WO2017183648A1 - 多項目増幅手法 - Google Patents

多項目増幅手法 Download PDF

Info

Publication number
WO2017183648A1
WO2017183648A1 PCT/JP2017/015651 JP2017015651W WO2017183648A1 WO 2017183648 A1 WO2017183648 A1 WO 2017183648A1 JP 2017015651 W JP2017015651 W JP 2017015651W WO 2017183648 A1 WO2017183648 A1 WO 2017183648A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
primer
acid sequence
artificial nucleic
primer pair
Prior art date
Application number
PCT/JP2017/015651
Other languages
English (en)
French (fr)
Inventor
正裕 山口
蔵田 信也
Original Assignee
日鉄住金環境株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄住金環境株式会社 filed Critical 日鉄住金環境株式会社
Priority to CN201780017193.3A priority Critical patent/CN108779453A/zh
Publication of WO2017183648A1 publication Critical patent/WO2017183648A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention mainly relates to an assay for detecting or sequencing a specific group of nucleic acid sequences.
  • the present invention provides one or more artificially designed nucleic acid sequences (hereinafter referred to as artificial nucleic acid sequences) that include a barcode sequence that is an artificial nucleic acid sequence for identifying an analyte in a target nucleic acid sequence. ) Is added.
  • Detecting a specific nucleic acid sequence is used in many fields such as genetic diagnosis in medicine, hygiene inspection in foods, and environmental monitoring.
  • a specific artificial nucleic acid sequence including a barcode sequence for identifying the sample is added to both ends of the nucleic acid fragment to be sequenced.
  • a nucleic acid amplification reaction step is necessary in addition to the step of amplifying the target nucleic acid sequence.
  • nucleic acid fragment for use in the next-generation sequencer can be obtained.
  • Primers having different barcode sequences for the number of samples for each type of nucleic acid sequence must be prepared, which is extremely uneconomical. Therefore, apart from the specific primer, a technique is required in which a primer composed only of an artificial nucleic acid sequence is used for amplification and commonly added to each nucleic acid sequence during the amplification process.
  • a primer having an artificial nucleic acid sequence on the 3 ′ end side, and all or 3 ′ end side of the artificial nucleic acid sequence An amplification reaction technique using a primer in which a part is added to the 5 ′ end side of a specific sequence has been reported (Patent Documents 1 and 2).
  • an artificial nucleic acid primer by setting the concentration of a primer having a specific sequence lower than the concentration of a primer composed of a nucleic acid to which an artificial nucleic acid sequence is added (hereinafter referred to as an artificial nucleic acid primer), all targets Artificial nucleic acid primers added in common to the sequences can predominately perform the amplification reaction, and variations in amplification efficiency are suppressed.
  • a primer dimer is produced because the artificial nucleic acid primer used at a high concentration has a long chain of about 60 to 70 bases. The possibility of being increased.
  • the number of specific primers used increases, so that primer dimers are produced at a high frequency. This causes a problem because the sequence information other than the target sequence increases during the next-generation sequencer analysis.
  • the present inventors have repeatedly studied a nucleic acid amplification method for adding an artificial nucleic acid sequence while suppressing amplification of a non-specific sequence.
  • primers having two pairs of artificial nucleic acid sequences of long and short chains in addition to specific primers (“primer pair Y” and “primer in FIG. 1A)
  • Z amplification of non-specific sequences derived from primers can be suppressed, and nucleic acids to which the desired artificial nucleic acid sequences have been added can be efficiently amplified.
  • the target product could be amplified more efficiently by decreasing the concentration of the artificial nucleic acid primer (primer pair Y) including the barcode sequence and increasing the concentration of the short primer (primer pair Z).
  • the present invention has been completed based on such findings.
  • Such technology can be applied to analysis for various purposes. For example, in order to specify the site of gene mutation, genes that can cause cancer can be comprehensively analyzed. In addition, this technology can be suitably used when using next-generation sequencers in various SNP analyses, gene mutation analyses, and gene expression analyses. As long as it is a technique for analyzing a plurality of target genes by adding and identifying specimens, the scope of application is not limited.
  • the present invention has a forward primer (a) having a sequence complementary to the target nucleic acid on the 3 ′ end side and having the entire artificial nucleic acid sequence A or a part of the 3 ′ end side on the upstream side, and 3 ′ At least one or more primer pairs consisting of a reverse primer (b) having a sequence complementary to the target nucleic acid on the terminal side and the entire sequence of the artificial nucleic acid sequence B or a part of the 3 'terminal side on the upstream side
  • a primer pair group X containing, a forward primer (c) having an artificial nucleic acid sequence A on the 3 ′ end side, an artificial nucleic acid sequence C on the 5 ′ end side, and an artificial nucleic acid sequence B on the 3 ′ end side, 5 'Primer pair Y consisting of reverse primer (d) having artificial nucleic acid sequence D on the terminal side, forward primer (e) having all or part of artificial nucleic acid sequence C, and all or one of artificial nucleic acid sequence D Reverse
  • the present invention provides a method for amplifying one or more nucleic acid sequences in a sample and adding an artificial nucleic acid sequence containing a barcode sequence to both ends thereof.
  • the amplification reaction solution has a forward primer (a) having a sequence complementary to the target nucleic acid on the 3 ′ end side and having the entire artificial nucleic acid sequence A or a part of the sequence on the 3 ′ end on the upstream side, and 3 'At least one pair of primer pairs consisting of a reverse primer (b) having a sequence complementary to the target nucleic acid on the terminal side and having all of the artificial nucleic acid sequence B on the upstream side or a partial sequence on the 3' terminal side
  • the primer pair group X including the above, the artificial nucleic acid sequence A on the 3 ′ end side, the forward primer (c) having the artificial nucleic acid sequence C on the 5 ′ end side, and the artificial nucleic acid sequence B on the 3 ′ end side, Primer pair Y consisting of reverse
  • the present invention also provides a method for amplifying a nucleic acid sequence and adding an artificial nucleic acid sequence to both ends thereof, suppressing nonspecific amplification derived from a specific primer and the artificial nucleic acid sequence, Provide a method to obtain efficiently.
  • the present invention is such that an amplification product to which a specific primer and an artificial nucleic acid sequence are not added is degraded in the latter stage of the amplification reaction.
  • the present invention provides a method for efficiently obtaining a nucleic acid sequence to which an artificial nucleic acid sequence is added.
  • the present invention it is possible to efficiently amplify a nucleic acid sequence to which an artificial nucleic acid sequence is added for use in a next-generation sequencer.
  • the number of reads acquired by the next-generation sequencer increases, and improvement in analysis accuracy is desired.
  • the amount of the long-chain primer containing the barcode sequence can be reduced, and the main amplification is performed with the short-chain primer common to all, so that the cost can be reduced.
  • FIG. 1 shows respective flows of the present invention and the prior art in an addition reaction of an artificial nucleic acid sequence for use in next-generation sequencer analysis.
  • FIG. 1A in the step of adding the artificial nucleic acid sequences C and D, since the primer pair Y is at a low concentration, nonspecific amplification hardly occurs, and the primer pair Z having a short base length is used. It is shown that the target product can be efficiently obtained by performing the amplification.
  • FIG. 1 shows respective flows of the present invention and the prior art in an addition reaction of an artificial nucleic acid sequence for use in next-generation sequencer analysis. In the prior art (FIG.
  • FIG. 2 shows the number of reads obtained by subjecting the target gene group amplified according to the present invention to next-generation sequencer analysis as described in detail in Example 1. All target genes have been detected, and a sufficient number of reads are obtained for each analysis.
  • FIG. 3 shows the relationship between the ratio of the number of reads of each target gene and the primer concentration ratio when the concentration of each primer pair in the primer pair group X is changed as described in detail in Example 2. Regardless of the type of target gene, there is a one-log correlation between the number of reads and the primer concentration.
