WO2017183326A1 - 脱臭装置 - Google Patents

脱臭装置 Download PDF

Info

Publication number
WO2017183326A1
WO2017183326A1 PCT/JP2017/008492 JP2017008492W WO2017183326A1 WO 2017183326 A1 WO2017183326 A1 WO 2017183326A1 JP 2017008492 W JP2017008492 W JP 2017008492W WO 2017183326 A1 WO2017183326 A1 WO 2017183326A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
inlet
duct
processed
plasma
Prior art date
Application number
PCT/JP2017/008492
Other languages
English (en)
French (fr)
Inventor
直弥 松本
栄也 佐々木
克己 岸間
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2017183326A1 publication Critical patent/WO2017183326A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components

Definitions

  • the present invention relates to a deodorizing apparatus, but is not particularly limited, but relates to a deodorizing apparatus that is preferably applied to deodorizing a volatile organic compound used in a paint factory for vehicles.
  • Patent Document 1 a so-called plasma deodorizing apparatus that allows air containing an odor component to pass through plasma generated by corona discharge is known.
  • the plasma deodorization apparatus is a method of deodorizing by decomposing odor components by oxidative decomposition with ozone gas or the like, the processing time is long.
  • exhaust from a vehicle paint factory or the like has a problem that it cannot be sufficiently decomposed because it contains a relatively large amount of odor components.
  • the problem to be solved by the present invention is to provide a deodorizing apparatus that can efficiently deodorize a relatively large amount of treated air.
  • the plasma processing device and the chemical adsorption filter are connected in this order (the plasma processing device is upstream and the chemical adsorption filter is downstream), and the gas to be processed is passed through the plasma atmosphere by corona discharge.
  • the said subject is solved by letting an adsorption filter pass.
  • FIG. 3 is an electric / control circuit diagram of the deodorizing apparatus of FIGS. 1 and 2. It is a perspective view which shows a pair of electrode of FIG.1 and FIG.2. It is a flowchart which shows the control procedure performed in the controller of FIG.
  • FIG. 1 is a side view showing an embodiment of a deodorizing apparatus according to the present invention
  • FIG. 2 is a plan view of the deodorizing apparatus
  • FIG. 3 is an electric / control circuit diagram of the deodorizing apparatus
  • FIG. 4 is a pair of the deodorizing apparatus. It is a perspective view which shows this electrode.
  • the present embodiment shown below is mainly based on exhaust gas containing volatile organic compounds (hereinafter also referred to as VOC) discharged in a vehicle painting factory such as an automobile body.
  • VOC volatile organic compounds
  • toluene, xylene, petroleum, trimethylbenzene, and other volatile organic compounds are used as paint solvents in electrodeposition paints (undercoat paints), intermediate coats, and top coats applied to automobile bodies and parts. It is used.
  • Such a coating solvent evaporates when it is applied to an object to be coated, and is released into the atmosphere from the exhaust system of the painting booth.
  • the deodorizing apparatus 1 of this embodiment can be provided in the last stage of the exhaust system of this painting booth.
  • the exhaust system of the painting booth includes, for example, an exhaust fan having a motor, an exhaust duct, and an exhaust damper as necessary.
  • the deodorizing apparatus 1 of the present embodiment places the plasma treatment device 10 and the chemical adsorption device 20 in this order, that is, the plasma treatment device 10 is upstream, and the chemical adsorption filter 20 is downstream. Connected to the side.
  • the gas to be treated from the exhaust system of the painting booth is passed through a plasma atmosphere by corona discharge, and then passed through a chemical adsorption filter to decompose and remove odor components such as VOC.
  • the plasma processing apparatus 10 includes a casing 11, an inlet 12 of a gas to be processed formed in the casing 11, an outlet 13 of a first processed gas formed in the casing 11, and a pair of electrodes 14 that generate corona discharge.
  • the gas to be treated discharged from the painting booth (not shown) is introduced into the inlet 12 of the casing 11 by the exhaust pressure of the exhaust fan of the painting booth.
  • the gas to be treated introduced from the inlet 12 reaches the outlet 13 after passing through the plasma atmosphere by corona discharge.
  • the casing 11 of the plasma processing device 10 is configured by assembling an angle steel material or the like into a rectangular parallelepiped, and attaching a stainless steel plate or the like to each of the six surfaces by welding or the like.
  • the opening serving as the outlet 13 described above is formed in the center of the ceiling surface of the housing 11.
  • One end of the first duct 30 is airtightly connected to the outlet 13, and the other end of the first duct 30 is airtightly connected to the inlet 22 of the chemical adsorber 20.
  • the first duct 30 is formed by bending a stainless steel plate or steel plate into a cylindrical body having a rectangular cross section.
  • the opening used as the inlet 12 mentioned above is formed in the lower part of one side surface among four side surfaces.
  • the second duct 40 is airtightly connected to the inlet 12, and the other end of the second duct 40 is airtightly connected to the exhaust duct of the exhaust system of the painting booth. Similar to the first duct 30, the second duct 40 is formed by bending a stainless steel plate or a steel plate into a cylindrical body having a rectangular cross section.
  • the interior of the housing 11 is divided up and down by a partition plate 19, and the upper portion of the partition plate 19 is a processing chamber 15 provided with an electrode 14, and the lower portion of the partition plate 19 includes an inlet 12, and a gas to be processed is contained therein.
  • the dynamic pressure chamber 16 is introduced.
  • circular through holes 19a corresponding to a circular cross section of the cathode 14N described later are formed at positions where the cathode 14N is disposed.
  • the electrode 14 has a cylindrical cathode 14N made of a conductor and having upper and lower end surfaces opened, and a rod-like anode 14P made of a conductor.
  • the deodorizing apparatus 1 of the present embodiment in consideration of the relationship between the exhaust gas flow rate from the coating booth, the ventilation resistance when passing through each anode, and the plasma processing capacity, 6 in the processing chamber 15 of the plasma processing device 10.
  • One electrode 14 is provided. And it arrange
  • the electrodes 14 are arranged in the processing chamber 15 in a substantially equal positional relationship as shown in the plan view of FIG.
  • the relative position of the anode 14P with respect to the cathode 14N is fixed by a technique or means (not shown).
  • the gas to be processed introduced from the second duct 40 to the inlet 12 flows into the dynamic pressure chamber 16 of the plasma processor 10, but from the second duct 40 to the dynamic pressure chamber 16. Since the flow path is linear up to the end, the pressure on the end side of the dynamic pressure chamber 16 tends to be higher than the pressure on the inlet 12 side. Therefore, among the six electrodes 14, a volume damper 17 is provided at the position of the dynamic pressure chamber 16 corresponding to the two electrodes 14 on the inlet 12 side and the two electrodes 14 in the center. Similarly, a volume damper 18 is provided at the position of the dynamic pressure chamber 16 corresponding to the two middle-layer electrodes 14 and the two terminal-side electrodes 14.
