー、およびTargeTron Gene Knockout System添付のEBS Universalプライマーを用い、表15に示す反応液組成および表16に示す反応条件にてPCRを行った。BN1株作製時と同様に、PCR反応液の精製、HindIIIとBsrGIによる制限酵素処理、ベクターpACD4K-Cとのライゲーション反応、大腸菌JM109の形質転換およびプラスミド抽出を行った。得られたプラスミドDNAをHindIIIで消化後、1%アガロースゲルにて電気泳動を行い、約7.7kbpのバンドが確認されたプラスミドを、pACD4K-C-pncCとした。
 カナマイシン耐性遺伝子を含まないpncC遺伝子破壊用プラスミドを作製した。PCR反応時のテンプレートとしてpACD4K-C-pncCを用いること以外は、pACD4K-C-ushAΔKm作製時と同様の操作により行った。得られたプラスミドをpACD4K-C-pncCΔKmとした。
 BN3株を宿主として、pncC遺伝子が破壊されたBN6株を作製した。遺伝子破壊プラスミドとしてpACD4K-C-pncCΔKmを用いること以外は、上述のBN1株の作製と同様の操作により作製した。出現した複数のコロニーに対し、Forwardプライマー(配列番号46)およびReverseプライマー(配列番号47)を用いて、コロニーPCRを行った。反応液組成は表19、反応条件は表18とした。
 元の宿主(BL21(DE3))では約0.5kbpのバンドが増幅するのに対し、約1.2kbpのバンドが増幅したクローンが得られた。このクローンを、ushA遺伝子、pncA遺伝子およびpncC遺伝子が破壊された宿主として、BN6株とした。E.coli Transformation Kit, Mix & Go(ZYMO RESEARCH)を用い、添付プロトコールに従って、BN6株のコンピテントセルを作製した。
 ・BN8株の作製
 続いて、BN6株を宿主としてyrfG遺伝子が破壊された、BN8株を以下のように作成した。配列番号48(IBSプライマー)、配列番号49(EBS1dプライマー)および配列番号50(EBS2プライマー)に示す各プライマー、およびTargeTron Gene Knockout System添付のEBS Universalプライマーを用い、表15に示す反応液組成および表16に示す反応条件にてPCRを行った。BN1株作製時と同様に、PCR反応液の精製、HindIIIとBsrGIによる制限酵素処理、ベクターpACD4K-Cとのライゲーション反応、大腸菌JM109の形質転換およびプラスミド抽出を行った。得られたプラスミドDNAをHindIIIで消化後、1%アガロースゲルにて電気泳動を行い、約7.7kbpのバンドが確認されたプラスミドを、pACD4K-C-yrfGとした。
 カナマイシン耐性遺伝子を含まないyrfG遺伝子破壊用プラスミドを作製した。PCR反応時のテンプレートとしてpACD4K-C-yrfGを用いること以外は、pACD4K-C-ushAΔKm作製時と同様の操作により行った。得られたプラスミドをpACD4K-C-yrfGΔKmとした。
 BN6株を宿主として、yrfG遺伝子が破壊されたBN8株を作製した。遺伝子破壊プラスミドとしてpACD4K-C-yrfGΔKmを用いること、およびコンピテントセルとしてBN6株コンピテントセルを用いること以外は、上述のBN1株の作製と同様の操作により作製した。出現した複数のコロニーに対し、Forwardプライマー(配列番号51)およびReverseプライマー(配列番号52)を用いて、コロニーPCRを行った。反応液組成は表19、反応条件は表18とした。
 元の宿主(BL21(DE3))では約0.4kbpのバンドが増幅するのに対し、約1.1kbpのバンドが増幅したクローンが得られた。このクローンを、ushA遺伝子、pncA遺伝子、pncC遺伝子およびyrfG遺伝子が破壊された宿主として、BN8株とした。E.coli Transformation Kit, Mix & Go(ZYMO RESEARCH)を用い、添付プロトコールに従って、BN8株のコンピテントセルを作製した。
 (2)組換え体の作製・培養および無細胞抽出物の調製
 本実施例では、Prsとして、実施例3記載のBsPrsN120Sを用いること、および酵素発現の宿主として、本実施例(1)記載のBN3株およびBN8株を用いること以外は、実施例1(2)~(4)と同様の操作により、各酵素の無細胞抽出物を調製した。
 (3)NMN合成反応、NMNの分析
 (1)で得られた無細胞抽出物を用いて、NMN合成反応および分析を行った。各反応液を表20に示す組成で調製すること、およびサンプリングを反応開始直後(0時間後)、6時間後、および24時間後に行うこと以外は、実施例1(5)および(6)と同様に行った。
Figure JPOXMLDOC01-appb-T000020
 (4)実験結果