  • FIG. 4 is an electrophoretogram showing the difference in amplification product between the case where primer pair Y, Z is used together and the case where only primer pair Y is used, as described in detail in Example 3.
  • FIG. 5 shows electrophoretic differences in amplification products when DNA polymerases with different activities or hot start methods are used, as described in detail in Example 4.
  • a plurality of target nucleic acid groups are amplified simultaneously using a primer set composed of a primer pair group X and primer pairs Y and Z.
  • the primer pair group X has a sequence complementary to the target nucleic acid on the 3 ′ end side and a forward primer (a) having the entire artificial nucleic acid sequence A on the upstream side or a partial sequence on the 3 ′ end side, At least one primer pair consisting of a reverse primer (b) having a sequence complementary to the target nucleic acid at the 3 ′ end and having the entire artificial nucleic acid sequence B or a partial sequence at the 3 ′ end on the upstream side Includes more than pairs.
  • Primer pair Y has an artificial nucleic acid sequence A on the 3 ′ end side, a forward primer (c) having an artificial nucleic acid sequence C on the 5 ′ end side, and an artificial nucleic acid sequence B on the 3 ′ end side, and has a 5 ′ end It consists of a reverse primer (d) having an artificial nucleic acid sequence D on its side.
  • the primer pair Z consists of a forward primer (e) having all or part of the artificial nucleic acid sequence C, and a reverse primer (f) having all or part of the artificial nucleic acid sequence D.
  • the forward primer (a) has a sequence complementary to the target nucleic acid on the 3 ′ end side and the entire artificial nucleic acid sequence A or a partial sequence on the 3 ′ end side on the upstream side.
  • the sequence complementary to the target nucleic acid may be 10 to 40 bases long, preferably 15 to 30 bases long, and more preferably 15 to 25 bases long.
  • the whole or part of the artificial nucleic acid sequence A may have a length of 10 to 30 bases, preferably 10 to 25 bases, more preferably 15 to 25 bases. .
  • the partial sequence on the 3 ′ end side of the artificial nucleic acid sequence A may be a sequence obtained by removing an arbitrary number of nucleotides from the 5 ′ end side in the artificial nucleic acid sequence A. Further, another sequence may be added upstream of the entire artificial nucleic acid sequence A or a partial sequence on the 3 ′ side.
  • the reverse primer (b) has a sequence complementary to the target nucleic acid on the 3 ′ end side and the entire artificial nucleic acid sequence B or a partial sequence on the 3 ′ end side on the upstream side.
  • the sequence complementary to the target nucleic acid may be 10 to 40 bases long, preferably 15 to 30 bases long, and more preferably 15 to 25 bases long.
  • the whole or part of the artificial nucleic acid sequence B may have a length of 10 to 30 bases, preferably 10 to 25 bases, more preferably 15 to 25 bases.
  • the partial sequence on the 3 ′ end side of the artificial nucleic acid sequence B may be a sequence obtained by removing an arbitrary number of nucleotides from the 5 ′ end side in the artificial nucleic acid sequence B. Further, another sequence may be added upstream of the entire artificial nucleic acid sequence B or a partial sequence on the 3 ′ side.
  • Primer pair group X consists of one or more pairs of primers.
  • the forward primer (c) has an artificial nucleic acid sequence A on the 3 ′ end side and an artificial nucleic acid sequence C on the 5 ′ end side.
  • the artificial nucleic acid sequence A may have a length of 15 to 50 bases, preferably 15 to 40 bases, and more preferably 20 to 30 bases.
  • the artificial nucleic acid sequence C may be 15 to 40 bases in length, preferably 20 to 40 bases in length, and more preferably 20 to 30 bases in length.
  • an artificial nucleic acid sequence for identifying the specimen may be provided.
  • the barcode sequence may have a length of 3 to 20 bases, preferably 5 to 15 bases, and more preferably 5 to 10 bases.
  • the reverse primer (d) has an artificial nucleic acid sequence B on the 3 ′ end side and an artificial nucleic acid sequence D on the 5 ′ end side.
  • the artificial nucleic acid sequence B may have a length of 15 to 50 bases, preferably 15 to 40 bases, and more preferably 20 to 30 bases.
  • the artificial nucleic acid sequence D may have a length of 15 to 40 bases, preferably 20 to 40 bases, and more preferably 20 to 30 bases. Between the 3 ′ end of the artificial nucleic acid sequence D and the 5 ′ end of the artificial nucleic acid sequence B, an artificial nucleic acid sequence (barcode sequence) for identifying the specimen may be provided.
  • the barcode sequence may have a length of 3 to 20 bases, preferably 5 to 15 bases, and more preferably 5 to 10 bases.
  • the forward primer (e) has all or part of the artificial nucleic acid sequence C
  • the reverse primer (f) has all or part of the artificial nucleic acid sequence D.
  • the base length of primer pair Z is desirably designed in the range of 10 to 40 bases in order to suppress non-specific amplification, preferably 10 to 30 bases, more preferably 10 to 20 bases.
  • sequences used for next-generation sequencer analysis can be suitably used.
  • sequences described as Primer in Illumina Adapter Sequence Document http://support.illumina.com/downloads/illumina-customer-sequence-letter.html
  • sequences described as Index Adapter are suitable for use as barcode sequences.
  • the amplification can be completed in a series of reactions with the primer pair group X and the primer pair Y, Z all mixed first and without any intermediate purification / dilution.
  • the present invention specifically suppresses amplification of non-specific sequences and excessive amplification with specific primers in the first step, that is, excessive production of products to which artificial nucleic acid sequences C and D are not added.
  • a technique / reagent that gradually increases the amplification reaction efficiency such as touchdown PCR or using chemically modified hot start DNA polymerase, is preferable.
  • Chemically modified hot-start DNA polymerases are DNA polymerases that have been introduced with thermolabile blocking groups that inactivate the enzyme at room temperature, and these blocking groups reached high temperatures prior to amplification. In time, the enzyme is activated. Such modification can be achieved, for example, by linking citraconic anhydride, cis-aconitic anhydride, or the like to a lysine residue of a protein (Japanese Patent No. 3026554). Compared to another hot start modification method, which uses a monoclonal antibody (US Pat. No. 5,338,671), the activation time is longer, and the activity increases stepwise during the amplification cycle. , It has the characteristic of high specificity at the initial stage of amplification.
  • a DNA polymerase having 5 ' ⁇ 3' exonuclease activity it is preferable to use a DNA polymerase having 5 ' ⁇ 3' exonuclease activity.
  • amplification is performed using universal primers (primer pair Z)
  • artificial nucleic acid sequences C and D amplified by specific primers (primer pair group X) hybridized on the 3 'side or specific primers are added. This is because by extending while decomposing the amplified product, the production of dimers derived from specific primers is suppressed, and the ratio of the amplified product to which the artificial nucleic acid sequence is finally added increases.
  • the commercially available enzymes are classified in Table 1 with respect to the modification method in hot start and the presence or absence of 5 ' ⁇ 3' exonuclease activity. That is, as the enzyme shown in Table 1, Amplitaq Gold DNA Polymerase (Thermo Fisher Scientific), FastStart Taq DNA Polymerase (Roche Diagnostics), MethylTaq DNA Polymerase (Nippon Gene) etc. are particularly suitable. Can be used.
  • the amplification cycle in this method consists of setting two temperature conditions: the first half cycle for amplification with specific primers (primer pair group X) and the second half cycle for universal amplification with primer pairs Y and Z. , Enabling more efficient amplification.
  • the first half cycle is desirably 2 to 20 cycles, preferably 5 to 15 cycles, and more preferably 5 to 10 cycles.
  • the latter half cycle is desirably 20 to 70 cycles, preferably 30 to 60 cycles, more preferably 35 to 50 cycles.
  • the first heat denaturation step to be performed before entering the amplification cycle of this method is preferably performed at 94 to 98 ° C. for 1 to 15 minutes, particularly when a chemically modified hot start DNA polymerase is used. More preferably, it is 1 to 10 minutes, and further preferably 2 to 8 minutes.
  • the heat denaturation step in the first half cycle is desirably performed at 94 to 98 ° C. for 5 to 90 seconds, more preferably 5 to 60 seconds, and further preferably 10 to 30 seconds.
  • the annealing step in the first half cycle is preferably performed for 30 to 120 seconds because the artificial nucleic acid sequence A or B is commonly added to each specific primer. More preferably, it is 60 to 120 seconds, and further preferably 60 to 90 seconds.
  • the temperature is desirably ⁇ 10 ° C. to + 10 ° C., preferably ⁇ 5 ° C. to + 5 ° C., relative to the Tm of the specific primer portion (usually 55 to 65 ° C., preferably around 60 ° C.).