  • the opening amounts of the volume dampers 17 and 18 are set so that the flow rates of the gas to be processed passing through the two electrodes 14 on the inlet side, the two electrodes 14 on the center side, and the two electrodes 14 on the end side are equal.
  • the volume dampers 17 and 18 of the present embodiment can be manually adjusted in opening degree, and the opening degree of the volume damper 18 on the end side is narrower than the opening degree of the volume damper 17 on the inlet side (blocking). Direction). Such adjustment of the volume dampers 17 and 18 may be performed every time the flow rate of the gas to be processed is changed.
  • the casing 21 of the chemical adsorber 20 is configured by assembling a rectangular parallelepiped with an angle steel material or the like as a skeleton and attaching a stainless steel plate or the like to each of its six surfaces by welding or the like, similarly to the casing 11 of the plasma processing apparatus 10.
  • an opening serving as an inlet 22 for the first processed gas by the plasma processor 10 is formed on the casing 11 side of the plasma processor 10 on the ceiling surface of the casing 21.
  • the other end of the first duct 30 is airtightly connected to the inlet 22.
  • An opening serving as an outlet 23 for the second treated gas that has passed through the chemical adsorption filter 24 is formed on one of the four side surfaces.
  • a louver shape is provided so that rainwater and the like are not blown into the chemical adsorption filter 24 by being placed outdoors.
  • a chemical adsorption filter 24 is provided inside the housing 21 of the chemical adsorber 20.
  • the chemical adsorbent used in the chemisorption filter 24 of the present embodiment sepiolite (hydrous magnesium inosilicate minerals, Mg 8 H 2 (Si 12 O 11) 3 ⁇ 3H 2 It is preferable to use a filter obtained by forming O) into a honeycomb shape. Sepiolite is flame retardant and has an excellent chemical adsorption effect (deodorizing effect) for low concentration VOCs. Therefore, the first treated gas having a low concentration after passing through the plasma processing device 10 passes through the chemical adsorption filter 24, thereby removing the VOC that has not been processed in the plasma processing with high efficiency. Can do.
  • the one end of the 3rd duct 50 is connected to the upper surface of the 2nd duct 40 as shown in FIG.1 and FIG.2.
  • the other end of the third duct 50 is connected to the exhaust port of the air supply fan 51. From the suction port 54 of the air supply fan 51, fresh air having a VOC concentration much lower than that of the exhaust system of the painting booth is sucked, such as the atmosphere.
  • a damper 52 that opens and closes the flow path of the third duct 50 and a fluid cylinder 53 that opens and closes the damper 52 are provided on the downstream side of the air supply fan 51 of the third duct 50.
  • the operation of the fluid cylinder 53 is executed by a controller 81 described later.
  • the third duct 50, the air supply fan 51, and the damper 52 are adsorbed by the chemical adsorption filter 24 while the coating booth is stopped, in other words, during the processing of the gas to be processed by the plasma processor 10 is not performed. It is provided for regenerating the chemical adsorption filter 24 by decomposing the VOC component using ozone generated by the plasma processor 10. That is, there is the convenience that the chemical adsorption filter 24 can be regenerated without being removed from the chemical adsorption device 20.
  • a first fire damper 31 and a fluid cylinder 32 that opens and closes the first fire damper 31 are provided near the outlet of the plasma processor 10 in the first duct 30.
  • the operation of the fluid cylinder 32 is executed by a controller 81 described later.
  • a second fire damper 41 and a fluid cylinder 42 for opening and closing the second fire damper 41 are provided at a position upstream of the connection portion of the second duct 40 with the third duct 50.
  • the operation of the fluid cylinder 42 is executed by a controller 81 described later.
  • These two first fire dampers 31 and second fire dampers 41 are open / close dampers for sealing the plasma processor 10 that may become a fire source of fire.
  • a temperature sensor 60 for detecting the occurrence of fire is provided in the vicinity of the inlet 12 of the plasma processor 10, and similarly a temperature sensor 61 for detecting the occurrence of fire in the vicinity of the outlet 13 of the plasma processor 10. Is provided. Detection signals (voltage values) from these two temperature sensors 60 and 61 are output to the controller 81.
  • a concentration sensor 70 for detecting the concentration of VOC contained in the exhaust of the painting booth is provided in the vicinity of the inlet 12 of the plasma processor 10 in the second duct 40.
  • a detection signal (voltage value) is output from the concentration sensor 70 to the controller 81.
  • FIG. 3 is an electric / control circuit diagram of the deodorizing apparatus 1 of the present embodiment, and the voltage from the DC power source 80 is applied to the rod-like anode 14P and the cylindrical cathode 14N with respect to the six pairs of electrodes 14. .
  • DC power supply 80 includes a transformer capable of adjusting the applied voltage to a predetermined value.
  • the controller 81 is a computer including an arithmetic unit such as a CPU or MPU and a storage unit such as a RAM / ROM. The controller 81 receives the detection signals of the two temperature sensors 60 and 61, the detection signal of the concentration sensor 70, and the operation signal of the painting booth.
  • the operation signal of the painting booth may be a signal that can determine whether or not the painting booth from which the gas to be treated is exhausted is in operation, and the operation signal of the exhaust fan of the painting booth, in the second duct 40 Signals such as the flow rate of the gas to be exhausted and the operation signal of the entire coating line (can be read from a production management device or the like) can be used.
  • the controller 81 based on the calculation result described later, the DC power source 80, the fluid cylinder 32 of the first fire damper 31, the fluid cylinder 42 of the second fire damper 41, the fluid cylinder 53 of the damper 52, and the air supply fan 51.
  • a control signal is output to (the motor).
  • FIG. 5 is a flowchart showing a control procedure executed in the controller 81.
  • the controller 81 reads an operation signal of the painting booth. If the painting booth is in operation, the controller 81 proceeds to step ST2. If the painting booth is not in operation, the controller 81 proceeds to step ST8.
  • the controller 81 outputs a signal for fully opening the first fire damper 31 and the second fire damper 41 to the fluid cylinders 32 and 42, and fully closes the damper 52.
  • a signal is output to the fluid cylinder 53.
  • the first fire damper 31 and the second fire damper 41 are fully opened and the damper 52 is fully closed, and the preparation of treatment of the gas to be treated exhausted from the painting booth is ready, so the DC power supply 80 is turned on.
  • the gas to be processed from the exhaust system of the painting booth is introduced into the dynamic pressure chamber 16 from the inlet 12 of the plasma processor 10 through the second duct 40.
  • the gas to be treated introduced into the dynamic pressure chamber 16 is adjusted in pressure by the two volume dampers 17 and 18 and then passes through the six pairs of electrodes 14.
  • ozone is generated in the plasma atmosphere by corona discharge at each pair of electrodes 14, and this oxidizes and decomposes VOC.
  • the reaction product produced by the oxidative decomposition adheres to the inner surface of the cathode 14N.
