JP2019141947A - タップ加工の制御装置 - Google Patents

タップ加工の制御装置 Download PDF

Info

Publication number
JP2019141947A
JP2019141947A JP2018027732A JP2018027732A JP2019141947A JP 2019141947 A JP2019141947 A JP 2019141947A JP 2018027732 A JP2018027732 A JP 2018027732A JP 2018027732 A JP2018027732 A JP 2018027732A JP 2019141947 A JP2019141947 A JP 2019141947A
Authority
JP
Japan
Prior art keywords
spindle
speed
maximum
control unit
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018027732A
Other languages
English (en)
Other versions
JP6799022B2 (ja
Inventor
大輔 田嶋
Daisuke Tajima
大輔 田嶋
有紀 森田
Yuki Morita
有紀 森田
肇 置田
Hajime Okita
肇 置田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2018027732A priority Critical patent/JP6799022B2/ja
Priority to DE102019103563.5A priority patent/DE102019103563A1/de
Priority to CN201910120156.6A priority patent/CN110170883B/zh
Priority to US16/278,931 priority patent/US10955813B2/en
Publication of JP2019141947A publication Critical patent/JP2019141947A/ja
Application granted granted Critical
Publication of JP6799022B2 publication Critical patent/JP6799022B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • G05B19/4166Controlling feed or in-feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G1/00Thread cutting; Automatic machines specially designed therefor
    • B23G1/16Thread cutting; Automatic machines specially designed therefor in holes of workpieces by taps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/0009Energy-transferring means or control lines for movable machine parts; Control panels or boxes; Control parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
    • G05B19/186Generation of screw- or gearlike surfaces
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43148Rapid return, retract stroke
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49108Spindle speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

【課題】加工時の主軸の回転速度が比較的低速に設定されている場合でも、タップ加工全体のサイクルタイムを短縮することができる工作機械の制御装置を提供する。【解決手段】工作機械の制御装置であって、タップ加工プログラムPに基づき主軸指令及び送り軸指令を作成する数値制御部16と、主軸指令に従って主軸の回転動作を制御する主軸制御部18と、主軸の回転位置を検出する回転検出部20と、送り軸指令に従って、回転位置に基づき送り軸14の送り動作を制御する送り軸制御部22と、を具備し、数値制御部16は、戻り動作の指令として、主軸12の加工時の最高回転速度に依存せず且つ加工時の最高回転速度よりも高速な戻り時速度指令値を主軸指令に含める。【選択図】図1

