WO2017183187A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2017183187A1
WO2017183187A1 PCT/JP2016/062785 JP2016062785W WO2017183187A1 WO 2017183187 A1 WO2017183187 A1 WO 2017183187A1 JP 2016062785 W JP2016062785 W JP 2016062785W WO 2017183187 A1 WO2017183187 A1 WO 2017183187A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
speed
speed command
pressure
motor
Prior art date
Application number
PCT/JP2016/062785
Other languages
English (en)
French (fr)
Inventor
浩一郎 上田
辰啓 松田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/546,692 priority Critical patent/US10108182B2/en
Priority to PCT/JP2016/062785 priority patent/WO2017183187A1/ja
Priority to JP2016563852A priority patent/JP6113378B1/ja
Priority to CN201680011697.XA priority patent/CN107534411B/zh
Publication of WO2017183187A1 publication Critical patent/WO2017183187A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/20Controlling the acceleration or deceleration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/20Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors for controlling one motor used for different sequential operations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43001Speed, feed, infeed, acceleration, stopping problems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43006Acceleration, deceleration control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45033Wire bonding, wire wrap

Definitions

  • the present invention relates to a motor control device.
  • a pressure head which is a mechanical load driven by a motor, is applied to a workpiece that is a pressing object. Processing is performed while applying.
  • an electronic substrate, a film, an IC chip, a semiconductor package, or a wafer corresponds to a workpiece
  • a metal to be molded, powder in a mold, or a resin corresponds to a workpiece.
  • a sensor represented by a load cell that detects force or pressure is attached to the pressure head or the mechanism that drives the pressure head so that the force or pressure applied to various workpieces becomes a desired value.
  • the movement of the motor is controlled.
  • the motor is an electric motor for driving the pressure head.
  • the industrial machine first places the pressure head away from the workpiece in a non-contact state, and feeds the pressure head so as to approach the workpiece.
  • the industrial machine performs a pressure operation based on a signal detected by a sensor that detects force or pressure. Therefore, in the industrial machine, it is necessary to perform control for switching from a feeding operation to a pressurizing operation by an appropriate means.
  • the machine and the work including the pressure head to generate a shock or vibration during the switching.
  • Patent Documents 1 and 2 disclose techniques for controlling the operation of the motor while switching from the feeding operation to the pressurizing operation.
  • Patent Document 1 discloses a technique for calculating a ratio between a torque command and a pressure sensor value after performing a feed operation by position control, and switching control to a pressure controller when the ratio is stabilized at a constant value. Has been.
  • Patent Document 2 when an injection screw of an injection molding machine is a driven body, a position deviation of the driven body with respect to a target position is detected, a first speed command based on the position deviation is calculated, and a target of the driven body is calculated.
  • a technique for generating a second speed command corresponding to a speed is disclosed.
  • Patent Document 2 generates a third speed command by performing proportional integral (PI) compensation processing on the injection pressure deviation, and is the smallest among the first speed command, the second speed command, and the third speed command.
  • PI proportional integral
  • Patent Document 1 has the following problems. It is necessary to switch the pressurization mechanism driven using a motor from a state that does not contact the workpiece to a state that contacts the workpiece. Since the moment of this switching is an unsteady situation, the ratio between the torque command value and the pressure sensor value is not constant, and the timing for switching to the pressurizing operation is delayed. As a result, unfavorable force and pressure are applied to the workpiece. There is a problem of acting. Furthermore, since the control based on the position controller is performed at the moment of contact with the workpiece, depending on the condition of the command value input to the position controller, the pressurizing mechanism collides with the workpiece vigorously at the moment of contact with the workpiece. There are things to do. Thereby, there exists a problem that a workpiece
  • the present invention has been made in view of the above, and shortens the time of the feeding operation, which is the operation until the pressure head approaches the workpiece, and further switching operation without shock from the feeding operation to the pressing operation.
  • An object of the present invention is to obtain a motor control device capable of realizing the above.
  • a motor control device of the present invention is a motor control device that controls a motor including an encoder, and a mechanical load driven by the motor is applied to a pressurization target.
  • a position command generator that generates a position command that is a command value that approaches and the final position of the mechanical load should be a certain distance before the object to be pressurized, and the position of the motor detected by the encoder follows the position command
  • a position control unit that outputs the first speed command.
  • the motor control device of the present invention includes a pressure command generation unit that generates a pressure command that is a command value of pressure or force to be applied to a pressurization target, and a machine load when the mechanical load is pressed against the pressurization target.
  • a pressure control unit that outputs a second speed command so that the pressure or force detected by the load follows the pressure command.
  • the motor control device includes any one of a creep speed that defines an upper limit of the speed of the motor when the mechanical load comes into contact with the object to be pressurized, a first speed command, and a second speed command.
  • Speed command selection unit that outputs as a speed command for the motor to operate, and a speed command that outputs a current command for supplying current to the motor so that the motor speed follows the speed command output by the speed command selection unit
  • the speed command selection unit selects the second speed command or a small value of the creep speed after the timing when the first speed command falls below the creep speed after selecting the first speed command.
  • the present invention it is possible to shorten the time of the feeding operation, which is an operation until the pressure head approaches the workpiece, and further, it is possible to realize a switching operation without a shock from the feeding operation to the pressure operation.
  • Functional block diagram of the control unit shown in FIG. The figure which shows an example of the command speed which differentiated the position command produced
  • FIG. 1 is a diagram illustrating a configuration of a motor control device according to Embodiment 1 of the present invention, a motor, a pressure head, and a workpiece.
  • the motor 1 is a control target of the motor control device 20 according to the first embodiment, and is a drive source that is driven by the current 11 supplied from the motor control device 20 to operate the pressure head 5.
  • the pressure head 5 is a mechanical load driven by the motor 1.
  • the workpiece 6 is a pressure object to be processed by being placed on the table 8 and processed when the pressure head 5 comes into contact with the pressure.
  • the encoder 2 attached to the motor 1 detects the rotational position of the motor 1 and the rotational speed of the motor 1, outputs the detected position as a position feedback signal 2A, and outputs the detected rotational speed as a speed feedback signal 2B.
  • a rotation shaft 1A of the motor 1 is provided with a ball screw 3 that is a mechanical drive unit for converting the rotational motion of the motor 1 into translational motion.
  • the motor 1 and the ball screw 3 are coupled by a coupling 4.
  • the pressurizing head 5 is joined to the ball screw 3, and the pressurizing process of the work 6 is realized by the pressurizing head 5 moving downward in the drawing and contacting the work 6.
  • the pressure head 5 is initially located at a distance from the workpiece 6.
  • the pressure head 5 performs a feeding operation to approach the workpiece 6, and then applies pressure to the workpiece 6 to apply the workpiece 6. Is realized.
  • the pressurizing head 5 is located at a certain distance from the workpiece 6, and the pressurizing head 5 is operated from this position to pressurize the workpiece 6. There is a need to do.
  • a load detection sensor 7 that detects force or pressure and outputs the detected force or pressure as a pressure feedback signal 12 is attached to the pressure head 5.
  • a load cell can be exemplified as the load detection sensor 7.
  • the load cell is a sensor that detects a force. However, if a value obtained by dividing the detected force by the cross-sectional area of the pressure head 5 is used, it can be considered that the pressure is detected.
  • the motor control device 20 has an operation information setting unit 21, and various information such as pressure information 21A, movement amount information 21B, and creep speed information 21C is input to the operation information setting unit 21.
  • the pressure information 21 ⁇ / b> A is information on pressure or force to be applied to the workpiece 6.
  • the movement amount information 21 ⁇ / b> B is a movement amount for moving to a position before the pressure head 5 comes into contact with the workpiece 6 after starting the operation.
  • the creep speed information 21 ⁇ / b> C is a creep speed that defines an upper limit of the speed when the pressure head 5 contacts the workpiece 6.
  • the movement amount information 21B and the creep speed information 21C input to the operation information setting unit 21 may be simply referred to as movement amount and creep speed.
  • the amount of movement for moving the pressure head 5 to a position before the pressure head 5 starts operation and before the contact with the work 6, that is, a position a certain distance before the work 6 is the pressure head.
  • Reference numeral 5 denotes a movement amount for starting the feeding operation from the initial position and moving to a position before the contact with the workpiece 6. This amount of movement can be easily set from the thickness of the workpiece 6 and the position where the pressure head 5 is initially present. Further, the creep speed is normally set to a small value that does not cause a problem even if it collides with the workpiece 6.
  • FIG. 2 is a diagram showing a screen display example for inputting various information to the operation information setting unit shown in FIG.
  • FIG. 2 shows an example of setting items for machining operations displayed on a display provided in the motor control device 20.
  • setting items include “pressure applied to the workpiece”, “movement amount for moving to the front of the workpiece”, and “creep speed”.
  • pressure information 21A, movement amount information 21B, and creep speed information 21C are input to the operation information setting unit 21 shown in FIG.
  • at least these three types of information are input to the operation information setting unit 21 in some form.
  • table information in which these various information is associated with each work 6 is stored in the memory in the motor control device 20.
  • information corresponding to the workpiece 6 is read from the table information stored in advance, and the information is stored in the pressure information 21A and the movement amount information shown in FIG.
  • the configuration may be used as 21B and creep speed information 21C.
  • the pressure information 21A which is information on the pressure or force to be applied to the workpiece 6, is not a single numerical value but may be information in the form of a time profile of the pressure or force to be pressurized depending on the workpiece 6. Good.
  • the control unit 22 in the motor control device 20 shown in FIG. 1 includes various information input to the operation information setting unit 21, a position feedback signal 2A output from the encoder 2, and a speed feedback signal 2B output from the encoder 2. And the current 11 supplied to the motor 1 is controlled based on the pressure feedback signal 12 output from the load detection sensor 7. By controlling the current 11 supplied to the motor 1, the feeding operation and the pressurizing operation of the pressurizing head 5 are realized.
  • control unit 22 that realizes the feeding operation and the pressurizing operation of the pressurizing head 5 will be described in detail.
  • FIG. 3 is a functional block diagram of the control unit shown in FIG.
  • the control unit 22 determines that the pressurizing operation sequence is started, the control unit 22 generates a position command 102 for performing the feeding operation based on the movement amount for moving the pressurizing head 5 to a position before the workpiece 6.
  • a position control unit 110 that outputs a first speed command 111 that is a speed at which the motor 1 should operate in order for the position feedback signal 2A to follow the position command 102.
  • the position command 102 generated by the position command generation unit 101 is a command such that the final position of the pressure head 5 is a position before the contact with the workpiece 6.
  • the position command generation unit 101 generates a position command based on the speed target value, acceleration time or deceleration time set in the position command generation unit 101, or a trapezoidal or triangular speed command obtained by differentiating the position command. Is generated.
  • the maximum speed or rated speed of the motor 1 is set as the speed target value, and the maximum speed at which the pressure head 5 can be operated is set, it is particularly suitable for shortening the operation time of the feeding operation. It becomes an operation pattern.
  • FIG. 4 is a diagram showing an example of a command speed obtained by differentiating the position command and the position command generated by the position command generation unit shown in FIG.
  • the vertical axis is a position command
  • the horizontal axis is time.
  • 4A shows the initial position, which is the position of the pressure head 5 before starting the feeding operation, and the position of the pressure head 5 in a place away from the workpiece 6 after starting the feeding operation.
  • the front position of the work and the amount of movement d by which the pressure head 5 moves from the initial position to the front position of the work are shown.
  • the vertical axis in FIG. 4 (B) is the command speed that is the time derivative of the position command, and the horizontal axis is the time.
  • FIG. 4B shows an example in which the command speed is trapezoidal. Note that the command speed is not limited to the trapezoidal shape, but may be an S-shaped acceleration / deceleration pattern. Any pattern may be used as long as the acceleration operation is performed from the stop state and then the deceleration operation is performed to return to the stop state. It may be anything.
  • the area of the portion surrounded by the trapezoidal command speed and the time axis corresponds to the moving amount d by which the pressure head 5 moves from the initial position to the position before the workpiece.