  • a conductive part is detachably provided on the inner surface of the cathode 14N, the reaction product mainly adheres to this part. Become. Therefore, the reaction product can be easily cleaned by exchanging parts.
  • the VOC concentration contained in the gas to be treated decreases by about 50% when passing through the six pairs of electrodes 14.
  • the first treated gas that has reached the outlet 13 of the plasma processor 10 contains VOCs that have not been decomposed.
  • the first treated gas passes through the first duct 30, reaches the inlet 22 of the chemical adsorber 20, is introduced from here into the housing 21, and then passes through the chemical adsorption filter 24.
  • the VOC concentration contained in the first process gas decreases by about 80%. That is, it has been confirmed by experiments of the present inventors that the VOC concentration is reduced by about 90% by the plasma processor 10 and the chemical adsorber 20.
  • step ST3 While performing the VOCs removal process by such plasma process and chemical adsorption process, in step ST3, the VOC concentration contained in the gas to be processed from the coating booth by the concentration sensor 70 and the plasma processor 10 by the temperature sensors 60 and 61 are used. The temperature of the inlet 12 and the outlet 13 of the printer is read.
  • step ST4 the controller 81 determines whether or not the VOC concentration c of the gas to be processed detected by the concentration sensor 70 is equal to or higher than the lower explosion limit Cm. If it is greater than or equal to the limit value Cm, the process proceeds to step ST5, and a control signal for turning off the DC power supply 80 is output. As a result, the voltage applied to the electrode 14 becomes zero, and the risk of explosion is eliminated.
  • the lower explosion limit value Cm differs depending on the VOC material.
  • the lower explosion limit value of toluene is 1.3% by volume
  • xylene is 1.0% by volume. Therefore, it is preferable to grasp the composition ratio of the gas to be treated from the painting booth and determine an appropriate lower explosion limit value from the value.
  • step ST4 when the VOC concentration c of the gas to be processed is less than the lower explosion limit Cm, the process proceeds to step ST6 without executing step ST5.
  • step ST6 the controller 81, the temperature of the inlet 12 and outlet 13 of the plasma processing apparatus 10 detected by the temperature sensor 60 and 61, it is determined whether a predetermined temperature t 0 than the predetermined.
  • the predetermined temperature t 0 is a temperature assuming that the inside of the casing 11 of the plasma processing device 10 is burned by a fire.
  • the process proceeds to step ST7, and the controller 81 turns on the DC power source 80. A control signal to turn off is output.
  • the controller 81 In order to prevent the spread of fire, the controller 81 outputs a control signal for fully closing the first fire damper 31 and the second fire damper 41 to the fluid cylinders 32 and 42. Thereby, while the applied voltage of the electrode 14 becomes zero and the fire spread is prevented by the first fire damper 31 and the second fire damper 41, the fire can be extinguished in a short time.
  • step ST6 the temperature t of the inlet 12 and outlet 13 of the plasma processing apparatus 10 detected by the temperature sensor 60 and 61, if the temperature is lower than the predetermined temperature t 0 which is determined in advance, without performing the step ST7 Return to step ST1.
  • step ST8 the controller 81 outputs a signal for fully opening the first fire damper 31 and the second fire damper 41 to the fluid cylinders 32 and 42, and outputs a signal for fully opening the damper 52 to the fluid cylinder 53.
  • step ST9 a control signal for operating the air supply fan 51 is output to the fan motor.
  • fresh air such as air is introduced from the suction port 54 of the air supply fan 51 into the inlet 12 of the plasma processing device 10 through the third duct 50.
  • the exhaust fan is stopped in the exhaust system of the painting booth, the fresh air from the suction port 54 does not flow backward to the exhaust system side of the painting booth.
  • Fresh air introduced from the inlet 12 of the plasma processor 10 passes through the electrode 14 from the dynamic pressure chamber 16 to the outlet 13. At this time, since the VOC is hardly contained in the fresh air, the ozone gas generated at the electrode 14 reaches the inlet 22 of the chemical adsorber 20 through the first duct 30 from the outlet 13 together with the fresh air.
  • the VOC component adsorbed by the chemical adsorption filter 24 is decomposed by ozone and released from the outlet 23 of the housing 21 to the atmosphere. Thereby, regeneration of the chemical adsorption filter 24 can be performed.
  • regeneration process by step ST8 and ST9 is performed until a coating booth starts operation by step ST1, the VOC component adsorbed by the chemical adsorption filter 24 can be decomposed
  • the deodorizing apparatus 1 of this embodiment performs oxidative decomposition of VOC by plasma treatment in the former stage, and removes VOC that could not be oxidized and decomposed in the latter stage by chemical adsorption. Therefore, VOC can be efficiently removed. Further, since the chemical adsorption filter 24 is disposed in the subsequent stage, there is no problem that the filter is clogged. In addition, since the chemical adsorption filter is arranged in the subsequent stage instead of the physical adsorption filter, the capture performance is improved.
  • the deodorizing apparatus 1 of the present embodiment operates the air supply fan 51 to introduce fresh air into the plasma processing device 10 except during the deodorizing processing of the gas to be processed, and the fresh air that has passed through the plasma processing device 10 To the chemical adsorption filter 24.
  • the VOC component adsorbed by the chemical adsorption filter 24 is decomposed by ozone and released from the outlet 23 of the housing 21 to the atmosphere. Therefore, it is possible to regenerate the chemical adsorption filter 20 while it is attached to the chemical adsorption device 20 without performing operations such as attaching and detaching and replacing the chemical adsorption filter 24.
  • the deodorizing apparatus 1 of the present embodiment prohibits voltage application to the six pairs of electrodes 14 when the VOC concentration c of the gas to be processed detected by the concentration sensor 70 is equal to or greater than the explosion lower limit Cm. Is output. As a result, the voltage applied to the electrode 14 becomes zero, and the risk of explosion is eliminated.
  • the deodorizing apparatus 1 of the present embodiment is provided with the dynamic pressure chamber 16 between the inlet 12 of the housing 11 and the six pairs of electrodes 14, and the flow rate of the gas to be processed that passes through the six pairs of electrodes 14. Is adjusted by the volume dampers 17,18. As a result, the flow rate of the gas to be processed that passes through each electrode 14 becomes uniform, so that the efficiency of the oxidative decomposition reaction by plasma increases.
  • deodorizing apparatus 1 of this embodiment when the temperature t detected by the temperature sensor 60 and 61 is higher than the predetermined value t 0, outputs a signal for prohibiting the application of voltage to the six pairs of electrodes 14 To do.
  • the deodorizing apparatus 1 of the present embodiment when the temperature t detected by the temperature sensors 60 and 61 is higher than the predetermined value t 0 , 2 A signal for closing the fireproof damper 41 is output. Thereby, fire suppression and fire spread can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Abstract