 実験結果を図7に示す。反応6時間時点では、通常のBL21(DE3)を宿主として調製した無細胞抽出液を用いた場合(サンプルNo.7-1)、1.9mMのNMNの生成が認められた。添加したATPのモル数(0.01μmol)は、生成したNMNのモル数(0.19μmol)の0.052当量であった。一方、ushA遺伝子およびpncA遺伝子を破壊したBN3株を宿主として調製した無細胞抽出液を用いた場合(サンプルNo.7-2)、2.3mMのNMNの生成が認められた。添加したATPのモル数(0.01μmol)は、生成したNMNのモル数(0.23μmol)の0.043当量であった。ushA遺伝子、pncA遺伝子、pncC遺伝子およびyrfG遺伝子を破壊したBN8株を宿主として調製した無細胞抽出液を用いた場合も(サンプルNo.7-3)、同様に2.3mMのNMNの生成が認められた。添加したATPのモル数(0.01μmol)は、生成したNMNのモル数(0.23μmol)の0.043当量であった。すなわち、NMNの生成が進行する段階では、BN3株およびBN8株を宿主として調製した無細胞抽出液を用いる方が、BL21(DE3)を宿主として調製した無細胞抽出液を用いるよりも、NMNの生産量が高くなることがわかった。
 さらに、反応24時間時点では、BL21(DE3)およびBN3株を宿主として調製した無細胞抽出液を用いた場合(サンプルNo.7-1、No.7-2)、NMNが検出できなかった。BN8株を宿主として調製した無細胞抽出液を用いた場合(サンプルNo.7-3)、2.0mMのNMNが残存していた。すなわち、NMNが一定量生成した後の段階では、BL21(DE3)およびBN3株を宿主として調製した無細胞抽出液よりも、BN8を宿主として調製した無細胞抽出液を用いる方が、生成したNMNの分解が格段に抑えられることがわかった。ただし、NMNの分解が進行する前の時点(例えば6時間)で、生成したNMNを適切に回収する工程を行えば、いずれの宿主由来の無細胞抽出液を用いた場合でも、生成したNMNを適切に取得することができる。
[実施例8]<PPaseを用いた精製酵素によるNMN合成>
 本実施例では、所定の各酵素として下記のものを用いた。
 Nampt:Haemophilus ducreyi由来(AAR87771)NamptにHisタグを付加したもの(HdNampt-His)
 Prs:Bacillus subtilis由来(BAA05286)PrsのAsn120Ser変異体にHisタグを付加したもの(BsPrsN120S-His)
 Ppk(Ppk2クラス3):Deinococcus radiodurans由来(NP_293858)PpkにHisタグを付加したもの(DrPpk-His)
 Rbk:Saccharomyces cerevisiae由来(P25332)RbkにHisタグを付加したもの(ScRbk-His)
 (1)Hisタグ付加Prs、PpkおよびRbk発現プラスミドの作製
 Prs、PpkおよびRbkにHisタグが付加されたタンパク質を発現するプラスミドを以下のように作製した。実施例3で作製したpEBsPrsN120S、実施例1で作製したpEDrPpkおよびpEScRbkを鋳型として、各酵素にHisタグを付加するための変異導入PCR反応を行った。鋳型プラスミド名、変異導入用プライマー名およびその塩基配列を示す配列番号、Hisタグ付加酵素発現プラスミド名を表21に示す。
Figure JPOXMLDOC01-appb-T000021
 Hisタグ付加酵素発現プラスミドの作製は、表21に示す各種鋳型プラスミドと変異導入プライマーを用いる以外は、実施例3(1)と同様の操作により、変異導入PCR反応から塩基配列確認までを行った。正しくHisタグが付加されたプラスミドを表21に記載した各プラスミドとした。
 (2)組換え体の作製・培養および無細胞抽出物の調製
 上記(1)でHisタグ付加酵素発現プラスミドを用い、実施例4(1)と同様の操作により、組換え体の作製、培養および無細胞抽出物の調製を行った。その際、菌体を懸濁するバッファーとしては、BsPrsN120S-His以外は、50mM HEPES-NaOHバッファー(pH 8.0)を用いた。ただし、BsPrsN120S-Hisについては、50mM リン酸カリウムバッファー(pH7.5)を用いて行った。
 (3)精製酵素の調製
 (2)で調製したHisタグ付加酵素を含む無細胞抽出物を用いて、実施例5(3)と同様に、固定化金属アフィニティークロマトグラフィーにより、各Hisタグ付加酵素の精製を行った。ただし、BsPrsN120S-Hisについては、50mM リン酸カリウムバッファー(pH7.5)を用いて用透析を行った。
 (4)NMN合成反応、NMNの分析
 (3)で得られた各種精製酵素を用い、PPase(酵母由来、シグマ・アルドリッチ社、製品番号10108987001)の存在下または非存在下で、NMN合成反応および分析を行った。各反応液を表22に示す組成で調製すること、サンプリングを反応開始直後(0時間後)、6時間後、24時間後および48時間後に行うこと以外は、実施例1(5)および(6)と同様に行った。
Figure JPOXMLDOC01-appb-T000022
 (5)実験結果
