WO2017182123A1 - Verfahren zur beschichtung eines gegenstands mittels eines mehrschichtsystems mit einer nickel-phosphor-legierung - Google Patents

Verfahren zur beschichtung eines gegenstands mittels eines mehrschichtsystems mit einer nickel-phosphor-legierung Download PDF

Info

Publication number
WO2017182123A1
WO2017182123A1 PCT/EP2017/000498 EP2017000498W WO2017182123A1 WO 2017182123 A1 WO2017182123 A1 WO 2017182123A1 EP 2017000498 W EP2017000498 W EP 2017000498W WO 2017182123 A1 WO2017182123 A1 WO 2017182123A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nickel
coating
article
phosphorus alloy
Prior art date
Application number
PCT/EP2017/000498
Other languages
English (en)
French (fr)
Inventor
Christian Zimmermann
Mark BOBZIEN
Original Assignee
Grohe Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grohe Ag filed Critical Grohe Ag
Priority to EP23160921.5A priority Critical patent/EP4212647A1/de
Priority to CN201780012036.3A priority patent/CN109072448A/zh
Priority to EP17720678.6A priority patent/EP3445892B1/de
Publication of WO2017182123A1 publication Critical patent/WO2017182123A1/de
Priority to US16/166,676 priority patent/US10837117B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/06Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/08Deposition of black chromium, e.g. hexavalent chromium, CrVI
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics

Definitions

  • the present invention relates to a method of coating an article with a multi-layer system.
  • Such multilayer systems are used, for example, as corrosion protection and / or as decorative coatings.
  • With the method specified here in particular objects of sanitary facilities are to be manufactured or refined, such as sanitary fittings.
  • Multilayer systems based on electrochemically deposited metal layers can form corrosion products, depending on the substrates used, layer materials, surrounding media and reaction conditions.
  • the process of corrosion is also dependent on geometric conditions (for example, resulting in crevice corrosion) and mechanical effects (for example, friction).
  • the causes of corrosion can be manifold and usually occur in combination.
  • electrochemical potential differences between the layers and base material defects may be mentioned here.
  • Multilayer systems based on electrochemically deposited copper layers, nickel layers and chrome layers are known from the prior art.
  • different nickel layers are usually used as a multilayer structure (semi-bright nickel, bright nickel, microporous nickel).
  • the corrosion protection of the coated component is enhanced by subsequent chrome plating from a chromium (VI) or chromium (III) -containing electrolyte.
  • a chromium layer Almost without exception, nickel layers are protected against rapid corrosion attack by a chromium layer. Damaged chromium coatings, but also those with incompletely closed, too thinly deposited or porous chrome layers lead after a short time (depending on the external conditions such as use, cleaning and surrounding Media) to corrosion products that are visually unattractive and can lead to component failure in susceptible base materials.
  • the object of the invention therefore at least partially to solve the described with reference to the prior art Prob ⁇ lems, and in particular a method for coating an article, in particular a Sanitärarurgistand to provide, can be produced with both corrosion-resistant and decorative surfaces.
  • a surface of the article is at least partially coated with a coating having a plurality of layers, wherein at least one layer of the coating consists of a nickel-phosphorus alloy and wherein a mass fraction of the phosphorus in the nickel - Phosphorus alloy is at least 8%.
  • the article is a substrate of any solid material that has a surface, but preferably a sanitary article, such as a sanitary fitting, which finds particular use in conjunction with sinks, sinks, showers, and / or bathtubs.
  • sanitary fittings are used in particular for the removal of water and may be actuators for a water temperature and / or a removal of water.
  • the surface of the article is at least partially or completely coated with a coating having a plurality of layers.
  • the coating is a multi-layer system with which, in particular, decorative and / or functional surfaces can be produced.
  • the individual layers are in particular formed sequentially and / or differ in their material composition.
  • the individual layers preferably each have a layer thickness of 5 ⁇ (microns) to 100 ⁇ , preferably 8 ⁇ to 80 ⁇ on.
  • At least one of the plurality of layers of the coating is made of a nickel-phosphorus alloy, wherein a mass fraction of the phosphorus in the nickel-phosphorus alloy is at least 8%.
  • the mass fraction of phosphorus in the nickel-phosphorus alloy is preferably 8% to 14%, more preferably 10% to 12%.
  • At least the layer of the nickel-phosphorus alloy is electrodeposited on the article.
  • other layers or all layers of the coating can be deposited on the article electrolytically.
  • the article is in particular at least partially immersed in an electrolytic solution.
  • the nickel-phosphorus alloy assumes the function of corrosion protection in the multi-layer system.
  • the nickel-phosphorous alloy greatly inhibits corrosion of the article and thus improves the corrosion properties, particularly of decorative coatings having a functional character. Damage, incompletely closed or porous coatings therefore lead to a significantly reduced corrosion of the article, so that component failure and / or visual impairments are avoided.
  • the article consists of copper, zinc, aluminum, steel, plastic or an alloy comprising copper, zinc or steel.
  • Water-bearing sanitary items, such as single lever mixers and / or spouts, may be at least partially made of copper alloys (brass, bronze).
  • PA polyamide
  • PA / GF glass-fiber reinforced polyamide
  • Galvanically chromed steel parts can also be found in numerous industries, such as the furniture industry (chair frames), automotive industry (attachments, ashtrays, headrest holders, etc.) Aluminum is used in the sanitary industry, for example in the field of shower cubicles and bathroom furniture.
  • a first layer of the coating consists of copper or nickel.
  • the first layer of the coating is that layer which is applied directly to the surface of the base body.
  • the copper or nickel layer can be used to achieve the optical surface quality needed to produce high quality chrome surfaces. Both metals can electrodeposit surface defects (scratches, fines, pores) and significantly increase the gloss of finished surfaces.
  • the corrosion resistance of the base body can be increased and the adhesion of the finished coating to the base body in the case of plastic base bodies can be significantly improved by the ductility of copper.
  • a further layer of the coating consists of bright nickel, semi-bright nickel or matt nickel.
  • the further layer is applied in particular directly to the first layer.
  • Bright nickel coatings are the most important of all nickel coatings.
  • the decorative application is in the foreground.
  • Bright nickel baths contain various brighteners. These cause a fine crystalline structure and thus a brilliant, high-gloss layer. Chromium deposited on this layer gives a high gloss surface which is well known and widely used.
  • Semi-gloss nickel layers are not deposited because of their low gloss, but to meet special corrosion requirements. Semi-gloss nickel layers should always be considered together with the bright nickel layer. They are usually deposited in front of the bright nickel layer and improve the corrosion properties of the composite due to their electrochemical potential.
  • Matt nickel layers are nickel layers, which have largely anti-glare properties due to their composition. Usually, certain substances are added to the electrolyte, which influence the nickel deposition. Since the purpose of these layers is to achieve a certain appearance, these layers are usually deposited just before chrome plating (often as a substitute for bright nickel layers). The color and the mat impression can be controlled to a certain extent by the process parameters in these processes.
  • a third layer of the coating consists of the proposed nickel-phosphorus alloy.
  • the third layer is applied directly to the second layer.
  • a fourth layer of the coating is a chromium layer.
  • the fourth layer is applied directly to the third layer.
  • the chromium layer is deposited from hexavalent or trivalent chromium electrolyte.
  • a chromium layer of a hexavalent chromium electrolyte is particularly corrosion-resistant and provides very good optical surface qualities.
  • a chrome layer of a trivalent chromium electrolyte is particularly suitable and preferred from the point of view of working safety and for environmental reasons.
  • a fifth layer of the coating comprises at least one zirconium compound, a chromium compound or a titanium compound. Also, mixtures of these compounds in the fifth layer are possible.
  • the fifth layer is applied directly to the fourth layer.
  • the purpose of this coating is to create a specific color. For example, these reds, gold tones or stainless steel optics are realized on galvanically deposited chrome layers. The composition of these layers determine the color achieved. In various proportions, these layers mostly consist of zirconium nitride (ZrN), titanium nitride (TiN) and / or chromium nitride (CrN).
  • the fifth layer is produced by physical vapor deposition (PVD method).
  • the fifth layer is formed from an amorphous carbon layer.
  • At least the nickel-phosphorus alloy is applied electrolytically.
  • This method can be carried out much faster than, for example, the autocatalytic application and is thus better suited for large-scale industrial production.
  • other layers such as the chromium layer can be applied electrolytically.
  • Another very particular advantage of the invention is achieved when the chromium layer is applied directly to the nickel-phosphorus alloy. This particularly improves the corrosion resistance of the chromium layer.
  • a chromium layer of a trivalent chromium electrolyte is electrolytically applied to the nickel-phosphorus alloy, especially with this electrolyte, particularly good corrosion resistances can be achieved, which are substantially better than hitherto known coatings of trivalent chromium.
  • a brush structure is introduced into the coating.
  • the application of a brush structure is usually carried out in conjunction with the already mentioned PVD coating. Resulting end surfaces are for example "brushed stainless steel” or "brushed nickel".
  • the brushing is performed by pressing the objects on rotating disks. These discs may, for example, be polishing rings with corresponding polishing pastes, fiber brushes or sisal brushes. This step is done before the PVD coating or even before the chrome plating.
  • Fig. 1 a coated with the inventive method article in one
  • FIG. 2 shows a longitudinal section of an object coated with the prior art autocatalytic method
  • FIG. 3 shows a coated article with the electrolytic process according to the invention in a longitudinal section.
  • FIG. 1 shows a coated article 1 in a longitudinal section, which has a main body 2 with a surface 3.
  • the surface 3 is coated with a coating 4 comprising a first layer 5, a second layer 6, a third layer 7, a fourth layer 8 and a fifth layer 9.
  • the base body 2 is steel
  • the first layer 5 is copper
  • the second layer 6 is matt nickel
  • the third layer 7 is a nickel-phosphorus alloy
  • the fourth layer 8 is a chromium layer.
  • the fifth layer 9 comprises a zirconium compound.
  • a coated article 1 with a coating according to the prior art is shown.
  • the coating 4 is applied by means of an autocatalytic coating process.
  • the autocatalytic coating process is very slow and therefore time consuming.
  • the autocatalytic coating process results in constant layer thicknesses over the entire contours. This layer thickness is shown in FIG. 2 by means of the thick drawn line.
  • Fig. 3 the coated article 1 according to FIG. 2 is shown again, in which case the coating 4 has been applied by means of an electrolytic coating process. It can be clearly seen that the outer contour 10 no longer follows the contour of the coated article. On the contrary, deposits of the coatings on the surface of the coated article, which differ greatly in their intensity, essentially follow the field lines of the electric fields in the electrolyte bath. It is clearly recognizable here that a significant reduction of the distance between the edge regions 11 can be achieved by the electrolytic coating, in particular in edge regions 11. Compared to the coating with an autocatalytic process, substantially smoother surfaces can thus be created by filling in existing gaps or pores or significantly reducing them. Overall, this leads to a substantially higher quality surface of the finished coated article 1.
  • the electrolytic coating method is advantageous in that not the entire component or the entire object 1 to be coated is coated. Rather, it is possible to selectively coat areas of the article 1 to be coated, whereby unwanted coatings of water-bearing sections can be completely avoided, at least as far as possible. This is not possible in this form in an autocatalytic coating, without otherwise required and extremely expensive covering or closing measures on the object to be coated 1 make.
  • the present invention is characterized in particular by high corrosion protection in decorative multi-layer systems.