  • the extension step in the first half cycle is desirably performed for 30 to 120 seconds, preferably 30 to 90 seconds, more preferably 45 to 90 seconds.
  • the temperature in the extension step is usually 60 to 80 ° C, preferably 60 to 75 ° C, more preferably 65 to 75 ° C.
  • the heat denaturation step in the latter half cycle is desirably performed at 94 to 98 ° C. for 5 to 90 seconds, more preferably 5 to 60 seconds, and further preferably 10 to 30 seconds.
  • the annealing step in the latter half cycle is preferably performed as short as 5 to 30 seconds, more preferably 5 to 15 seconds, in order to suppress hybridization of the primer pair group X.
  • the temperature is desirably ⁇ 10 ° C. to + 10 ° C., preferably ⁇ 5 ° C. to + 5 ° C., relative to the Tm of the primer pair Z (usually 50 to 65 ° C.).
  • the extension step in the latter half cycle is desirably performed for 30 to 120 seconds, preferably 60 to 120 seconds, and more preferably 60 to 90 seconds.
  • the temperature in the extension step is usually 60 to 80 ° C, preferably 60 to 75 ° C, more preferably 65 to 75 ° C.
  • the Tm value of each primer pair in the primer pair group X has as little variation as possible.
  • the average Tm (normally 55 to 65 ° C.) value of all primers is desirably within a range of ⁇ 10 ° C., preferably ⁇ 5 ° C., more preferably ⁇ 3 ° C.
  • the concentration of each primer pair in the primer pair group X is preferably in the range of 1 to 30 nM, preferably 1 to 20 nM, in order to suppress excessive production of a product to which the artificial nucleic acid sequences C and D are not added. 1 to 10 nM is preferable.
  • primer pair Y it is desirable to keep the concentration of primer pair Y as low as possible at the concentration at which artificial nucleic acid sequences C and D are added. Specifically, it is desirably in the range of 5 to 50 nM, preferably 5 to 30 nM, more preferably 5 to 20 nM.
  • the concentration of primer pair Z is desirably in the range of 10 to 200 nM, preferably 20 to 100 nM, and more preferably 20 to 50 nM.
  • primer pair Z may be present at least three times the concentration of primer pair Y.
  • the primer pair Y is preferably present at a concentration at which a primer dimer derived therefrom is not produced, and the primer pair Z is present at a concentration sufficient to obtain a target product.
  • Amplification can be performed by PCR, LAMP, NASBA, ICAN, LCR, Rolling-Cycle SMAP, PALSAR, and the like.
  • the nucleic acid used for the primer may be a natural nucleic acid such as DNA or RNA, 2 ', 4'-BNA coc , 3'-Amino-2', 4'-BNA, 2 ', 4'-BNA It may be an artificial nucleic acid such as NC (all BNA is an abbreviation for Bridged Nucleic Acid), PNA (Peptide Nucleic Acid), LNA (Locked Nucleic Acid), TNA (Threose nucleic acid), GNA (Glycol nucleic acid) and the like.
  • NC all BNA is an abbreviation for Bridged Nucleic Acid
  • PNA Peptide Nucleic Acid
  • LNA Locked Nucleic Acid
  • TNA Threose nucleic acid
  • GNA Glycol nucleic acid
  • the composition of the PCR reaction solution is 10 ⁇ l of template DNA, a predetermined amount of Amplitaq Gold DNA Polymerase, LD (Thermo Fisher Scientific), 4 types of dNTPs (all 0.2 mM), magnesium chloride aqueous solution (3 mM), 10 ⁇ PCR gold It consists of buffer, primer mix, barcode primer (10nM) and universal primer (40nM).
  • the reaction solution was prepared by making up to 40 ⁇ l with sterile water.
  • the reaction solution was subjected to the following PCR reaction using a PCR amplification apparatus (Life touch (manufactured by Nippon Genetics)).
  • Annealing process 61 °C, 10 seconds
  • Elongation process 72 ° C, 90 seconds
  • steps (2) to (4) were repeated 10 cycles, and steps (5) to (7) were further repeated 50 cycles.
  • FIG. 2 shows the result of counting according to the barcode sequence in Barcode primer and counting the number of reads of each target gene in the sample. All target genes have been detected, and a sufficient number of reads are obtained for each analysis.
  • DNA extracted from swabs collected from the mucous membrane of human oral cavity was used for comparative examination by changing the concentration composition of primer mix.
  • the composition of the PCR reaction solution is 10 ⁇ l of template DNA, a predetermined amount of Amplitaq Gold DNA Polymerase, LD (Thermo Fisher Scientific), 4 types of dNTP (all 0.2 mM), magnesium chloride aqueous solution (3 mM), 10 ⁇ PCR gold It consists of buffer, primer mix, barcode primer (10nM) and universal primer (40nM).
  • the reaction solution was prepared by making up to 40 ⁇ l with sterile water. Table 4 shows the base sequences of barcode primer and universal primer.
  • the reaction solution was subjected to the following PCR reaction using a PCR amplification apparatus (Life touch (manufactured by Nippon Genetics)).
  • Annealing process 61 °C, 10 seconds
  • Elongation process 72 ° C, 90 seconds
  • steps (2) to (4) were repeated 10 cycles, and steps (5) to (7) were further repeated 50 cycles.
  • Table 5 shows the base sequence of primer ⁇ ⁇ mix, the concentration of each primer pair, the number of reads of each sample, and each target gene.
  • FIG. 3 shows the relationship between the read number ratio of each target gene and the primer concentration ratio.
  • the composition of the PCR reaction solution is 10 ⁇ l of template DNA, a predetermined amount of Amplitaq Gold DNA Polymerase, LD (Thermo Fisher Scientific), 4 types of dNTPs (all 0.2 mM), magnesium chloride aqueous solution (3 mM), 10 ⁇ PCR gold
  • the buffer and primer mix are common, and one contains barcode primer (10 nM), universal primer (40 nM), and the other contains barcode primer (50 nM).
  • the composition of Primer mix is the same as in Example 2. Table 6 shows the base sequences of barcode primer and universal primer.
  • the reaction solution was prepared by making up to 40 ⁇ l with sterile water.
  • the reaction solution was subjected to the following PCR reaction using a PCR amplification apparatus (Life touch (manufactured by Nippon Genetics)).
  • Annealing process 61 °C, 10 seconds
  • Elongation process 72 ° C, 90 seconds
  • steps (2) to (4) were repeated 10 cycles, and steps (5) to (7) were further repeated 50 cycles.
  • the amplification product was subjected to Agilent 2100 bioanalyzer, and the results of electrophoresis were compared. The results are shown in FIG.
  • a product of about 160 bp is often amplified, which is shorter than the product length of the target product (300 to 500 bp), and is considered to be a non-specific product derived from a primer dimer or the like.
  • the short fragment length is significantly reduced. From the above, it can be said that the use of a short universal primer can suppress the production of non-specific products derived from barcode primer which is relatively long in design.
  • the composition of the PCR reaction solution consists of 10 ⁇ l of template DNA, a predetermined amount of Amplitaq Gold DNA Polymerase, LD (Thermo Fisher Scientific), Takara Ex Taq HS (Takara Bio), Hot-Start Gene Taq (Nippon Gene). 1), 4 types of dNTPs (all 0.2mM), each polymerase contains a predetermined amount of magnesium chloride aqueous solution, PCR buffer, primer mix, barcode primer (10nM), universal primer (40nM) . Table 7 shows the primer mix base sequence and the concentration of each primer pair. The barcode primer and universal primer are the same as in Example 3. Each reaction solution was prepared by making up to 40 ⁇ l with sterile water.
  • the reaction solution was subjected to the following PCR reaction using a PCR amplification apparatus (Life touch (manufactured by Nippon Genetics)).
  • Annealing process 61 °C, 10 seconds
  • Elongation process 72 ° C, 90 seconds
  • steps (2) to (4) were repeated 10 cycles, and steps (5) to (7) were further repeated 50 cycles.
  • the amplification product was subjected to Agilent 2100 bioanalyzer, and the results of electrophoresis were compared. The results are shown in FIG.
  • the target product is distributed at about 450 to 550 bp.
  • a peak is seen in the range of base length considered to be the target product.
  • Takara Ex Taq HS there was also a peak in the relatively short base length range of 350 to 450 bp, because the product by the specific primer was excessively generated at the beginning of the amplification cycle. It is guessed.
  • peaks were also observed in other base length ranges, and it was considered that nonspecific amplification had progressed.
  • Hot-Start Gene Taq many short non-specific products are observed.
  • the present invention can be used for analysis performed using next-generation sequencers such as gene expression analysis, cancer-related gene mutation analysis, etc., in addition to multi-items of SNP analysis.
  • next-generation sequencers such as gene expression analysis, cancer-related gene mutation analysis, etc.
  • SEQ ID NOs: 99 and 100 show the base sequences of the primers of the universal primer shown in Table 4.
  • SEQ ID NOS: 101-190> SEQ ID NOs: 101 to 190 show the base sequences of the primers in the primer mix of Table 5.
  • SEQ ID NOS: 191 and 192> SEQ ID NOs: 191 and 192 show the base sequences of the primers of the barcode primer in Table 6.
  • SEQ ID NOS: 193 and 194> SEQ ID NOs: 193 and 194 show the base sequences of the primers of the universal primer shown in Table 6.
  • ⁇ SEQ ID NOS: 195 to 214> SEQ ID NOs: 195 to 214 show the base sequences of the primers in the primer mix of Table 7.