Description

本発明は、主軸と送り軸との同期運転によりタップ加工を行う工作機械の制御装置に関する。
主軸と送り軸との同期運転によりタップ加工を行う工作機械においては、加工精度を維持しつつもサイクリタムを短縮することが求められる。例えば、特許文献1には、「例えばこのタッピングは、主軸の回転速度2000rpmにて所定のZ軸深さまで行う。そして、雌ねじが切削された後は、この2000rpmにタップ戻し比率を乗じた回転数、例えば比率が200%であれば、主軸を4000rpmで逆回転させる。」と記載されている。
特開平04−093114号公報
タップ加工を行う工作機械では、タップ工具への負荷等が考慮され加工時の主軸の回転速度は比較的低速に設定されるのが一般的である。タップ工具への負荷等が考慮され加工時の主軸の回転速度が比較的低速に設定されている場合でも、タップ加工全体のサイクルタイムを短縮することが望まれる。
本開示の一態様は、主軸と送り軸の同期運転を制御する工作機械の制御装置であって、タップ加工プログラムに基づき主軸指令及び送り軸指令を作成する数値制御部と、前記主軸指令に従って前記主軸の回転動作を制御する主軸制御部と、前記主軸の回転位置を検出する回転検出部と、前記送り軸指令に従って、前記回転位置に基づき前記送り軸の送り動作を制御する送り軸制御部と、を具備し、前記数値制御部は、目標ねじ深さから加工開始位置に戻る戻り動作の指令として、前記主軸の加工時の最高回転速度に依存せず且つ前記加工時の前記最高回転速度よりも高速な戻り時速度指令値を前記主軸指令に含める、制御装置である。
上記態様によれば、加工時の主軸の最高回転速度によらず、主軸の戻り動作を高速化することが可能となる。
添付図面に示される本発明の典型的な実施形態の詳細な説明から、本発明のこれらの目的、特徴および利点ならびに他の目的、特徴および利点がさらに明確になるであろう。
第1実施形態に係る工作機械の制御装置の構成を表す機能ブロック図である。 第1実施形態に係るタップ加工制御動作を表すフローチャートである。 第1実施形態におけるタップ加工制御動作における動作パターンを表すグラフである。 タップ加工プログラムによるユーザ指定の戻り時最高回転速度を反映できるように構成されたタップ加工制御動作を表すフローチャートである。 第2実施形態に係るタップ加工制御動作を表すフローチャートである。 主軸モータの速度−加速度特性曲線を表すグラフである。 第2実施形態におけるタップ加工制御動作における動作パターンを表すグラフである。 第3実施形態に係る工作機械の制御装置の構成を表す機能ブロック図である。 第3実施形態に係るタップ加工制御動作を表すフローチャートである。 第3実施形態におけるタップ加工制御動作における動作パターンを表すグラフである。
次に、本開示の実施形態について図面を参照して説明する。参照する図面において、同様の構成部分または機能部分には同様の参照符号が付けられている。理解を容易にするために、これらの図面は縮尺を適宜変更している。また、図面に示される形態は本発明を実施するための一つの例であり、本発明は図示された形態に限定されるものではない。
第1実施形態
図1は、第1実施形態に係る工作機械の制御装置10の構成を表す機能ブロック図である。制御装置10は、主軸12と送り軸14との同期運転によりタップ加工を行う工作機械(例えば旋盤、ボール盤、マシニングセンタ等)において、送り軸14が、タップ加工プログラムPで指定されるねじピッチを考慮しながら、主軸12の回転動作に追従するように動作する同期運転を制御するものである。図示しないが、主軸12は、ワークや工具を把持する把持部を加工に必要な速度で回転運動させるサーボモータ等の駆動装置に設けられる制御軸である。図示しないが、送り軸14は、ワークや工具を支持する支持部を加工に必要な速度で送り運動させるサーボモータ等の駆動装置に設けられる制御軸である。例えば、旋盤では、主軸12で回転するワークに対して工具を送り軸14で直線送りしたり、主軸12で回転するワークを工具に対して送り軸14で直線送りしたりすることができる。また、ボール盤では、主軸12で回転する工具をワークに対して送り軸14で直線送りしたり、主軸12で回転する工具に対してワークを送り軸14で直線送りしたりすることができる。いずれの場合にも、動作中の加減速トルクに比較的余裕の有る送り軸14が、動作中の加減速トルクに比較的余裕の無い主軸12に追従するように動作することで、同期誤差を低減して加工精度を向上させることができる。なお、本実施形態及び後述する各実施形態において、工作機械の構成は特に限定されない。
制御装置10は、タップ加工プログラムPに基づき主軸指令CS及び送り軸指令CFを作成する数値制御部16と、主軸指令CSに従って主軸12の回転動作を制御する主軸制御部18と、主軸12の回転位置を検出する回転検出部20と、送り軸指令CFに従って、回転検出部20が検出した回転位置に基づき送り軸14の送り動作を制御する送り軸制御部22とを備える。数値制御部16は、タップ加工プログラムPを解釈するプログラム解釈部24と、プログラム解釈部24の解釈に従い主軸指令CSを作成して、主軸制御部18に主軸指令CSを送る主軸指令出力部26と、プログラム解釈部24の解釈に従い送り軸指令CFを作成して、送り軸制御部22に送り軸指令CFを送る送り軸指令出力部28とを備える。数値制御部16は、公知のCNC装置のハードウェア構成を有することができる。なお、制御装置10に関する上述の基本的な構成についての説明は、後述の他の実施形態においても同様に適用されるものとする。
以下で詳細に説明するように、第1実施形態に係る制御装置10は、タップ加工の戻り時に、タップ加工プログラムによって指定された主軸の加工時の速度指令に依存しない、主軸モータの無負荷時の許容最高回転速度を目標速度として主軸を制御するように構成されている。
数値制御部10は、タップ加工プログラムPを解釈し、加工開始位置(回転位置)から目標ねじ深さ(回転位置)に至る間の主軸12の加工時最高回転速度V0を取得し、この加工時最高回転速度V0を、加工時の目標速度として主軸制御部18に指令する。また、このとき数値制御部10は、タップ加工プログラムPに含まれるタップ加工動作条件(ねじピッチ、ねじ深さ等)から、加工開始位置から目標ねじ深さに至る主軸の総回転量S0を取得し、この総回転量S0を主軸制御部18への主軸指令CSに含めることができる。一例として、タップ加工プログラムPが、主軸12の加工時最高回転速度V0を3000/minとして、ねじピッチ1.25mm、ねじ深さ30mmの雌ねじを加工する指令を含む場合、加工開始位置から目標ねじ深さに至る間の主軸12の総回転量S0は、30÷1.25=24(rev)となるから、主軸指令出力部は、V0=3000(min-1)とS0=24(rev)とを主軸指令CSに含める。
主軸制御部18は、回転検出部20が検出した主軸12の回転位置(フィードバック値。以下、「回転位置FBS」と記す。)を用いて、一般的なフィードバック制御により主軸12の回転動作を制御する。送り軸制御部22は、送り軸14の送り位置のフィードバック値に加えて、主軸12の回転位置FBSを用いて、フィードバック制御により主軸12の動作に追従する送り軸14の送り動作を制御する。なお回転検出部20は、主軸12の駆動装置の動作位置を検出するエンコーダ等の位置検出器(図示せず)の出力から、回転位置FBSを取得することができる。
図1に示されるように、数値制御部16は記憶部25を有する。記憶部25には、主軸モータの無負荷時の許容最高回転速度である、主軸の戻り時最高回転速度Vrが格納されている。数値制御部16は、目標ねじ深さから工具を引き抜くための戻り動作時の主軸の目標速度として、戻り時最高回転速度Vrを主軸制御部18へ指令する。ここで指令される戻り時最高回転速度Vrは、加工動作時(切削動作時)の主軸の速度指令に依存しない、主軸モータの無負荷時の許容最高回転速度であることに注目する必要がある。
図2は、第1実施形態に係るタップ加工制御動作を表すフローチャートである。図2のタップ加工制御動作は、制御装置10による制御の下で実行される。タップ加工制御動作が開始されると、数値制御部16は、タップ加工プログラムPを解釈して加工時最高回転速度V0と総回転量S0とを取得し、これらの値を主軸制御部18に指令する(ステップS1)。加工時最高回転速度V0と総回転量S0を受け取った主軸制御部18は、加工時最高回転速度V0を目標速度として加工動作を開始する(ステップS2)。ここで、図3に、V0、S0にしたがって主軸制御部18が主軸制御を実行する場合の動作パターン(主軸回転速度の推移)の例を示す。図3において、縦軸は主軸回転速度を表し、横軸は時間を表している。t0からt3に至る加工時の動作において、主軸制御部18は、加工時最高回転速度V0に向けて一定の加速度A0で主軸モータを加速させる。加工時最高速度V0は切削動作における工具への負荷等を考慮し比較的低い値に設定されているため、典型的には、図3に示されるように加工開始後の比較的短い時間で主軸回転速度が加工時最高速度V0に到達し、平坦部分(回転速度一定の部分)が比較的長い動作パターンとなることが理解される。