Abstract

Verfahren zur Beschichtung eines Gegenstands (1), wobei eine Oberfläche (3) des Gegenstands (1) zumindest teilweise mit einer Beschichtung (4) beschichtet wird, die eine Mehrzahl von Schichten (5, 6, 7, 8, 9) aufweist, wobei zumindest eine Schicht (5, 6, 7, 8, 9) der Beschichtung (4) aus einer Nickel-Phosphor-Legierung besteht und wobei ein Massenanteil des Phosphors in der Nickel-Phosphor-Legierung mindestens 8 % beträgt.

Description

Verfahren zur Beschichtung eines Gegenstands mittels eines Mehrschichtsystems
mit einer Nickel-Phosphor-Legierung Die vorliegende Erfindung betrifft ein Verfahren zur Beschichtung eines Gegenstands mit einem Mehrschichtsystem. Solche Mehrschichtsysteme werden beispielsweise als Korrosionsschutz und/oder als dekorative Beschichtungen verwendet. Mit dem hier angegebenen Verfahren sollen insbesondere Gegenstände von sanitären Einrichtungen hergestellt bzw. veredelt werden, wie beispielsweise Sanitärarmaturen.
Mehrschichtsysteme auf Basis von elektrochemisch abgeschiedenen Metallschichten können in Abhängigkeit von verwendeten Substraten, Schichtmaterialien, umgebenden Medien und Reaktionsbedingungen Korrosionsprodukte bilden. Der Vorgang der Korrosion ist zudem abhängig von geometrischen Gegebenheiten (zum Beispiel resultierend in Spaltkorrosion) und mechani- sehen Einflüssen (zum Beispiel Reibung). Die Ursachen für Korrosion können vielfältig sein und treten meist in Kombination auf. Beispielhaft seien hier elektrochemische Potentialunterschiede zwischen den Schichten und Grundmaterialfehlern (zum Beispiel Überwalzungen) genannt.
Aus dem Stand der Technik sind Mehrschichtsysteme auf Basis von elektrochemisch abgeschie- denen Kupferschichten, Nickelschichten und Chromschichten bekannt. Hierbei werden üblicherweise unterschiedliche Nickelschichten als Mehrschichtaufbau verwendet (Halbglanznickel, Glanznickel, mikroporiges Nickel). Der Korrosionsschutz des beschichtetetn Bauteils wird durch eine nachträgliche Verchromung aus einem chrom(VI)- oder chrom(lll)-haltigen Elektrolyten verstärkt. Nickelschichten werden fast ausnahmslos durch eine Chromschicht vor einem schnel- len Korrosionsangriff geschützt. Beschädigte Chrombeschichtungen, aber auch solche mit unvollständig geschlossener, zu dünn abgeschiedenen oder porösen Chromschichten führen nach kurzer Zeit (abhängig von den äußeren Bedingungen wie Nutzung, Reinigung und umgebende Medien) zu Korrosionsprodukten, die optisch unschön sind und bei anfälligen Grundwerkstoffen bis zum Bauteilversagen führen können.
Aufgabe der Erfindung ist daher, die mit Bezug auf den Stand der Technik geschilderten Prob¬ leme zumindest teilweise zu lösen und insbesondere ein Verfahren zur Beschichtung eines Gegenstands, insbesondere einem Sanitärargegenstand, anzugeben, mit dem sowohl korrosions- hemmende als auch dekorative Oberflächen erzeugbar sind.
Diese Aufgabe wird gelöst mit einem Verfahren gemäß den Merkmalen des unabhängigen Patentanspruchs. Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den abhängig formulierten Patentansprüchen angegeben. Es ist darauf hinzuweisen, dass die in den abhängig formulierten Patentansprüchen einzeln aufgeführten Merkmale in beliebiger technologisch sinnvoller Weise miteinander kombiniert werden können und weitere Ausgestaltungen der Erfindung definieren. Darüber hinaus werden die in den Patentansprüchen angegebenen Merkmale in der Beschreibung näher präzisiert und erläutert, wobei weitere bevorzugte Ausgestaltungen der Erfindung dargestellt werden.
Bei dem erfindungsgemäßen Verfahren zur Beschichtung eines Gegenstands wird eine Oberfläche des Gegenstands zumindest teilweise mit einer Beschichtung beschichtet, die eine Mehrzahl von Schichten aufweist, wobei zumindest eine Schicht der Beschichtung aus einer Nickel- Phosphor-Legierung besteht und wobei ein Massenanteil des Phosphors in der Nickel- Phosphor-Legierung mindestens 8 % beträgt.