  • FIG. 5 is a diagram showing a configuration example of the position control unit shown in FIG.
  • the control example of the position control unit 110 can be exemplified by proportional (P) control in which the difference between the position command 102 and the position feedback signal 2A is multiplied by the gain Kx and the first speed command 111 is output.
  • P proportional
  • control unit 22 shown in FIG. 3 includes a pressure command generation unit 122 that generates a pressure command 123 serving as a reference signal for performing pressure control based on the pressure information 21A.
  • the pressure command generator 122 When the pressure information 21 ⁇ / b> A to be applied to the workpiece 6 is a single numerical value, the pressure command generator 122 generates a step signal having a magnitude of the pressure value to be applied to the workpiece 6 as the pressure command 123.
  • the pressure command generator 122 When the pressure information 21A is input as a time profile, the pressure command generator 122 generates a pressure command 123 that takes the time profile after the pressurization start time.
  • control unit 22 shown in FIG. 3 outputs a second speed command 121 that is a speed at which the motor 1 should operate so that the pressure feedback signal 12 follows the pressure command 123 to be applied to the workpiece 6. 120.
  • FIG. 6 is a diagram showing a configuration example of the pressure control unit shown in FIG.
  • the control example of the pressure control unit 120 can exemplify P control that outputs the second speed command 121 by multiplying the difference between the pressure command 123 and the pressure feedback signal 12 by the gain Ka as shown in FIG.
  • the gain Ka is set to an appropriate value so that control performance as pressure control is secured to some extent so that overshoot or oscillation does not occur when the pressurizing operation is performed.
  • the pressure control unit 120 calculates the second speed command 121 by performing pressure control calculation from the reception of the start signal 23 shown in FIG.
  • the control unit 22 shown in FIG. 3 includes a speed command selection unit 130.
  • the speed command selection unit 130 receives any one of the first speed command 111, the creep speed information 21C, and the second speed command 121 from when the start signal 23 shown in FIG. Is selected, the speed to be given to the motor 1 is selected, and the speed command 131 is output. The detailed operation of the speed command selection unit 130 will be described later.
  • the control unit 22 shown in FIG. 3 includes a speed control unit 140 that outputs a current command 141 that serves as a reference signal for the current 11 that flows through the motor 1 so that the speed feedback signal 2B follows the speed command 131.
  • a configuration example of the speed control unit 140 is as follows. That is, the speed control unit 140 outputs a current command 141 by performing PI control on the difference between the speed command 131 and the speed feedback signal 2B.
  • the control in the speed control unit 140 is not limited to PI control, but may be proportional integral differential (PID) control.
  • control unit 22 shown in FIG. 3 includes a current control unit 150 that supplies the current 11 corresponding to the current command 141 to the motor 1.
  • a configuration example of the current control unit 150 is as follows. That is, the current control unit 150 includes a converter circuit that converts an AC power source into a DC power source or an inverter circuit that converts a DC power source into a desired AC voltage command. The current 11 is supplied so as to follow the command 141.
  • FIG. 7 is a flowchart for explaining the operation of the motor control apparatus according to the first embodiment of the present invention.
  • the process shown in FIG. 7 is described on the assumption that it is executed every fixed control sampling period.
  • control unit 22 receives pressure information 21 ⁇ / b> A to be applied to the workpiece 6, movement amount information 21 ⁇ / b> B for moving the pressure head 5 to a position before the workpiece 6, and creep speed information 21 ⁇ / b> C from the operation information setting unit 21. take in.
  • control unit 22 determines whether or not the start signal 23 is input. When the start signal 23 is not input (S2, No), the process of S2 is performed again to determine whether the start signal 23 is input. When the start signal 23 is input (S2, Yes), the control unit 22 performs the process of S3.
  • the position command generator 101 calculates a position command 102 for the pressure head 5 to move according to the movement amount given in S1. That is, the position command generation unit 101 calculates a position command value for positioning in each sampling period.
  • a specific example of the position command 102 is as described with reference to FIG.
  • the position control unit 110 calculates the first speed command 111 based on the position command 102 and the position feedback signal 2A.
  • the pressure control unit 120 calculates a second speed command 121 that is a speed command for the pressure feedback signal 12 to follow the pressure command 123.
  • the speed command selection unit 130 determines whether the deceleration operation has been started. As a specific method for determining whether or not the deceleration operation is started, a method for determining whether or not the command speed is smaller than the previous sampling time can be exemplified.
  • the speed command selection unit 130 If the deceleration operation is not started in S6 (S6, No), the speed command selection unit 130 outputs the first speed command 111 as the speed command 131 in S7.
  • control unit 22 executes the processing after S3 again in the next control sampling cycle.
  • the speed command selection unit 130 When the deceleration operation is started in S6 (S6, Yes), the speed command selection unit 130 performs the process of S8. In S8, the speed command selection unit 130 compares the first speed command 111 and the creep speed, and when the first speed command 111 is larger than the creep speed (S8, Yes), the process of S7 is performed. In S7, the first speed command 111 is selected as described above.
  • position control follow-up processing is performed.
  • the position control unit 110 sets the position command 102 to the value of the current position feedback signal 2A. Perform rewrite processing.
  • the speed command selection unit 130 compares the second speed command 121 with the creep speed. When the creep speed is less than the second speed command 121 (S10, Yes), the speed command selection unit 130 performs the process of S11. In S ⁇ b> 11, the speed command selection unit 130 outputs the creep speed as the speed command 131.
  • the speed command selection unit 130 When the creep speed exceeds the second speed command 121 in S10 (S10, No), that is, when the second speed command 121 is smaller than the creep speed, the speed command selection unit 130 performs the process of S12. In S ⁇ b> 12, the speed command selection unit 130 outputs the second speed command 121 as the speed command 131.
  • the control part 22 which completed the process of S11 or S12 performs the process of S13.
  • the control unit 22 determines whether or not the pressurizing operation is finished.
  • a method for determining whether or not the pressurizing operation has been completed it is determined whether or not a constant pressure has been continuously applied to the workpiece 6 for a certain period of time, that is, whether or not a certain pressure signal has continued for a certain period of time. A method can be illustrated.
  • control unit 22 executes the processes after S9 again in the next control sampling cycle.
  • pressurization is completed in S12 (S13, Yes)
  • a series of feed operations and pressurization operations are completed.
  • FIG. 8 is a diagram showing speed commands and pressures calculated by the motor control apparatus according to Embodiment 1 of the present invention.
  • FIG. 8A shows waveforms of various speed commands calculated by the motor control device.
  • the vertical axis is a speed command
  • the horizontal axis is time.
  • FIG. 8B shows a pressure waveform.
  • the vertical axis in FIG. 8B is pressure
  • the horizontal axis is time. 8A and 8B, the timing at which the control unit 22 in FIG.
  • a dot-and-dash line A represents the first speed command 111 shown in FIG.
  • the broken line B represents the creep speed information 21C shown in FIG. (3)
  • C in the two-dot chain line represents the second speed command 121 shown in FIG. (4)
  • a solid line D represents a speed command 131 selected by the speed command selection unit 130 shown in FIG. 3 at each time, and is hereinafter referred to as a command D.
  • FIG. 8B is a target pressure, and represents the pressure command 123 shown in FIG.
  • a solid line F shown in FIG. 8B represents the pressure feedback signal 12 shown in FIG.
  • time t1 is a time during which command A is smaller than speed B during the deceleration operation
  • time t2 is a time when the pressure head comes into contact with the workpiece and pressure starts to increase
  • time t3 is a command C. Represents a time when becomes smaller than the speed B
  • time t4 represents a time for the pressure to reach the target pressure.
  • the control unit 22 that has received the start signal 23 calculates a first speed command 111 in S3 to S4 shown in FIG. If the followability to the position command 102 in the position control unit 110 is sufficiently high, the command speed obtained by differentiating the position command with respect to time and the first speed command 111 can be regarded as equal. In FIG. 8, the first speed command 111 is the command speed. It is illustrated as being almost equal to.
  • the portion surrounded by the command A and the time axis in FIG. 8 corresponds to the amount of movement for the pressure head 5 to move to the front position of the workpiece 6.
  • the command A starts acceleration at the timing when the start signal 23 is received, and thereafter starts deceleration after maintaining a constant speed for a while.
  • the speed command selection unit 130 selects the command A as the command D regardless of the magnitude of the speed B and the command C by the processing of S6 and S7 in FIG. Even if the command A is being decelerated, the speed command selection unit 130 selects the command A if the command A is greater than the speed B by the processes of S7 and S8 in FIG.
  • the command A is decelerating and the command A is the speed B or less.
  • the speed command selection unit 130 selects a speed B smaller than the command C as the command D by the processing of S10 and S11 shown in FIG.
  • the pressure head 5 does not contact the workpiece 6 at time t1.
  • the motor 1 is controlled by position control so as to always follow the command A which is a predetermined time profile, there is an effect that a high-speed feed operation can be realized.
  • the pressure head 5 contacts the workpiece 6.
  • the signal F starts to increase from time t2, which is the contact timing.
  • the deviation between the pressure command and the pressure feedback decreases.
  • the command C is gradually reduced by the action of the pressure control unit 120 that calculates the command C based on the pressure deviation.
  • the command C Since the command C becomes smaller than the speed B by the processing of S10 and S12, the command C is selected as the speed command 131 by the speed command selection unit 130 after time t3.
  • the moving speed of the pressure head 5 follows the position command.
  • the speed of the motor 1 is controlled to be the first speed, and after the timing when the first speed falls below the creep speed, the pressure or force detected by the load detection sensor 7 is the pressure or force detected by the load detection sensor 7.
  • Control is performed so that the second speed following the above or the creep speed is smaller.
  • the feeding operation to the workpiece is performed by performing the positioning operation at a position before the pressure head 5 is not in contact with the workpiece 6 without contacting the workpiece 6.
  • the feeding operation can be performed at a high speed, and the tact time related to machining can be shortened accordingly.
  • the pressure head 5 does not come into contact with the work 6, and therefore the work 6 and the pressure head 5 are not damaged.
  • the motor control device 20 operates at the smaller speed B or command C.
  • the pressure head 5 contacts the workpiece 6 at a speed equal to or lower than the speed B, so that it is possible to shift to the pressure operation of the pressure head 5 without giving an impact to the workpiece 6.
  • the smaller one of the speed B and the command C is selected instead of the command A at the timing of the time t1.
  • the speed B tends to be smaller than the command C.
  • the speed B is selected at the time t1
  • the command D is continuous at the time t1.
  • the command D is switched from the speed B to the command C at the time t3 by sequentially selecting the smaller one of the speed B and the command C as the command D. Therefore, even after the time t1 Command D becomes continuous.
  • the command D is continuous from the start of the feeding operation to the completion of the pressurizing operation, and the waveform as shown in FIG. 8 is realized, and a series of operations can be smoothly performed without causing shock and vibration.
  • the first speed command 111, the creep speed information 21C, and the second speed command 121 are sequentially switched in order to realize a series of operations of a feeding operation and a pressurizing operation. And input to the speed controller 140 as a speed command 131.
  • a switching flag is prepared, and the first speed command 111, the creep speed information 21C, and the second speed command 121 are switched according to the timing of the switching flag, and further, the first speed command 111 It is also conceivable to prevent discontinuity that occurs when the creep speed information 21C and the second speed command 121 are switched by using a filter typified by a low-pass filter.
  • such a method has a characteristic that a low-pass filter is inserted into the position control loop and the pressure control loop by using a filter. Since the low-pass filter deteriorates the phase characteristic in a high frequency region, the loop characteristic of the position control and the pressure control is thereby deteriorated, causing a problem that overshoot and vibration occur in the position and pressure response.
  • the first speed command 111, the creep speed information 21C, and the second speed command 121 are automatically generated at appropriate timing without switching using a filter. Therefore, there is no problem that overshoot and vibration occur in the position and pressure response.
  • the user who uses the motor control device 20 of the first embodiment inputs only the pressure information 21A, the movement amount information 21B, and the creep speed information 21C. It is sufficient that the setting work can be reduced.
  • position control follow-up processing is performed while the feed operation and the pressurizing operation are being performed, that is, while the creep speed information 21C or the second speed command 121 is selected as the speed command 131.
  • the creep speed information 21C or the second speed command 121 is selected as the speed command 131.
  • the first speed command 111 is the command speed as shown in FIG. Can be considered equal.
  • the control unit 22 determines the position command time instead of the first speed command 111.
  • the command speed and creep speed information 21C may be compared using a command speed that is a differential. Even if comprised in this way, the operation