 実験結果を図8に示す。第3反応のみの場合、PPaseを添加した場合(サンプルNo.8-1)では、反応48時間で4.0mMのNMNが生成した。添加したATPのモル数(0.1μmol)は、生成したNMNのモル数(0.40μmol)の0.25当量であった。一方、PPaseを添加しなかった場合(サンプルNo.8-2)、0.52mMのNMNが生成した。添加したATPのモル数(0.1μmol)は、生成したNMNのモル数(0.052μmol)の1.9当量であった。第2反応+第3反応の場合、PPaseを添加した場合(サンプルNo.8-3)では、反応48時間で4.1mMのNMNが生成した。添加したATPのモル数(0.1μmol)は、生成したNMNのモル数(0.41μmol)の0.24当量であった。一方、PPaseを添加しなかった場合(サンプルNo.8-4)、0.34mMのNMNが生成した。添加したATPのモル数(0.1μmol)は、生成したNMNのモル数(0.034μmol)の2.9当量であった。さらに、第1反応+第2反応+第3反応の場合、PPaseを添加した場合(サンプルNo.8-5)では、反応48時間で3.6mMのNMNが生成した。添加したATPのモル数(0.1μmol)は、生成したNMNのモル数(0.36μmol)の0.28当量であった。一方、PPaseを添加しなかった場合(サンプルNo.8-6)、0.25mMのNMNが生成した。添加したATPのモル数(0.1μmol)は、生成したNMNのモル数(0.025μmol)の4.0当量であった。以上の結果から、精製酵素反応系にPPaseを添加することで、効率的にNMNを合成することが可能であることが示された。
配列番号15:Prs変異体BsPrsN120Sの変異導入用プライマー(フォワード)
配列番号16:Prs変異体BsPrsN120Sの変異導入用プライマー(リバース)
配列番号17:Prs変異体BsPrsL135Iの変異導入用プライマー(フォワード)
配列番号18:Prs変異体BsPrsL135Iの変異導入用プライマー(リバース)
配列番号19:プライマーT7-PP
配列番号20:プライマーT7-TP
配列番号25:Hisタグ付加Nampt発現プラスミドpEHdNampt-Hisの変異導入用プライマー(フォワード)
配列番号26:Hisタグ付加Nampt発現プラスミドpEHdNampt-Hisの変異導入用プライマー(リバース)
配列番号27:Hisタグ付加Nampt発現プラスミドpEDrNampt-Hisの変異導入用プライマー(フォワード)
配列番号28:Hisタグ付加Nampt発現プラスミドpEDrNampt-Hisの変異導入用プライマー(リバース)
配列番号29:Hisタグ付加Nampt発現プラスミドpESoNampt-Hisの変異導入用プライマー(フォワード)
配列番号30:Hisタグ付加Nampt発現プラスミドpESoNampt-Hisの変異導入用プライマー(リバース)
配列番号31:ushA用IBSプライマー
配列番号32:ushA用EBS1dプライマー
配列番号33:ushA用EBS2プライマー
配列番号34:pACD4K-C-ushAΔKm調製用プライマー(フォワード)
配列番号35:pACD4K-C-ushAΔKm調製用プライマー(リバース)
配列番号36:ushA遺伝子破壊検出用プライマー(フォワード)
配列番号37:ushA遺伝子破壊検出用プライマー(リバース)
配列番号38:pncA用IBSプライマー
配列番号39:pncA用EBS1dプライマー
配列番号40:pncA用EBS2プライマー
配列番号41:pncA遺伝子破壊検出用プライマー(フォワード)
配列番号42:pncA遺伝子破壊検出用プライマー(リバース)
配列番号43:pncC用IBSプライマー
配列番号44:pncC用EBS1dプライマー
配列番号45:pncC用EBS2プライマー
配列番号46:pncC遺伝子破壊検出用プライマー(フォワード)
配列番号47:pncC遺伝子破壊検出用プライマー(リバース)
配列番号48:yrfG用IBSプライマー
配列番号49:yrfG用EBS1dプライマー
配列番号50:yrfG用EBS2プライマー
配列番号51:yrfG遺伝子破壊検出用プライマー(フォワード)
配列番号52:yrfG遺伝子破壊検出用プライマー(リバース)
配列番号53:Hisタグ付加Nampt発現プラスミドpEBsPrsN120S-Hisの変異導入用プライマー(フォワード)
配列番号54:Hisタグ付加Nampt発現プラスミドpEBsPrsN120S-Hisの変異導入用プライマー(リバース)
配列番号55:Hisタグ付加Nampt発現プラスミドpEDrPpk-Hisの変異導入用プライマー(フォワード)
配列番号56:Hisタグ付加Nampt発現プラスミドpEDrPpk-Hisの変異導入用プライマー(リバース)
配列番号57:Hisタグ付加Nampt発現プラスミドpEScRbk-Hisの変異導入用プライマー(フォワード)
配列番号58:Hisタグ付加Nampt発現プラスミドpEScRbk-Hisの変異導入用プライマー(リバース)