Bei dem Gegenstand handelt es sich um ein Substrat aus einem beliebigen festen Material, das eine Oberfläche aufweist, bevorzugt jedoch um einen Sanitärgegenstand, wie zum Beispiel eine Sanitärarmatur, die insbesondere in Zusammenhang mit Waschbecken, Spülbecken, Duschen und/oder Badewannen Verwendung findet. Solche Sanitärarmaturen dienen insbesondere der Entnahme von Wasser und können Stellglieder für eine Wassertemperatur und/oder einer Ent- nahmemenge des Wassers umfassen und kommen regelmäßig in einem Sichtbereich eines Benutzers zum Einsatz, sodass diese zum einen eine dekorative Oberfläche aufweisen sollen und zum anderen wirksam gegen Korrosion geschützt werden müssen. Die Oberfläche des Gegenstands wird zumindest teilweise oder vollständig mit einer Beschichtung mit einer Mehrzahl von Schichten beschichtet. Bei der Beschichtung handelt es sich um ein Mehrschichtsystem, mit dem insbesondere dekorative und/oder funktionale Oberflächen erzeugbar sind. Die einzelnen Schichten werden dazu insbesondere sequenziell ausgebildet und/oder unterscheiden sich in ihrer Materialzusammensetzung. Die einzelnen Schichten weisen bevorzugt jeweils eine Schichtdicke von 5 μιη (Mikrometer) bis 100 μηι, bevorzugt 8 μιη bis 80 μηη auf. Zumindest eine der Mehrzahl von Schichten der Beschichtung ist aus einer Nickel-Phosphor-Legierung, wobei ein Massenanteil des Phosphors in der Nickel-Phosphor-Legierung mindestens 8 % beträgt. Der Massenanteil des Phosphors in der Nickel-Phosphor-Legierung beträgt bevorzugt 8 % bis 14 %, besonders bevorzugt 10 % bis 12 %. Zumindest die Schicht aus der Nickel-Phosphor-Legierung wird auf dem Gegenstand elektrolytisch abgeschieden. Zudem können auch weitere Schichten oder alle Schichten der Beschichtung auf dem Gegenstand elektrolytisch abgeschieden werden. Hierzu wird der Gegenstand insbesondere zumindest teilweise in eine elektrolytische Lösung getaucht. Die Nickel-Phosphor-Legierung übernimmt in dem Mehrschichtsystem die Funktion des Korrosionsschutzes. Somit verhindert die Nickel-Phosphor-Legierung in hohem Maße Korrosion an dem Gegenstand und verbessert somit die Korrosionseigenschaften insbesondere von dekorativen Beschichtungen mit funktionalem Charakter. Schädigungen, unvollständig geschlossene oder poröse Beschichtungen führen daher zu einem erheblich reduzierten Korrosionsverlauf des Gegenstands, sodass ein Bauteilversagen und/oder optische Beeinträchtigungen vermieden werden. Zudem ist es vorteilhaft, wenn der Gegenstand aus Kupfer, Zink, Aluminium, Stahl, Kunststoff oder aus einer Legierung besteht, die Kupfer, Zink oder Stahl umfasst. Wasserführende Sanitärgegenstände, wie zum Beispiel Einhebelmischer und/oder Ausläufe, können zumindest teilweise aus Kupferlegierungen (Messing, Bronze) bestehen. Viele Anbauteile in der Sanitärindustrie bestehen aus Zinkdruckguss (zum Beispiel Hebel für Einhebelmischer, Gehäuse und/oder Ausläufe). Auch in der Automobilindustrie werden dekorative Zinkdruckgussteile eingesetzt (zum Beispiel Türinnengriffe, Schlüsselteile und/oder Konsolenelemente). Kunststoffe werden im Sanitärbereich für Kappen, Drückerplatten, Rosetten und/oder Hülsen dekorativ verchromt. Hier wird zumeist ABS (Acrylnitril-Butadien-Styrol oder Blendmaterial aus ABS/PC (PC= Polycar- bonat) in verschiedenen Anteilen eingesetzt. In der Automobilindustrie werden ebenfalls diese Materialien in verchromtem Zustand zum Beispiel für Zierleisten, Kühlergrille und/oder Bedienelemente verwendet. Daneben wird hier PA (Polyamid) oder PA/GF (glasfaserverstärktes Polyamid) für bestimmte Anwendungen dekorativ mit Chrom beschichtet (zum Beispiel Türinnen- griffe). Darüber hinaus finden sich zahlreiche Anwendungen dekorativ verchromter Gegenstände in weiteren Industrien (Haushalt, Weiße Ware etc.). Galvanisch verchromte Stahlteile finden sich ebenso in zahlreichen Industrien, wie zum Beispiel der Möbelindustrie (Stuhlgestelle), Automobilindustrie (Anbauteile, Aschenbecher, Kopfstützenhalter etc.). Aluminium wird in der Sanitärindustrie beispielsweise in dem Bereich der Duschkabinen und Badmöbel eingesetzt.
Weiterhin ist es vorteilhaft, wenn eine erste Schicht der Beschichtung aus Kupfer oder Nickel besteht. Bei der ersten Schicht der Beschichtung handelt es sich um diejenige Schicht, die direkt auf die Oberfläche des Grundkörpers aufgebracht wird. Mittels der Kupfer- oder Nickelschicht kann die optische Oberflächqualität erreicht werden, die für die Herstellung von hochwertigen Chromoberflächen benötigt wird. Beide Metalle können elektrolytisch abgeschieden Oberflächendefekte (Kratzer, Feinstriche, Poren) einebnen und erhöhen maßgeblich den Glanz der fertigen Oberflächen. Weiterhin kann die Korrosionsbeständigkeit des Grundkörpers erhöht werden und bei Kunststoffgrundkörpern die Haftung der fertigen Beschichtung auf dem Grundkörper durch die Duktilität von Kupfer signifikant verbessert werden.