  • the speed command 131 can be regarded as being equal to the first speed command 111 and further equal to the speed feedback signal 2B.
  • the speed feedback signal 2B is used instead of the first speed command 111 and the speed feedback signal 2B is compared with the creep speed information 21C in S8 of FIG. 7, the operation shown in FIG. And the same effects as the above can be obtained.
  • the pressure feedback signal 12 is used as the output of the load detection sensor 7 .
  • the same operation can be realized and the same effect can be obtained even if the force feedback signal is used.
  • the pressure command 123 is replaced with a force command signal, and the pressure control unit 120 outputs a second speed command 121 by multiplying the difference between the force command signal and the force feedback signal by a gain. It becomes the composition to do. The same applies to other embodiments described later.
  • Embodiment 2 FIG.
  • the first speed command 111 is calculated based on the difference between the position command 102 and the position feedback signal 2 ⁇ / b> A has been described. it can.
  • the second embodiment an example using another position control method will be described.
  • the same reference numerals are given to the same parts as those in the first embodiment, and the description thereof is omitted, and only different parts will be described here.
  • FIG. 9 is a diagram illustrating a configuration example of the position control unit provided in the motor control device according to the second embodiment of the present invention.
  • the position control unit 110-2 shown in FIG. 9 is configured to perform position control using feedforward control together.
  • the position control unit 110-2 uses the low-pass filter 252 to process the position command 102 obtained by differentiating the feedback speed command 2A1, which is a signal obtained by multiplying the deviation between the position command 102 and the position feedback signal 2A by the gain factor Kx, by the differentiation process 251.
  • a value obtained by adding the feedforward speed command 252-1 is output as the first speed command 111.
  • the low-pass filter 252 is used to calculate the feedforward speed command 252-1.
  • the feedforward speed command 252-1 is calculated in a form independent of the position feedback signal 2A. Therefore, the feedforward speed command 252-1 does not deteriorate the frequency characteristics in the control loop, particularly the phase characteristics in the high frequency range.
  • the position control unit 110-2 may be configured to omit the processing by the low-pass filter 252.
  • the feedforward speed command 252-1 is a calculation result obtained by differentiating the position command 102, or a calculation method is not limited to the above as long as it is equivalent to a calculation result obtained by performing differentiation processing and low-pass filter processing. Anything is acceptable.
  • the feedforward speed command 252-1 is added to the first speed command 111, so that the feedforward speed command 252-1 is directly input to the speed control unit 140. Therefore, the follow-up characteristic of the position feedback signal 2A with respect to the position command 102 is improved, and the approaching action to the pressurized object can be realized in a shorter time.
  • the position controller 110 that calculates the first speed command 111 using only the position feedback signal 2A may cause motor oscillation when the gain Kx is increased.
  • the position control unit 110-2 using the feedforward speed command 252-1 can suppress the occurrence of the above problems.
  • the behavior is such that a speed feedback signal close to the feedforward speed command 252-1 is obtained.
  • a series of feeding operations and pressurizing operations can be realized by the processing shown in the flowchart of FIG.
  • the first speed command 111 which is the total value of the feedforward speed command 252-1 and the feedback speed command 2A1 shown in FIG. 9 is used.
  • a command speed that is a time derivative of the position command or a speed feedback signal may be used instead of the first speed command 111 of S8 shown in FIG.
  • the feedforward speed command 252-1 can be used in addition to the command speed and the speed feedback signal 2B in S8 of FIG.
  • the first speed command 111 is a signal that depends on the position feedback signal 2A, but the feedforward speed command 252-1 is generated only by the position command 102 and is generated without depending on the position feedback signal 2A or the speed feedback signal 2B. Is done.
  • the position feedback signal 2A is a signal detected by the encoder 2 shown in FIG. 1, and may be affected by noise depending on the characteristics and performance of the encoder 2 and the environment in which the encoder 2 is installed. If noise is added to the position feedback signal 2A, the first speed command 111 is also affected by the noise. In S8 of FIG.
  • the feedforward speed command 252-1 is not affected by noise.
  • the feedforward speed command 252-1 is not affected by the noise generated by the encoder 2 as in the case of the feedforward speed command 252-1. Since the command is 252-1, the operation can be switched at a more appropriate timing by using the feedforward speed command 252-1 in S8 of FIG.
  • Embodiment 3 In the first embodiment, the configuration example in which the second speed command 121 is generated by the P control has been described. In the third embodiment, a configuration example in which the second speed command 121 is generated by the PI control will be described.
  • the same reference numerals are given to the same parts as those in the first embodiment, and the description thereof is omitted, and only different parts will be described here.
  • FIG. 10 is a diagram illustrating a configuration example of a pressure control unit provided in the motor control device according to the third embodiment of the present invention.
  • the pressure control unit 120-3 shown in FIG. 10 is configured to improve pressure responsiveness by PI control.
  • a pressure deviation 301 that is a difference between the pressure command 123 and the pressure feedback signal 12 is input to the integrator 303.
  • 0 is input to the integrator 303 when the switch of the integrator input selection unit 302 is on the b side. Note that when the integrator input selection unit 302 sets the switch to the a side or the b side will be described later.
  • the integrator 303 performs integration processing on the input signal.
  • s in the figure represents a Laplace operator, and 1 / s represents an integration operation.
  • the pressure control unit 120-3 calculates the integral control output 305 by multiplying the output of the integrator 303 by the pressure integral gain Kai 304.
  • the pressure control unit 120-3 calculates the second speed command 121 by multiplying the signal obtained by adding the pressure deviation 301 to the integral control output 305 by the gain Ka that is the pressure proportional gain 306.
  • FIG. 11 is a flowchart for explaining the operation of the motor control apparatus according to the third embodiment of the present invention.
  • the flowchart shown in FIG. 11 includes the same process as the flowchart shown in FIG. 7, and the control unit 22 of the motor control device according to the third embodiment performs the process along basically the same flow as the flowchart shown in FIG. 7. I do.
  • a different part from the flowchart of FIG. 7 is as follows. (1) Before selecting the first speed command 111 as the speed command 131 in S7, the process of S20 is inserted, and the process of turning off the integration operation of the pressure control unit 120-3 is performed in S20. (2) Before the process of selecting the creep speed as the speed command 131 in S11, the process of turning off the integration operation of the pressure control unit 120-3 is performed in S20. (3) Before the second speed command 121 is selected as the speed command 131 in S12, processing for turning on the integration operation of the pressure control unit 120-3 is performed in S21.
  • the switch of the integrator input selection unit 302 is moved to the b side, and the input of the integrator 303 is set to 0. And the processing for invalidating the operation of the integrator 303.
  • a signal obtained by multiplying the difference between the pressure command 123 and the pressure feedback signal by the gain Ka that is the pressure proportional gain 306 is output as the second speed command 121.
  • the ON operation of the pressure control unit 120-3 is a process of performing a normal integration operation by setting the switch of the integrator input selection unit 302 to the a side in the pressure control unit 120-3 of FIG. Indicates.
  • the integration operation of the pressure control unit 120-3 works, and in other cases, that is, the first speed command 131 as the first speed command 131.
  • the speed command 111 or the creep speed is selected, the integration operation of the pressure control unit 120-3 can be stopped.
  • the pressure deviation 301 is integrated by integrating the pressure deviation 301, and the operation amount, that is, the speed command 131 of the motor 1 is increased in accordance with the generated pressure deviation 301. Reduce the time to complete. Assuming that the integration operation is always performed unlike the third embodiment, the integration operation is effective even during the feeding operation when the pressure head 5 is in a non-contact state with the workpiece 6. When the pressure head 5 is not in contact with the workpiece 6, no pressure is generated, that is, the pressure is 0. Therefore, when the pressure head 5 is not in contact with the workpiece 6, the output of the integrator 303 is excessive. Become. Along with this, the second speed command 121 also becomes excessive.
  • the integration operation of the pressure control unit 120-3 is effective only when the second speed command 121 is selected as the speed command 131. Further, according to the pressure control unit 120-3 of the third embodiment, when the first speed command 111 or the creep speed is selected as the speed command 131, only the pressure proportional gain 306 of the pressure control unit 120-3 is effective. To be. Therefore, the above problem can be prevented.
  • the pressure control unit is configured by PI control including an integral operation, so that the follow-up characteristics of the pressure feedback control with respect to the pressure command are improved, thereby adding the workpiece. The pressure operation is performed with high accuracy.
  • the integration operation of the pressure control unit 120-3 is always operated, the output of the integrator increases, and at the moment when the speed command 131 is switched to the second speed command 121, the pressure overshoots and vibrates. There is also a problem that will occur.
  • the pressure control unit 120-3 is configured to include an integration operation, pressure overshoot and vibration can be prevented.
  • the pressure control unit 120-3 may use control including phase delay compensation or phase lead compensation for the purpose of improving the response at the time of transient in addition to the integration operation.
  • FIG. 12 is a diagram showing a modification of the pressure control unit shown in FIG. In the pressure control unit 120-3A shown in FIG. 12, the phase lag advance compensation unit 311 that is a phase compensation unit performs phase lag compensation or phase lead compensation for the pressure deviation 301.
  • ⁇ 1 and ⁇ 2 are parameters of the phase lag advance compensation unit 311.
  • the phase lag advance compensation unit 311 performs phase lag compensation when ⁇ 1 ⁇ 2 , and performs phase advance compensation when ⁇ 1 > ⁇ 2 .
  • the phase lag advance compensation selection unit 312 selects the output of the phase lag advance compensation unit 311 when the switch is on the a side, and selects the pressure deviation 301 when the switch is on the b side.
  • the pressure control unit 120-3A multiplies these calculation results by the pressure proportional gain 306 to calculate the second speed command 121. As described above, the pressure control unit 120-3A stops the phase lag compensation or the phase lead compensation except when the speed command selection unit 130 selects the second speed command 121.
  • the control unit 22 using the pressure control unit 120-3A in FIG. 12 basically operates according to the flowchart in FIG. However, the processing of S20 in FIG. 11 invalidates the phase lag advance compensation. Specifically, the phase delay advance compensation selection unit 312 in FIG. 12 is set to the b side, and the processing in S21 enables the phase delay advance compensation, that is, the phase delay advance compensation selection unit 312 in FIG. Is replaced with the process of setting the switch to the a side.
  • phase lag compensation or phase lead compensation when the pressure head 5 is not in contact with the workpiece 6 as in the feeding operation, if phase lag compensation or phase lead compensation is always performed, a similar problem occurs when the integral operation is always operated.
  • the pressure control unit 120-3A in FIG. 12 includes phase lag compensation or phase lead compensation, when the pressure head 5 is not in contact with the workpiece 6 as in the feed operation, that is, the first speed as the speed command.
  • the command 111 or the creep speed is selected, the phase lag compensation or the phase lead compensation operation is not performed, and only the pressure proportional gain 306 of the pressure control unit 120-3A is enabled, and the occurrence of the above problem is prevented. Can do.
  • the pressure control unit is configured by phase delay compensation or phase advance compensation during pressure control in which the second speed command is selected, the follow-up characteristics of the pressure feedback control with respect to the pressure command are improved. The pressurizing operation is performed with high accuracy.
  • the third embodiment basically differs from the first and second embodiments only in the configuration of the pressure control unit 120-3A, so that the same effects as those described in the first and second embodiments can be obtained. Can do.
  • FIG. 13 is a hardware configuration diagram of the motor control device according to the first to third embodiments of the present invention.
  • the motor control device 20 of each embodiment includes an input / output unit 81, a storage unit 82 and a processor 83, and the input / output unit 81, the storage unit 82 and the processor 83 are connected to each other via a data bus 84.
  • the input / output unit 81 is an interface circuit for storing information transmitted from the external device in the storage unit 82 and for the processor 83 to transmit / receive information to / from the external device.
  • the position feedback signal 2A, the speed feedback signal 2B, the pressure information 21A, the movement amount information 21B, the creep speed information 21C and the pressure feedback signal 12 shown in FIG. It is output to the motor 1 via the input / output unit 81.
  • Examples of the type of the storage unit 82 include RAM (Random Access Memory), ROM (Read Only Memory), and SSD (Solid State Drive).
  • the storage unit 82 stores a program for the processor 83.
  • the storage unit 82 temporarily stores various information input via the input / output unit 81.
  • the processor 83 is a circuit such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • the processor 83 includes the control unit 22 illustrated in FIG. 3, and the control unit 22 is realized by the processor 83 executing the program stored in the storage unit 82.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Presses (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