Abstract

次世代シーケンサーを用いて主に複数の遺伝子を標的とする場合において、測定に必要な人工核酸配列を効率よく均一に付加するための技術を提供する。 3'末端側に標的核酸に相補的な配列を持ち、その上流側に人工核酸配列Aの全部あるいは3'末端側の一部の配列を持つフォワードプライマー(a)と、3'末端側に標的核酸に相補的な配列を持ち、その上流側に人工核酸配列Bの全部あるいは3'末端側の一部の配列を持つリバースプライマー(b)からなるプライマー対を、少なくとも1対以上含むプライマー対群Xおよび、3'末端側に人工核酸配列Aを持ち、5'末端側に人工核酸配列Cを持つフォワードプライマー(c)と、3'末端側に人工核酸配列Bを持ち、5'末端側に人工核酸配列Dを持つリバースプライマー(d)からなるプライマー対Yおよび、人工核酸配列Cの全部あるいは一部の配列を持つフォワードプライマー(e)と、人工核酸配列Dの全部あるいは一部の配列を持つリバースプライマー(f)からなるプライマー対Zにより構成されるプライマーセットを用いて複数の標的核酸群を同時に増幅する方法。

Description

多項目増幅手法
 本発明は、主に特定の核酸配列群の検出または配列決定を行うアッセイに関する。特定の実施形態において、本発明は標的とする核酸配列に、検体を識別するための人工核酸配列であるバーコード配列を含む1つ以上の人工的に設計された核酸配列(以下、人工核酸配列)が付加される増幅方法を提供する。
 特定の核酸配列を検出することは、医療における遺伝子診断、食品における衛生検査、環境におけるモニタリングなど、多くの分野に渡って用いられている。
 加えて、近年次世代シーケンサーが台頭し、従来法のシーケンス法と比べて核酸配列決定が格段に容易になったことから、新たな解析手法として広がりを見せている。
 次世代シーケンサーにて、複数検体由来の増幅産物の混合物を供するためには、配列決定を行いたい核酸断片の両末端に、検体を識別するためのバーコード配列を含む特定の人工核酸配列が付加されていなくてはならず、そのための核酸増幅反応ステップが、標的とする核酸配列を増幅するステップに加えて必要である。
 標的とする核酸配列に特異的なプライマーの5’末端側に、あらかじめバーコード配列を含む特定の人工核酸配列が付加されているプライマーを用いても、次世代シーケンサーに供する核酸断片は得られるが、核酸配列の種類ごとに検体の数だけバーコード配列が異なるプライマーを用意しなければならず、極めて不経済である。そのため、特異的プライマーとは別に、人工核酸配列のみで構成されたプライマーを増幅に供し、増幅の過程でそれぞれの核酸配列に共通に付加する手法が求められる。
 また、標的とする核酸が複数種になる場合は、マルチプレックスPCRが用いられることが多いが、各標的核酸の増幅効率にばらつきが生じやすく、プライマー設計には高度なノウハウを要する。
 増幅効率のばらつきを抑制し、かつ人工核酸配列が付加された増幅産物を得るための手段として、人工核酸配列を3’末端側に有するプライマー及び、その人工核酸配列の全部あるいは3‘末端側の一部を特異的配列の5’末端側に付加したプライマーを用いた増幅反応手法が報告されている(特許文献1、2)。
 特許文献1,2によれば、特異的配列を有するプライマーの濃度を、人工核酸配列を付加した核酸で構成されているプライマー(以下、人工核酸プライマー)の濃度より低くすることで、全ての標的配列に共通に付加された人工核酸プライマーが増幅反応を支配的に行うことができ、増幅効率のばらつきが抑制される。
 しかし、特許文献1,2の手法を用いて次世代シーケンサーに供するための核酸配列を調製する場合、高い濃度で用いる人工核酸プライマーが約60~70塩基と長鎖になるため、プライマーダイマーが産生される可能性が高まる。特に標的とする核酸配列が複数になる場合、用いられる特異的プライマーの種類が増えるため、プライマーダイマーが高頻度で産生される。これにより、次世代シーケンサー解析の際に標的配列以外の配列情報が多くなってしまい問題となる。
 加えて、標的とする核酸配列の種類が増えると、用いられる特異的プライマーの総量が増え、結果として人工核酸プライマーが増幅反応を支配的に行うことができず、人工核酸配列が付加されていない核酸配列の割合が高くなってしまうという問題点がある。
WO2006/023919 特表2012-522517
 従って、次世代シーケンサーを用いて主に複数の遺伝子を標的とする場合において、測定に必要な人工核酸配列を効率よく均一に付加するための技術が求められている。
 本発明者らは、前記の課題を解決するにあたり、非特異的配列の増幅を抑制しつつ、人工核酸配列を付加する核酸増幅手法について検討を重ねた。その結果、標的遺伝子配列に人工核酸配列を付加する反応において、特異的プライマーの他に長鎖、短鎖の2対の人工核酸配列を有するプライマー(図1A中の「プライマー対Y」および「プライマー対Z」)を用いることで、プライマーに由来する非特異的配列の増幅を抑制でき、かつ目的とする人工核酸配列が付加された核酸を効率よく増幅できることを発見した。さらに、バーコード配列等を含む人工核酸プライマー(プライマー対Y)濃度を低く、短鎖のプライマー(プライマー対Z)濃度を高くすることで、目的産物をより効率よく増幅させることができた。本発明はかかる発見に基づいて完成されたものである。
 このような技術は、様々な目的の解析に適用されうる。例えば、遺伝子変異の箇所を特定するために、がんの原因となりうる遺伝子を網羅的に解析することができる。その他にも、本技術は、種々のSNP解析、遺伝子変異解析、遺伝子発現解析において、次世代シーケンサーを用いる際に好適に利用可能であるが、検査対象が遺伝子増幅産物であり、人工核酸配列を付加し検体を識別することで複数の標的遺伝子を解析する手法であれば、その適用範囲は制限されるものではない。
 本発明は、3’末端側に標的核酸に相補的な配列を持ち、その上流側に人工核酸配列Aの全部あるいは3‘末端側の一部の配列を持つフォワードプライマー(a)と、3’末端側に標的核酸に相補的な配列を持ち、その上流側に人工核酸配列Bの全部あるいは3‘末端側の一部の配列を持つリバースプライマー(b)からなるプライマー対を、少なくとも1対以上含むプライマー対群Xおよび、3‘末端側に人工核酸配列Aを持ち、5’末端側に人工核酸配列Cを持つフォワードプライマー(c)と、3‘末端側に人工核酸配列Bを持ち、5’末端側に人工核酸配列Dを持つリバースプライマー(d)からなるプライマー対Yおよび、人工核酸配列Cの全部あるいは一部の配列を持つフォワードプライマー(e)と、人工核酸配列Dの全部あるいは一部の配列を持つリバースプライマー(f)からなるプライマー対Zにより構成されるプライマーセットを用いて複数の標的核酸群を同時に増幅する方法を提供する。
 特定の実施形態において、本発明は、試料中の1種類もしくは複数種類の核酸配列を増幅し、かつバーコード配列を含む人工核酸配列をその両末端に付加する方法を提供する。増幅反応溶液は、3’末端側に標的核酸に相補的な配列を持ち、その上流側に人工核酸配列Aの全部あるいは3‘末端側の一部の配列を持つフォワードプライマー(a)と、3’末端側に標的核酸に相補的な配列を持ち、その上流側に人工核酸配列Bの全部あるいは3‘末端側の一部の配列を持つリバースプライマー(b)からなるプライマー対を、少なくとも1対以上含むプライマー対群Xおよび、3‘末端側に人工核酸配列Aを持ち、5’末端側に人工核酸配列Cを持つフォワードプライマー(c)と、3‘末端側に人工核酸配列Bを持ち、5’末端側に人工核酸配列Dを持つリバースプライマー(d)からなるプライマー対Yおよび、人工核酸配列Cの全部あるいは一部の配列を持つフォワードプライマー(e)と、人工核酸配列Dの全部あるいは一部の配列を持つリバースプライマー(f)からなるプライマー対Zにより構成されるプライマーセットを含む。
 また、本発明は、核酸配列を増幅し、かつ人工核酸配列をその両末端に付加する方法において、特異的プライマー及び人工核酸配列に由来する非特異的増幅を抑制し、標的とする核酸配列を効率よく得るための方法を提供する。