筐体(11)、筐体に形成された被処理ガスの入口(12)、筐体に形成された第1処理済みガスの出口(13)、及びコロナ放電を発生させる一対の電極(14)を有し、入口(12)から導入された被処理ガスがコロナ放電によるプラズマ雰囲気を通過したのち出口(13)に至るプラズマ処理器(10)と、第1ダクト(30)を介してプラズマ処理器の出口(13)に接続され、第1処理済みガスが通過する化学吸着フィルタ(24)と、を備える。

Description

脱臭装置
 本発明は、脱臭装置に関し、特に限定されないが、車両用塗装工場などで使用する揮発性有機化合物の脱臭に適用して好ましい脱臭装置に関するものである。
 従来の脱臭装置として、コロナ放電によって生じたプラズマ中に臭気成分を含んだ空気を通過させる、いわゆるプラズマ脱臭装置が知られている(特許文献1)。
特開2003-275291号公報
 しかしながら、プラズマ脱臭装置は、臭気成分をオゾンガスなどによって酸化分解させることで脱臭する方式のものであるから、処理時間が長い。特に車両用塗装工場などからの排気は、比較的多量の臭気成分を含んでいるため、充分に分解処理できないという問題がある。
 本発明が解決しようとする課題は、比較的多量の処理空気を効率良く脱臭できる脱臭装置を提供することである。
 本発明は、プラズマ処理器と化学吸着フィルタとをこの順序(プラズマ処理器を上流側、化学吸着フィルタを下流側)で接続し、被処理ガスをコロナ放電によるプラズマ雰囲気を通過させたのち、化学吸着フィルタを通過させることによって上記課題を解決する。
 本発明によれば、比較的多量の処理空気を効率良く脱臭できるという効果を奏する。
本発明に係る脱臭装置の一実施の形態を示す側面図である。 図1の平面図である。 図1及び図2の脱臭装置の電気・制御回路図である。 図1及び図2の一対の電極を示す斜視図である。 図3の制御器において実行される制御手順を示すフローチャートである。
 以下、本発明の実施形態を図面に基づいて説明する。図1は本発明に係る脱臭装置の一実施の形態を示す側面図、図2は同脱臭装置の平面図、図3は同脱臭装置の電気・制御回路図、図4は同脱臭装置の一対の電極を示す斜視図である。本発明においては特に限定されないが、以下に示す本実施形態は、自動車ボディなどの車両塗装工場において排出される揮発性有機化合物(Volatile Organic Compounds,以下VOCともいう。)を含んだ排気ガスから主としてVOC成分を除去し、清浄な気体を大気に放出する際に用いられる脱臭装置1について説明する。車両塗装工場においては、自動車ボディや自動車部品に塗布される電着塗料(下塗り塗料)、中塗り塗料又は上塗り塗料に、トルエン、キシレン、石油系、トリメチルベンゼンその他の揮発性有機化合物が塗料溶剤として用いられている。こうした塗料溶剤は、被塗物に塗布される際に蒸発し、塗装ブースの排気系統から大気中に放出される。本実施形態の脱臭装置1は、この塗装ブースの排気系統の最終段に設けることができる。塗装ブースの排気系統は、例えばモータを有する排気ファンと、排気ダクトと、必要に応じて排気ダンパと、により構成されている。
 本実施形態の脱臭装置1は、図1及び図2に示すように、プラズマ処理器10と化学吸着器20とをこの順序で、すなわちプラズマ処理器10を上流側に、化学吸着フィルタ20を下流側にして、接続したものである。塗装ブースの排気系統からの被処理ガスをコロナ放電によるプラズマ雰囲気を通過させたのち、化学吸着フィルタを通過させることにより、VOCなどの臭気成分を分解除去する。
 プラズマ処理器10は、筐体11、筐体11に形成された被処理ガスの入口12、筐体11に形成された第1処理済みガスの出口13、及びコロナ放電を発生させる一対の電極14を有する。図外の塗装ブースから排出された被処理ガスは、塗装ブースの排気ファンの排気圧力によって筐体11の入口12に導入される。入口12から導入された被処理ガスは、コロナ放電によるプラズマ雰囲気を通過したのち出口13に至る。
 プラズマ処理器10の筐体11は、アングル鋼材などを骨格として直方体に組み立て、その各六面にステンレス板材などを溶接等により組み付けて構成される。図1及び図2に示すように、筐体11の天井面の中央に、上述した出口13となる開口が形成されている。この出口13には、第1ダクト30の一端が気密に接続され、第1ダクト30の他端は、化学吸着器20の入口22に気密に接続されている。第1ダクト30は、ステンレス板材又は鋼板を折り曲げて断面が矩形の筒体としたものである。また、4つの側面のうちの1つの側面の下部に、上述した入口12となる開口が形成されている。この入口12には、第2ダクト40の一端が気密に接続され、第2ダクト40の他端は、塗装ブースの排気系統の排気ダクトに気密に接続されている。第2ダクト40は、第1ダクト30と同様に、ステンレス板材又は鋼板を折り曲げて断面が矩形の筒体としたものである。
 筐体11の内部は仕切板19によって上下に仕切られ、仕切板19の上部は、電極14が設けられた処理室15とされ、仕切板19の下部は、入口12を含み、被処理ガスが導入される動圧室16とされている。仕切板19には、後述する陰極14Nの円形断面に相当する円形の通孔19aが、陰極14Nが配置される位置にそれぞれ形成されている。
 電極14は、図4に示すように、導体からなり上下端面が開口した筒状の陰極14Nと、導体からなる棒状の陽極14Pとを有する。本実施形態の脱臭装置1においては、塗装ブースからの排気流量と、各陽極内を通過する際の通気抵抗と、プラズマ処理能力との関係を勘案し、プラズマ処理器10の処理室15に6つの電極14を設けることとしている。そして、陽極14Pが陰極14Nの軸中心に位置するように固定された状態で、プラズマ処理器10の処理室15に配置される。上述したとおり、仕切板19には6つの通孔19aが形成されており、6つの陰極14Nは、この通孔19aのそれぞれに固定される。これにより電極14は、図2の平面図に示すように、処理室15に略均等な位置関係で配置される。なお、陽極14Pは、図示しない手法又は手段により陰極14Nに対する相対位置が固定される。
 図1の側面図に示すように、第2ダクト40から入口12に導入された被処理ガスは、プラズマ処理器10の動圧室16に流入するが、第2ダクト40から動圧室16の終端まで直線状の流路とされているため、動圧室16の終端側の圧力が入口12側の圧力より高くなる傾向がある。そのため、6つの電極14のうち、入口12側の2つの電極14と中央の2つの電極14との間に相当する動圧室16の位置にボリュームダンパ17が設けられている。また、同様に中層の2つの電極14と終端側の2つの電極14との間に相当する動圧室16の位置にボリュームダンパ18が設けられている。そして、入口側の2つの電極14、中央の2つの電極14及び終端側の2つの電極14のそれぞれを通過する被処理ガスの流量が均等になるように、ボリュームダンパ17,18の開度が調節される。ちなみに、本実施形態のボリュームダンパ17,18は、手動により開度調節が可能とされたものであり、終端側のボリュームダンパ18の開度を入口側のボリュームダンパ17の開度より絞る(閉塞する方向)ように調節されている。こうしたボリュームダンパ17,18の調節は、被処理ガスの流量が変更される毎に行えばよい。