モータ制御装置の制御部22は、位置指令を生成する位置指令生成部101と、検出位置が位置指令に追従するように第1の速度指令111を出力する位置制御部110と、圧力指令を生成する圧力指令生成部122と、検出された圧力または力が圧力指令に追従するように第2の速度指令121を出力する圧力制御部120と、クリープ速度と、第1の速度指令111と、第2の速度指令121との何れか1つを選択し、モータが動作すべき速度指令として出力する速度指令選択部130と、速度指令選択部130が出力する速度指令にモータの速度が追従するようにモータに電流を供給する電流指令を出力する速度制御部140とを備え、速度指令選択部130は、第1の速度指令111を選択した後、第1の速度指令111がクリープ速度を下回ったタイミングで、第2の速度指令121またはクリープ速度を選択する。

Description

モータ制御装置
 本発明は、モータ制御装置に関するものである。
 半導体製造工程に使用されるボンディング装置と、プレス成形または粉体成形を行う各種成形機といった産業機械では、モータによって駆動される機械負荷である加圧ヘッドを、加圧対象物であるワークに力を印加しながら加工を行うことが行われている。ここでボンディング装置においては、電子基板、フィルム、ICチップ、半導体パッケージ、またはウエハがワークに相当し、成形機においては、成形を行う金属、金型内の粉体、または樹脂がワークに相当する。ボンディング装置または成形機は、加圧ヘッドまたは加圧ヘッドを駆動する機構中に、力または圧力を検出するロードセルを代表とするセンサを取付け、各種ワークに加わる力または圧力が所望の値になるように、モータの動きを制御する。当該モータは加圧ヘッドを駆動するための電動機である。
 上記産業機械は、最初に加圧ヘッドをワークから非接触の状態で離れた場所に位置させ、この加圧ヘッドをワークに接近するように送り動作を行う。やがて加圧ヘッドがワークと接触すると、その後、上記産業機械は、力または圧力を検出するセンサで検出される信号をもとに加圧動作を行う。よって上記産業機械においては、送り動作から加圧動作へと適切な手段で切り換えを行う制御が必要となる。また当然ながら、この切り換えの際に、ショックまたは振動を生じさせるのは、加圧ヘッドを含む機械とワークにとって好ましくない。
 このように送り動作から加圧動作に切り換えを行いながら、モータの動作を制御する技術が特許文献1,2に開示されている。特許文献1には、送り動作を位置制御で行った後、トルク指令と圧力センサ値との比を計算し、この比が一定値で安定した時点で、圧力制御器に制御を切替える技術が開示されている。特許文献2には、射出成形機の射出スクリューを被駆動体とする際、被駆動体の目標位置に対する位置偏差を検出し、位置偏差に基づく第1速度指令を算出し、被駆動体の目標速度に対応した第2速度指令を発生する技術が開示されている。さらに特許文献2には、射出圧力偏差に比例積分(Proportinal Integral:PI)補償処理を施して第3速度指令を生成し、第1速度指令、第2速度指令、第3速度指令の中で最小の速度指令値を、モータを駆動するための速度指令にする技術が開示されている。
特開2007-82279号公報 特開2005-178285号公報
 しかしながら特許文献1に開示される技術では以下のような問題がある。モータを用いて駆動される加圧機構が、ワークに非接触な状態からワークに接触する状態へと切替えていく必要がある。この切替えの瞬間は、非定常な状況であるため、トルク指令値と圧力センサ値との比は一定にならず、加圧動作に切替えるタイミングが遅れ、この結果、ワークに好ましくない力および圧力が作用するという問題がある。さらに、ワークに接触した瞬間は、位置制御器に基づく制御が行われているため、位置制御器に入力する指令値の条件次第では、ワークに接触した瞬間に加圧機構がワークに勢いよく衝突することがある。これにより、ワークまたは加圧ヘッドが損傷する可能性があるという問題がある。
 また特許文献2に開示される技術では、第1速度指令、第2速度指令および第3速度指令の中から最小の値が選択されるため、加圧ヘッドの動きが全体的に遅くなってしまう。これにより、加圧ヘッドがワークに到達するまでの時間が長くなり、加圧加工を行う機械装置の生産性が低下するという問題がある。
 本発明は、上記に鑑みてなされたものであって、加圧ヘッドがワークに接近するまでの動作である送り動作の時間を短縮させ、さらに送り動作から加圧動作へのショックのない切り換え動作を実現できるモータ制御装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明のモータ制御装置は、エンコーダを備えたモータを制御するモータ制御装置であって、モータによって駆動される機械負荷が加圧対象物に接近し、かつ、機械負荷の最終位置が加圧対象物の一定距離手前となるべき指令値である位置指令を生成する位置指令生成部と、エンコーダで検出されたモータの位置が位置指令に追従するように第1の速度指令を出力する位置制御部とを備える。本発明のモータ制御装置は、加圧対象物に加えるべき圧力または力の指令値である圧力指令を生成する圧力指令生成部と、機械負荷が加圧対象物に押し当てられたときに、機械負荷で検出された圧力または力が圧力指令に追従するように第2の速度指令を出力する圧力制御部とを備える。本発明のモータ制御装置は、機械負荷が加圧対象物に接触する際のモータの速度の上限を規定するクリープ速度と、第1の速度指令と、第2の速度指令との何れか1つを選択し、モータが動作すべき速度指令として出力する速度指令選択部と、速度指令選択部が出力する速度指令にモータの速度が追従するようにモータに電流を供給する電流指令を出力する速度制御部とを備える。速度指令選択部は、第1の速度指令を選択した後、第1の速度指令がクリープ速度を下回ったタイミング以降では、前記第2の速度指令または前記クリープ速度の小さい値を選択することを特徴とする。
 本発明によれば、加圧ヘッドがワークに接近するまでの動作である送り動作の時間を短縮させ、さらに送り動作から加圧動作へのショックのない切り換え動作を実現できる、という効果を奏する。
本発明の実施の形態1に係るモータ制御装置の構成とモータと加圧ヘッドとワークとを示す図 図1に示す動作情報設定部に各種情報を入力するための画面表示例を表す図 図1に示す制御部の機能ブロック図 図3に示される位置指令生成部で生成される位置指令と位置指令を微分した指令速度の一例を示す図 図3に示される位置制御部の構成例を示す図 図3に示される圧力制御部の構成例を示す図 本発明の実施の形態1に係るモータ制御装置の動作を説明するフローチャート 本発明の実施の形態1に係るモータ制御装置で算出される速度指令と圧力を表す図 本発明の実施の形態2に係るモータ制御装置が備える位置制御部の構成例を示す図 本発明の実施の形態3に係るモータ制御装置が備える圧力制御部の構成例を示す図 本発明の実施の形態3に係るモータ制御装置の動作を説明するフローチャート 図10に示す圧力制御部の変形例を示す図 本発明の実施の形態1から3に係るモータ制御装置のハードウェア構成図
 以下に、本発明の実施の形態に係るモータ制御装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は本発明の実施の形態1に係るモータ制御装置の構成とモータと加圧ヘッドとワークとを示す図である。モータ1は本実施の形態1に係るモータ制御装置20の制御対象であり、モータ制御装置20から供給される電流11により駆動し、加圧ヘッド5を動作させるための駆動源である。加圧ヘッド5はモータ1により駆動される機械負荷である。ワーク6はテーブル8に設置され、加圧ヘッド5が接触して加圧することで加工される加圧対象物である。
 モータ1に取り付けられるエンコーダ2は、モータ1の回転位置およびモータ1の回転速度を検出し、検出した位置を位置フィードバック信号2Aとして出力し、検出した回転速度を速度フィードバック信号2Bとして出力する。モータ1の回転軸1Aには、モータ1の回転運動を並進運動に変換するための機械駆動部であるボールネジ3が設けられている。モータ1およびボールネジ3はカップリング4により結合されている。加圧ヘッド5はボールネジ3に接合され、加圧ヘッド5が紙面下方向に移動し、ワーク6に接触することにより、ワーク6の加圧加工が実現される。
 加圧ヘッド5は、最初に、ワーク6から一定距離離れた場所に位置しており、加圧ヘッド5がワーク6に接近する送り動作を行った後、ワーク6に圧力を与えることによりワーク6の加圧加工が実現される。図1に示す1つのワーク6の加圧加工が終了して、次に加工する図示されていないワーク6へ交換するとき、ワーク6から加圧ヘッド5を退避させておく必要がある。このためワーク6を加圧加工する際には、ワーク6から一定距離離れた場所に加圧ヘッド5が位置しており、この位置から加圧ヘッド5を動作させてワーク6の加圧加工を行う必要がある。
 加圧ヘッド5には、力または圧力を検出し、検出した力または圧力を圧力フィードバック信号12として出力する負荷検出センサ7が取り付けられている。負荷検出センサ7としてロードセルを例示できる。ロードセルは力を検出するセンサであるが、検出した力を加圧ヘッド5の断面積で割った値を利用すれば、圧力を検出したものとみなすこともできる。
 モータ制御装置20は動作情報設定部21を有し、動作情報設定部21には圧力情報21A、移動量情報21Bおよびクリープ速度情報21Cといった各種情報が入力される。圧力情報21Aはワーク6に印加すべき圧力または力の情報である。移動量情報21Bは加圧ヘッド5が動作を開始してからワーク6に接触する手前の位置に移動するための移動量である。クリープ速度情報21Cは加圧ヘッド5がワーク6に接触する際の速度の上限を規定するクリープ速度である。以下の説明では動作情報設定部21に入力された移動量情報21Bおよびクリープ速度情報21Cを単に移動量およびクリープ速度と称する場合がある。
 ここで、加圧ヘッド5が動作を開始してからワーク6に接触する手前の位置、すなわちワーク6の一定距離手前の位置に加圧ヘッド5を移動するための移動量とは、加圧ヘッド5が初期位置から送り動作を開始し、ワーク6に接触する手前の位置に移動するための移動量を表している。この移動量は、ワーク6の厚みと加圧ヘッド5が初期に存在する位置とから容易に設定することができる。またクリープ速度は、通常、ワーク6に衝突しても問題のない小さな値の速度が設定される。
 図2は図1に示す動作情報設定部に各種情報を入力するための画面表示例を表す図である。図2には、モータ制御装置20に設けられたディスプレイに表示される加工動作の設定項目の一例が示される。設定項目としては、「ワークに印加する圧力」、「ワーク手前に移動するための移動量」および「クリープ速度」を例示できる。ユーザがディスプレイ上でこれらの設定項目へ数値を入力することにより、図1に示す動作情報設定部21に圧力情報21A、移動量情報21Bおよびクリープ速度情報21Cが入力される。このように動作情報設定部21には少なくとも、これらの3種類の情報が何らかの形で入力される。
 なお動作情報設定部21へ各種情報の入力方法は図2に示すようなディスプレイを用いた入力以外にも、これらの各種情報をワーク6毎に対応付けたテーブル情報をモータ制御装置20内のメモリに予め記憶させておき、ユーザが加工対象のワーク6を選択すると、予め記憶されたテーブル情報からワーク6に対応した情報が読み出され、当該情報を図1に示す圧力情報21A、移動量情報21Bおよびクリープ速度情報21Cとして利用する構成でもよい。またワーク6に印加すべき圧力または力の情報である圧力情報21Aに関しては、単一の数値ではなく、ワーク6によっては、加圧させたい圧力または力の時間プロファイルという形の情報であってもよい。