Weiterhin ist es vorteilhaft, wenn eine weitere Schicht der Beschichtung aus Glanznickel, Halbglanznickel oder Mattnickel besteht. Die weitere Schicht wird insbesondere direkt auf die erste Schicht aufgebracht. Glanznickelschichten haben die größte Bedeutung aller Nickelschichten. Hierbei liegt die dekorative Anwendung im Vordergrund. Glanznickelbäder enthalten verschiedene Glanzbildner. Diese bewirken eine feinkristalline Struktur und somit eine brilliante, hochglänzende Schicht. Auf dieser Schicht abgeschiedenes Chrom ergibt eine hochglänzende Oberfläche, die allgemein bekannt und am meisten verbreitet ist.
Halbglanznickelschichten werden nicht, wegen ihres niedrigen Glanzgrades abgeschieden, sondern um besondere korrosionstechnische Forderungen zu erfüllen. Halbglanznickelschichten sind immer gemeinsam mit der Glanznickelschicht zu betrachten. Sie werden üblicherweise vor der Glanznickelschicht abgeschieden und verbessern aufgrund ihres elektrochemischen Potentials die Korrosionseigenschaften des Verbunds.
Mattnickelschichten sind Nickelschichten, die aufgrund ihrer Zusammensetzung weitgehend blendfreie Eigenschaften aufweisen. Üblicherweise werden dem Elektrolyten bestimmte Substanzen zugesetzt, die die Nickelabscheidung beeinflussen. Da der Zweck dieser Schichten die Erzielung einer bestimmten Erscheinung ist, werden diese Schichten üblicherweise direkt vor dem Verchromen abgeschieden (oft als Ersatz für Glanznickelschichten). Die Farbe und der Matteindruck können bei diesen Verfahren in einem gewissen Rahmen durch die Prozesspara- meter gesteuert werden.
Ebenfalls vorteilhaft ist es, wenn eine dritte Schicht der Beschichtung aus der vorgeschlagenen Nickel-Phosphor-Legierung besteht. Die dritte Schicht wird insbesondere direkt auf die zweite Schicht aufgebracht.
Ebenfalls vorteilhaft ist es, wenn eine vierte Schicht der Beschichtung eine Chromschicht ist. Die vierte Schicht wird insbesondere direkt auf die dritte Schicht aufgebracht. Weiterhin ist es vorteilhaft, wenn die Chromschicht aus hexavalentem oder trivalentem Chromelektrolyt abgeschieden wird. Eine Chromschicht aus einem hexavalentem Chromelektrolyt ist dabei besonders korrosionsfest und liefert und sehr gute optische Oberflächenqualitäten. Eine Chromschicht aus einem trivalentem Chromelektrolyt ist unter dem Aspekt der Arbeitssi- cherheit und aus umwelttechnischen Gründen besonders geeignet und bevorzugt.
Zudem ist es vorteilhaft, wenn eine fünfte Schicht der Beschichtung zumindest eine Zirkonver- bindung, eine Chromverbindung oder eine Titanverbindung umfasst. Auch sind Mischungen dieser Verbindungen in der fünften Schicht möglich. Die fünfte Schicht wird insbesondere direkt auf der vierten Schicht aufgebracht. Der Zweck dieser Beschichtung ist die Erstellung einer bestimmten Farbe. Beispielsweise werden mit dieser Rottöne, Goldtöne oder Edelstahloptik auf galvanisch abgeschiedenen Chromschichten realisiert. Die Zusammensetzung dieser Schichten bestimmen hierbei die erreichte Farbe. In verschiedenen Anteilen bestehen diese Schichten zumeist aus Zirkonnitrid (ZrN), Titannitrid (TiN) und/oder Chromnitrid (CrN).
Weiterhin ist es vorteilhaft, wenn die fünfte Schicht durch physikalische Gasphasenabscheidung (PVD-Verfahren) erzeugt wird.
Vorzugsweise wird die fünfte Schicht aus einer amorphen Kohlenstoffschicht erzeugt. Bei der amorphen Kohlenstoffschicht handelt es sich insbesondere um eine diamantartige Kohlenstoffschicht (DLC =„diamond-like carbon").
Bevorzugterweise wird gemäß der Erfindung wenigstens die Nickel-Phosphor-Legierung elektrolytisch aufgebracht. Diese Methode ist gegenüber beispielsweise der autokatalytischen Auf- bringung wesentlich schneller ausführbar und damit besser für die industrielle Großserienfertigung geeignet. Neben der Nickel-Phosphor-Legierung können auch andere Schichten, wie beispielsweise die Chromschicht elektrolytisch aufgebracht werden. Ein weiterer ganz besonderer Vorteil der Erfindung wird erreicht, wenn die Chromschicht unmittelbar auf die Nickel-Phosphor-Legierung aufgebracht wird. Besonders verbessert wird hierdurch die Korrosionsbeständigkeit der Chromschicht. Wird zudem eine Chromschicht aus einem trivalentem Chromelektrolyt elektrolytisch auf die Nickel-Phosphor-Legierung aufgebracht, können besonders auch mit diesem Elektrolyten besonders gute Korrosionsbeständigkeiten erzielt werden, die wesentlich besser sind als bislang bekannte Beschichtungen aus trivalentem Chrom. Diese Vorteile werden durch die direkte Kombination der Nickel-Phosphor-Legierung mit der darauf aufgebrachten Chromschicht erreicht. Diese Kombination kann im Rahmen eines erfindungsgemäßen Schichtaufbaus an unterschiedlichen Stellen eingesetzt werden und dort den zuvor beschriebenen positiven technischen Effekt erzielen. So kann die Schichtpaarung in der vorteilhaften Weise beispielsweise auch als erste und zweite Schicht oder als zweite und dritte Schicht eines Schichtaufbaus verwendet werden.