 化学吸着器20の筐体21は、プラズマ処理器10の筐体11と同様に、アングル鋼材などを骨格として直方体に組み立て、その各六面にステンレス板材などを溶接等により組み付けて構成される。図1及び図2に示すように、筐体21の天井面のプラズマ処理器10の筐体11側に、プラズマ処理器10による第1処理済みガスの入口22となる開口が形成されている。この入口22には、第1ダクト30の他端が気密に接続されている。また、4つの側面のうちの1つの側面に、化学吸着フィルタ24を通過した第2処理済みガスの出口23となる開口が形成されている。図1に示す実施形態では、屋外に配置されて雨水等が化学吸着フィルタ24に吹き込まないようにルーバー状とされている。
 化学吸着器20の筐体21の内部には化学吸着フィルタ24が設けられている。本発明においては特に限定されないが、本実施形態の化学吸着フィルタ24に用いられる化学吸着剤としては、セピオライト(マグネシウムの含水イノケイ酸塩鉱物,Mg(Si1211・3HO)をハニカム形状に成形したフィルタを用いることが好ましい。セピオライトは、難燃性であり、また低濃度VOCに対する化学吸着効果(脱臭効果)に優れている。したがって、プラズマ処理器10を通過して低濃度となった第1処理済みガスが、この化学吸着フィルタ24を通過することにより、プラズマ処理で未処理となったVOCを高効率で吸着除去することができる。
 第2ダクト40の上面には、図1及び図2に示すように第3ダクト50の一端が接続されている。第3ダクト50の他端は、給気ファン51の排気口に接続されている。給気ファン51の吸引口54からは、大気などのようにVOC濃度が塗装ブースの排気系統に比べて格段に低いフレッシュエアーが吸引される。第3ダクト50の給気ファン51の下流側には、第3ダクト50の流路を開閉するダンパ52と、このダンパ52の開閉動作を行う流体シリンダ53とが設けられている。流体シリンダ53の動作は後述する制御器81により実行される。これら第3ダクト50、給気ファン51及びダンパ52は、塗装ブースが休止中、換言すればプラズマ処理器10による被処理ガスの処理が行われていない間に、化学吸着フィルタ24に吸着されたVOC成分をプラズマ処理器10で発生したオゾンを用いて分解処理することで、化学吸着フィルタ24を再生するために設けられている。すなわち、化学吸着フィルタ24を取り外すことなく化学吸着器20に装着したままの状態で再生できる利便さがある。
 第1ダクト30のプラズマ処理器10の出口の近傍位置に、第1防火ダンパ31とこの第1防火ダンパ31の開閉動作を行う流体シリンダ32とが設けられている。流体シリンダ32の動作は後述する制御器81により実行される。また、第2ダクト40の第3ダクト50との接続部分の上流側の位置に、第2防火ダンパ41とこの第2防火ダンパ41の開閉動作を行う流体シリンダ42とが設けられている。流体シリンダ42の動作は後述する制御器81により実行される。これら2つの第1防火ダンパ31及び第2防火ダンパ41は、火災の火元となる可能性があるプラズマ処理器10を封止するための開閉ダンパである。そのため、プラズマ処理器10の入口12の近傍に火災の発生を検出するための温度センサ60が設けられ、同様にプラズマ処理器10の出口13の近傍に火災の発生を検出するための温度センサ61が設けられている。これら2つの温度センサ60,61による検出信号(電圧値)は、制御器81に出力される。
 第2ダクト40の、プラズマ処理器10の入口12の近傍位置には、塗装ブースの排気に含まれるVOC濃度を検出するための濃度センサ70が設けられている。濃度センサ70により検出信号(電圧値)は制御器81に出力される。VOC濃度が爆発下限界値以上になると電極14のコロナ放電によって爆発の可能性があるため、電極14への電圧の印加を禁止する。
 図3は、本実施形態の脱臭装置1の電気・制御回路図であり、6対の電極14に対し、直流電源80からの電圧が棒状の陽極14P及び円筒状の陰極14Nに印加されている。直流電源80は印加電圧を所定値に調整可能な変圧器を含む。一方、制御器81は、CPU又はMPUなどの演算器、RAM・ROMなどの記憶器を含んで構成されるコンピュータである。制御器81には、上述した2つの温度センサ60,61の検出信号、濃度センサ70の検出信号及び塗装ブースの稼働信号が入力される。ここで塗装ブースの稼働信号とは、被処理ガスが排出される塗装ブースが稼働中か否かを判別可能な信号であればよく、塗装ブースの排気ファンの動作信号、第2ダクト40内に排気される被処理ガスの流量、塗装ライン全体の稼働信号(生産管理装置などから読み取ることができる)などの信号を用いることができる。また制御器81は、後述する演算結果に基づいて、直流電源80、第1防火ダンパ31の流体シリンダ32、第2防火ダンパ41の流体シリンダ42、ダンパ52の流体シリンダ53、及び給気ファン51(のモータ)へ制御信号を出力する。
 次に、制御器81における制御手順を説明する。
 図5は、制御器81において実行される制御手順を示すフローチャートである。ステップST1において、制御器81は、塗装ブースの稼働信号を読み込み、塗装ブースが稼働中の場合はステップST2へ進み、塗装ブースが稼働中でない場合はステップST8へ進む。塗装ブースが稼働中である場合、ステップST2において、制御器81は、第1防火ダンパ31及び第2防火ダンパ41を全開する信号を流体シリンダ32,42へ出力するとともに、ダンパ52を全閉する信号を流体シリンダ53へ出力する。これにより、第1防火ダンパ31及び第2防火ダンパ41は全開、ダンパ52は全閉となり、塗装ブースから排気される被処理ガスの処理準備が整うので、直流電源80をONにする。
 これにより、塗装ブースの排気系統からの被処理ガスは、第2ダクト40を介してプラズマ処理器10の入口12から動圧室16に導入される。動圧室16に導入された被処理ガスは、2つのボリュームダンパ17,18によって圧力調節されたのち、6対の電極14の内部を通過する。このとき、各対の電極14においてはコロナ放電によってプラズマ雰囲気にオゾンが発生し、これがVOCを酸化分解する。なお、酸化分解によって生じた反応生成物は陰極14Nの内面に付着するが、陰極14Nの内面に導電性の部品を着脱可能に設けておけば、反応生成物は主としてこの部品に付着することになる。したがって、反応生成物の清掃は部品を交換することにより容易に行うことができる。
 6対の電極14を通過する際に、被処理ガスに含まれるVOC濃度は50%前後減少することが本発明者らの実験により確認されている。ただし、プラズマ処理器10の出口13に至った第1処理済みガスには、分解されなかったVOCが含まれている。第1処理済みガスは、第1ダクト30を通過して化学吸着器20の入口22に至り、ここから筐体21内に導入されたのち、化学吸着フィルタ24を通過する。このとき、第1処理ガスに含まれるVOC濃度は80%前後減少することが本発明者らの実験により確認されている。すなわち、プラズマ処理器10と化学吸着器20とによってVOC濃度が90%前後減少することが本発明者らの実験により確認されている。