 また、本発明は、核酸配列を増幅し、かつ人工核酸配列をその両末端に付加する方法において、特異的プライマー及び人工核酸配列が付加されていない増幅産物が増幅反応の後期に分解されることで、人工核酸配列が付加された核酸配列を効率よく得るための方法を提供する。
 本発明によれば、次世代シーケンサーに供するために人工核酸配列が付加された核酸配列を効率よく増幅することが可能になる。効率よく目的産物を得ることで、次世代シーケンサーで取得されるリード数も多くなり、解析精度の向上が望まれる。また、バーコード配列を含む長鎖プライマーの使用量が少なくて済み、全てに共通の短鎖プライマーで主な増幅が行われることから、低コスト化も可能な方法である。
 本明細書は、本願の優先権の基礎である日本国特許出願、特願2016‐85134の明細書および/または図面に記載される内容を包含する。
図1は、次世代シーケンサー解析に供するための人工核酸配列の付加反応における、本発明と先行技術のそれぞれのフローを示す。本発明(図1A)では、人工核酸配列C,Dを付加する段階において、プライマー対Yが低濃度であるため非特異的増幅が発生しにくく、短塩基長であるプライマー対Zを用いて主に増幅を行うことで、目的産物を効率よく得られることを示す。 図1は、次世代シーケンサー解析に供するための人工核酸配列の付加反応における、本発明と先行技術のそれぞれのフローを示す。先行技術(図1B)においてはプライマー対Yのみで主な増幅を行うことにより非特異的増幅が発生しやすく、目的産物の収量が低下することを示す。 図2は、実施例1において詳細に記載されるように、本発明により増幅された標的遺伝子群を次世代シーケンサー解析に供し、得られたリード数を示す。すべての標的遺伝子が検出されており、それぞれ解析するのに十分な量のリード数が得られている。 図3は、実施例2において詳細に記載されるように、プライマー対群Xにおける各プライマー対の濃度を変えた場合における、各標的遺伝子のリード数比とプライマー濃度比の関係を示す。標的遺伝子の種類によらず、リード数とプライマー濃度は片対数の相関関係が見られる。 図4は、実施例3において詳細に記載されるように、プライマー対Y,Zを併用した場合とプライマー対Yのみを用いた場合における、増幅産物の違いを電気泳動図にて示す。 図5は、実施例4において詳細に記載されるように、活性あるいはホットスタート法の異なるDNAポリメラーゼを用いた場合における、増幅産物の違いを電気泳動図にて示す。
 本発明においては、プライマー対群Xおよびプライマー対Y、Zにより構成されるプライマーセットを用いて、複数の標的核酸群を同時に増幅する。
 プライマー対群Xは、3’末端側に標的核酸に相補的な配列を持ち、その上流側に人工核酸配列Aの全部あるいは3‘末端側の一部の配列を持つフォワードプライマー(a)と、3’末端側に標的核酸に相補的な配列を持ち、その上流側に人工核酸配列Bの全部あるいは3‘末端側の一部の配列を持つリバースプライマー(b)からなるプライマー対を、少なくとも1対以上含む。
 プライマー対Yは、3‘末端側に人工核酸配列Aを持ち、5’末端側に人工核酸配列Cを持つフォワードプライマー(c)と、3‘末端側に人工核酸配列Bを持ち、5’末端側に人工核酸配列Dを持つリバースプライマー(d)からなる。
 プライマー対Zは、人工核酸配列Cの全部あるいは一部の配列を持つフォワードプライマー(e)と、人工核酸配列Dの全部あるいは一部の配列を持つリバースプライマー(f)からなる。
 プライマー対群Xにおいて、フォワードプライマー(a)は、3’末端側に標的核酸に相補的な配列を持ち、その上流側に人工核酸配列Aの全部あるいは3‘末端側の一部の配列を持つ。標的核酸に相補的な配列は、10~40塩基長であるとよく、好ましくは、15~30塩基長であり、より好ましくは、15~25塩基長である。人工核酸配列Aの全部あるいは3‘末端側の一部の配列は、10~30塩基長であるとよく、好ましくは、10~25塩基長であり、より好ましくは、15~25塩基長である。人工核酸配列Aの3‘末端側の一部の配列は、人工核酸配列Aにおける5’末端側から任意の数のヌクレオチドを除いた配列であるとよい。また、人工核酸配列Aの全部あるいは3’側の一部の配列の上流側には、別の配列が付加されていてもよい。
 プライマー対群Xにおいて、リバースプライマー(b)は、3’末端側に標的核酸に相補的な配列を持ち、その上流側に人工核酸配列Bの全部あるいは3‘末端側の一部の配列を持つ。標的核酸に相補的な配列は、10~40塩基長であるとよく、好ましくは、15~30塩基長であり、より好ましくは、15~25塩基長である。人工核酸配列Bの全部あるいは3‘末端側の一部の配列は、10~30塩基長であるとよく、好ましくは、10~25塩基長であり、より好ましくは、15~25塩基長である。人工核酸配列Bの3‘末端側の一部の配列は、人工核酸配列Bにおける5’末端側から任意の数のヌクレオチドを除いた配列であるとよい。また、人工核酸配列Bの全部あるいは3’側の一部の配列の上流側には、別の配列が付加されていてもよい。
 プライマー対群Xは、1対以上のプライマーからなる。通常、種類が増えるほど均一に増幅することが難しくなるとされるが、5対程度であれば容易に増幅可能であり、20対以上であっても、配列の組み合わせの最適化を行うことで増幅が可能である。
 プライマー対Yにおいて、フォワードプライマー(c)は、3‘末端側に人工核酸配列Aを持ち、5’末端側に人工核酸配列Cを持つ。人工核酸配列Aは、15~50塩基長であるとよく、好ましくは、15~40塩基長であり、より好ましくは、20~30塩基長である。人工核酸配列Cは、15~40塩基長であるとよく、好ましくは、20~40塩基長であり、より好ましくは、20~30塩基長である。
 人工核酸配列Cの3’末端と人工核酸配列Aの5’末端の間に、検体を識別するための人工核酸配列(バーコード配列)を有してもよい。バーコード配列は、3~20塩基長であるとよく、好ましくは、5~15塩基長であり、より好ましくは、5~10塩基長である。
 プライマー対Yにおいて、リバースプライマー(d)は、3‘末端側に人工核酸配列Bを持ち、5’末端側に人工核酸配列Dを持つ。人工核酸配列Bは、15~50塩基長であるとよく、好ましくは、15~40塩基長であり、より好ましくは、20~30塩基長である。人工核酸配列Dは、15~40塩基長であるとよく、好ましくは、20~40塩基長であり、より好ましくは、20~30塩基長である。
 人工核酸配列Dの3’末端と人工核酸配列Bの5’末端の間に、検体を識別するための人工核酸配列(バーコード配列)を有してもよい。バーコード配列は、3~20塩基長であるとよく、好ましくは、5~15塩基長であり、より好ましくは、5~10塩基長である。
 プライマー対Zにおいて、フォワードプライマー(e)は、人工核酸配列Cの全部あるいは一部の配列を持ち、リバースプライマー(f)は、人工核酸配列Dの全部あるいは一部の配列を持つ。プライマー対Zの塩基長は、非特異的増幅を抑制するため、10~40塩基の範囲で設計されることが望ましく、好ましくは10~30塩基、さらに好ましくは10~20塩基である。
 人工核酸配列A, B, C, D及びバーコード配列としては、次世代シーケンサー解析に用いられる配列を好適に用いることができる。例えばIllumina社が開示しているIllumina Adapter Sequence Document (http://support.illumina.com/downloads/illumina-customer-sequence-letter.html) においてPrimerと記載されている配列の全部あるいは一部は人工核酸配列A,B,C,Dとして、Index Adapterと記載されている配列はバーコード配列として用いるのに好適である。
 本発明において、増幅は、プライマー対群Xおよびプライマー対Y,Zについて、それらを最初にすべて混合し、途中の精製・希釈を伴わず、一連の反応で完了することができる。