Weiterhin ist es vorteilhaft, wenn in die Beschichtung eine Bürstenstruktur eingebracht wird. Das Aufbringen einer Bürstenstruktur wird meist in Verbindung mit der bereits erwähnten PVD- Beschichtung durchgeführt. Resultierende Endoberflächen sind zum Beispiel„gebürstetes Edelstahl" oder„gebürstetes Nickel". Das Bürsten wird durch Andrücken der Gegenstände an rotierende Scheiben durchgeführt. Diese Scheiben können zum Beispiel Polierringe mit entsprechenden Polierpasten, Fiberbürsten oder Sisalbürsten sein. Dieser Arbeitsschritt wir vor der PVD-Beschichtung oder sogar vor der Verchromung durchgeführt.
Die Erfindung sowie das technische Umfeld werden nachfolgend anhand der Figur näher erläutert. Es ist darauf hinzuweisen, dass die Figur eine besonders bevorzugte Ausführungsvariante der Erfindung zeigt, diese jedoch nicht darauf beschränkt ist. Es zeigt beispielhaft und schematisch:
Fig. 1: einen mit dem erfindungsgemäßen Verfahren beschichteten Gegenstand in einem
Längsschnitt, Fig. 2: einen mit dem autokatalytischen Verfahren nach dem Stand der Technik beschichteten Gegenstand in einem Längsschnitt, und
Fig. 3: einen mit dem erfindungsgemäßen elektrolytischen Verfahren beschichteten Gegenstand in einem Längsschnitt.
Die Fig. 1 zeigt einen beschichteten Gegenstand 1 in einem Längsschnitt, der einen Grundkörper 2 mit einer Oberfläche 3 aufweist. Die Oberfläche 3 ist mit einer Beschichtung 4 beschichtet, die eine erste Schicht 5, eine zweite Schicht 6, eine dritte Schicht 7, eine vierte Schicht 8 und eine fünfte Schicht 9 aufweist. Bei der hier vorgeschlagenen Ausführungsvariante der Erfindung handelt es sich beispielsweise bei dem Grundkörper 2 um Stahl, der ersten Schicht 5 um Kupfer, der zweiten Schicht 6 um Mattnickel, der dritten Schicht 7 um eine Nickel- Phosphor-Legierung und der vierten Schicht 8 um eine Chromschicht. Die fünfte Schicht 9 um- fasst eine Zirkonverbindung.
In Fig. 2 ist ein beschichteter Gegenstand 1 mit einer Beschichtung gemäß dem Stand der Technik gezeigt. Die Beschichtung 4 ist dabei mittels eines autokatalytischen Beschichtungsverfah- rens aufgebracht. Das autokatalytische Beschichtungsverfahren ist sehr langsam und damit zeitaufwendig. Zudem ergeben sich beim autokatalytischen Beschichtungsverfahren über die gesamten Konturen konstante Schichtdicken. Diese Schichtdicke ist in der Fig. 2 mittels der dick gezeichneten Linie dargestellt.
In Fig. 3 ist der beschichtete Gegenstand 1 gemäß Fig. 2 nochmals dargestellt, wobei hierbei die Beschichtung 4 mittels eines elektrolytischen Beschichtungsverfahrens aufgebracht worden ist. Gut erkennbar ist dabei, dass die Außenkontur 10 hierbei nicht mehr der Kontur des beschichteten Gegenstandes folgt. Vielmehr ergeben sich unterschiedlich starke Anlagerungen der Be- schichtungen auf die Oberfläche des beschichteten Gegenstandes, die im Wesentlichen den Feldlinien der elektrischen Felder im Elektrolytbad folgen. Deutlich erkennbar ist hierbei, dass durch die elektrolytische Beschichtung insbesondere in Kantenbereichen 11 eine deutliche Reduzierung des Abstandes zwischen den Kantenbereichen 11 erreicht werden kann. Gegenüber der Beschichtung mit einem autokatalytischen Verfahren können somit wesentlich glattere Oberflächen geschaffen werden, indem vorhandene Spalten bzw. Poren aufgefüllt bzw. deutlich verkleinert werden. Dies führt insgesamt zu einer wesentlich hochwertigeren Oberfläche des fertigbeschichteten Gegenstands 1.
Weiterhin vorteilhaft ist das elektrolytische Beschichtungsverfahren dadurch, dass nicht das gesamte Bauteil bzw. der gesamte zu beschichtende Gegenstand 1 beschichtet wird. Vielmehr ist es möglich, Bereiche des zu beschichtenden Gegenstandes 1 selektiv zu beschichten, wodurch ungewollte Beschichtungen wasserführender Abschnitte gänzlich zumindest aber weitestgehend vermieden werden können. Dies ist in dieser Form bei einer autokatalytischen Beschichtung nicht möglich, ohne andernfalls erforderliche und äußerst aufwendige Abdeck- bzw. Verschlussmaßnahmen an dem zu beschichtenden Gegenstand 1 vorzunehmen.
Die vorliegende Erfindung zeichnet sich insbesondere durch einen hohen Korrosionsschutz bei dekorativen Mehrschichtsystemen aus.
Bezugszeichenliste beschichteter Gegenstand
Grundkörper
Oberfläche
Beschichtung
erste Schicht
zweite Schicht
dritte Schicht
vierte Schicht
fünfte Schicht
Aussenkontur
Kantenbereich