 このようなプラズマ処理及び化学吸着処理によるVOCs除去処理を実行中に、ステップST3において、濃度センサ70による塗装ブースからの被処理ガスに含まれるVOC濃度と、温度センサ60,61によるプラズマ処理器10の入口12及び出口13の温度とを読み込む。そして、ステップST4において、制御器81は、濃度センサ70により検出された被処理ガスのVOC濃度cが爆発下限界Cm以上であるか否かを判断し、被処理ガスのVOC濃度cが爆発下限界値Cm以上である場合はステップST5へ進んで、直流電源80をOFFする制御信号を出力する。これにより電極14の印加電圧がゼロになるので、爆発の危険が解消される。なお、爆発下限界値Cmの値はVOCの材料によって相違する。例えばトルエンの爆発下限界値は1.3体積%、キシレンは1.0体積%である。したがって、塗装ブースからの被処理ガスの組成比を把握し、その値から適切な爆発下限界値を定めることが好ましい。なお、ステップST4において、被処理ガスのVOC濃度cが爆発下限界値Cm未満である場合は、ステップST5を実行せずにステップST6へ進む。
 ステップST6において、制御器81は、温度センサ60,61により検出されたプラズマ処理器10の入口12及び出口13の温度が、予め定められた所定温度t以上であるか否かを判断する。ここで、所定温度tとは、プラズマ処理器10の筐体11内が火災により燃焼していることを想定した温度である。温度センサ60,61により検出されたプラズマ処理器10の入口12及び出口13の温度が、予め定められた所定温度t以上である場合はステップST7へ進み、制御器81は、直流電源80をOFFする制御信号を出力する。また、火災の延焼を防止するために、制御器81は、第1防火ダンパ31及び第2防火ダンパ41を全閉にする制御信号を流体シリンダ32,42に出力する。これにより、電極14の印加電圧がゼロになるとともに、第1防火ダンパ31及び第2防火ダンパ41によって延焼が阻止されるので、短時間で鎮火させることができる。なお、ステップST6において、温度センサ60,61により検出されたプラズマ処理器10の入口12及び出口13の温度tが、予め定められた所定温度t未満である場合は、ステップST7を実行せずにステップST1へ戻る。
 ステップST1に戻り、塗装ブースが稼働中でない場合はステップST8へ進む。ステップST8において、制御器81は、第1防火ダンパ31及び第2防火ダンパ41を全開する信号を流体シリンダ32,42へ出力するとともに、ダンパ52を全開する信号を流体シリンダ53へ出力する。そして次のステップST9において、給気ファン51を作動させる制御信号をファンモータに出力する。これにより、給気ファン51の吸引口54から大気などのフレッシュエアーが、第3ダクト50を介してプラズマ処理器10の入口12に導入される。なお、塗装ブースの排気系統は排気ファンが停止しているため、吸引口54からのフレッシュエアーは塗装ブースの排気系統側へ逆流することはない。
 プラズマ処理器10の入口12から導入されたフレッシュエアーは、動圧室16から電極14内を通過して出口13に至る。このとき、フレッシュエアーにはVOCが殆ど含まれていないことから、電極14にて発生したオゾンガスがフレッシュエアーとともに出口13から第1ダクト30を介して化学吸着器20の入口22に至る。そして、オゾンガスを含むフレッシュエアーが化学吸着フィルタ24を通過する際に、化学吸着フィルタ24に吸着されたVOC成分がオゾンによって分解され、筐体21の出口23から大気に放出される。これにより、化学吸着フィルタ24の再生を行うことができる。なお、ステップST8及びST9による再生工程は、ステップST1によって塗装ブースが稼働するまで行われるから、化学吸着フィルタ24に吸着したVOC成分を、時間をかけて分解することができる。
 本発明の脱臭装置は特に限定されないが、以上のとおり、本実施形態の脱臭装置1によれば、以下の作用効果を奏する。
(1)本実施形態の脱臭装置1は、前段でプラズマ処理によるVOCの酸化分解を行い、後段において酸化分解しきれなかったVOCを化学吸着により除去する。したがって、効率よくVOCを除去することができる。また、化学吸着フィルタ24を後段に配置しているのでフィルタが目詰まりするといった問題がない。また物理吸着フィルタではなく化学吸着フィルタを後段に配置しているので捕捉性能が高くなる。
(2)本実施形態の脱臭装置1は、被処理ガスの脱臭処理中以外は、給気ファン51を作動してフレッシュエアーをプラズマ処理器10へ導入し、プラズマ処理器10を通過したフレッシュエアーを化学吸着フィルタ24へ導く。これにより、オゾンガスを含むフレッシュエアーが化学吸着フィルタ24を通過する際に、化学吸着フィルタ24に吸着されたVOC成分がオゾンによって分解され、筐体21の出口23から大気に放出される。したがって、化学吸着フィルタ24を着脱して交換するなどの作業を行うことなく、化学吸着器20に装着したままその再生を行うことができる。
(3)本実施形態の脱臭装置1は、濃度センサ70により検出された被処理ガスのVOC濃度cが爆発下限界値Cm以上の場合に、6対の電極14への電圧印加を禁止する信号を出力する。これにより、電極14の印加電圧がゼロになるので、爆発の危険が解消される。
(4)本実施形態の脱臭装置1は、筐体11の入口12と6対の電極14との間に動圧室16を設けるとともに、これら6対の電極14を通過する被処理ガスの流量をボリュームダンパ17,18により調節する。これにより、各電極14を通過する被処理ガスの流量が均一になるので、プラズマによる酸化分解反応の効率が高くなる。
(5)本実施形態の脱臭装置1は、温度センサ60,61により検出された温度tが所定値tより高温である場合に、6対の電極14への電圧印加を禁止する信号を出力する。これに代えて、又はこれに加えて、本実施形態の脱臭装置1は、温度センサ60,61により検出された温度tが所定値tより高温である場合に、第1防火ダンパ31及び第2防火ダンパ41を閉塞する信号を出力する。これにより、火災の抑制及び延焼を防止することができる。
1…脱臭装置
 10…プラズマ処理器
  11…筐体
  12…入口
  13…出口
  14…電極(14P…陽極,14N…陰極)
  15…処理室
  16…動圧室
  17,18…ボリュームダンパ
  19…仕切板
  19a…通孔
 20…化学吸着器
  21…筐体
  22…入口
  23…出口
  24…化学吸着フィルタ
 30…第1ダクト
 31…第1防火ダンパ
 32…流体シリンダ
 40…第2ダクト
 41…第2防火ダンパ
 42…流体シリンダ
 50…第3ダクト
 51…給気ファン
 52…ダンパ
 53…流体シリンダ
 54…吸引口
 60…温度センサ
 61…温度センサ
 70…濃度センサ
 80…直流電源
 81…制御器