 図1に示すモータ制御装置20内の制御部22は、動作情報設定部21に入力された各種情報と、エンコーダ2から出力された位置フィードバック信号2Aと、エンコーダ2から出力された速度フィードバック信号2Bと、負荷検出センサ7から出力された圧力フィードバック信号12とに基づいて、モータ1に供給する電流11を制御する。モータ1に供給する電流11を制御することにより、加圧ヘッド5の送り動作と加圧動作とが実現される。
 以下に、加圧ヘッド5の送り動作と加圧動作を実現する制御部22を詳細に説明する。
 図3は図1に示す制御部の機能ブロック図である。制御部22は、加圧動作シーケンスが始動されたと判断したとき、ワーク6の手前の位置に加圧ヘッド5を移動するための移動量を基に、送り動作を行うための位置指令102を生成する位置指令生成部101と、位置フィードバック信号2Aが位置指令102に追従するためにモータ1が動作すべき速度となる第1の速度指令111を出力する位置制御部110とを備える。
 位置指令生成部101で生成される位置指令102は、加圧ヘッド5の最終位置がワーク6に接触しない手前の位置となるような指令である。位置指令生成部101は、位置指令生成部101に設定された速度目標値、加速時間または減速時間を基に、位置指令を生成し、または当該位置指令を微分した台形状または三角形状の速度指令を生成する。ここで上記の速度目標値として、モータ1の最大速度または定格速度を設定し、さらに加圧ヘッド5が動作可能な最大速度を設定すれば、送り動作の動作時間を短縮するのに特に好適な動作パターンとなる。
 図4は図3に示される位置指令生成部で生成される位置指令と位置指令を微分した指令速度の一例を示す図である。図4(A)の縦軸は位置指令であり、横軸は時間である。図4(A)には、送り動作を開始する前の加圧ヘッド5の位置である初期位置と、送り動作を開始した後にワーク6から一定距離離れた場所における加圧ヘッド5の位置であるワーク手前位置と、加圧ヘッド5が初期位置からワーク手前位置まで移動する移動量dとが示される。図4(A)では、図1の制御部22が始動信号23を受けてモータ1が始動する時間を0としている。
 図4(B)の縦軸は位置指令の時間微分である指令速度であり、横軸は時間である。図4(B)には指令速度が台形形状である場合の例を示す。なお指令速度は、台形形状に限られるものではなく、S字加減速パターンのものでもよく、停止状態から加速動作を行った後に、減速動作を行って再度停止状態に至るパターンであればどのようなものであってもよい。図4(B)では、台形形状の指令速度と時間軸で囲まれる部分の面積が、加圧ヘッド5が初期位置からワーク手前位置まで移動する移動量dに相当する。図4(B)では、図1の制御部22が始動信号23を受けてモータが始動する時間を0としている。
 図5は図3に示される位置制御部の構成例を示す図である。位置制御部110の制御例は、位置指令102と位置フィードバック信号2Aとの差分にゲインKxを乗じて、第1の速度指令111を出力する比例(Proportinal:P)制御を例示できる。
 また図3に示す制御部22は、圧力情報21Aを基に、圧力制御を行うための参照信号となる圧力指令123を生成する圧力指令生成部122を備える。圧力指令生成部122は、ワーク6に印加すべき圧力情報21Aが単一の数値である場合には、ワーク6に印加すべき圧力値を大きさとするステップ信号を、圧力指令123として生成する。圧力情報21Aが時間プロファイルとして入力された場合、圧力指令生成部122は、加圧開始時間以降にその時間プロファイルをとる圧力指令123を生成する。
 また図3に示す制御部22は、圧力フィードバック信号12がワーク6に印加すべき圧力指令123に追従するためにモータ1が動作すべき速度となる第2の速度指令121を出力する圧力制御部120を備える。
 図6は図3に示される圧力制御部の構成例を示す図である。圧力制御部120の制御例は、図6のように、圧力指令123と圧力フィードバック信号12との差分に、ゲインKaを乗じて、第2の速度指令121を出力するP制御を例示できる。ここで、ゲインKaは、加圧動作を行った際に、オーバーシュートまたは発振が生じないよう、圧力制御としての制御性能がある程度確保されるように適切な値に設定される。なお圧力制御部120は、図1に示す始動信号23を受信してから加圧動作が完了するまで圧力制御の演算を行い、第2の速度指令121を算出する。
 また図3に示す制御部22は、速度指令選択部130を備える。速度指令選択部130は、図1に示す始動信号23を受信してから加圧動作が完了するまで、第1の速度指令111、クリープ速度情報21Cおよび第2の速度指令121の何れか1つを選択する処理を行い、モータ1に与えるべき速度を選択し、速度指令131として出力する。速度指令選択部130の詳細動作は後述する。
 また図3に示す制御部22は、速度フィードバック信号2Bが速度指令131に追従するためにモータ1に流す電流11の参照信号となる電流指令141を出力する速度制御部140を備える。速度制御部140の構成例は以下の通りである。すなわち速度制御部140は、速度指令131と速度フィードバック信号2Bとの差分に対し、PI制御を行うことにより電流指令141を出力する。なお速度制御部140における制御はPI制御に限られるものではなく、比例積分微分(Proportinal Integral Differential:PID)制御でもよい。
 また図3に示す制御部22は、電流指令141通りの電流11をモータ1に供給する電流制御部150を備える。電流制御部150の構成例は以下の通りである。すなわち電流制御部150は、交流電源を直流電源に変換するコンバータ回路、または直流電源を所望の交流電圧指令に変換するインバータ回路を備え、PWM制御を行うことによって、モータ1に電圧を印加し電流指令141に追従するように電流11を供給する。
 図7は本発明の実施の形態1に係るモータ制御装置の動作を説明するフローチャートであり、図7では、図3に示す制御部22の内、特に速度指令選択部130の処理を詳細に説明する。図7に示す処理は、一定の制御サンプリング周期ごとに実行されることを想定して記載している。
 S1において制御部22は、ワーク6に印加する圧力情報21Aと、加圧ヘッド5をワーク6の手前位置に移動するための移動量情報21Bと、クリープ速度情報21Cとを動作情報設定部21から取り込む。
 S2において制御部22は、始動信号23が入力されたか否かを判定する。始動信号23が入力されていない場合(S2,No)、再びS2の処理を行い始動信号23が入力しているかどうかを判定する。始動信号23が入力された場合(S2,Yes)、制御部22はS3の処理を行う。
 S3において位置指令生成部101は、S1で与えられた移動量に従って加圧ヘッド5が移動するための位置指令102を計算する。すなわち位置指令生成部101は、各サンプリング周期における位置決め用位置指令値を計算する。具体的な位置指令102の例は図4で説明した通りである。
 S4において位置制御部110は、位置指令102と位置フィードバック信号2Aに基づいて、第1の速度指令111を算出する。
 S5において圧力制御部120は、圧力フィードバック信号12が圧力指令123に追従するための速度指令である第2の速度指令121を算出する。
 S6において速度指令選択部130は、減速動作が開始済みであるかどうかを判定する。減速動作を開始しているか否かの判定の具体的な方法は、前サンプリング時間よりも指令速度が小さいか否かで判定する方法を例示できる。
 S6において減速動作が開始されていない場合(S6,No)、S7において速度指令選択部130は、第1の速度指令111を速度指令131として出力する。
 S7の処理が完了すると、制御部22は、次制御サンプリング周期において、S3以降の処理を再度実行する。
 S6において減速動作が開始されている場合(S6,Yes)、速度指令選択部130はS8の処理を行う。S8において速度指令選択部130は、第1の速度指令111とクリープ速度とを比較し、第1の速度指令111がクリープ速度より大きい場合(S8,Yes)、S7の処理を行う。S7では前述のように第1の速度指令111が選択される。
 S8において第1の速度指令111がクリープ速度未満の場合(S8,No)、速度指令選択部130はS9の処理を行う。
 S9では位置制御フォローアップ処理が行われる。位置制御フォローアップ処理とは、速度指令選択部130がクリープ速度または第2の速度指令121を選択している間、位置制御部110が位置指令102を、現在の位置フィードバック信号2Aの値に、書き換える処理を行う。
 S10において速度指令選択部130は、第2の速度指令121とクリープ速度とを比較する。クリープ速度が第2の速度指令121未満の場合(S10,Yes)、速度指令選択部130はS11の処理を行う。S11において速度指令選択部130は、クリープ速度を速度指令131として出力する。
 S10においてクリープ速度が第2の速度指令121を超える場合(S10,No)、すなわち第2の速度指令121がクリープ速度よりも小さい場合、速度指令選択部130はS12の処理を行う。S12において速度指令選択部130は、第2の速度指令121を速度指令131として出力する。
 S11またはS12の処理を完了した制御部22はS13の処理を行う。S13において制御部22は加圧動作が終了したか否かを判定する。加圧動作が終了したか否かを判定する方法としては、ワーク6に一定の圧力が一定時間だけ印加され続けたか否か、すなわち一定の圧力信号が一定時間だけ持続したか否かを判定する方法を例示できる。
 S12において加圧加工が終了いない場合(S13,No)、制御部22は次回制御サンプリング周期でS9以降の処理を再度実行する。S12において加圧加工が終了した場合(S13,Yes)、一連の送り動作と加圧動作が完了する。
 次に実施の形態1の効果について説明を行う。
 図8は本発明の実施の形態1に係るモータ制御装置で算出される速度指令と圧力を表す図である。図8(A)にはモータ制御装置で算出される各種速度指令の波形が示される。図8(A)の縦軸は速度指令であり、横軸は時間である。図8(B)には圧力の波形が示される。図8(B)の縦軸は圧力であり、横軸は時間である。図8(A),(B)では、図1の制御部22が始動信号23を受信したタイミングを0としている。
 図8(A)に示すAからDの線は以下の通りである。
 (1)一点鎖線のAは、図3に示す第1の速度指令111を表し、以下では指令Aと称する。
 (2)破線のBは、図3に示すクリープ速度情報21Cを表し、以下では速度Bと称する。
 (3)二点鎖線のCは、図3に示す第2の速度指令121を表し、以下では指令Cと称する。
 (4)実線のDは、図3に示す速度指令選択部130が各時間で選択している速度指令131を表し、以下では指令Dと称する。
 図8(B)に示す点線のEは、目標圧力であり、図3に示す圧力指令123を表す。また図8(B)に示す実線のFは、図3に示す圧力フィードバック信号12を表し、以下では信号Fと称する。
 図8中では、時刻t1は、指令Aが減速動作中に速度Bよりも小さくなる時間を、時刻t2は加圧ヘッドがワークに接触し、圧力が大きくなり始める時刻を、時刻t3は指令Cが速度Bよりも小さくなる時刻を、時刻t4は圧力が目標圧力に到達する時間を、それぞれ表している。
 始動信号23を受信した制御部22では、図7に示すS3からS4において、第1の速度指令111を算出する。位置制御部110における位置指令102への追従性が十分高ければ、位置指令を時間微分した指令速度と第1の速度指令111とは等しいとみなせ、図8では第1の速度指令111が指令速度とほぼ等しいものとして図示している。