Claims

Patentansprüche
Verfahren zur Beschichtung eines Gegenstands (1), wobei eine Oberfläche (3) des Gegenstands (1) zumindest teilweise mit einer Beschichtung (4) beschichtet wird, die eine Mehrzahl von Schichten (5, 6, 7, 8, 9) aufweist, wobei zumindest eine Schicht (5, 6, 7, 8, 9) der Beschichtung (4) aus einer Nickel-Phosphor-Legierung besteht und wobei ein Massenanteil des Phosphors in der Nickel-Phosphor-Legierung mindestens 8 % beträgt.
Verfahren nach Patentanspruch 1, wobei der Gegenstand (1) aus Kupfer, Zink, Aluminium, Eisen, Kunststoff oder aus einer Legierung besteht, die Kupfer, Zink oder Stahl umfasst.
Verfahren nach einem der vorhergehenden Patentansprüche, wobei eine erste Schicht (5) der Beschichtung (4) aus Kupfer oder Nickel besteht.
Verfahren nach einem der vorhergehenden Patentansprüche, wobei eine weitere Schicht (6) der Beschichtung (4) aus Glanznickel, Halbglanznickel oder Mattnickel besteht.
Verfahren nach einem der vorhergehenden Patentansprüche, wobei eine auf die beste- hene Beschichtung bzw. den Gegenstand (1) aufgebrachte Schicht (7) der Beschichtung (4) aus der Nickel-Phosphor-Legierung besteht.
Verfahren nach einem der vorhergehenden Patentansprüche, wobei eine auf die beste- hene Beschichtung aufgebrachte aufgebrachte Schicht (8) der Beschichtung (4) eine Chromschicht ist.
Verfahren nach Patentanspruch 6, wobei die Chromschicht aus hexavalentem oder trivalentem Chromelektrolyt abgeschieden wird.
8. Verfahren nach einem der vorhergehenden Patentansprüche, wobei wenigstens die Nickel-Phosphor-Legierung elektrolytisch aufgebracht wird .
9. Verfahren nach Patentanspruch 8, wobei die Chromschicht unmittelbar auf die Nickel- Phosphor-Legierung aufgebracht wird.
Verfahren nach Patentanspruch 8 oder 9, wobei die fünfte Schicht (9) aus einer amo Kohlenstoffschicht (DLC) erzeugt wird.
PCT/EP2017/000498 2016-04-22 2017-04-19 Verfahren zur beschichtung eines gegenstands mittels eines mehrschichtsystems mit einer nickel-phosphor-legierung WO2017182123A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP23160921.5A EP4212647A1 (de) 2016-04-22 2017-04-19 Verfahren zur beschichtung eines gegenstands mittels eines mehrschichtsystems mit einer nickel-phosphor-legierung
CN201780012036.3A CN109072448A (zh) 2016-04-22 2017-04-19 借助多层系统采用镍-磷合金对物件进行涂覆的方法
EP17720678.6A EP3445892B1 (de) 2016-04-22 2017-04-19 Verfahren zur beschichtung eines gegenstands mittels eines mehrschichtsystems mit einer nickel-phosphor-legierung
US16/166,676 US10837117B2 (en) 2016-04-22 2018-10-22 Method for coating an object by means of a multilayer system with a nickel-phosphorus alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016004913.8 2016-04-22
DE102016004913.8A DE102016004913A1 (de) 2016-04-22 2016-04-22 Verfahren zur Beschichtung eines Gegenstands mittels eines Mehrschichtsystems mit einer Nickel-Phosphor-Legierung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/166,676 Continuation US10837117B2 (en) 2016-04-22 2018-10-22 Method for coating an object by means of a multilayer system with a nickel-phosphorus alloy

Publications (1)

Publication Number Publication Date
WO2017182123A1 true WO2017182123A1 (de) 2017-10-26

Family

ID=58664632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/000498 WO2017182123A1 (de) 2016-04-22 2017-04-19 Verfahren zur beschichtung eines gegenstands mittels eines mehrschichtsystems mit einer nickel-phosphor-legierung

Country Status (5)

Country Link
US (1) US10837117B2 (de)
EP (2) EP3445892B1 (de)
CN (1) CN109072448A (de)
DE (2) DE102016004913A1 (de)
WO (1) WO2017182123A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020106254A1 (de) 2020-03-09 2021-09-09 Grohe Ag Verfahren zur Herstellung eines beschichteten Bauteils für eine Wasserarmatur
WO2022184848A1 (de) * 2021-03-04 2022-09-09 Grohe Ag Verfahren zur beschichtung einer sanitärkomponente
WO2022189446A1 (de) * 2021-03-12 2022-09-15 Grohe Ag Sanitärkomponente mit einer beschichtung und verfahren zum beschichten einer sanitärkomponente