Claims (15)

  1.  ニコチンアミドホスホリボシルトランスフェラーゼ(Nampt)、ホスホリボシルピロリン酸シンターゼ(Prs)およびポリリン酸キナーゼ(Ppk)の3酵素の発現が強化された形質転換体、前記3酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、リボース-5-リン酸(R5P)、ニコチンアミド(NAM)、ATP、およびポリリン酸と接触させる工程を含む、ニコチンアミドモノヌクレオチド(NMN)の製造方法。
  2.  リボキナーゼ(Rbk)およびポリリン酸キナーゼ(Ppk)の2酵素の発現が強化された形質転換体、前記2酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、リボース、ATP、およびポリリン酸と接触させて前記R5Pを製造する工程をさらに含む、請求項1に記載のNMNの製造方法。
  3.  実質的に形質転換体が増殖しない条件で行う、請求項1または2に記載のNMNの製造方法。
  4.  前記Namptがバクテリア由来のものである、請求項1~3のいずれか一項に記載のNMNの製造方法。
  5.  前記Ppkが、ポリリン酸キナーゼ2型ファミリーである、請求項1~4のいずれか一項に記載のNMNの製造方法。
  6.  前記形質転換体の宿主が、大腸菌、コリネバクテリウム属細菌、ロドコッカス属細菌、または酵母である、請求項1~5のいずれか一項に記載のNMNの製造方法。
  7.  ニコチンアミドホスホリボシルトランスフェラーゼ(Nampt)、ホスホリボシルピロリン酸シンターゼ(Prs)およびポリリン酸キナーゼ(Ppk)の3酵素の発現が強化された形質転換体。
  8.  リボキナーゼ(Rbk)およびポリリン酸キナーゼ(Ppk)の2酵素の発現が強化された形質転換体。
  9.  ピロホスファターゼ(PPase)の存在下で、ニコチンアミドホスホリボシルトランスフェラーゼ(Nampt)の発現が強化された形質転換体、前記酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、ニコチンアミド(NAM)およびホスホリボシルピロリン酸(PRPP)と接触させる工程を含む、ニコチンアミドモノヌクレオチド(NMN)の製造方法。
  10.  実質的に形質転換体が増殖しない条件で行う、請求項9に記載のNMNの製造方法。
  11.  前記処理物が精製酵素である、請求項9または10に記載のNMNの製造方法。
  12.  (d)EC 3.5.1.42に示されるEC番号に分類される酵素をコードする遺伝子と、以下の(a)(c)(g)(h)(i)に示されるいずれか一つ以上のEC番号に分類される酵素をコードする遺伝子とが破壊または欠失され、かつ、ニコチンアミドホスホリボシルトランスフェラーゼ(Nampt)の発現が強化されている形質転換体またはそれらの処理物を、少なくともニコチンアミド(NAM)と接触させる工程を含む、NMNの製造方法。
    (a)EC 3.1.3.5
    (c)EC 2.4.2.1
    (g)EC 3.2.2.1
    (h)EC 3.2.2.3
    (i)EC 3.2.2.14
  13.  反応系に添加するATP、ADPおよびAMP各モル数の総和が、生成するNMNのモル数の0.5当量以下である、請求項1~12のいずれか一項に記載のNMNの製造方法。
  14.  ニコチンアミドホスホリボシルトランスフェラーゼ(Nampt)およびホスホリボシルピロリン酸シンターゼ(Prs)の2酵素の発現が強化された形質転換体、前記2酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、リボース-5-リン酸(R5P)、ニコチンアミド(NAM)およびATPと接触させる工程を含む、ニコチンアミドモノヌクレオチド(NMN)の製造方法であって、反応系に添加するATP、ADPおよびAMP各モル数の総和が、生成するNMNのモル数の0.5当量以下である、NMNの製造方法。
  15.  リボキナーゼ(Rbk)の発現が強化された形質転換体、前記酵素を発現させた無細胞タンパク質合成反応液、またはそれらの処理物を、リボースおよびATPと接触させて前記R5Pを製造する工程をさらに含む、請求項14に記載のNMNの製造方法。
PCT/JP2018/036040 2017-09-29 2018-09-27 ニコチンアミドモノヌクレオチドの製造方法およびその方法に用いる形質転換体 WO2019065876A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020237037243A KR20230156155A (ko) 2017-09-29 2018-09-27 니코틴아미드모노뉴클레오티드의 제조 방법 및 그 방법에 사용하는 형질 전환체
KR1020207011819A KR102681025B1 (ko) 2017-09-29 2018-09-27 니코틴아미드모노뉴클레오티드의 제조 방법 및 그 방법에 사용하는 형질 전환체
CN201880054836.6A CN111051520A (zh) 2017-09-29 2018-09-27 烟酰胺单核苷酸的制造方法及该方法所使用的转化体
JP2019545623A JP7203744B2 (ja) 2017-09-29 2018-09-27 ニコチンアミドモノヌクレオチドの製造方法およびその方法に用いる形質転換体
CN202310846785.3A CN117187320A (zh) 2017-09-29 2018-09-27 烟酰胺单核苷酸的制造方法
CN202410081198.4A CN117887788A (zh) 2017-09-29 2018-09-27 烟酰胺单核苷酸的制造方法
CN202410082787.4A CN117904236A (zh) 2017-09-29 2018-09-27 烟酰胺单核苷酸的制造方法
EP18861086.9A EP3690057A4 (en) 2017-09-29 2018-09-27 PROCESS FOR THE PRODUCTION OF MONONUCLEOTIDE AND TRANSFORMANT NICOTINAMIDE USED IN THIS PROCESS
US16/832,347 US20200332332A1 (en) 2017-09-29 2020-03-27 Method for Producing Nicotinamide Mononucleotide and Transformant Used in Said Method
JP2021180410A JP2022025128A (ja) 2017-09-29 2021-11-04 ニコチンアミドモノヌクレオチドの製造方法およびその方法に用いる形質転換体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017190028 2017-09-29
JP2017-190028 2017-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/832,347 Continuation US20200332332A1 (en) 2017-09-29 2020-03-27 Method for Producing Nicotinamide Mononucleotide and Transformant Used in Said Method