時間t1において回転速度がV0に達すると、主軸制御部18は、V0を維持しつつ、加速時と絶対値が同じ減速度(−A0)で主軸12をV0から減速させた場合に総回転量S0に到達する時間t2を算出する。なお、図3の動作パターンにおけるt0−t3間の台形状の部分の面積が、総回転量S0に対応している。したがって、主軸制御部18は、図3の動作パターンにおけるt0−t3間の台形状の部分の面積が総回転量S0と等しくなるように、減速開始の時間t2を決定することができる。主軸制御部18は、時間t2から、加速時と絶対値が同じ減速度(−A0)で主軸12を減速させ、時間t3において目標ねじ深さ(総回転量S0)に到達させる。
なお、加工時の加速度A0としては、主軸モータの速度−加速度特性曲線に基づいて決定する方法、数値制御部16にタップ加工プログラム等から入力される値を用いる方法等、様々な手法をとり得る。第1実施形態では、加工時の加速度A0の指定についてはいずれの方法を用いても良い。
主軸制御部18が主軸12の加工開始位置から目標ねじ深さまでの回転動作を制御する間、送り軸制御部22は、主軸12の回転位置FBSを用いて、送り軸14を主軸12の動作に追従するように制御して送り動作を行わせる。
ステップS3において加工時の動作が完了すると、数値制御部16は、記憶部25に記憶された戻り時最高回転速度Vrを主軸制御部18に指令する(ステップS4)。数値制御部16から戻り時最高観点速度Vrを受け取った主軸制御部18は、戻り時最高回転速度Vrを目標速度として主軸の戻り動作を開始する(ステップS5)。図3の動作パターンにおける時間t3〜t5の部分は、戻り時の動作を示している。主軸制御部18は、戻り時最高回転速度Vrに向けて主軸12を例えば加工時の加速度(A0)と同じ加速度で逆回転させ、主軸12の回転量が総回転量S0の半分に到達したタイミングで(時間t4)、主軸モータを加速時と同じ絶対値の減速度(−A0)で減速させる。それにより、時間t5において主軸は加工開始時の位置まで戻ることとなる。主軸が加工開始位置まで戻ると、本加工制御動作は終了する(ステップS6)。なお、図3に例示した戻り動作では、t3からt5に至る三角形状の動作パターンの面積が総回転量S0に対応している。したがって、主軸制御部18は、図3の動作パターンにおけるt3−t5間の三角形状の部分の面積が総回転量S0と等しくなるように、減速開始の時間t4を決定することができる。
図3における戻り時の動作では、戻り時最高観点速度Vrを目標速度として加速する制御が行われるので、典型的には、図3のように、主軸回転速度が戻り時最高観点速度Vrに達する前の速度で減速に転じて総回転量に到達する三角形の動作パターンで制御を行うことが可能である。このような三角形の動作パターンでの制御を実現することにより、速度が一定となるような動作(すなわち、台形の動作パターン)となることを回避することができ、加速度一定の場合において主軸12を目標ねじ深さの位置から動作開始位置まで最速レベルで戻すことが可能となる。すなわち、加工されたタップ軌跡で工具を引き抜く戻り動作の速度を最大限に高め、タップ加工の全体のサイクルタイムを高速化することが可能となる。
主軸制御部18が主軸12の目標ねじ深さから加工開始位置までの回転動作を制御する間、送り軸制御部22は、主軸12の回転位置FBSを用いて、送り軸14を主軸12の動作に追従するように制御して送り動作を行わせる。
工具のイナーシャや剛性に鑑みてタップ加工プログラムPによって比較的低速の主軸の戻り時最高回転速度がユーザ指定されている場合もある。このような場合には、タップ加工プログラムPでユーザ指定された比較的低速の戻り時最高回転速度(以下、戻り時最高回転速度Vr’と記す)を反映できるように制御する構成としても良い。図4は、図2のタップ加工制御動作の変形例として、タップ加工プログラムPにおいて比較的低速の戻り時最高回転速度Vr’がユーザ指定されている場合に、ユーザ指定の戻り時最高回転速度Vr’を反映可能とする制御を表すフローチャートである。図4のタップ加工制御動作においては図2のタップ加工制御動作のステップと同一のステップには同一の符号を用いその説明は省略することとする。
図4のタップ加工制御動作では、加工時の動作として第1実施形態(図2)のタップ加工制御動作におけるステップS1〜S3と同じ制御が行われる。主軸12が目標ねじ深さに到達し加工時動作が完了すると(ステップS3)、数値制御部16は、タップ加工プログラムPにより戻り時最高回転速度Vr’が指定されているか否かを判定する(ステップS11)。タップ加工プログラムPにより戻り時最高回転速度Vr’が指定されている場合(S11:YES)、数値制御部16は、記憶部25に記憶された戻り時最高回転速度Vrがタップ加工プログラムPで指定された戻り時最高回転速度Vr’より大きいか否かを判定する(ステップS12)。タップ加工プログラムPにより戻り時最高回転速度Vr’が指定されていない場合(S11:NO)、数値制御部16は戻り時最高回転速度Vrを主軸制御部18に指令する(ステップS4)。
戻り時最高回転速度Vrが加工プログラムで指定された戻り時最高回転速度Vr’より大きい場合(S12:YES)、タップ加工プログラムPは戻り時の目標速度として主軸モータの無負荷時の許容最高回転速度より低い速度を指定していることなる。この場合は、数値制御部16は、タップ加工プログラムPによる戻り時最高回転速度Vr’を主軸制御部18に指令する(ステップS13)。数値制御部16から戻り時最高回転速度Vr’を受け取ると、主軸制御部18は、戻り時最高回転速度Vr’を目標速度として戻り動作を制御する(ステップS14)。なお、ステップS14での戻り動作の制御は、図2のステップS5での戻り動作時の目標速度であるVrをVr’に置き換えた動作に相当し基本的な制御は同様である。
他方、戻り時最高回転速度Vrが加工プログラムで指定された戻り時最高回転速度Vr’以下である場合(S12:NO)、数値制御部16は戻り時最高回転速度Vrを主軸制御部18に指令する(ステップS4)。戻り時最高回転速度Vrを受け取ると、主軸制御部18は、戻り時最高回転速度Vrを目標速度として戻り動作を制御する(ステップS5)。この場合の動作制御は、図2のステップS5での戻り動作時の動作と同じである。主軸12が加工開始位置に戻ると、本タップ加工制御動作は終了する(ステップS6)。
主軸制御部18が主軸12の加工時及び戻り時の回転動作を制御する間、送り軸制御部22は、主軸12の回転位置FBSを用いて、送り軸14を主軸12の動作に追従するように制御して送り動作を行わせる。
図4のタップ加工制御動作によれば、比較的低速の戻り時最高回転速度Vr’がユーザ指定されている場合にはそれを反映して戻り動作を実行させることができると共に、ユーザ指定がない場合には上述の図2のタップ加工制御動作による効果を得ることができる。
第2実施形態
図5は、第2実施形態に係るタップ加工制御動作を表すフローチャートである。なお、図5のタップ加工制御動作は、図1に示したハードウェア構成を有する制御装置10によって実行される。図5のタップ加工制御動作においては図2のタップ加工制御動作のステップと同一のステップには同一の符号を用いその説明は省略する。
図5のタップ加工制御動作では、加工時の動作として第1実施形態(図2)のタップ加工制御動作におけるステップS1〜S3と同じ制御が行われる。主軸が目標ねじ深さに到達し加工時動作が完了すると(ステップS3)、数値制御部16は、戻り時速度vc及び加速度acを以下で説明するように計算し、それらの値vc,acを速度指令、加速度指令として主軸制御部18に指令する(ステップS4a)。なお、戻り時速度vcは、戻り時最高回転速度Vr以下となるように決定する。
図6は、主軸モータの速度−加速度特性曲線を表す。図6において、横軸、縦軸は、それぞれ主軸モータの速度、加速度を表している。なお、図6の速度−加速度特性曲線を表すデータは、数値制御部16の記憶部25内に予め格納されていても良く、或いは、制御装置16に対してユーザ入力される構成であっても良い。加速度一定で戻り時動作を制御する場合、図7に示すように一定速度区間が生じない動作(三角形の動作パターン)が最速動作となる。図7の動作パターンにおける最高回転速度をvc、加速度をacとする。また、タップ加工動作条件として、目標ねじ深さ×ねじピッチから求まる戻り時の主軸12の総回転量をS0とする。この場合、図7の最速動作では、以下の関係式が成立している。なお、下記関係式において、tは速度0の状態から速度vcに到達するまでの時間(速度vcから速度0に戻るまでの時間)、S0は主軸の総回転量である。