 本発明は、非特異的配列の増幅及び、1段階目の特異的プライマーでの過剰な増幅、すなわち人工核酸配列C,Dが付加されていない産物の過剰な生成を抑制するため、特に増幅サイクル初期における活性を抑えることができるとされる様々な手法・試薬と組み合わせることで、より効率的な増幅を可能とする。具体的にはタッチダウンPCRや、化学修飾されたホットスタートDNAポリメラーゼを用いるなど、増幅反応効率が徐々に上がっていく手法・試薬が好ましい。
 化学修飾されたホットスタートDNAポリメラーゼとは、室温で酵素を不活性化する熱不安定性のブロッキング基が導入されたDNAポリメラーゼのことであり、これらのブロッキング基は増幅の前段階において高温に達した際に除去され、酵素は活性化状態になる。このような修飾は、例えばシトラコン酸無水物、シス-アコニット酸無水物等をタンパク質のリジン残基に結合させることで達成することができる(特許第3026554号)。もう1つのホットスタート修飾法である、モノクローナル抗体を用いた手法(米国特許第5338671号)と比較して、活性化までの時間が長く、増幅サイクルの過程で段階的に活性が上がっていくため、増幅初期の特異性が高いという特徴を有する。
 本発明には、5’→3’エキソヌクレアーゼ活性を有するDNAポリメラーゼを用いることが好ましい。ユニバーサルプライマー(プライマー対Z)による増幅が行われる際、3’側にハイブリダイズしている特異的プライマー(プライマー対群X)あるいは特異的プライマーにより増幅された、人工核酸配列C, Dが付加されていない増幅産物を分解しながら伸長していくことで、特異的プライマーに由来するダイマーの生成が抑えられるとともに、最終的に人工核酸配列が付加された増幅産物の比率が高まるためである。
 ホットスタートにおける修飾法及び5’→3’エキソヌクレアーゼ活性の有無に関して、主に市販されている酵素を表1に分類した。すなわち、表1に示してある酵素としては、Amplitaq Gold DNA Polymerase(サーモフィッシャーサイエンティフィク社)、FastStart Taq DNA Polymerase(ロシュ・ダイアグノスティックス社)、MethylTaq DNA Polymerase(ニッポンジーン社)等を特に好適に用いることができる。
 本手法における増幅サイクルは、特異的プライマー(プライマー対群X)による増幅を行うための前半サイクルと、プライマー対Y、Zによるユニバーサル増幅を行うための後半サイクルの2つの温度条件を設定することで、より効率的な増幅を可能とする。前半サイクルは2~20サイクル行うことが望ましく、好ましくは5~15サイクル、より好ましくは5~10サイクルである。後半サイクルは20~70サイクル行うことが望ましく、好ましくは30~60サイクル、より好ましくは35~50サイクルである。
 本手法の増幅サイクルに入る前に行う最初の熱変性工程としては、特に化学修飾されたホットスタートDNAポリメラーゼを用いる場合、94~98℃において1~15分行う事が望ましい。より好ましくは1~10分、さらに好ましくは2~8分である。
 本手法の増幅サイクルについて、前半サイクルにおける熱変性工程としては、94~98℃で5~90秒行う事が望ましく、より好ましくは5~60秒、さらに好ましくは10~30秒である。
 本手法の増幅サイクルについて、前半サイクルにおけるアニーリング工程としては、人工核酸配列AあるいはBが各特異的プライマーに共通に付加されているため、30~120秒行うことが望ましい。より好ましくは60~120秒、さらに好ましくは60~90秒である。温度については、特異的プライマー部分のTm(通常、55~65℃、好ましくは、60℃付近)に対し-10℃~+10℃が望ましく、好ましくは-5℃~+5℃である。
 本手法の増幅サイクルについて、前半サイクルにおける伸長工程としては、30~120秒行うことが望ましく、好ましくは30~90秒、より好ましくは45~90秒である。伸長工程の温度は、通常は60~80℃であり、好ましくは60~75℃、より好ましくは65~75℃である。
 本手法の増幅サイクルについて、後半サイクルにおける熱変性工程としては、94~98℃で5~90秒行う事が望ましく、より好ましくは5~60秒、さらに好ましくは10~30秒である。
 本手法の増幅サイクルについて、後半サイクルにおけるアニーリング工程としては、プライマー対群Xのハイブリダイズを抑えるため、5~30秒と比較的短く行うことが望ましく、より好ましくは5~15秒である。温度については、プライマー対ZのTm(通常、50~65℃)に対し、-10℃~+10℃が望ましく、好ましくは-5℃~+5℃である。
 本手法の増幅サイクルについて、後半サイクルにおける伸長工程としては、30~120秒行うことが望ましく、好ましくは60~120秒、より好ましくは60~90秒である。伸長工程の温度は、通常は60~80℃であり、好ましくは60~75℃、より好ましくは65~75℃である。
 プライマー対群Xにおける各プライマー対のTm値は、なるべくばらつきが少ないことが望ましい。具体的には全プライマーの平均Tm(通常、55~65℃)値に対して、±10℃の範囲にあることが望ましく、好ましくは±5℃、より好ましくは±3℃である。
 プライマー対群Xにおける各プライマー対の濃度は、人工核酸配列C,Dが付加されていない産物の過剰な生成を抑えるため、1~30nMの範囲にあることが望ましく、好ましくは1~20nM、さらに好ましくは1~10nMである。試料溶液中において、プライマー対群X中の各プライマー対の濃度を調整することで、各標的遺伝子の増幅効率を均一に近づけることができる。
 プライマー対Yの濃度は、人工核酸配列C, Dの付加が行われる濃度において、なるべく低く抑えることが望ましい。具体的には5~50nMの範囲にあることが望ましく、好ましくは5~30nM、さらに好ましくは5~20nMである。
 プライマー対Zの濃度は、10~200nMの範囲にあることが望ましく、好ましくは20~100nM、さらに好ましくは20~50nMである。試料溶液中において、プライマー対Zは、プライマー対Yの濃度の少なくとも3倍で存在するとよい。また、試料溶液中において、前記プライマー対Yが、それに由来するプライマーダイマーが産生されない濃度で存在し、かつ、前記プライマー対Zが、目的産物を得るのに十分な濃度で存在するとよい。
 増幅は、PCR法、LAMP法、NASBA法、ICAN法、LCR法、Rolling Cycle法SMAP法、PALSAR法などで行うことができる。
 プライマーに使用する核酸は、DNA、RNA等の天然核酸であってもよいし、2’,4’-BNAcoc、3’-Amino-2’,4’-BNA、2’,4’-BNANC(BNAは全てBridged Nucleic Acidの略称)、PNA(Peptide Nucleic Acid)、LNA(Locked Nucleic Acid)、TNA(Threose nucleic acid)、GNA(Glycol nucleic acid)等の人工核酸であってもよい。
 次に実施例を挙げて本発明をさらに具体的に説明するが、これらの実施例は本発明の単なる例示であって、本発明の限定を意図するものではない。
数十項目・数十検体の同時増幅
PCR反応の鋳型として、ヒト口腔内粘膜より採取したスワブから抽出したDNAを48検体用いた。DNA濃度は1~4ng/μlの範囲であった。
PCR反応溶液の組成は、鋳型DNA10μl、所定量のAmplitaq Gold DNA Polymerase, LD (サーモフィッシャーサイエンティフィク社)、4種のdNTP(いずれも0.2mM)、塩化マグネシウム水溶液(3mM)、10×PCR gold buffer、primer mix、barcode primer(10nM)、universal primer(40nM)からなる。反応溶液は、滅菌水で40μlにメスアップして調製した。またprimer mix(図1Aのプライマー対群X)の塩基配列および各プライマー対濃度を表2に、barcode primer(図1Aのプライマー対Y)およびuniversal primer(図1Aのプライマー対Z)の塩基配列を表3に示す。
上記反応溶液をPCR増幅装置(Life touch(日本ジェネティクス社製))を用いて以下のPCR反応に供した。
(1)熱変性工程:95℃、300秒間