Publications (1)

Publication Number Publication Date
WO2019065876A1 true WO2019065876A1 (ja) 2019-04-04

Family

ID=65901615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036040 WO2019065876A1 (ja) 2017-09-29 2018-09-27 ニコチンアミドモノヌクレオチドの製造方法およびその方法に用いる形質転換体

Country Status (6)

Country Link
US (1) US20200332332A1 (ja)
EP (1) EP3690057A4 (ja)
JP (6) JP7203744B2 (ja)
KR (2) KR20230156155A (ja)
CN (4) CN111051520A (ja)
WO (1) WO2019065876A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129997A1 (ja) * 2018-12-18 2020-06-25 帝人株式会社 ニコチンアミド誘導体を製造するための組換え微生物及び方法、並びにそれに用いられるベクター
WO2022188403A1 (zh) * 2021-03-08 2022-09-15 泓博元生命科技(深圳)有限公司 一株产烟酰胺单核苷酸的成都肠杆菌及其应用
WO2022202952A1 (ja) 2021-03-26 2022-09-29 三菱ケミカル株式会社 改変型ニコチンアミドホスホリボシルトランスフェラーゼ
CN115348865A (zh) * 2020-05-05 2022-11-15 康纳根有限公司 通过微生物方法产生nmn及其衍生物
US11959116B2 (en) 2021-10-27 2024-04-16 Asahi Kasei Pharma Corporation Method for producing nicotinamide mononucleotide