(1/2)ac2=S0/2 ・・・(1)
ct=vc ・・・(2)

上記数式(1)、(2)からac、vc、S0の関係は以下となる。

c 2/ac=S0 ・・・(3)

数値制御部16は、図6の速度−加速度特性曲線から上記数式(3)を満たす速度Vc、加速度acを決定する。ただし、vc≦Vrを条件とする。例えば、図6の速度−加速度特性曲線上の点Pcが、上記数式(3)を満たす速度vc、加速度acとして決定される。
上記制御により戻り時最高回転速度Vrを目標速度として、加速度一定場合における最速の戻り動作を実現することができる(ステップS5a)。また、それによりタップ加工の全体のサイクルタイムを最大限に高速化することが可能となる。
主軸制御部18が主軸12の加工時及び戻り時の回転動作を制御する間、送り軸制御部22は、主軸12の回転位置FBSを用いて、送り軸14を主軸12の動作に追従するように制御して送り動作を行わせる。
第3実施形態
図8は、第3実施形態に係る制御装置10aの構成を表すブロック図である。図8において、図1の第1実施形態に係る制御装置と同一の構成要素には同一の符号を付し、その説明を省略する。
本実施形態において、主軸指令出力部26aは、タップ加工の開始に先立ち、プログラム解釈部24が解釈したタップ加工プログラムPの指令値から、加工開始位置(回転位置)から目標ねじ深さ(回転位置)に至る間の主軸12の総回転量S0と最高回転速度V0とを取得して、これら総回転量S0と最高回転速度V0とを主軸指令CSとして主軸制御部18aに送る。例えば、第1実施形態の場合と同様に、タップ加工プログラムPが、主軸12の最高回転速度V0を3000/minとして、ねじピッチ1.25mm、ねじ深さ30mmの雌ねじを加工する指令を含む場合、主軸指令出力部26は、V0=3000(min-1)とS0=24(rev)とを主軸制御部18に通知する。
主軸制御部18aは、回転検出部20が検出した主軸12の回転位置FBSを用いて、一般的なフィードバック制御により主軸12の回転動作を制御する。送り軸制御部22は、送り軸14の送り位置のフィードバック値に加えて、主軸12の回転位置FBSを用いて、フィードバック制御により主軸12の動作に追従する送り軸14の送り動作を制御する。
主軸制御部18aは、主軸指令出力部26aから送られた最高回転速度V0(min-1)を目標値として、加工開始位置から目標ねじ深さに向かって主軸12を最大能力で加速回転させる初期動作制御部30と、最大能力での加速回転中に回転位置FBSに基づき最大加速度A0(min-1/s)を検出する最大加速度検出部32と、主軸指令出力部26から送られた総回転量S0(rev)と回転位置FBSとに基づき、現在位置(回転位置)から目標ねじ深さに至るまでの主軸12の残回転量Sr(rev)を検出する残回転量検出部34と、回転位置FBSに基づき主軸12の現在速度Vc(min-1)を検出する現在速度検出部36と、最大能力での加速回転の後に、最大加速度A0と残回転量Srと現在速度Vcとに基づき、主軸12を最大能力で減速回転させて目標ねじ深さに到達させる位置決め動作制御部38とを備える。本実施形態では、位置決め動作制御部38は、主軸12を最大能力で減速回転させるとともに目標ねじ深さで停止させるように構成できる。
図9は、第3実施形態に係るタップ加工制御動作を表すフローチャートである。なお、図9のタップ加工制御動作は、図8に示したハードウェア構成を有する制御装置10aによって実行される。
ステップS101で、数値制御部16aは主軸制御部18aに、主軸12の総回転量S0と加工時最高回転速度V0とを指令する。ステップS102で、主軸制御部18a(初期動作制御部30、最大加速度検出部32、残回転量検出部34)は、加工開始位置から、加工時最高回転速度V0を目標速度として主軸12を、駆動源(主軸モータ)の許容電流を最大限に利用した最大能力で加速回転させてタップ加工を実行する。その間、主軸制御部18aは、最大加速度A0を検出するとともに、現在位置からの残回転量Srを逐次検出する(ステップS103)。検出した残回転量Srは、検出の都度、主軸制御部18aが数値制御部16aに通知する。
ステップS104では、主軸制御部18aは、最大加速度A0、残回転量Srを用いて目標ねじ深さまでの位置制御を行う。以下に、典型的な位置制御の動作例を説明する。主軸制御部18a(現在速度検出部36)は、最大能力での加速回転中に現在速度Vcを逐次検出し、検出の都度、現在速度Vcが最高回転速度V0に到達していないか否かを判断する。VcがV0に到達していない場合、主軸制御部18aは、残回転量Srが総回転量S0の1/2以下になっているか否かを判断する。現在速度Vcが最高回転速度V0に達する前にSrがS0の1/2以下になった場合、主軸制御部18aは、主軸12を、駆動源の許容電流を最大限に利用した最大能力で減速回転させてタップ加工を継続実行する。
ここで図10を参照すると、典型的な動作例として、現在速度Vcが最高回転速度V0に到達する前に残回転量Srが総回転量S0の1/2になった場合の、主軸12の動作が、速度−時間曲線で示されている。図10において、Vbは、始動から速度Vbまでは一定トルクでの加速(つまり一定加速度)が可能な回転速度(例えばサーボモータの基底速度)として、主軸12に予め設定されたものであって、例えば制御装置10aの記憶部25に制御用パラメータの1つとして格納できるものである。
ステップS102における主軸12の最大能力の加速回転は、図10の時間T1及びT2で実行され、時間T1の一定加速度の間に最大加速度A0が検出される。主軸12の回転速度がVbを超えると、サーボモータの特性により主軸12の加速度は最大加速度A0から漸減する(図6参照)。残回転量Srが総回転量S0の1/2になった(つまり加工開始からの回転量が総回転量S0の1/2になった)時点Aで、主軸12の動作は加速回転から減速回転に変わり、時間T3で、主軸12の最大能力での減速回転が実行される。時間T3では、点Aから速度Vbを目標値として主軸12を減速回転させるが、この間、例えばサーボモータの特性により、主軸12の減速度は漸増する。最大能力での減速回転中も、主軸制御部18a(残回転量検出部34、現在速度検出部36)は、主軸12の現在位置からの残回転量Sr及び現在速度Vcを逐次検出する。
引き続いて、主軸制御部18a(位置決め動作制御部38)は、逐次検出されている残回転量Sr(rev)と現在速度Vc(min-1)とを監視して、現在速度Vc(min-1)から最大加速度A0(min-1/s)に対応する最大減速度A0(負の値)で減速したときにSr=0となる(つまり目標ねじ深さに到達する)ことが予測される時点B(図10)の位置を、Sr=0の点から見た残回転量Sr(負の値)の絶対値として、下記の式により求める。
公式:(Vc/60)2=2×|A0|/60×|Sr|から、
|Sr|=Vc2/|A0|/120
ここで、本実施形態では、点Bから主軸12を一定の最大減速度A0で減速することを前提とする。したがって点Bでは、主軸12の現在速度VcはVbに達しているものとする。つまり点Bの位置|Sr|は、
|Sr|=Vb2/|A0|/120として求めることができる。