 図8の指令Aと時間軸で囲まれている部分は、加圧ヘッド5がワーク6の手前位置に移動するための移動量に相当する。指令Aは、始動信号23を受信したタイミングで加速を始め、その後しばらく一定速度を維持した後に減速を始める。加速または一定速度のとき、図7のS6,S7の処理により、速度指令選択部130は、速度Bおよび指令Cとの大小に係わりなく、指令Aを指令Dとして選択する。また指令Aが減速中であっても、図7のS7,S8の処理により指令Aが速度Bよりも大きい場合、速度指令選択部130は指令Aを選択する。
 さらに図8において時刻t1から時刻t3までは、指令Aが減速中、かつ、指令Aが速度B以下である。このとき図7に示すS10,S11の処理により、速度指令選択部130では、指令Cより小さい速度Bが指令Dとして選択される。ここで、指令Aは、ワーク6の手前位置への位置決め動作をするので時刻t1では加圧ヘッド5はワーク6に接触しない。この時刻t1までは、決められた時間プロファイルである指令Aに必ず追従するように、モータ1が位置制御で制御されるので、高速な送り動作が実現できるという効果がある。
 しばらく速度Bにより動作していると加圧ヘッド5がワーク6に接触する。この接触したタイミングである時刻t2から信号Fが大きくなり始める。信号Fが大きくなり目標圧力Eに近づくと、圧力指令と圧力フィードバックとの偏差が小さくなる。このため、圧力偏差に基づいて指令Cを算出する圧力制御部120の働きにより、指令Cは徐々に小さくなっていく。
 S10とS12の処理により、指令Cが速度Bより小さくなるので、時刻t3以降においては、速度指令選択部130では指令Cが速度指令131として選択される。
 以上のように実施の形態1に係るモータ制御装置20は、モータ1によって駆動される加圧ヘッド5がワーク6に接近する送り動作中には加圧ヘッド5の移動速度が位置指令に追従する第1の速度となるようにモータ1の速度を制御し、第1の速度がクリープ速度を下回ったタイミング以降は、モータ1の速度が、負荷検出センサ7で検出された圧力または力が圧力指令に追従する第2の速度、または、クリープ速度の何れか小さい方の速度となるように制御する。このように加圧ヘッド5がワーク6に接触していない状態から、ワーク6に接触せず、かつ手前の位置に位置決め動作を行うことにより、ワークに対する送り動作を行う。モータ制御装置20によれば、加圧ヘッド5がワーク6に接触する手前の位置に位置決め制御されるため、送り動作が高速に行え、これに伴い加工に関するタクトタイムを短縮できる。
 また、この送り動作を行っている最中には、加圧ヘッド5がワーク6に接触することがないので、ワーク6および加圧ヘッド5を損傷することがない。
 また加圧ヘッド5がワーク6にある程度接近してから、すなわち、前記の位置決め動作終盤である減速動作の途中から、モータ制御装置20は速度Bまたは指令Cの小さい方で動作を行う。ワーク6に接触する瞬間には、速度B以下の速度で加圧ヘッド5がワーク6に接触するので、ワーク6に衝撃を与えることなく加圧ヘッド5の加圧動作に移行することができる。
 また制御部22では、時刻t1のタイミングで、指令Aの代わりに、速度Bおよび指令Cの小さい方が選択される。クリープ速度として小さな値が設定されていると、速度Bが指令Cよりも小さくなる傾向がある。この結果、時刻t1の時点で速度Bが選択され、時刻t1の時点で、指令Dは連続になる。そして、時刻t1以降の時間では、速度Bと指令Cの小さい方を指令Dとして逐次選択することにより、時刻t3の時点で指令Dが速度Bから指令Cに切替わるため、時刻t1以降においても指令Dが連続になる。これにより、送り動作開始から加圧動作完了まで指令Dが連続となり、図8のような波形が実現され、ショックおよび振動を生じさせることなく、一連の動作を滑らかに動作させることができる。
 なお実施の形態1に係るモータ制御装置20では、送り動作と加圧動作の一連の動作を実現するために、第1の速度指令111、クリープ速度情報21Cおよび第2の速度指令121が逐次切替えられ、速度指令131として速度制御部140に入力される。このような動きを実現するために、切り換えフラグを準備し、切り換えフラグのタイミングにしたがって第1の速度指令111、クリープ速度情報21Cおよび第2の速度指令121を切替え、さらに第1の速度指令111、クリープ速度情報21Cおよび第2の速度指令121の切替え時に発生する不連続性を、ローパスフィルタに代表されるフィルタを利用することで、防止することも考えられる。
 しかしながらこのような方法は、フィルタを使用することで、位置制御ループと圧力制御ループにローパスフィルタが挿入される特性になってしまう。ローパスフィルタは高周波数領域で位相特性を劣化させるため、これにより位置制御および圧力制御のループ特性が劣化し、位置および圧力の応答に、オーバーシュートおよび振動が発生するという問題が発生する。
 これに対して実施の形態1の係るモータ制御装置20では、フィルタを用いて切替えを行わず、第1の速度指令111、クリープ速度情報21Cおよび第2の速度指令121を適切なタイミングで自動的に直接切替えて速度指令とするので、位置および圧力の応答に、オーバーシュートおよび振動が発生するといった問題は発生しない。また、この送り動作と加圧動作からなる一連のシーケンスを実現するために、実施の形態1のモータ制御装置20を使用するユーザは、圧力情報21A、移動量情報21Bおよびクリープ速度情報21Cだけ入力すればよく、設定の手間が少なくて済むという効果も得られる。
 なお加圧動作が終了すると、次のワーク6を加工するために、加圧ヘッド5を一旦退避させる必要がある。加圧ヘッド5を初期位置に戻すために、圧力制御を実施している状態から位置制御に切替える処理が必要である。この際、速度指令131として第2の速度指令121が選択されているときには、一般に圧力に追従するための動作を行っているため、位置偏差が生じた状態である。このときに、速度指令131を第2の速度指令121から第1の速度指令111に切替えると、生じた位置偏差により、大きな速度指令が生じてしまい、これによりモータ1および機械の動きにショックが発生する場合がある。
 図7のS9において、送り動作および加圧動作を行っている最中、すなわち速度指令131としてクリープ速度情報21Cまたは第2の速度指令121が選択されている間、位置制御フォローアップ処理を行うことにより、位置偏差が生じないようになり、加圧ヘッド5を退避させる動作を行う際にショックを防止する効果もある。
 なお、図3の位置制御部110のゲインを十分に大きくでき、位置制御部110の追従特性が十分高い場合、第1の速度指令111は、図4(B)に示されるような指令速度と等しいと見なすことができる。この場合、図7のS8では、第1の速度指令111とクリープ速度情報21Cとを比較する処理が行われているが、制御部22は、第1の速度指令111の代わりに位置指令の時間微分である指令速度を用いて、指令速度とクリープ速度情報21Cを比較する構成でもよい。このように構成しても、図8に示す動作を実現でき、また上記の効果と同様の効果を得ることができる。
 さらに、図3の位置制御部110の追従特性が高く、さらに図3の速度指令選択部130のゲインを十分に大きくできるため速度指令選択部130の追従特性も十分に高い場合、送り動作をしている間の速度指令131は、第1の速度指令111に等しく、さらに速度フィードバック信号2Bと等しいと見なすことができる。この場合、図7のS8において、第1の速度指令111の代わりに速度フィードバック信号2Bを用いて、速度フィードバック信号2Bとクリープ速度情報21Cとを比較する構成であっても、図8に示す動作を実現でき、また上記の効果と同様の効果を得ることができる。また、図7のS7で第一の速度指令の代わりの信号を用いたとしても、図7のS7の処理は、速度指令=第一の速度指令である。
 なお実施の形態1では、負荷検出センサ7の出力として、圧力フィードバック信号12を用いる例を示してきたが、力フィードバック信号を用いても同様の動作を実現できると共に同様の効果を得ることができる。なお、力フィードバック信号を用いる場合、圧力指令123は力指令信号に置き代わり、圧力制御部120は、力指令信号と力フィードバック信号との差分にゲインを乗じて、第2の速度指令121を出力する構成となる。このことは、後に説明する別の実施の形態においても同様である。
実施の形態2.
 実施の形態1では、位置指令102と位置フィードバック信号2Aとの差分に基づいて第1の速度指令111が算出される例を説明したが、他の位置制御を用いても同様に実施することができる。実施の形態2では他の位置制御方式を用いた実施例について説明する。以下、実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
 図9は本発明の実施の形態2に係るモータ制御装置が備える位置制御部の構成例を示す図である。図9に示す位置制御部110-2は、フィードフォワード制御を併用して位置制御を行うように構成される。位置制御部110-2は、位置指令102と位置フィードバック信号2Aとの偏差にゲイン要素Kxを乗じた信号であるフィードバック速度指令2A1に、微分処理251で微分した位置指令102をローパスフィルタ252で処理したフィードフォワード速度指令252-1とを加算したものを、第1の速度指令111として出力する。
 ここでフィードフォワード速度指令252-1を算出するにあたり、ローパスフィルタ252を用いるが、フィードフォワード速度指令252-1は位置フィードバック信号2Aに依存しない形で算出される。そのため、フィードフォワード速度指令252-1は、制御ループ中の周波数特性、特に高周波数域での位相特性を劣化させることはない。
 また位置指令102が有る程度滑らかである場合、位置制御部110-2は、ローパスフィルタ252による処理を省略する構成としてもよい。またフィードフォワード速度指令252-1は、位置指令102を微分した演算結果であり、または微分処理とローパスフィルタ処理とを行った演算結果と等価であれば、算出方法は上記に限られるものではなく、どのようなものあってもよい。
 実施の形態2では、フィードフォワード速度指令252-1を第1の速度指令111に加えることにより、フィードフォワード速度指令252-1が、直接速度制御部140に入力されるような挙動をとる。そのため、位置フィードバック信号2Aの位置指令102に対する追従特性が向上し、加圧対象物への接近動作がより短時間で実現できる。
 特に図5に示すように位置フィードバック信号2Aのみを用いて第1の速度指令111を算出する位置制御部110は、ゲインKxを大きくするとモータ発振が生じる場合がある。これに対して、図9に示すようにフィードフォワード速度指令252-1を併用した位置制御部110-2は上記のような問題の発生を抑制できる。図9の位置制御部110-2を用いると、フィードフォワード速度指令252-1に近い速度フィードバック信号が得られるような挙動をとる。このような位置制御部110-2を用いる場合であっても、図7のフローチャートに示す処理により一連の送り動作および加圧動作を実現できる。この場合、図9に示されるフィードフォワード速度指令252-1とフィードバック速度指令2A1との合計値である第1の速度指令111が用いられる。また実施の形態1と同様、図7に示すS8の第1の速度指令111の代わりに位置指令の時間微分である指令速度や、速度フィードバック信号を使用してもよい。
 なおフィードフォワード速度指令252-1を使用する場合には、図7のS8において、指令速度および速度フィードバック信号2Bに加えて、フィードフォワード速度指令252-1を用いることもできる。第1の速度指令111は位置フィードバック信号2Aに依存した信号であるが、フィードフォワード速度指令252-1は、位置指令102のみにより生成され、位置フィードバック信号2Aまたは速度フィードバック信号2Bに依存しないで生成される。位置フィードバック信号2Aは、図1に記載のエンコーダ2で検出される信号であり、エンコーダ2の特性および性能と、エンコーダ2が設置される環境とによっては、ノイズの影響を受ける場合がある。位置フィードバック信号2Aにノイズが乗ると、第1の速度指令111もノイズの影響を受けることになる。図7のS8において、このような第1の速度指令111を用いると、クリープ速度情報21Cまたは第1の速度指令111の小さいほうから切替える際の動作のタイミングが、ノイズの影響によって微妙にずれてしまい、これにより速度指令が不連続になり、ショックが生じる可能性がある。