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111996208A (zh) * 2020-05-25 2020-11-27 南宁邦尔克生物技术有限责任公司 一种利用重组枯草芽孢杆菌生产烟酰胺单核苷酸的方法
CN113755411B (zh) * 2020-06-04 2023-08-01 苏州华赛生物工程技术有限公司 高产β-烟酰胺单核苷酸的重组微生物及其生产β-烟酰胺单核苷酸的方法
CN113755413B (zh) * 2020-06-04 2023-09-05 苏州华赛生物工程技术有限公司 生产β-烟酰胺单核苷酸的重组微生物及其生产NMN的方法
CN112877386B (zh) * 2021-01-28 2022-08-26 湖南福来格生物技术有限公司 一种基于酶法合成烟酰胺单核苷酸的方法
CN112961890B (zh) * 2021-02-05 2023-06-27 深圳希吉亚生物技术有限公司 烟酰胺单核苷酸的酶促合成方法
CN112961199B (zh) * 2021-02-23 2022-08-23 成都西域从容生物科技有限公司 一种从果蔬中提取nmn的方法
TWI821918B (zh) 2021-02-25 2023-11-11 美商雅登米爾有限責任公司 用於萃取及分離經純化之小麥胚產物之系統及方法
CN113005162A (zh) * 2021-03-18 2021-06-22 绵阳晟氏健康科技有限公司 酶法生产烟酰胺单核苷酸的方法和用于该方法的转化体
CN113122594B (zh) * 2021-04-13 2023-04-25 百瑞全球有限公司 烟酸或其衍生物的单核苷酸及其生物产物的制备方法
CN113151378B (zh) * 2021-04-13 2023-06-06 百瑞全球有限公司 制备烟酸或其衍生物的核苷、烟酸腺嘌呤二核苷酸、烟酸单核苷酸的方法、酶组合物及应用
CN113025592B (zh) * 2021-04-28 2022-06-24 上海邦林生物科技有限公司 一种高性能多聚磷酸激酶突变体及其应用
CN113528562B (zh) * 2021-06-23 2022-08-16 苏州华赛生物工程技术有限公司 生产β-烟酰胺核糖的重组微生物及其构建方法和应用
CN113549663B (zh) * 2021-06-29 2022-09-16 康盈红莓(中山)生物科技有限公司 一种腺苷参与的全酶法nmn合成方法
CN113416761B (zh) * 2021-07-19 2022-07-29 合肥康诺生物制药有限公司 一种利用发酵培养法制备nmn的方法
KR20230029344A (ko) * 2021-08-24 2023-03-03 충북대학교 산학협력단 니코틴아미드 모노뉴클레오티드를 생산하는 재조합 대장균 및 이를 이용한 니코틴아미드 모노뉴클레오티드의 생산방법
CN115725481A (zh) * 2021-09-02 2023-03-03 福建师范大学 产β-烟酰胺单核苷酸重组菌及其构建方法和产β-烟酰胺单核苷酸的方法和应用
JP7306747B2 (ja) * 2021-09-16 2023-07-11 株式会社ユニバーサルエンターテインメント 遊技機
CN113832204A (zh) * 2021-09-22 2021-12-24 杭州吾尾科技有限公司 Nmn的制备方法及含nmn的犬猫抗衰老保健品配方
CN114164190B (zh) * 2021-10-12 2023-11-21 南宁邦尔克生物技术有限责任公司 一种生产烟酰胺单核苷酸的融合酶及其应用
CN114807078B (zh) * 2022-04-19 2023-09-01 四川盈嘉合生科技有限公司 一种生物合成nmn的方法
CN117402766A (zh) * 2022-07-06 2024-01-16 弈柯莱生物科技(集团)股份有限公司 一种菌株及其在生产β-烟酰胺单核苷酸中的应用
CN115927141B (zh) * 2022-08-22 2024-08-16 上海奥萝拉医药科技有限公司 一种合成nmn的双酶共表达菌株及其构建方法和应用
CN115820689B (zh) * 2022-11-30 2023-12-05 上海市农业科学院 一种多基因串联法提高蔬菜中nmn含量的方法及其应用
CN116875578A (zh) * 2023-08-25 2023-10-13 康盈红莓(中山)生物科技有限公司 一种三联体融合酶及其制备方法和以之制备烟酰胺单核苷酸的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143463A (ja) 2005-11-28 2007-06-14 Hiroshima Univ 大腸菌を用いたリン酸化反応方法
JP2013021967A (ja) 2011-07-20 2013-02-04 Hiroshima Univ Atpの製造方法およびその利用
WO2015069860A1 (en) 2013-11-06 2015-05-14 President And Fellows Of Harvard College Biological production of nad precursors and analogs
WO2016198948A1 (en) 2015-06-11 2016-12-15 Newsouth Innovations Pty Limited Enzymatic systems and methods for synthesizing nicotinamide mononucleotide and nicotinic acid mononucleotide
WO2017185549A1 (zh) 2016-07-30 2017-11-02 邦泰生物工程(深圳)有限公司 一种制备烟酰胺单核苷酸的方法2

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634744B2 (ja) * 1986-01-13 1994-05-11 株式会社興人 γ−L−グルタミル−L−α−アミノ−n−ブチリルグリシンの製造方法
JPH0231690A (ja) * 1989-02-13 1990-02-01 Hikari Kimura 遺伝子組換えで造成されるプラスミドによるグルタチオンの製造法
JPH04228085A (ja) * 1990-09-06 1992-08-18 Mitsubishi Petrochem Co Ltd L−トリプトフアンの製造法
US8268575B2 (en) * 2004-09-20 2012-09-18 Washington University NAD biosynthesis systems
US9600429B2 (en) 2010-12-09 2017-03-21 Solarflare Communications, Inc. Encapsulated accelerator
KR20150069860A (ko) 2013-12-16 2015-06-24 송석록 낚시용 자석 봉돌
JP6327653B2 (ja) 2014-04-08 2018-05-23 グリーンケミカルズ株式会社 コリネ型細菌形質転換体及びそれを用いる4−ヒドロキシ安息香酸又はその塩の製造方法
US20160198948A1 (en) 2015-01-09 2016-07-14 Good-Lite Co. Retinoscopy paddle with integrated axis compass or adapter, and associated method
EP3263709A4 (en) 2015-02-24 2018-10-24 Japan Science And Technology Agency Method for producing coenzyme and transformant set for coenzyme production
EP3374492A4 (en) 2015-11-13 2019-07-24 DSM IP Assets B.V. MICROBIAL PRODUCTION OF NICOTINAMIDE RIBOSIDE
US10988743B2 (en) 2016-02-26 2021-04-27 Research Institute Of Innovative Technology For The Earth Coryneform bacterial transformant and method for producing 4-aminobenzoic acid or salt thereof using same
CN106755209B (zh) * 2016-12-29 2021-07-23 苏州汉酶生物技术有限公司 一种酶法制备β-烟酰胺单核苷酸的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143463A (ja) 2005-11-28 2007-06-14 Hiroshima Univ 大腸菌を用いたリン酸化反応方法
JP2013021967A (ja) 2011-07-20 2013-02-04 Hiroshima Univ Atpの製造方法およびその利用
WO2015069860A1 (en) 2013-11-06 2015-05-14 President And Fellows Of Harvard College Biological production of nad precursors and analogs
WO2016198948A1 (en) 2015-06-11 2016-12-15 Newsouth Innovations Pty Limited Enzymatic systems and methods for synthesizing nicotinamide mononucleotide and nicotinic acid mononucleotide
WO2017185549A1 (zh) 2016-07-30 2017-11-02 邦泰生物工程(深圳)有限公司 一种制备烟酰胺单核苷酸的方法2