また、本実施形態では、主軸12の加速に必要なトルク(以下、加速トルク)と減速に必要なトルク(以下、減速トルク)とは互いに等しいものとする。一般に、主軸12の回転中は機械構造上の負荷(抵抗)が発生し、加速トルクは減速トルクよりも大きくなるので、加速トルクと減速トルクとが等しい場合には、同じ速度変化で比較すると最大能力での加速時間が最大能力での減速時間よりも長くなる。したがって実際には、主軸12は、点Aから減速した後に時間T2よりも短い時間で速度Vbに到達し、このときの位置|Sr|は、
|Sr|>Vc2/|A0|/120
であって、その後に一定速度Vbで極少時間だけ回転することにより、
|Sr|=Vb2/|A0|/120の点Bに到達することになる(図10)。
再び図10を参照すると、ステップS104において、主軸制御部18a(位置決め動作制御部38)は、主軸12の現在位置における残回転量の絶対値|Sr|が、|Sr|=Vb2/|A0|/120を満たしているか否か(つまり主軸12の回転位置が点Bに到達したか否か)を判断する。|Sr|=Vb2/|A0|/120を満たしている場合、主軸制御部18a(位置決め動作制御部38)は、主軸12を最大減速度A0で減速回転してSr=0の点(つまり目標ねじ深さ)に到達させるための指令(一実施形態では、目標ねじ深さで停止させるための指令)を作成し、この指令により主軸12を位置制御する。|Sr|=Vb2/|A0|/120を満たしていない場合は、この等式が満たされるまで判断を繰り返す。主軸12は、主軸制御部18a(位置決め動作制御部38)からの指令に従い、点Bから目標ねじ深さに向かって最大減速度A0で減速回転してタップ加工を実行し、Sr=0になった時点で目標ねじ深さに到達する(一実施形態では、目標ねじ深さで停止する)(ステップS105)。このように、点Bから目標ねじ深さに到達するまでの時間T4では、主軸制御部18は主軸12を位置制御することになる。
主軸制御部18aが主軸12の加工開始位置から目標ねじ深さまでの回転動作を制御する間、送り軸制御部22は、主軸12の回転位置FBSを用いて、送り軸14を主軸12の動作に追従するように制御して送り動作を行わせる。数値制御部16aは、主軸制御部18aが加工開始位置から目標ねじ深さまでの回転動作を制御する間、主軸制御部18aから通知される残回転量Srを監視して、残回転量Srが第1の所定値(零に近い極小値)以下になったときに、タップ加工が目標ねじ深さに達したと判断しても良い。
タップ加工が目標ねじ深さに達した後、ステップS106〜S110で戻り動作が実行される。ステップ106では、数値制御部16aは、プログラム解釈部24が解釈したタップ加工プログラムPの指令値から、目標ねじ深さから戻り完了位置に至る間の主軸12の総回転量S0′を取得する。そして、数値制御部16aは、総回転量S0′と、記憶部25に記憶されている戻り時最高回転速度Vrとを主軸指令CSとして主軸制御部18aに送る。なお、戻り完了位置は、加工開始位置と同一であってもよいし、加工開始位置と異なっていてもよい。戻り完了位置が加工開始位置と同一の場合、総回転量S0′は切削時の総回転量S0と等しくなる。
ステップS107で、主軸制御部18a(初期動作制御部30、最大加速度検出部32、残回転量検出部34)は以下の制御を行う。初期動作制御部30は、戻り時最高回転速度Vrを目標速度として目標ねじ深さから戻り完了位置に向かって主軸12を、駆動源の許容電流を最大限に利用した最大能力で加速逆回転させて戻り動作を実行する。最大加速度検出部32は、最大能力での加速逆回転中に回転位置FBSに基づき逆回転の最大加速度A0′を検出する。残回転量検出部34は、総戻り回転量S0′と回転位置FBSとに基づき、現在位置から戻り完了位置に至るまでの主軸12の残戻り回転量Sr′を逐次検出する(ステップS108)。検出した残戻り回転量Sr′は、検出の都度、主軸制御部18aが数値制御部16aに通知する。
ステップS109では、主軸制御部18aは、最大加速度A0、残回転量Srを用いて加工開始位置までの位置制御を行う。ここでは、典型的な動作の一例として、以下のような位置制御が行われる。主軸制御部18a(現在速度検出部36)は、最大能力での加速逆回転中に回転位置FBSに基づき逆回転の現在速度Vc′を逐次検出し、検出の都度、現在速度Vc′が戻り時最高回転速度Vrに到達していないか否かを判断する。Vc′がVrに到達していない場合、主軸制御部18aは、残戻り回転量Sr′が総戻り回転量S0′の1/2以下になっているか否かを判断する。現在速度Vc′が戻り時最高回転速度Vrに到達する前にSr′がS0′の1/2以下になった場合、主軸制御部18aは、主軸12を、駆動源の許容電流を最大限に利用した最大能力で減速逆回転させて戻り動作を継続実行する。
また、ステップS109で、主軸制御部18a(位置決め動作制御部38)は、主軸12の現在位置における残戻り回転量Sr′の絶対値|Sr′|が、|Sr′|=Vb2/|A0′|/120を満たしているか否かを判断する。|Sr′|=Vb2/|A0′|/12 0を満たしている場合、主軸制御部18a(位置決め動作制御部38)は、主軸12を最大減速度A0′で減速逆回転してSr′=0の点(つまり戻り完了位置 )で停止させるための指令を作成し、この指令により主軸12を位置制御する。|Sr′|=Vb2/|A0′|/120を満たしていない場合は、この等式が満たされるまで判断を繰り返す。主軸12は、主軸制御部18a(位置決め動作制御部38)からの指令に従い、戻り完了位置に向かって最大減速度A0′で減速逆回転して戻り動作を実行し、Sr′=0になった時点で停止する(ステップS110)。
主軸制御部18aが主軸12の目標ねじ深さから戻り完了位置までの逆回転動作を制御する間、送り軸制御部22は、主軸12の回転位置FBSを用いて、送り軸14を主軸12の動作に追従するように制御して逆送り動作を行わせる。数値制御部16aは、主軸制御部18aが目標ねじ深さから戻り完了位置までの逆回転動作を制御する間、主軸制御部18aから通知される残戻り回転量Sr′を監視して、残戻り回転量Sr′が第2の所定値(零に近い極小値)以下になったときに、戻り動作が完了して工具がワークから引き抜かれたと判断しても良い。
上記した主軸12の戻り動作は、図10に示す加工動作と同様の速度−時間曲線で表すことができる。図10に示すように、目標ねじ深さに到達した瞬間、主軸12の現在速度Vcは零になるが、さらに主軸12は、主軸制御部18(位置決め動作制御部38)からの指令に従い、最大減速度A0を維持して逆回転の加速度A0を生じ、現在速度Vc(負の値)を徐々に増加させる加速逆回転により、時間T7に渡って、目標ねじ深さから点Cに向かう戻り動作を遂行する。
主軸12の点Cの位置は任意に設定できる。例えば図10に示すように、切削動作中に最大減速度A0での減速回転を開始した点Bと同じ位置を、点Cとすることができる。この場合の点Cは、目標ねじ深さから|Sr|=Vb2/|A0|/120に相当する回転量だけ逆回転した位置となる。この構成によれば、図10に示すように、加工開始から点Bを経て目標ねじ深さに到達するまでの主軸12の切削動作(時間T1〜T4)と、目標ねじ深さから点Cを経て戻り完了位置に到達するまでの主軸12の戻り動作(時間T7〜T10)とを、速度の符号が逆になる以外は実質的に同じ速度−時間曲線で表すことができる。つまり、主軸12は、時間T7において、時間T1の一定の最大加速度A0での加速回転と同様に、一定の加速度A0で加速逆回転する。