(2)熱変性工程:95℃、10秒間
(3)アニーリング工程:61℃、90秒間
(4)伸長工程:72℃、60秒間
(5)熱変性工程:95℃、10秒間
(6)アニーリング工程:61℃、10秒間
(7)伸長工程:72℃、90秒間
(1)の熱変性工程の後、工程(2)~(4)を10サイクル繰り返し、さらに工程(5)~(7)を50サイクル繰り返した。
各増幅産物を2μlずつ等量混合し、AmpureXP(ベックマンコールター社製)を用いて精製を行った後、次世代シーケンサー測定(Miseq;イルミナ社製)に供した。
Barcode primer中にあるバーコード配列に従って分離し、検体中の各標的遺伝子のリード数をカウントした結果を図2に示す。すべての標的遺伝子が検出されており、それぞれ解析するのに十分な量のリード数が得られている。
マルチプレックス増幅におけるprimer mix中の各プライマー対の濃度検討
PCR反応の鋳型として、ヒト口腔内粘膜より採取したスワブから抽出したDNAを用い、primer mixの濃度組成を変えて比較検討を行った。
PCR反応溶液の組成は、鋳型DNA10μl、所定量のAmplitaq Gold DNA Polymerase, LD(サーモフィッシャーサイエンティフィク社)、4種のdNTP(いずれも0.2mM)、塩化マグネシウム水溶液(3mM)、10×PCR gold buffer、primer mix、barcode primer(10nM)、universal primer(40nM)からなる。反応溶液は、滅菌水で40μlにメスアップして調製した。またbarcode primerおよびuniversal primerの塩基配列を表4に示す。
上記反応溶液をPCR増幅装置(Life touch(日本ジェネティクス社製))を用いて以下のPCR反応に供した。
(1)熱変性工程:95℃、300秒間
(2)熱変性工程:95℃、10秒間
(3)アニーリング工程:61℃、90秒間
(4)伸長工程:72℃、60秒間
(5)熱変性工程:95℃、10秒間
(6)アニーリング工程:61℃、10秒間
(7)伸長工程:72℃、90秒間
(1)の熱変性工程の後、工程(2)~(4)を10サイクル繰り返し、さらに工程(5)~(7)を50サイクル繰り返した。
各増幅産物を20μlずつ等量混合し、AmpureXP(ベックマンコールター社製)を用いて精製を行った後、次世代シーケンサー測定(Miseq;イルミナ社製)に供した。
primer mixの塩基配列と各プライマー対濃度および、各検体、各標的遺伝子のリード数を表5に示す。また各標的遺伝子のリード数比とプライマー濃度比の関係を図3に示す。
結果より、標的遺伝子のリード数とプライマー濃度は、片対数上で正の相関が見られた。このことから、本手法では標的遺伝子ごとに適切なプライマー濃度を設定することで、均一な増幅が可能であることが示された。
マルチプレックス増幅におけるbarcode primerおよびuniversal primerの効果検討
PCR反応の鋳型として、ヒト口腔内粘膜より採取したスワブから抽出したDNAを用い、barcode primerのみで増幅を行った場合と、universal primerを併用した場合の比較を行った。
PCR反応溶液の組成は、鋳型DNA10μl、所定量のAmplitaq Gold DNA Polymerase, LD (サーモフィッシャーサイエンティフィク社)、4種のdNTP(いずれも0.2mM)、塩化マグネシウム水溶液(3mM)、10×PCR gold buffer、primer mixは共通であり、一方はbarcode primer(10nM)、universal primer(40nM)、もう一方はbarcode primer(50nM)を含む。Primer mixの組成は、実施例2と同様である。またbarcode primer、universal primerの塩基配列を表6に示す。反応溶液は、滅菌水で40μlにメスアップして調製した。
上記反応溶液をPCR増幅装置(Life touch(日本ジェネティクス社製))を用いて以下のPCR反応に供した。
(1)熱変性工程:95℃、300秒間
(2)熱変性工程:95℃、10秒間
(3)アニーリング工程:61℃、90秒間
(4)伸長工程:72℃、60秒間
(5)熱変性工程:95℃、10秒間
(6)アニーリング工程:61℃、10秒間
(7)伸長工程:72℃、90秒間
(1)の熱変性工程の後、工程(2)~(4)を10サイクル繰り返し、さらに工程(5)~(7)を50サイクル繰り返した。
上記の増幅産物をAgilent 2100 bioanalyzerに供し、電気泳動結果の比較を行った。結果を図4に示す。
barcode primerのみの場合、約160bpの産物が多く増幅されており、これは目的産物の産物長(300~500bp)よりも短く、プライマーダイマー等に由来する非特異的産物であると考えられる。一方、barcode primerを減らし、その分universal primerを用いた系においては、短い断片長は著しく減少する。以上より、短いuniversal primerの使用により、設計上比較的長くなってしまうbarcode primerに由来する非特異的産物の産生を抑制することができると言える。
DNAポリメラーゼの種類による増幅効率の検討
PCR反応の鋳型として、ヒト口腔内粘膜より採取したスワブから抽出したDNAを用い、DNAポリメラーゼの種類を変えた場合の比較を行った。
PCR反応溶液の組成は、鋳型DNA10μl、DNAポリメラーゼとして所定量のAmplitaq Gold DNA Polymerase, LD (サーモフィッシャーサイエンティフィク社)、Takara Ex Taq HS(タカラバイオ社)、Hot-Start Gene Taq(ニッポン・ジーン社)のいずれか1種類、4種のdNTP(いずれも0.2mM)、各ポリメラーゼに対して所定量の塩化マグネシウム水溶液、PCR buffer、primer mix、barcode primer(10nM)、universal primer(40nM)を含む。primer mixの塩基配列および各プライマー対濃度を表7に示す。barcode primer、universal primerは実施例3と同様である。各反応溶液は、滅菌水で40μlにメスアップして調製した。
上記反応溶液をPCR増幅装置(Life touch(日本ジェネティクス社製))を用いて以下のPCR反応に供した。
(1)熱変性工程:95℃、300秒間
(2)熱変性工程:95℃、10秒間
(3)アニーリング工程:61℃、90秒間
(4)伸長工程:72℃、60秒間
(5)熱変性工程:95℃、10秒間
(6)アニーリング工程:61℃、10秒間
(7)伸長工程:72℃、90秒間
(1)の熱変性工程の後、工程(2)~(4)を10サイクル繰り返し、さらに工程(5)~(7)を50サイクル繰り返した。
上記の増幅産物をAgilent 2100 bioanalyzerに供し、電気泳動結果の比較を行った。結果を図5に示す。
この反応において、目的産物は約450~550bpに分布する。Amplitaq Gold LDを用いた増幅では、ほとんど目的産物と考えられる塩基長の範囲にピークが見られている。一方、Takara Ex Taq HSを用いた増幅では、350~450bpの比較的短い塩基長の範囲にもピークが見られ、これは特異的プライマーによる産物が、増幅サイクル初期に過剰に生成してしまったためと推察される。また、それ以外の塩基長範囲にもピークが認められ、非特異的増幅が進行してしまったと考えられる。Hot-Start Gene Taqを用いた増幅では、短い非特異的産物が多く認められる。400bp付近に最も大きくピークが見られるが、人工核酸配列C,Dは付加されていないと考えられる。5’→3’エキソヌクレアーゼ活性を持たない酵素での増幅は、人工核酸配列C,Dが付加されにくく、またプライマー対群Xが分解されずに残存することにより、非特異的増幅も起きやすいと推察される。
Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000009