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
ANDREOLI, ANTHONY J. ET AL.: "THE PYRIDINE NUCLEOTIDE CYCLE:PRESENCE OF A NICOTINAMIDE MONONUCLEOTIDE-SPECIFIC GLYCOHYDROLASE IN ESCHERICHIA COLI", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 49, no. 1, 1972, pages 264 - 269, XP024776557, DOI: doi:10.1016/0006-291X(72)90039-3 *
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 67, 2001, pages 1783 - 1787
BIOCHEM. BIOPHYS. RES. COMMUN., vol. 49, 1972, pages 264 - 9
BIOCHEMISTRY, vol. 47, 2008, pages 11086 - 11096
BOGAN, KATRINA L. ET AL.: "Identification of Isnl and Sdtl as Glucose- and Vitamin-regulated Nicotinamide Mononucleotide and Nicotinic Acid Mononucleotide 5'-Nucleotidases Responsible for Production of Nicotinamide Riboside and Nicotinic Acid Riboside", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 284, no. 50, 11 December 2009 (2009-12-11), pages 34861 - 34869, XP055377129 *
BURGOS, EMMANUEL S. ET AL.: "Weak Coupling of ATP Hydrolysis to the Chemical Equilibrium of Human Nicotinamide Phosphoribosyltransferase", BIOCHEMISTRY, vol. 47, 2008, pages 11086 - 11096, XP055495736, DOI: doi:10.1021/bi801198m *
ENZYME AND MICROBIAL TECHNOLOGY, 2014, pages 58 - 59
ESIPOV, R. S. ET AL.: "A Cascade of Thermophilic Enzymes As an Approach to the Synthesis of Modified Nucleotides", ACTA NATURAE, vol. 8, no. 4, October 2016 (2016-10-01), pages 82 - 90, XP055586445 *
GALEAZZI, LUCA ET AL.: "Identification of Nicotinamide Mononucleotide Deamidase of the Bacterial Pyridine Nucleotide Cycle Reveals a Novel Broadly Conserved Amidohydrolase Family", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 286, no. 46, 18 November 2011 (2011-11-18), pages 40365 - 40375, XP055586447 *
GROSS, AKIVA ET AL.: "Practical Synthesis of 5- Phospho-D-ribosyl a-l-Pyrophosphate (PRPP): Enzymatic Routes from Ribose 5-Phosphate or Ribose", J. AM. CHEM. SOC., vol. 105, 1983, pages 7428 - 7435, XP055333305, DOI: doi:10.1021/ja00363a037 *
JUNG, BENJAMIN ET AL.: "Uridine-Ribohydrolase Is a Key Regulator in the Uridine Degradation Pathway of Arabidopsis", THE PLANT CELL, vol. 21, March 2009 (2009-03-01), pages 876 - 891, XP002573098, DOI: doi:10.1105/tpc.108.062612 *
MOLECULAR AND GENERAL GENETICS, vol. 104, 1969, pages 351 - 359
OGAWA, JUN ET AL.: "Purification, Characterization, and Gene Cloning of Purine Nucleosidase from Ochrobactrum anthropic", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 67, no. 4, April 2001 (2001-04-01), pages 1783 - 1787, XP055586450 *
PLANT CELL, vol. 21, 2009, pages 876 - 91
RESTIAWATY, ELVI ET AL.: "Feasibility of thermophilic adenosine triphosphate-regeneration system using Thermus thermophilus polyphosphate kinase", PROCESS BIOCHEMISTRY, vol. 46.9, 2011, pages 1747 - 1752
SCISM , ROBERT A.: "Five- Component Cascade Synthesis of Nucleotide Analogues in an Engineered Self-Immobilized Enzyme Aggregate", CHEMBIOCHEM, vol. 11, 2010, pages 67 - 70, XP055505374, DOI: doi:10.1002/cbic.200900620 *
SCISM, ROBERT A.BACHMANN, BRIAN 0.: "Five-component cascade synthesis of nucleotide analogues in an engineered self-immobilized enzyme aggregate", CHEMBIOCHEM, vol. 11.1, 2010, pages 67 - 70, XP055505374, DOI: 10.1002/cbic.200900620
SHORT, STEVEN A. ET AL.: "Studies on deo operon regulation in Escherichia coli: cloning and expression of the deoR structural gene", GENE, vol. 31, no. 1-2, 1985, pages 37 - 44, XP025696471 *
THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 286, 2011, pages 40365 - 40375
WANG, LEI ET AL.: "Identification of UshA as a major enzyme for NAD degradation in Escherichia coli", ENZYME AND MICROBIAL TECHNOLOGY, vol. 58, no. 59, 10 May 2014 (2014-05-10), pages 75 - 79, XP055586452 *
ZHANG, XING ET AL.: "One-pot synthesis of glutathione by a two-enzyme cascade using a thermophilic ATP regeneration system", JOURNAL OF BIOTECHNOLOGY, vol. 241, 2017, pages 163 - 169, XP029860718, DOI: 10.1016/j.jbiotec.2016.11.034