図10に示す例では、主軸12は、所定の回転位置(点C)に到達した後に逆回転の現在速度がVb(負の値)を超えるので、最大能力での加速逆回転において、例えばサーボモータの特性により、主軸12の逆回転の加速度はA0から漸減する(時間T8)。残戻り回転量Sr′が総戻り回転量S0′の1/2になった(つまり目標ねじ深さからの回転量が総回転量S0′の1/2になった)時点Dで、主軸12の動作は加速逆回転から減速逆回転に変わり、時間T9で、主軸12の最大能力での減速逆回転が実行される。
次に主軸制御部18a(位置決め動作制御部38)は、主軸12の現在位置における残戻り回転量Sr′の絶対値|Sr′|が、|Sr′|=Vb2/|A0′|/120を満たしているか否か(つまり主軸12の回転位置が点E(図10)に到達したか否か)を判断する。|Sr′|=Vb2/|A0′|/120を満たしている場合、主軸制御部18a(位置決め動作制御部38)は、主軸12を最大減速度A0′(時間T7における逆回転の加速度A0に対応する値)で減速逆回転してSr′=0の点(つまり 戻り完了位置)で停止させるための指令を作成し、この指令により主軸12を位置制御する。主軸12は、主軸制御部18(位置決め動作制御部38)からの指令に従い、戻り完了位置に向かって最大減速度A0′で減速逆回転して戻り動作を実行し、Sr′=0になった時点で停止する。
上記実施形態によれば、戻り動作時に主軸モータの無負荷時の許容最高回転速度である戻り時最高回転速度Vrを目標速度として主軸12を制御することができる。したがって、最速動作で主軸の戻り動作を実行することが可能となる。また、それによりタップ加工の全体のサイクルタイムを最大限に高速化することが可能となる。
以上、典型的な実施形態を用いて本発明を説明したが、当業者であれば、本発明の範囲から逸脱することなしに、上述の各実施形態に変更及び種々の他の変更、省略、追加を行うことができるのを理解できるであろう。
上述の実施形態では、戻り時最高回転速度Vrとして主軸モータの無負荷時の許容最高回転速度を適用する構成となっているが、この戻り時最高回転速度Vrとしては、主軸の加工時の最高回転速度には依存せず、且つ加工時の最高回転速度よりも高速の値を用いることによって、戻り動作を高速化することが可能である。
また、本開示の課題を解決するために、以下のような各種の態様とその効果を提供することができる。なお、以下の態様の説明文における括弧内の番号は本開示の図面の参照符号に対応する。
例えば、本開示の第一態様は、主軸(12)と送り軸(14)の同期運転を制御する工作機械の制御装置(10)であって、タップ加工プログラム(P)に基づき主軸指令及び送り軸指令を作成する数値制御部(16)と、前記主軸指令に従って前記主軸(12)の回転動作を制御する主軸制御部(18)と、前記主軸(12)の回転位置を検出する回転検出部(20)と、前記送り軸指令に従って、前記回転位置に基づき前記送り軸(14)の送り動作を制御する送り軸制御部(22)と、を具備し、前記数値制御部(16)は、目標ねじ深さから加工開始位置に戻る戻り動作の指令として、前記主軸(12)の加工時の最高回転速度に依存せず且つ前記加工時の前記最高回転速度よりも高速な戻り時速度指令値を前記主軸指令に含める、制御装置(10)である。
上記第一態様によれば、加工時の主軸の最高回転速度によらず、主軸の戻り動作を高速に実行することが可能になる。
また、本開示の第二態様は、上記第一態様の制御装置(10)であって、前記主軸を駆動する駆動源の無負荷時の許容最高回転速度を記憶する記憶部(25)を更に備え、前記数値制御部は、前記記憶部(25)に記憶された前記駆動源の無負荷時の前記許容最高回転速度を、前記戻り時速度指令値として前記主軸指令に含める。
また、本開示の第三態様は、上記第二態様の制御装置(10)であって、前記数値制御部(16)は、前記タップ加工プログラム(P)により前記主軸(12)の戻り時最高回転速度が指定されているか否かを判定し、前記タップ加工プログラム(P)により前記主軸(12)の前記戻り時最高回転速度が指定されている場合で、且つ、前記タップ加工プログラム(P)により指定された前記戻り時最高回転速度が前記駆動源の無負荷時の前記許容最高回転速度より低い場合に、前記タップ加工プログラム(P)により指定された前記戻り時最高回転速度を、前記戻り時速度指令値として前記主軸指令に含める。
また、本開示の第四態様は、上記第一態様の制御装置(10)であって、前記数値制御部(16)は、タップ加工動作条件および前記主軸を駆動する駆動源の速度−加速度特性から、加速度一定の場合に前記戻り動作が最速となる前記主軸の戻り時速度と戻り時加速度とを求め、前記戻り時速度を前記戻り時速度指令値として前記主軸指令に含めるとともに、前記戻り時加速度を前記主軸指令に含める。
また、本開示の第五態様は、上記第二態様の制御装置(10a)であって、前記数値制御部(16a)は、前記加工開始位置から前記目標ねじ深さに至る間の前記主軸(12)の総回転量と加工時最高回転速度とを前記タップ加工プログラム(P)から取得して、該総回転量と該加工時最高回転速度とを加工動作の前記主軸指令として前記主軸制御部(18a)に送り、前記主軸制御部(18a)は、前記加工時最高回転速度を目標速度として前記加工開始位置から前記目標ねじ深さに向かって前記主軸(12)を、前記駆動源の許容電流を最大限に利用した最大能力で加速回転させる初期動作制御部(30)と、前記最大能力での加速回転中に前記回転位置に基づき最大加速度を検出する最大加速度検出部(32)と、前記総回転量と前記回転位置とに基づき、現在位置から前記目標ねじ深さに至るまでの前記主軸の残回転量を検出する残回転量検出部(34)と、前記回転位置に基づき前記主軸(12)の現在速度を検出する現在速度検出部(36)と、前記最大能力での加速回転の後に、前記最大加速度と前記残回転量と前記現在速度とに基づき、前記主軸(12)を最大能力で減速回転させて前記目標ねじ深さに到達させる位置決め動作制御部(38)とを備え、前記戻り動作において、前記初期動作制御部(30)は、前記駆動源の無負荷時の前記許容最高回転速度を目標速度として前記目標ねじ深さから前記加工開始位置に向かって前記主軸(12)を、前記駆動源の許容電流を最大限に利用した最大能力で加速逆回転させ、前記最大加速度検出部(32)は、前記最大能力での加速逆回転中に前記回転位置に基づき前記最大加速度を検出し、前記残回転量検出部(34)は、前記総回転量と前記回転位置に基づき、現在位置から前記加工開始位置に戻るまでの前記主軸(12)の残回転量を検出し、前記位置決め動作制御部(38)は、前記最大能力での加速逆回転の後に、前記最大加速度と前記残回転量と前記現在速度とに基づき、前記主軸(12)を最大能力で減速逆回転させて前記加工開始位置に到達させる。
10、10a 制御装置
12 主軸
14 送り軸
16、16a 数値制御部
18、18a 主軸制御部
20 回転検出部
22 送り軸制御部
24 プログラム解釈部
25 記憶部
26、26a 主軸指令出力部
28 送り軸指令出力部