Figure JPOXMLDOC01-appb-I000010
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
 本発明は、SNP解析の多項目化の他、遺伝子発現解析、がん関連遺伝子変異解析等の次世代シーケンサーを用いて行われる解析に利用できる。
<配列番号1~78>
配列番号1~78は、表2のprimer mix中の各プライマーの塩基配列を示す。
<配列番号79~93>
配列番号79~93は、表3のbarcode primerの各プライマーの塩基配列を示す。
<配列番号94及び95>
配列番号94及び95は、表3のuniversal primerの各プライマーの塩基配列を示す。
<配列番号96~98>
配列番号96~98は、表4のbarcode primerの各プライマーの塩基配列を示す。
<配列番号99及び100>
配列番号99及び100は、表4のuniversal primerの各プライマーの塩基配列を示す。
<配列番号101~190>
配列番号101~190は、表5のprimer mix中の各プライマーの塩基配列を示す。
<配列番号191及び192>
配列番号191及び192は、表6のbarcode primerの各プライマーの塩基配列を示す。
<配列番号193及び194>
配列番号193及び194は、表6のuniversal primerの各プライマーの塩基配列を示す。
<配列番号195~214>
配列番号195~214は、表7のprimer mix中の各プライマーの塩基配列を示す。

Claims (12)

  1. 3’末端側に標的核酸に相補的な配列を持ち、その上流側に人工核酸配列Aの全部あるいは3‘末端側の一部の配列を持つフォワードプライマー(a)と、3’末端側に標的核酸に相補的な配列を持ち、その上流側に人工核酸配列Bの全部あるいは3‘末端側の一部の配列を持つリバースプライマー(b)からなるプライマー対を、少なくとも1対以上含むプライマー対群Xおよび、3‘末端側に人工核酸配列Aを持ち、5’末端側に人工核酸配列Cを持つフォワードプライマー(c)と、3‘末端側に人工核酸配列Bを持ち、5’末端側に人工核酸配列Dを持つリバースプライマー(d)からなるプライマー対Yおよび、人工核酸配列Cの全部あるいは一部の配列を持つフォワードプライマー(e)と、人工核酸配列Dの全部あるいは一部の配列を持つリバースプライマー(f)からなるプライマー対Zにより構成されるプライマーセットを用いて複数の標的核酸群を同時に増幅する方法。
  2. 前記プライマー対Yのフォワードプライマー(c)とリバースプライマー(d)の各々が、人工核酸配列C、Dの3’末端と人工核酸配列A,Bの5’末端の間に、検体を識別するための人工核酸配列(以下、バーコード配列)を有する、請求項1に記載の方法。
  3. 前記増幅が、前記のプライマー対群Xおよびプライマー対Y,Zを最初にすべて混合し、途中の精製・希釈を伴わず、一連の反応で完了する請求項1又は2に記載の方法。
  4. 試料溶液中において、前記プライマー対Zが、前記プライマー対Yの濃度の少なくとも3倍で存在する、請求項1~3のいずれかに記載の方法。
  5. 試料溶液中において、前記プライマー対Yが、それに由来するプライマーダイマーが産生されない濃度で存在し、かつ、前記プライマー対Zが、目的産物を得るのに十分な濃度で存在する、請求項1~3のいずれかに記載の方法。
  6. 前記プライマー対群Xが、少なくとも5対のプライマーからなる、請求項1~5のいずれかに記載の方法。
  7. 前記プライマー対群Xが、少なくとも20対のプライマーからなる、請求項1~6のいずれかに記載の方法。
  8. 試料溶液中において、前記プライマー対群X中の各プライマー対が、1~20nMの範囲で存在する、請求項1~7のいずれかに記載の方法。
  9. 試料溶液中において、前記プライマー対群X中の各プライマー対の濃度を調整することで、各標的遺伝子の増幅効率を均一に近づけることができる、請求項1~8に記載の方法。
  10. 前記増幅が、PCR法、LAMP法、NASBA法、ICAN法、LCR法、Rolling Cycle法SMAP法、PALSAR法のいずれか1つである、請求項1~9のいずれかに記載の方法。
  11. 前記プライマー対群Xによる増幅は2サイクル以上、前記プライマー対Y、Zによる増幅は20サイクル以上行われる、請求項1~10のいずれかに記載の方法。
  12. 前記増幅が、5’→3’エキソヌクレアーゼ活性を有するDNAポリメラーゼを用いて行われる、請求項1~11に記載の方法。
PCT/JP2017/015651 2016-04-21 2017-04-19 多項目増幅手法 WO2017183648A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780017193.3A CN108779453A (zh) 2016-04-21 2017-04-19 多项扩增法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-085134 2016-04-21
JP2016085134A JP5997407B1 (ja) 2016-04-21 2016-04-21 多項目増幅手法

Publications (1)

Publication Number Publication Date
WO2017183648A1 true WO2017183648A1 (ja) 2017-10-26

Family

ID=56997586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015651 WO2017183648A1 (ja) 2016-04-21 2017-04-19 多項目増幅手法

Country Status (3)

Country Link
JP (1) JP5997407B1 (ja)
CN (1) CN108779453A (ja)
WO (1) WO2017183648A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111005075B (zh) * 2019-12-20 2023-04-21 北京科迅生物技术有限公司 用于双样本共建测序文库的y型接头和双样本共建测序文库的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522517A (ja) * 2009-04-02 2012-09-27 フリューダイム・コーポレイション 標的核酸にバーコードを付加するためのマルチプライマー増幅方法
WO2014100866A1 (en) * 2012-12-28 2014-07-03 Fleury S.A. Method for complete tracking of a set of biological samples containing dna or rna through molecular barcode identification during laboratorial workflow and kit for collecting biological samples containing dna or rna
JP2015535431A (ja) * 2012-11-26 2015-12-14 ザ・ユニバーシティ・オブ・トレド 核酸の標準化された配列決定のための方法およびその使用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709201B2 (en) * 2004-08-24 2010-05-04 Cornell Research Foundation, Inc. Detection of nucleic acid differences using endonuclease cleavage/ligase resealing reactions and capillary electrophoresis or microarrays
US8420323B2 (en) * 2007-11-14 2013-04-16 Fujifilm Corporation Nucleic acid amplification method
CN102076850B (zh) * 2008-07-02 2014-05-07 爱科来株式会社 靶核酸序列的扩增方法、使用该方法的突变检测方法、以及用于该方法的试剂
CN102741429A (zh) * 2010-02-25 2012-10-17 松下电器产业株式会社 对双链dna中的目标序列进行扩增的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522517A (ja) * 2009-04-02 2012-09-27 フリューダイム・コーポレイション 標的核酸にバーコードを付加するためのマルチプライマー増幅方法
JP2015535431A (ja) * 2012-11-26 2015-12-14 ザ・ユニバーシティ・オブ・トレド 核酸の標準化された配列決定のための方法およびその使用
WO2014100866A1 (en) * 2012-12-28 2014-07-03 Fleury S.A. Method for complete tracking of a set of biological samples containing dna or rna through molecular barcode identification during laboratorial workflow and kit for collecting biological samples containing dna or rna

Also Published As

Publication number Publication date
JP2017192349A (ja) 2017-10-26
CN108779453A (zh) 2018-11-09
JP5997407B1 (ja) 2016-09-28

Similar Documents

Publication Publication Date Title
CN107849603B (zh) 利用有限核苷酸组成的引物扩增
US20190078082A1 (en) Compositions and methods for targeted nucleic acid sequence enrichment and high efficiency library generation
JP6525473B2 (ja) 複製物配列決定リードを同定するための組成物および方法
US9487807B2 (en) Compositions and methods for producing single-stranded circular DNA
US9057110B2 (en) Method for direct amplification from crude nucleic acid samples
EP3252174A1 (en) Compositions, methods, systems and kits for target nucleic acid enrichment
US20070059700A1 (en) Methods and compositions for optimizing multiplex pcr primers
JP2007520237A (ja) 核酸増幅中のプライマー凝集体形成を減少させるためのdUTPに基づく組成物
JP2005518216A (ja) 融解温度依存dna増幅
JP2015500012A (ja) 組成物中のrnaを特徴づける方法およびキット
WO2010026933A1 (ja) Rna検出用組成物
US11174511B2 (en) Methods and compositions for selecting and amplifying DNA targets in a single reaction mixture
WO2017183648A1 (ja) 多項目増幅手法
WO2011101744A2 (en) Region of interest extraction and normalization methods
US20080161197A1 (en) Method for amplifying monomorphic-tailed nucleic acids
KR101785687B1 (ko) 다중 증폭 이중 시그널 증폭에 의한 타겟 핵산 서열의 검출 방법
US20200232011A1 (en) Methods of nucleic acid detection and primer design
He et al. Nickase-dependent isothermal DNA amplification
WO2012032510A1 (en) Primers for amplifying dna and methods of selecting same
JP2003510011A (ja) カップル性ポリメラーゼ連鎖反応−制限エンドヌクレアーゼ消化−リガーゼ検出反応法
US20200002740A9 (en) Methods for amplification of nucleic acids utilizing a circularized template prepared from a target nucleic acid
CN111334562A (zh) 一种含有修饰引物的核酸扩增方法和试剂盒
WO2018009677A1 (en) Fast target enrichment by multiplexed relay pcr with modified bubble primers
JP6983906B2 (ja) ライブラリーの定量および定性
JP7191115B2 (ja) エンドヌクレアーゼ媒介移動平衡(EM-SEq)による核酸の増幅のための方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785986

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785986

Country of ref document: EP

Kind code of ref document: A1