 これに対し図7のS8において第1の速度指令の代わりに、フィードフォワード速度指令252-1を用いる構成においては、フィードフォワード速度指令252-1がノイズの影響を受けることが無いため、切替える際の動作タイミングがずれることもなく、これにより速度指令が不連続にならずショックが生じないという効果がある。なお図7のS8で指令速度を用いた場合は、フィードフォワード速度指令252-1と同様、エンコーダ2で生じるノイズの影響を受けることはないが、実際の動作に動きに近いのはフィードフォワード速度指令252-1であるので、図7のS8において、フィードフォワード速度指令252-1を用いることによって、より適切なタイミングで動作の切替えを実現できる。
実施の形態3.
 実施の形態1では、P制御により第2の速度指令121を生成する構成例を説明したが、実施の形態3ではPI制御により第2の速度指令121を生成する構成例を説明する。以下、実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
 図10は本発明の実施の形態3に係るモータ制御装置が備える圧力制御部の構成例を示す図である。図10に示す圧力制御部120-3は、PI制御により、圧力の応答性を向上させるように構成される。圧力制御部120-3では、積分器入力選択部302のスイッチがa側のとき、圧力指令123と圧力フィードバック信号12との差分である圧力偏差301が積分器303に入力される。また圧力制御部120-3では、積分器入力選択部302のスイッチがb側のとき、0が積分器303に入力される。なお積分器入力選択部302がどのようなときにスイッチをa側にするかb側にするかは後述する。
 積分器303は入力された信号に対して積分処理を行う。ここで、図中のsはラプラス演算子を表し、1/sで積分動作を表している。さらに圧力制御部120-3は、積分器303の出力に、圧力積分ゲインであるKai304を乗じて、積分制御出力305を算出する。圧力制御部120-3は、この積分制御出力305に圧力偏差301を加えた信号に、圧力比例ゲイン306であるゲインKaを乗じることにより、第2の速度指令121を算出する。
 次に実施の形態3に係るモータ制御装置20の処理を説明する。
 図11は本発明の実施の形態3に係るモータ制御装置の動作を説明するフローチャートである。図11に示すフローチャートは、図7に示すフローチャートの処理と同じ処理を含み、実施の形態3に係るモータ制御装置の制御部22は、図7に示すフローチャートと基本的に同じ流れに沿って処理を行う。
 図7のフローチャートと異なる部分は以下の通りである。
 (1)S7において第1の速度指令111を速度指令131として選択する前に、S20の処理が挿入され、S20において圧力制御部120-3の積分動作をOFFする処理を行うこと。
 (2)S11においてクリープ速度を速度指令131として選択する処理の前に、S20において圧力制御部120-3の積分動作をOFFする処理を行うこと。
 (3)S12において第2の速度指令121を速度指令131として選択する前に、S21において圧力制御部120-3の積分動作をONする処理を行うこと。
 ここで、圧力制御部120-3の積分動作をOFFするとは、図10の圧力制御部120-3において、積分器入力選択部302のスイッチをb側にさせて、積分器303の入力を0とし、積分器303の動作を無効にする処理のことを示す。なおスイッチをb側にしても、第2の速度指令121として、圧力指令123と圧力フィードバック信号との差分に圧力比例ゲイン306であるゲインKaを乗じた信号が出力される。また圧力制御部120-3の積分動作をONするとは、図10の圧力制御部120-3において、積分器入力選択部302のスイッチをa側にさせて、通常の積分動作を行う処理のことを示す。
 このような処理を行うことにより、速度指令131として第2の速度指令121が選択された場合には圧力制御部120-3の積分動作が働き、それ以外の場合、すなわち速度指令131として第1の速度指令111またはクリープ速度が選択された場合には、圧力制御部120-3の積分動作を停止させることができる。
 圧力制御部120-3の積分動作では、圧力偏差301を積分してゆき、発生した圧力偏差301に応じて操作量、すなわちモータ1の速度指令131を増加させることにより、圧力偏差301を0にするまでの時間を短縮する。仮に実施の形態3とは異なり、この積分動作を常時働かせておくと仮定すると、加圧ヘッド5がワーク6に非接触状態であるときの送り動作中も積分動作が有効になる。加圧ヘッド5がワーク6に非接触状態のときには圧力は発生していない、すなわち圧力が0であるため、加圧ヘッド5がワーク6に接触していない時には、積分器303の出力が過大になる。これに伴い、第2の速度指令121もまた過大になる。送り動作が完了すると、第2の速度指令121とクリープ速度との小さい方を速度指令とする処理が行われるが、圧力制御部120-3の積分器303の出力が大きくなっているため、クリープ速度から第2の速度指令121になかなか切り換わらず、加圧動作がなかなか開始されないという問題が発生する。
 実施の形態3の圧力制御部120-3によれば、第2の速度指令121が速度指令131として選択される場合のみ、圧力制御部120-3の積分動作が有効になる。また実施の形態3の圧力制御部120-3によれば、第1の速度指令111またはクリープ速度が速度指令131として選択される場合には、圧力制御部120-3の圧力比例ゲイン306のみ有効にされる。そのため、上記の問題を防止することができる。また、第2の速度指令が選択される圧力制御中に、圧力制御部が積分動作を含むPI制御で構成されるため、圧力指令に対する圧力フィードバック制御の追従特性が向上し、これによりワークの加圧動作が精度よく行われる。
 また圧力制御部120-3の積分動作を常時働かせておくと、積分器の出力が大きくなることにより、速度指令131として第2の速度指令121に切替った瞬間に、圧力にオーバーシュートおよび振動が生じてしまうという問題もある。実施の形態3によれば、圧力制御部120-3に積分動作を含む構成をとった場合、圧力のオーバーシュートおよび振動を防止することができる。
 圧力制御部120-3は、積分動作以外に、過渡時の応答を改善することを目的に、位相遅れ補償または位相進み補償を含む制御を用いてもよい。図12は図10に示す圧力制御部の変形例を示す図である。図12に示す圧力制御部120-3Aは、圧力偏差301に対し、位相補償部である位相遅れ進み補償部311が位相遅れ補償を行い、または位相進み補償を行う。
 ここで、τ、τは位相遅れ進み補償部311のパラメータである。位相遅れ進み補償部311は、τ<τのときには位相遅れ補償となり、τ>τのときには位相進み補償となる。位相遅れ進み補償選択部312は、スイッチがa側のとき、位相遅れ進み補償部311の出力を選択し、スイッチがb側のとき、圧力偏差301を選択する。圧力制御部120-3Aは、これらの演算結果に、圧力比例ゲイン306を乗じて、第2の速度指令121を算出する。このように圧力制御部120-3Aは、速度指令選択部130において第2の速度指令121が選択されたとき以外は位相遅れ補償または位相進み補償を停止させる。
 なお、図12の圧力制御部120-3Aを使用した制御部22は、基本的に図11のフローチャートに従って動作する。ただし図11のS20の処理が位相遅れ進み補償を無効にする。具体的には、図12中の位相遅れ進み補償選択部312のスイッチをb側にしてS21中の処理が位相遅れ進み補償を有効にする、すなわち、図12中の位相遅れ進み補償選択部312のスイッチをa側にするという処理にそれぞれ置き換わる。
 送り動作のときのように加圧ヘッド5がワーク6に非接触状態であるときに、常時、位相遅れ補償または位相進み補償を行うと、積分動作を常時動作させたときの同様の問題が発生する。図12の圧力制御部120-3Aが位相遅れ補償または位相進み補償を含むときには、送り動作のように加圧ヘッド5がワーク6に非接触状態であるとき、すなわち、速度指令として第1の速度指令111またはクリープ速度が選択されているときには、位相遅れ補償または位相進み補償の動作が行われず、圧力制御部120-3Aの圧力比例ゲイン306のみ有効になり、上記の問題の発生を防止することができる。また、第2の速度指令が選択される圧力制御中に、圧力制御部が位相遅れ補償または位相進み補償で構成されるため、圧力指令に対する圧力フィードバック制御の追従特性が向上し、これによりワークの加圧動作が精度よく行われる。
 また実施の形態3は、基本的に、実施の形態1,2と比べて圧力制御部120-3Aの構成のみが異なるので、実施の形態1,2で述べた効果と同様の効果を得ることができる。
 図13は本発明の実施の形態1から3に係るモータ制御装置のハードウェア構成図である。各実施の形態のモータ制御装置20は、入出力部81、記憶部82およびプロセッサ83を含み、入出力部81、記憶部82およびプロセッサ83はデータバス84で相互に接続されている。
 入出力部81は、外部機器から送信される情報を記憶部82に記憶させると共に、プロセッサ83が外部機器との間で情報を送受信するためのインターフェース回路である。各実施の形態では、図1に示す位置フィードバック信号2A、速度フィードバック信号2B、圧力情報21A、移動量情報21B、クリープ速度情報21Cおよび圧力フィードバック信号12が入出力部81に入力され、電流11が入出力部81を介してモータ1に対して出力される。
 記憶部82の種類としては、RAM(Random Access Memory)、ROM(Read Only Memory)、またはSSD(Solid State Drive)を例示できる。記憶部82は、プロセッサ83用プログラムを記憶する。また記憶部82は、入出力部81を介して入力された各種情報を一時的に記憶する。
 プロセッサ83はCPU(Central Processing Unit)またはMPU(Micro Processing Unit)といった回路である。プロセッサ83は図3に示す制御部22を有し、記憶部82に格納されたプログラムをプロセッサ83が実行することにより、制御部22が実現される。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 モータ、1A 回転軸、2 エンコーダ、2A 位置フィードバック信号、2A1 フィードバック速度指令、2B 速度フィードバック信号、3 ボールネジ、4 カップリング、5 加圧ヘッド、6 ワーク、7 負荷検出センサ、8 テーブル、11 電流、12 圧力フィードバック信号、20 モータ制御装置、21 動作情報設定部、21A 圧力情報、21B 移動量情報、21C クリープ速度情報、22 制御部、23 始動信号、101 位置指令生成部、102 位置指令、110 位置制御部、110-2 位置制御部、111 第1の速度指令、120 圧力制御部、120-3 圧力制御部、120-3A 圧力制御部、121 第2の速度指令、122 圧力指令生成部、123 圧力指令、130 速度指令選択部、131 速度指令、140 速度制御部、141 電流指令、150 電流制御部、251 微分処理、252 ローパスフィルタ、252-1 フィードフォワード速度指令、301 圧力偏差、302 積分器入力選択部、303 積分器、305 積分制御出力、306 圧力比例ゲイン、311 位相遅れ進み補償部、312 位相遅れ進み補償選択部。