Claims (5)

  1. 主軸と送り軸の同期運転を制御する工作機械の制御装置であって、
    タップ加工プログラムに基づき主軸指令及び送り軸指令を作成する数値制御部と、
    前記主軸指令に従って前記主軸の回転動作を制御する主軸制御部と、
    前記主軸の回転位置を検出する回転検出部と、
    前記送り軸指令に従って、前記回転位置に基づき前記送り軸の送り動作を制御する送り軸制御部と、を具備し、
    前記数値制御部は、目標ねじ深さから加工開始位置に戻る戻り動作の指令として、前記主軸の加工時の最高回転速度に依存せず且つ前記加工時の前記最高回転速度よりも高速な戻り時速度指令値を前記主軸指令に含める、制御装置。
  2. 前記主軸を駆動する駆動源の無負荷時の許容最高回転速度を記憶する記憶部を更に備え、
    前記数値制御部は、前記記憶部に記憶された前記駆動源の無負荷時の前記許容最高回転速度を、前記戻り時速度指令値として前記主軸指令に含める、
    請求項1に記載の制御装置。
  3. 前記数値制御部は、
    前記タップ加工プログラムにより前記主軸の戻り時最高回転速度が指定されているか否かを判定し、
    前記タップ加工プログラムにより前記主軸の前記戻り時最高回転速度が指定されている場合で、且つ、前記タップ加工プログラムにより指定された前記戻り時最高回転速度が前記駆動源の無負荷時の前記許容最高回転速度より低い場合に、前記タップ加工プログラムにより指定された前記戻り時最高回転速度を、前記戻り時速度指令値として前記主軸指令に含める、請求項2に記載の制御装置。
  4. 前記数値制御部は、タップ加工動作条件および前記主軸を駆動する駆動源の速度−加速度特性から、加速度一定の場合に前記戻り動作が最速となる前記主軸の戻り時速度と戻り時加速度とを求め、前記戻り時速度を前記戻り時速度指令値として前記主軸指令に含めるとともに、前記戻り時加速度を前記主軸指令に含める、請求項1に記載の制御装置。
  5. 前記数値制御部は、前記加工開始位置から前記目標ねじ深さに至る間の前記主軸の総回転量と加工時最高回転速度とを前記タップ加工プログラムから取得して、該総回転量と該加工時最高回転速度とを加工動作の前記主軸指令として前記主軸制御部に送り、
    前記主軸制御部は、
    前記加工時最高回転速度を目標速度として前記加工開始位置から前記目標ねじ深さに向かって前記主軸を、前記駆動源の許容電流を最大限に利用した最大能力で加速回転させる初期動作制御部と、
    前記最大能力での加速回転中に前記回転位置に基づき最大加速度を検出する最大加速度検出部と、
    前記総回転量と前記回転位置とに基づき、現在位置から前記目標ねじ深さに至るまでの前記主軸の残回転量を検出する残回転量検出部と、
    前記回転位置に基づき前記主軸の現在速度を検出する現在速度検出部と、
    前記最大能力での加速回転の後に、前記最大加速度と前記残回転量と前記現在速度とに基づき、前記主軸を最大能力で減速回転させて前記目標ねじ深さに到達させる位置決め動作制御部とを備え、
    前記戻り動作において、
    前記初期動作制御部は、前記駆動源の無負荷時の前記許容最高回転速度を目標速度として前記目標ねじ深さから前記加工開始位置に向かって前記主軸を、前記駆動源の許容電流を最大限に利用した最大能力で加速逆回転させ、
    前記最大加速度検出部は、前記最大能力での加速逆回転中に前記回転位置に基づき前記最大加速度を検出し、
    前記残回転量検出部は、前記総回転量と前記回転位置に基づき、現在位置から前記加工開始位置に戻るまでの前記主軸の残回転量を検出し、
    前記位置決め動作制御部は、前記最大能力での加速逆回転の後に、前記最大加速度と前記残回転量と前記現在速度とに基づき、前記主軸を最大能力で減速逆回転させて前記加工開始位置に到達させる、請求項2に記載の制御装置。
JP2018027732A 2018-02-20 2018-02-20 タップ加工の制御装置 Active JP6799022B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018027732A JP6799022B2 (ja) 2018-02-20 2018-02-20 タップ加工の制御装置
DE102019103563.5A DE102019103563A1 (de) 2018-02-20 2019-02-13 Steuervorrichtung für das Gewindeschneiden
CN201910120156.6A CN110170883B (zh) 2018-02-20 2019-02-18 攻丝加工的控制装置
US16/278,931 US10955813B2 (en) 2018-02-20 2019-02-19 Control apparatus for tapping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018027732A JP6799022B2 (ja) 2018-02-20 2018-02-20 タップ加工の制御装置