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129997A1 (ja) * 2018-12-18 2020-06-25 帝人株式会社 ニコチンアミド誘導体を製造するための組換え微生物及び方法、並びにそれに用いられるベクター
CN115348865A (zh) * 2020-05-05 2022-11-15 康纳根有限公司 通过微生物方法产生nmn及其衍生物
JP2023524389A (ja) * 2020-05-05 2023-06-12 コナゲン インコーポレイテッド 微生物プロセスを介したnmnおよびその誘導体の生成
EP4114410A4 (en) * 2020-05-05 2023-09-13 Conagen Inc. PRODUCTION OF NMN AND ITS DERIVATIVES BY MICROBIAL PROCESSES
WO2022188403A1 (zh) * 2021-03-08 2022-09-15 泓博元生命科技(深圳)有限公司 一株产烟酰胺单核苷酸的成都肠杆菌及其应用
WO2022202952A1 (ja) 2021-03-26 2022-09-29 三菱ケミカル株式会社 改変型ニコチンアミドホスホリボシルトランスフェラーゼ
KR20230160222A (ko) 2021-03-26 2023-11-23 미쯔비시 케미컬 주식회사 개변형 니코틴아미드 포스포리보실트랜스퍼라아제
US11959116B2 (en) 2021-10-27 2024-04-16 Asahi Kasei Pharma Corporation Method for producing nicotinamide mononucleotide

Also Published As

Publication number Publication date
KR20200061374A (ko) 2020-06-02
JP7388396B2 (ja) 2023-11-29
JP7203744B2 (ja) 2023-01-13
CN117887788A (zh) 2024-04-16
CN111051520A (zh) 2020-04-21
CN117904236A (zh) 2024-04-19
JP2023085434A (ja) 2023-06-20
KR102681025B1 (ko) 2024-07-05
KR20230156155A (ko) 2023-11-13
JP2024020425A (ja) 2024-02-14
JP2021151256A (ja) 2021-09-30
JP2022166242A (ja) 2022-11-01
US20200332332A1 (en) 2020-10-22
EP3690057A4 (en) 2021-02-17
CN117187320A (zh) 2023-12-08
JPWO2019065876A1 (ja) 2020-06-18
EP3690057A1 (en) 2020-08-05
JP7416145B2 (ja) 2024-01-17
JP2022025128A (ja) 2022-02-09

Similar Documents

Publication Publication Date Title
JP7203744B2 (ja) ニコチンアミドモノヌクレオチドの製造方法およびその方法に用いる形質転換体
KR102571743B1 (ko) 뉴클레오시드 트리포스페이트 및 리보핵산 생산을 위한 방법 및 조성물
US20220162659A1 (en) Cell-free production of ribonucleic acid
EP2412807B1 (en) Novel 2-deoxy-scyllo-inosose synthase
JPWO2019160059A1 (ja) S−アデノシルメチオニンのリサイクル方法
WO2022202952A1 (ja) 改変型ニコチンアミドホスホリボシルトランスフェラーゼ
RU2777282C2 (ru) Способы и композиции для получения нуклеозидтрифосфата и рибонуклеиновой кислоты
US20240209406A1 (en) Enzymatic synthesis of ntp and nqp
JP2020000070A (ja) L−システインの分解抑制
CN115698310A (zh) 还原酶以及制备和使用还原酶的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545623

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207011819

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018861086

Country of ref document: EP

Effective date: 20200429