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6872176B2 (ja) * 2018-12-28 2021-05-19 株式会社タンガロイ 摩擦材
DE102020106256A1 (de) * 2020-03-09 2021-09-09 Grohe Ag Verfahren zur Herstellung eines beschichteten Bauteils
CN113235141B (zh) * 2021-04-29 2022-03-18 淮阴工学院 一种铁基材滚镀镍镀金工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4430430C1 (de) * 1994-08-29 1995-12-21 Huettl & Vester Gmbh Verfahren zum Herstellen von gravierten Walzen oder Platten
WO2015107256A1 (en) * 2014-01-15 2015-07-23 Savroc Ltd Method for producing a chromium coating and a coated object

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824889B2 (en) * 2002-07-03 2004-11-30 Solvay Engineered Polymers, Inc. Platable engineered polyolefin alloys and articles containing same
CN1303250C (zh) * 2004-08-05 2007-03-07 广州杰赛科技股份有限公司 镁合金无氰镀铜化学镀镍与电镀工艺
DE102008046673A1 (de) * 2008-09-10 2010-03-11 Grohe Ag Verbundkörper
WO2014111616A1 (en) * 2013-01-15 2014-07-24 Savroc Ltd Method for producing a chromium coating on a metal substrate
CN105917030B (zh) * 2014-01-15 2018-04-13 萨夫罗克有限公司 用于生成含有铬的多层涂层的方法和涂覆的物体
CN104962884A (zh) * 2015-05-27 2015-10-07 广东欧珀移动通信有限公司 金属镀件及其制备方法
EP3147389B1 (de) * 2015-09-25 2019-04-17 MacDermid Enthone GmbH Mehrfachkorrosionsschutzsystem für verchromte dekorteile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4430430C1 (de) * 1994-08-29 1995-12-21 Huettl & Vester Gmbh Verfahren zum Herstellen von gravierten Walzen oder Platten
WO2015107256A1 (en) * 2014-01-15 2015-07-23 Savroc Ltd Method for producing a chromium coating and a coated object

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020106254A1 (de) 2020-03-09 2021-09-09 Grohe Ag Verfahren zur Herstellung eines beschichteten Bauteils für eine Wasserarmatur
EP3879004A1 (de) 2020-03-09 2021-09-15 Grohe AG Verfahren zur herstellung eines beschichteten bauteils für eine wasserarmatur
WO2022184848A1 (de) * 2021-03-04 2022-09-09 Grohe Ag Verfahren zur beschichtung einer sanitärkomponente
WO2022189446A1 (de) * 2021-03-12 2022-09-15 Grohe Ag Sanitärkomponente mit einer beschichtung und verfahren zum beschichten einer sanitärkomponente

Also Published As

Publication number Publication date
EP3445892B1 (de) 2023-05-31
US20190055664A1 (en) 2019-02-21
DE102016004913A1 (de) 2017-10-26
EP3445892A1 (de) 2019-02-27
CN109072448A (zh) 2018-12-21
DE202017007674U1 (de) 2024-02-09
US10837117B2 (en) 2020-11-17
EP4212647A1 (de) 2023-07-19

Similar Documents

Publication Publication Date Title
EP3445892B1 (de) Verfahren zur beschichtung eines gegenstands mittels eines mehrschichtsystems mit einer nickel-phosphor-legierung
EP1587968B1 (de) Beschichtungsverfahren
DE102008046673A1 (de) Verbundkörper
DE102005041375A1 (de) Verfahren zur Erzeugung dekorativer Oberflächenstrukturen
EP2849925B1 (de) Verbund-bauteil aus kunststoff
EP3879004A1 (de) Verfahren zur herstellung eines beschichteten bauteils für eine wasserarmatur
EP2460908A1 (de) Sanitägegenstand
DE102010019913A1 (de) Verbundkörper mit dekorativer Hochglanzoberfläche
EP2307593B1 (de) Verbundwerkstoff
DE102012109659A1 (de) Partiell galvanisierbarer Mehrkomponenten-Kunststoffrohling; Kunststoffbauteil und Verfahren zur Herstellung des Kunststoffbauteils aus dem Mehrkomponenten-Kunststoffrohling
EP3879007A1 (de) Verfahren zur herstellung eines beschichteten bauteils
DE10303650A1 (de) Beschichtungsverfahren
WO2004092445A1 (de) Verwendung eines gegenstands als dekoratives bauteil
EP4301894A1 (de) Verfahren zur beschichtung einer sanitärkomponente
WO2004091906A2 (de) Verwendung eines stromlos metalisierten kunststoffsubstraten als formwerkzeug
DE102017114242B4 (de) Verfahren zur Herstellung eines Sichtteils mit strukturierter und metallisierter PVD-Beschichtung
DE10303649A1 (de) Beschichtungsverfahren
DE102006047357B4 (de) Verfahren zur Beschichtung einer Galvanoform sowie beschichtete Galvanoform
DE102005026633A1 (de) Verfahren zur Herstellung von galvanisierten Sanitärgegenständen aus Kunststoff
DE10303648A1 (de) Beschichtungsverfahren
DE102013006317A1 (de) Verfahren zur Erzeugung einer tiefschwarzen Optik
DE102018104578A1 (de) Selektive Galvanisierung von im Werkzeug lackierten Spritzgießbauteilen
EP0939144A2 (de) Körper mit beschichteter Oberfläche
DE102015007663B4 (de) Verfahren zum Herstellen eines Bauteils für ein Kraftfahrzeug
DE102021127112A1 (de) Dekoratives Kunststoffbauteil und Verfahren zur Herstellung eines solchen Bauteils

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017720678

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017720678

Country of ref document: EP

Effective date: 20181122

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17720678

Country of ref document: EP

Kind code of ref document: A1