Publications (2)

Publication Number Publication Date
JP2019141947A true JP2019141947A (ja) 2019-08-29
JP6799022B2 JP6799022B2 (ja) 2020-12-09

Family

ID=67482270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018027732A Active JP6799022B2 (ja) 2018-02-20 2018-02-20 タップ加工の制御装置

Country Status (4)

Country Link
US (1) US10955813B2 (ja)
JP (1) JP6799022B2 (ja)
CN (1) CN110170883B (ja)
DE (1) DE102019103563A1 (ja)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493114A (ja) 1990-08-07 1992-03-25 Brother Ind Ltd タッピング・マシン
JP2722286B2 (ja) 1991-06-10 1998-03-04 ファナック株式会社 サーボモータの最適加減速制御方式
JP3553741B2 (ja) * 1996-09-02 2004-08-11 三菱電機株式会社 数値制御装置および数値制御装置の主軸モータ加減速制御方法
US5910199A (en) * 1997-02-26 1999-06-08 Vickers, Incorporated Method and apparatus for fast threading pullout in a numerically controlled threading application
JP3712994B2 (ja) 2002-06-05 2005-11-02 本田技研工業株式会社 サンルーフの排水装置
CN103894685B (zh) * 2012-12-25 2016-08-24 安川电机(沈阳)有限公司 攻丝控制装置和攻丝控制方法
JP6001633B2 (ja) 2014-10-17 2016-10-05 ファナック株式会社 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
DE102015013283B4 (de) * 2014-10-17 2019-01-24 Fanuc Corporation Vorrichtung und Verfahren zum Steuern einer Werkzeugmaschine, um einen synchronisierten Betrieb einer Spindelachse und Vorschubachse zu steuern
CN104526458B (zh) * 2014-12-25 2017-01-11 北京北方红旗精密机械制造有限公司 一种攻丝加工控制方法及系统
JP6034913B2 (ja) * 2015-03-30 2016-11-30 ファナック株式会社 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
JP6088581B2 (ja) * 2015-06-04 2017-03-01 ファナック株式会社 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
JP6140223B2 (ja) 2015-07-29 2017-05-31 ファナック株式会社 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法

Also Published As

Publication number Publication date
JP6799022B2 (ja) 2020-12-09
US20190258217A1 (en) 2019-08-22
DE102019103563A1 (de) 2019-08-22
CN110170883A (zh) 2019-08-27
CN110170883B (zh) 2022-03-15
US10955813B2 (en) 2021-03-23

Similar Documents

Publication Publication Date Title
JP6088581B2 (ja) 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
JP6034913B2 (ja) 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
JP6140223B2 (ja) 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
JP6301977B2 (ja) 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
JP6396354B2 (ja) 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
US9753452B2 (en) Device and method of controlling machine tool, to control synchronized operation of spindle axis and feed axis
JP6001633B2 (ja) 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
JP6374469B2 (ja) 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
JP6474435B2 (ja) 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
JP6605926B2 (ja) 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
JP6799022B2 (ja) タップ加工の制御装置
US11507062B2 (en) Numerical control apparatus
JP7481447B2 (ja) 工作機械の制御装置及び制御方法
US11114967B2 (en) Controller of rotary axis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190612

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190913

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200820

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200828

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201119

R150 Certificate of patent or registration of utility model

Ref document number: 6799022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150