Claims (11)

  1.  エンコーダを備えたモータを制御するモータ制御装置であって、
     前記モータによって駆動される機械負荷が加圧対象物に接近し、かつ、前記機械負荷の最終位置が前記加圧対象物の一定距離手前となるべき指令値である位置指令を生成する位置指令生成部と、
     前記エンコーダで検出された前記モータの位置が前記位置指令に追従するように第1の速度指令を出力する位置制御部と、
     前記加圧対象物に加えるべき圧力または力の指令値である圧力指令を生成する圧力指令生成部と、
     前記機械負荷が前記加圧対象物に押し当てられたときに、前記機械負荷で検出された圧力または力が前記圧力指令に追従するように第2の速度指令を出力する圧力制御部と、
     前記機械負荷が前記加圧対象物に接触する際の前記モータの速度の上限を規定するクリープ速度と、前記第1の速度指令と、前記第2の速度指令との何れか1つを選択し、前記モータが動作すべき速度指令として出力する速度指令選択部と、
     前記速度指令選択部が出力する速度指令に前記モータの速度が追従するように前記モータに電流を供給する電流指令を出力する速度制御部と、
     を備え、
     前記速度指令選択部は、前記第1の速度指令を選択した後、前記第1の速度指令が前記クリープ速度を下回ったタイミング以降では、前記第2の速度指令または前記クリープ速度の小さい値を選択することを特徴とするモータ制御装置。
  2.  前記位置制御部は、前記位置指令と前記モータの位置との偏差に基づいてフィードバック速度指令を算出し、前記フィードバック速度指令を前記第1の速度指令として出力することを特徴とする請求項1に記載のモータ制御装置。
  3.  前記位置制御部は、前記位置指令と前記モータの位置との偏差に基づいて算出されるフィードバック速度指令に、前記位置指令を微分演算することによって算出されるフィードフォワード速度指令を加算して、前記第1の速度指令として出力することを特徴とする請求項1に記載のモータ制御装置。
  4.  前記速度指令選択部は、
     始動を開始したとき前記第1の速度指令を速度指令として選択し、
     前記位置指令に追従して動作する位置制御の減速動作中に前記位置制御部から出力される速度指令がクリープ速度を下回ったタイミング以降では、前記第2の速度指令と前記クリープ速度の小さい方を逐次選択することにより速度指令を算出することを特徴とする請求項2または請求項3に記載のモータ制御装置。
  5.  前記速度指令選択部は、
     始動を開始したとき前記第1の速度指令を速度指令として選択し、
     前記位置指令に追従して動作する位置制御の減速動作中に位置指令を微分した指令速度が前記クリープ速度を下回ったタイミング以降では、前記第2の速度指令と前記クリープ速度の小さい方を逐次選択することにより速度指令を算出することを特徴とする請求項2または請求項3に記載のモータ制御装置。
  6.  前記速度指令選択部は、
     始動を開始したとき前記第1の速度指令を速度指令として選択し、
     前記位置指令に追従して動作する位置制御の減速動作中に前記フィードバック速度指令が前記クリープ速度を下回ったタイミング以降では、前記第2の速度指令と前記クリープ速度の小さい方を逐次選択することにより速度指令を算出することを特徴とする請求項2または請求項3に記載のモータ制御装置。
  7.  前記速度指令選択部は、
     始動を開始したとき前記第1の速度指令を速度指令として選択し、
     前記位置指令に追従して動作する位置制御の減速動作中に前記フィードフォワード速度指令が前記クリープ速度を下回ったタイミング以降では前記第2の速度指令と前記クリープ速度の小さい方を逐次選択することにより速度指令を算出することを特徴とする請求項3に記載のモータ制御装置。
  8.  前記圧力制御部は、前記機械負荷が前記加圧対象物に非接触状態であるとき、前記圧力指令と前記機械負荷で検出された圧力または力との圧力偏差を積分する積分動作を停止することを特徴とする請求項1に記載のモータ制御装置。
  9.  前記位置制御部は、前記速度指令選択部が前記クリープ速度または前記第2の速度指令を選択しているとき、前記位置指令を、前記エンコーダで検出された前記モータの位置に書き換えることを特徴とする請求項1に記載のモータ制御装置。
  10.  前記圧力制御部は、
     前記圧力指令と前記機械負荷で検出された圧力または力との圧力偏差の位相遅れ補償または位相進み補償を行う位相補償部を備え、
     前記速度指令選択部において前記第2の速度指令が選択されたとき以外は前記位相遅れ補償または前記位相進み補償を停止させることを特徴とする請求項1に記載のモータ制御装置。
  11.  エンコーダを備えたモータにより駆動される機械負荷の移動速度を制御するモータ制御装置であって、
     前記機械負荷の移動速度が、前記エンコーダで検出された前記モータの位置が位置指令に追従する第1の速度となるように制御され、
     前記第1の速度が、前記機械負荷が加圧対象物に接触する際の前記モータの速度の上限を規定するクリープ速度を下回ったタイミング以降は、前記機械負荷の移動速度が、前記機械負荷で検出された圧力または力が圧力指令に追従する第2の速度、又は前記クリープ速度の何れか小さい方の速度となるように制御されることを特徴とするモータ制御装置。
PCT/JP2016/062785 2016-04-22 2016-04-22 モータ制御装置 WO2017183187A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/546,692 US10108182B2 (en) 2016-04-22 2016-04-22 Motor control apparatus
PCT/JP2016/062785 WO2017183187A1 (ja) 2016-04-22 2016-04-22 モータ制御装置
JP2016563852A JP6113378B1 (ja) 2016-04-22 2016-04-22 モータ制御装置
CN201680011697.XA CN107534411B (zh) 2016-04-22 2016-04-22 电动机控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062785 WO2017183187A1 (ja) 2016-04-22 2016-04-22 モータ制御装置

Publications (1)

Publication Number Publication Date
WO2017183187A1 true WO2017183187A1 (ja) 2017-10-26

Family

ID=58666728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062785 WO2017183187A1 (ja) 2016-04-22 2016-04-22 モータ制御装置

Country Status (4)

Country Link
US (1) US10108182B2 (ja)
JP (1) JP6113378B1 (ja)
CN (1) CN107534411B (ja)
WO (1) WO2017183187A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057386A1 (ja) * 2022-09-13 2024-03-21 ファナック株式会社 モータ制御装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6469171B2 (ja) * 2017-06-14 2019-02-13 ファナック株式会社 電動機の制御装置
JP6542844B2 (ja) * 2017-07-03 2019-07-10 ファナック株式会社 サーボモータ制御装置
CN109669488B (zh) * 2018-12-21 2022-01-28 中广核达胜加速器技术有限公司 一种用于辐照小车大链传动的控制方法及相关产品
CN110815928B (zh) * 2019-11-22 2021-09-03 山东省科学院激光研究所 一种伺服压力机的非线性压力位置控制装置及方法
CN110850813B (zh) * 2019-11-22 2021-08-20 山东省科学院激光研究所 一种伺服机压力位置控制方法、装置及伺服控制器
CN112698567B (zh) * 2020-12-29 2024-05-31 上海电气集团股份有限公司 一种康复设备控制方法、装置、设备及介质
CN113014177B (zh) * 2021-03-09 2022-11-08 深圳市微秒控制技术有限公司 一种电机位置和转矩控制方法
CN114046978A (zh) * 2021-11-16 2022-02-15 上海迪璞电子科技股份有限公司 压力检测控制方法、压力检测装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007296A (ja) * 2004-06-28 2006-01-12 Fanuc Ltd 鍛圧機械のサーボモータ制御装置
JP2011251301A (ja) * 2010-06-01 2011-12-15 Mitsubishi Electric Corp 圧力制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3091262B2 (ja) 1991-06-19 2000-09-25 ファナック株式会社 電動式射出成形機における射出制御方法および装置
US5952801A (en) * 1992-04-22 1999-09-14 Nartron Corporation Power window or panel controller
JPH0861976A (ja) * 1994-08-18 1996-03-08 Asmo Co Ltd 移動体の位置及び荷重検出装置
JPH11324481A (ja) * 1998-05-20 1999-11-26 Denso Corp 挟み込み防止機能を有するパワーウインドウ装置
JP3998415B2 (ja) 2000-12-12 2007-10-24 三菱電機株式会社 力制御装置
CA2546552A1 (en) 2003-12-12 2005-06-23 Hoden Seimitsu Kako Kenkyusho Co., Ltd. Press
JP3854602B2 (ja) 2003-12-22 2006-12-06 三菱重工プラスチックテクノロジー株式会社 多軸駆動装置
JP4665678B2 (ja) 2005-09-12 2011-04-06 パナソニック株式会社 モータ駆動装置
JP5372249B2 (ja) 2010-05-17 2013-12-18 三菱電機株式会社 モータ制御装置
JP5689704B2 (ja) * 2010-08-08 2015-03-25 日本電産サンキョー株式会社 モータ制御装置およびモータ制御方法
JP5523414B2 (ja) * 2011-09-05 2014-06-18 三菱電機株式会社 交流電動機の制御装置
JP2013251978A (ja) * 2012-05-31 2013-12-12 Mitsubishi Electric Corp 永久磁石同期電動機制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007296A (ja) * 2004-06-28 2006-01-12 Fanuc Ltd 鍛圧機械のサーボモータ制御装置
JP2011251301A (ja) * 2010-06-01 2011-12-15 Mitsubishi Electric Corp 圧力制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057386A1 (ja) * 2022-09-13 2024-03-21 ファナック株式会社 モータ制御装置

Also Published As

Publication number Publication date
US10108182B2 (en) 2018-10-23
JP6113378B1 (ja) 2017-04-12
JPWO2017183187A1 (ja) 2018-04-26
CN107534411B (zh) 2018-10-26
US20180120820A1 (en) 2018-05-03
CN107534411A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
JP6113378B1 (ja) モータ制御装置
JP4099503B2 (ja) 回転軸の定位置停止制御装置
KR101723326B1 (ko) 모터 제어 장치
WO1990011562A1 (fr) Unite de commande a action directe pour servomoteurs
JP6950589B2 (ja) サーボ制御方法
KR20120136392A (ko) 모터 제어 장치
JP2007209157A (ja) サーボモータ制御装置
JP2015097045A (ja) 非常停止時に工具及び被加工物を保護するモータ制御装置
JP2003245800A (ja) プレス機械
JP7092620B2 (ja) 電力変換システムおよびモータ制御方法
JP4372044B2 (ja) 心押台制御装置及び心押動作の制御方法
JP2006130524A (ja) ダイクッション機構並びにその制御装置及び制御方法
JP6653179B2 (ja) リニアモータの制御装置及び制御方法
US10924041B2 (en) Motor drive system including power storage device
JP2021070041A (ja) ダイクッション上の被加工物を加工する加工機械の制御装置
JP2008234295A (ja) 干渉チェックシステム
JP4712475B2 (ja) ダイクッション機構並びにその制御装置及び制御方法
JP7269097B2 (ja) 回転軸の制御装置
JP6542844B2 (ja) サーボモータ制御装置
JP4357405B2 (ja) サーボモータの制御装置
JP6898759B2 (ja) 射出成形機および産業機械
KR20090107864A (ko) 속도 프로파일 생성 장치, 모터 제어 장치 및 방법
JP2007253212A (ja) プレス機械のダイクッション制御装置
JP2019141947A (ja) タップ加工の制御装置
US10766062B2 (en) Servomotor control device in processing machine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016563852

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15546692

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899459

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899459

Country of ref document: EP

Kind code of ref document: A1