Claims (7)

  1.  筐体、前記筐体に形成された被処理ガスの入口、前記筐体に形成された第1処理済みガスの出口、及びコロナ放電を発生させる一対の電極を有し、前記入口から導入された前記被処理ガスが前記コロナ放電によるプラズマ雰囲気を通過したのち前記出口に至るプラズマ処理器と、
     第1ダクトを介して前記プラズマ処理器の前記出口に接続され、前記第1処理済みガスが通過する化学吸着フィルタと、を備える脱臭装置。
  2.  前記入口に接続された第2ダクトと、
     前記第2ダクトを介して前記入口にフレッシュエアーを導入するファンと、をさらに備え、
     前記被処理ガスの脱臭処理中以外は、前記ファンを作動してフレッシュエアーを前記プラズマ処理器へ導入し、当該プラズマ処理器を通過したフレッシュエアーを前記化学吸着フィルタへ導く請求項1に記載の脱臭装置。
  3.  前記プラズマ処理器に導入される前記被処理ガスのVOC濃度を検出する濃度センサと、
     前記濃度センサにより検出されたVOC濃度が爆発下限界値以上の場合に、前記一対の電極への電圧印加を禁止する信号を出力する制御器と、をさらに備える請求項1又は2に記載の脱臭装置。
  4.  前記プラズマ処理器は、
      前記入口に対して並設された複数対の電極と、
      前記入口と前記複数対の電極との間に設けられた動圧室と、
      前記複数対の電極を通過する前記被処理ガスの流量を調節するボリュームダンパと、を含む請求項1~3のいずれか一項に記載の脱臭装置。
  5.  前記プラズマ処理器の入口及び出口の近傍に設けられた温度センサと、
      前記温度センサにより検出された温度が所定値より高温である場合に、前記一対の電極への電圧印加を禁止する信号を出力する制御器と、をさらに備える請求項1~4のいずれか一項に記載の脱臭装置。
  6.  前記入口に接続された第2ダクトと、
     前記プラズマ処理器の入口及び出口の近傍に設けられた温度センサと、
     前記第1ダクトに設けられ、当該第1ダクトを開閉する第1防火ダンパと、
     前記第2ダクトに設けられ、当該第2ダクトを開閉する第2防火ダンパと、
     前記温度センサにより検出された温度が所定値より高温である場合に、前記第1防火ダンパ及び前記第2防火ダンパを閉塞する信号を出力する制御器と、をさらに備える請求項1~4のいずれか一項に記載の脱臭装置。
  7.  前記被処理ガスは、車両塗装工場の塗装ブースの排気系統から排気されるガスである請求項1~6のいずれか一項に記載の脱臭装置。
PCT/JP2017/008492 2016-04-20 2017-03-03 脱臭装置 WO2017183326A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-084363 2016-04-20
JP2016084363 2016-04-20

Publications (1)

Publication Number Publication Date
WO2017183326A1 true WO2017183326A1 (ja) 2017-10-26

Family

ID=60116017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008492 WO2017183326A1 (ja) 2016-04-20 2017-03-03 脱臭装置

Country Status (1)

Country Link
WO (1) WO2017183326A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04197418A (ja) * 1990-11-28 1992-07-17 Senichi Masuda ガス浄化装置
JPH10325A (ja) * 1996-06-19 1998-01-06 Asahi Kogyosha:Kk 放電プラズマを用いた空気中揮発性有機化合物除去装置
JP2002168492A (ja) * 2001-12-05 2002-06-14 Mitsubishi Electric System & Service Co Ltd 電動シャッター兼用電動防火ダンパ付きウェザーカバー
JP2003114041A (ja) * 2001-10-05 2003-04-18 Toshio Sakurazawa 空気清浄器を備えたレンジフード
JP2005230627A (ja) * 2004-02-17 2005-09-02 National Institute Of Advanced Industrial & Technology 低温プラズマを用いる排ガスの浄化方法及びその浄化装置
JP2005305268A (ja) * 2004-04-20 2005-11-04 Fuji Industrial Co Ltd レンジフードファン用脱臭材及びその脱臭材を具備するレンジフードファン
JP2007061712A (ja) * 2005-08-30 2007-03-15 Seibu Giken Co Ltd 有害ガス処理装置
JP2007275789A (ja) * 2006-04-07 2007-10-25 Canon Inc プラズマガス処理装置
JP2008302348A (ja) * 2007-06-11 2008-12-18 Ooden:Kk 排ガス処理監視装置、排ガス処理装置及び排ガス処理監視方法
JP2008307436A (ja) * 2007-06-12 2008-12-25 Saitama Univ 汚染粒子処理装置
WO2010024216A1 (ja) * 2008-08-29 2010-03-04 公立大学法人大阪府立大学 排ガスの処理方法および処理装置
JP2011104547A (ja) * 2009-11-19 2011-06-02 O-Den Co Ltd 排ガス処理装置、及び排ガス処理方法
WO2014034742A1 (ja) * 2012-08-29 2014-03-06 新東工業株式会社 排ガス浄化設備及びその運転制御方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04197418A (ja) * 1990-11-28 1992-07-17 Senichi Masuda ガス浄化装置
JPH10325A (ja) * 1996-06-19 1998-01-06 Asahi Kogyosha:Kk 放電プラズマを用いた空気中揮発性有機化合物除去装置
JP2003114041A (ja) * 2001-10-05 2003-04-18 Toshio Sakurazawa 空気清浄器を備えたレンジフード
JP2002168492A (ja) * 2001-12-05 2002-06-14 Mitsubishi Electric System & Service Co Ltd 電動シャッター兼用電動防火ダンパ付きウェザーカバー
JP2005230627A (ja) * 2004-02-17 2005-09-02 National Institute Of Advanced Industrial & Technology 低温プラズマを用いる排ガスの浄化方法及びその浄化装置
JP2005305268A (ja) * 2004-04-20 2005-11-04 Fuji Industrial Co Ltd レンジフードファン用脱臭材及びその脱臭材を具備するレンジフードファン
JP2007061712A (ja) * 2005-08-30 2007-03-15 Seibu Giken Co Ltd 有害ガス処理装置
JP2007275789A (ja) * 2006-04-07 2007-10-25 Canon Inc プラズマガス処理装置
JP2008302348A (ja) * 2007-06-11 2008-12-18 Ooden:Kk 排ガス処理監視装置、排ガス処理装置及び排ガス処理監視方法
JP2008307436A (ja) * 2007-06-12 2008-12-25 Saitama Univ 汚染粒子処理装置
WO2010024216A1 (ja) * 2008-08-29 2010-03-04 公立大学法人大阪府立大学 排ガスの処理方法および処理装置
JP2011104547A (ja) * 2009-11-19 2011-06-02 O-Den Co Ltd 排ガス処理装置、及び排ガス処理方法
WO2014034742A1 (ja) * 2012-08-29 2014-03-06 新東工業株式会社 排ガス浄化設備及びその運転制御方法

Similar Documents

Publication Publication Date Title
KR101414039B1 (ko) 마이크로웨이브를 이용한 휘발성 유기화합물 제거시스템
KR100603810B1 (ko) 도장설비용 휘발성 유기화합물 처리장치
US9200804B2 (en) Device for eliminating harmful substance
JP4642814B2 (ja) 塗装乾燥炉の排気ガス脱臭処理システム
WO2010024321A1 (ja) 排気リサイクルシステム
JP2008522822A (ja) 光触媒の保護方法
JPWO2004112940A1 (ja) 酸化触媒と低温プラズマとを利用する気体処理方法及び気体処理装置
KR101468634B1 (ko) 전기집진기 및 흡착-저온산화촉매를 이용한 휘발성 유기화합물 및 악취제거 시스템
KR20210046900A (ko) VOCs 흡착 및 상온촉매산화 시스템
JP4972987B2 (ja) ガス処理装置
KR101544387B1 (ko) 공기 청정 장치
KR101799948B1 (ko) 전기집진기와 오존 및 촉매를 이용한 일체형 수평식 악취제거장치
WO2017183326A1 (ja) 脱臭装置
JP6671118B2 (ja) ガス処理装置
JP4235580B2 (ja) 誘電体
KR101703900B1 (ko) 악취 및 유해가스 제거를 위한 장치
CN203797809U (zh) 一种工业用空气净化器
JP4881925B2 (ja) 排気リサイクルシステム
KR102517007B1 (ko) 이동형 탈취 유닛 및 이동형 탈취 장치
KR101808443B1 (ko) 오염가스 처리장치 및 이를 이용한 오염가스 처리 방법
JP2007301480A (ja) Vocガスの処理装置及び該装置を用いたvocガスの処理方法
KR20180124821A (ko) 공기 청정화 모듈을 포함하는 공기 청정화 장치
CN212215036U (zh) 一种活性炭吸脱附催化燃烧系统
JP6545403B2 (ja) 脱臭装置
KR19980034985A (ko) 산업용 탈취 및 유해가스 제거장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785669

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP