WO2017179634A1 - 絶縁軸受 - Google Patents
絶縁軸受 Download PDFInfo
- Publication number
- WO2017179634A1 WO2017179634A1 PCT/JP2017/015034 JP2017015034W WO2017179634A1 WO 2017179634 A1 WO2017179634 A1 WO 2017179634A1 JP 2017015034 W JP2017015034 W JP 2017015034W WO 2017179634 A1 WO2017179634 A1 WO 2017179634A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insulating layer
- outer ring
- bearing
- raceway
- annular groove
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/52—Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/04—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
- F16C19/06—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/583—Details of specific parts of races
- F16C33/586—Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/62—Selection of substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/64—Special methods of manufacture
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C35/00—Rigid support of bearing units; Housings, e.g. caps, covers
- F16C35/04—Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
- F16C35/06—Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
- F16C35/07—Fixing them on the shaft or housing with interposition of an element
- F16C35/077—Fixing them on the shaft or housing with interposition of an element between housing and outer race ring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2380/00—Electrical apparatus
- F16C2380/26—Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
Definitions
- the present invention relates to an insulating bearing.
- bearings used in general industrial motors and the like may cause early damage (hereinafter referred to as electric corrosion) due to high-voltage electricity flowing inside the bearings. Therefore, conventionally, an insulating layer is formed on at least one of the inner ring and the outer ring to cut off the current flow.
- FIG. 17 shows an example of an insulating bearing in which an insulating layer is formed on the outer ring.
- the insulating bearing 400 includes an inner ring 403, an outer ring 405, and rolling elements (balls) 409.
- An insulating layer 415 made of a ceramic material is provided on the outer peripheral surface 411 and the axial end surfaces 413A and 413B of the outer ring 405. It is formed.
- the outer ring 405 is in contact with the housing 417 through the insulating layer 415, whereby the outer ring 405 and the housing 417 are insulated.
- the insulating layer 415 prevents current from flowing from the housing 417 side into the bearing.
- Patent Document 1 proposes an insulating bearing having the insulating layer 415 and chamfering the end edges 411a and 411b of the axial end surfaces 413A and 413B of the outer ring. According to this insulated bearing, the sharp end does not occur on the axial end surfaces 413A and 413B of the bearing. Therefore, no spark is generated between the end edge 411a of the axial end surface 413A and the housing 421, and between the end edge 411b of the axial end surface 413B and the housing 417, and electrolytic corrosion is prevented.
- the insulating layer 415 shown in FIG. 18 of Patent Document 1 is formed by thermal spraying by the method shown in FIG. 19, the insulating layer 415 becomes very thin at the terminal portions 415a and 415b. The location where almost no is formed is generated. Therefore, the mechanical strength at the terminal portions 415a and 415b of the insulating layer 415 is lowered, and there is a possibility that creeping discharge occurs or the breakdown voltage of the coating itself is lowered.
- An object of the present invention is to provide an insulated bearing which can prevent, have good electric corrosion resistance, hardly cause creeping discharge even when used in an environment where a high voltage is applied, and can prevent a decrease in breakdown voltage.
- the present invention has the following configuration. (1) A pair of raceways arranged concentrically with each other and a rolling element arranged so as to be freely rollable between the pair of raceways, and an insulating layer is formed on at least one of the pair of raceways. Insulated bearings,
- the raceway on which the insulating layer is formed has an annular groove having a circular arc cross section at both end faces, and at least the surface from the circumferential surface of the raceway to the annular groove is on the insulating layer.
- Insulated bearing characterized by being covered with (2) In the raceway ring on which the insulating layer is formed, an end surface thereof is formed between the end surface on the non-track surface side, the end surface on the raceway surface side, the peripheral surface on the non-track surface side, and the end surface on the raceway surface side.
- the axial width of the end surface on the non-track surface side is larger than the axial width of the end surface on the track surface side, and the annular groove and the end surface on the non-track surface side are connected by an inclined surface ( 1) Insulated bearing.
- the annular groove and the end surface on the non-track surface side are connected by the inclined surface.
- the insulating layer is formed on the non-track surface side peripheral surface of the race ring.
- it can avoid that a film is formed in the track surface side peripheral surface of a bearing ring, and an insulating layer can be formed in necessary and sufficient thickness.
- the cross-sectional shape of the annular groove and the inclined surface is a composite arc composed of two single arcs, and the single arcs are smoothly connected to each other ( 2) Insulated bearing.
- the insulating bearing having the above-described configuration, when the insulating layer is formed by thermal spraying, it is possible to reliably form the insulating layer smoothly continuing to the annular groove and the inclined surface.
- the composite arc has a common tangent to each single arc at a joint point between the single arcs. According to the insulated bearing of the said structure, it becomes a composite circular arc by which the cross-sectional shape of an annular groove and an inclined surface was connected more smoothly.
- the insulating layer can be continuously formed in the range from the non-race surface side peripheral surface of the raceway to the annular concave grooves formed on both end surfaces of the raceway, and is also necessary at the end portion of the insulation layer. Since a sufficient thickness of the insulating layer can be provided, a decrease in mechanical strength of the insulating layer can be prevented. Moreover, the breakdown voltage can be prevented from lowering due to creeping discharge, and a high electric corrosion prevention effect is obtained.
- FIG. 1 is a partial cross-sectional view showing a part of an axial cross section of an insulated bearing 100 according to the first embodiment.
- Insulated bearing 100 includes inner ring 11 and outer ring 13, which are a pair of raceways arranged concentrically with each other, rolling elements (balls) 15, and cage 17.
- the rolling elements 15 are accommodated in the pockets of the cage 17 and are arranged so as to roll freely between the race rings, that is, between the inner ring raceway surface 19 of the inner ring 11 and the outer ring raceway surface 21 of the outer ring 13.
- the outer ring 13 is formed with an insulating layer 27 which will be described in detail later.
- the outer ring 13 is fixed to the housing (or shaft) 29 through the insulating layer 27.
- the inner ring 11, the outer ring 13, and the rolling element 15 are made of a metal conductor material such as steel.
- FIG. 2 is an enlarged cross-sectional view of the outer ring 13 shown in FIG.
- a pair of axial end surfaces 25A and 25B, which are both end surfaces of the outer ring 13, are an outer ring outer peripheral side end surface (non-track surface side end surface) 31 connected to the outer ring outer peripheral surface (non-track surface side peripheral surface) 23, and an outer ring inner periphery.
- An annular groove 37 is formed.
- the axial width B2 of the pair of outer ring inner end faces 35 is narrower than the axial width B1 of the pair of outer ring outer end faces 31. Further, the axial width B3 between the groove bottom portions of the pair of outer ring annular grooves 37 is narrower than the axial width B2 of the pair of outer ring inner peripheral side end faces 35. That is, the outer ring annular concave groove 37 is formed to be recessed inward in the axial direction from the outer ring inner peripheral side end face 35.
- the outer ring inner circumferential end surface 35 may be inclined with respect to the axial direction.
- the axial width of the pair of outer ring annular grooves 37 is larger than the axial width B2 of the pair of outer ring inner circumferential end surfaces 35. B3 is made narrower.
- the thermal spray material for forming the insulating layer 27 is easily accumulated in the outer ring annular groove 37, and the insulating layer 27 is easily formed with a sufficient thickness. It does not flow into.
- the insulating layer 27 has a sufficient thickness t in the entire circumference of the outer ring outer circumferential surface 23 and the pair of outer ring outer circumferential side end surfaces 31 and the pair of outer ring annular grooves 37 out of the axial end surfaces 25A and 25B. It is formed.
- the insulating layer 27 is a ceramic sprayed layer. Since ceramic has a high insulating effect, it has excellent insulating properties even when the film thickness is thin. Moreover, it has the characteristic that damage, such as a crack and a chip, does not occur easily.
- the insulating layer 27 is preferably a coating formed by thermal spraying using ceramic as a thermal spraying material, but may be formed of other materials as long as the layer has an equivalent function.
- the insulating layer 27 As a thermal spraying method for forming the insulating layer 27, for example, a plasma spraying method in which a ceramic material to be the insulating layer 27 is heated in a molten state using plasma as an energy source and sprayed on an annular member at a high speed can be used.
- the insulating layer 27 can be formed by employing various methods such as arc spraying, flame spraying, and laser spraying.
- the insulating layer 27 (insulating layer 415 in FIG. 19) is formed by a thermal spraying method described in Japanese Patent Application Laid-Open No. 2006-77944.
- the insulating layer 27 of the insulating bearing 100 having this configuration has a thickness of 10 ⁇ m or more even at the thinnest place. Assuming that the thickness (preferably 50 to 250 ⁇ m) of the insulating layer 27 on the outer peripheral surface 23 of the outer ring is a design standard value, the thickness of the insulating layer in the outer ring annular groove 37 is 20% or more of the design standard value even at the thinnest place. (That is, having a thickness of 10 ⁇ m or more).
- the thickness t of the insulating layer 27 is set so that the width B of the outer ring 13 including the insulating layer 27 is equal to the width of the inner ring 11.
- the droplets of the sprayed material sprayed from the nozzle are sprayed in the groove of the outer ring annular groove 37 during the thermal spraying. It becomes easy to collect with. That is, droplets of the thermal spray material adhere to the entire inside of the groove including the groove wall surface 37a on the outer ring inner peripheral surface 33 side of the outer ring annular groove 37 and the groove wall surface 37b (inclined surface) on the outer ring outer peripheral surface 23 side,
- the insulating layer 27 is continuously formed in the groove wall surfaces 37 a and 37 b and the outer ring annular groove 37.
- the droplets of the thermal spray material easily accumulate in the outer ring annular groove 37, it is difficult to reach the outer ring inner peripheral surface 33. Thereby, it can avoid that a film is formed in the outer ring inner peripheral surface 33. Further, since the insulating layer is not formed on the inner peripheral surface 33 of the outer ring, the work of removing the insulating layer from the inner peripheral surface 33 of the outer ring becomes unnecessary. If the outer ring inner peripheral surface 33 has a coating, the coating may be lost due to contact of the outer diameter of the cage or sliding resistance of the lubricant during rotation of the bearing, and the missing coating has entered the raceway surface of the bearing. In some cases, the bearing will be damaged.
- the groove wall surface 37b is preferably a gentle inclined surface. The reason is that if the groove wall surface 37b has a steep inclined surface, the droplets of the sprayed material do not stay on the inclined surface during spraying, and the insulating layer 27 on the groove wall surface 37b may become thin. is there.
- the outer ring annular concave groove 37 and the groove wall surface 37b have a shape of a composite arc formed by two single arcs R1 and R2. At the junction S between the two single arcs R1, R2 in the cross-sectional shape of the outer ring annular groove 37 and the groove wall surface 37b, the tangent lines TL of the single arcs R1, R2 are common. Further, the joint point S between the single circular arcs R1 and R2 is preferably provided on the inner side in the axial direction of the bearing with respect to the outer ring inner peripheral side end surface 35 which is the side surface of the outer ring inner peripheral surface 33.
- the groove wall surface 37b becomes smooth, the insulating layer 27 on the groove wall surface 37b can be prevented from being thinned, and an appropriate film thickness can be secured. Further, the work for removing the insulating layer on the inner peripheral surface 33 of the outer ring is not required.
- the insulating layer 27 is formed to have a necessary and sufficient thickness in the range from the outer ring outer peripheral surface 23 to the outer ring annular groove 37 of the axial end surfaces 25A and 25B. A good insulation resistance. Thereby, not only creeping discharge of the insulating layer 27 can be prevented, but also a decrease in breakdown voltage due to film destruction can be prevented.
- the housing (or shaft) 29 (see FIG. 1) is formed by making the axial width B2 of the pair of outer ring inner end faces 35 shown in FIG. 2 smaller than the axial width B1 of the pair of outer ring outer end faces 31. And the distance with the film edge part of the insulating layer 27 becomes long, and the breakdown voltage by creeping discharge can be further increased.
- FIG. 4 is a partial cross-sectional view showing a first modification of the insulated bearing of the first embodiment.
- the insulated bearing 110 according to this modification includes an inner ring 41, an outer ring 43, rolling elements (balls) 15, and a cage 17.
- An insulating layer 49 as will be described later is formed on the inner ring 41.
- the inner ring 41 is fixed to the housing (or shaft) 29 through the insulating layer 49.
- FIG. 5 is an enlarged cross-sectional view of the inner ring 41 shown in FIG.
- a pair of axial end faces 45A and 45B of the inner ring 41 are connected to an inner ring inner peripheral face (non-track face side end face) 51 connected to the inner ring inner peripheral face (non-track face side peripheral face) 47 and an inner ring outer peripheral face 53.
- the insulating bearing 110 of the first modified example has an inner ring inner circumferential surface 47, inner ring inner circumferential side end surfaces 51 and 51, and inner ring annular concave grooves of the inner ring 41, instead of the above-described configuration in which an insulating layer is formed on the outer ring.
- An insulating layer 49 is formed at 57, and no insulating layer is formed on the outer ring 43.
- the insulating layer 49 is formed by spraying an insulating material toward the inner ring inner circumferential surface 47, the inner ring inner circumferential side end surfaces 51 and 51, and the inner ring annular groove 57.
- the axial width B2 of the pair of inner ring outer peripheral end faces 55 is narrower than the axial width B1 of the pair of inner ring inner peripheral end faces 51.
- the axial width B3 of the groove bottom portion of the pair of inner ring annular grooves 57 is narrower than the axial width (minimum axial direction width) B2 of the pair of inner ring outer peripheral side end faces 55. That is, the inner ring annular groove 57 is formed so as to be recessed inward in the axial direction from the inner ring outer peripheral end surface 55.
- the insulating layer 49 is formed to have a necessary and sufficient thickness in the range from the inner ring inner peripheral surface 47 to the inner ring annular grooves 57 of the axial end surfaces 45A and 45B. As a result, it is possible to prevent a decrease in mechanical strength of the insulating layer 49 and a decrease in breakdown voltage due to creeping discharge.
- the housing (or shaft) 29 (see FIG. 4) is formed by making the axial width B2 of the pair of inner ring outer peripheral side end faces 55 shown in FIG. 5 smaller than the axial width B1 of the pair of inner ring inner peripheral side end faces 51.
- the distance between the insulating layer 49 and the film end can be increased, and the breakdown voltage due to creeping discharge can be further increased.
- FIG. 6 is a partial sectional view showing a second modification of the insulated bearing of the first embodiment.
- the insulated bearing 120 of the present modification includes the inner ring 41 of the first modification described above, the outer ring 13 of the first embodiment, the rolling elements (balls) 15, and the cage 17.
- An inner ring annular groove 57 is formed in the inner ring 41, and an outer ring annular groove 37 is formed in the outer ring 13.
- the inner ring 41 includes an inner ring inner circumferential surface 47 and a part of the pair of axial end surfaces 45A and 45B connected to the inner ring inner circumferential surface 47 (the inner ring inner circumferential end surface 51 and the inner ring annular shown in FIG. 5).
- An insulating layer 49 is formed in the concave groove 57) over the entire circumference.
- the outer ring 13 includes an outer ring outer peripheral surface 23 and a part of the pair of axial end surfaces 25A and 25B connected to the outer ring outer peripheral surface 23 (the outer ring outer peripheral end surface 31 and the outer ring annular groove 37 shown in FIG. 2). ),
- the insulating layer 27 is formed over the entire circumference.
- the inner ring 41 is fixed to a housing (or shaft) (not shown) via an insulating layer 49, and the outer ring 13 is fixed to a shaft (or housing) (not shown) via an insulating layer 27.
- the insulating bearing 120 configured as described above, the insulating bearing 120 is supported on the housing and the shaft via the insulating layers 49 and 27 formed on both the inner ring 41 and the outer ring 13. For this reason, the insulation performance of the insulated bearing 120 can be improved, and it is possible to more reliably prevent the occurrence of electrolytic corrosion and the decrease of the breakdown voltage due to creeping discharge.
- FIG. 7 is a partial cross-sectional view showing a part of the axial cross section of the insulated bearing 200 of the second embodiment
- FIG. 8 is a partial enlarged cross-sectional view of the outer ring 13 shown in FIG.
- the insulated bearing 200 of this configuration is the same as that of the first embodiment described above except that the insulating layer 27 of the outer ring 13 is also formed on the inner ring side end face 35 of the axial end face 25A (also 25B) shown in FIG. This is the same configuration as the insulated bearing 100 of FIG.
- the insulating layer 27 is formed so as to cover the entire surface of the axial end surfaces 25A and 25B including the outer peripheral surface 23 of the outer ring, and therefore from the end portion of the insulating layer 27 as compared with the first embodiment.
- the creepage distance to the housing and shaft increases. Thereby, creeping discharge is less likely to occur, and the effect of preventing creeping discharge is further enhanced as compared with the insulating bearing 100 of the first embodiment described above.
- FIG. 9 is a partial cross-sectional view showing Modification 1 of the insulated bearing of the second embodiment.
- the insulated bearing 210 of the present modified example is the insulated bearing of the modified example 1 of the first embodiment described above, except that the insulating layer 49 of the inner ring 41 is also formed on the inner ring outer peripheral side end surfaces 55 of the axial end faces 45A and 45B.
- the configuration is the same as that of 110. That is, the insulating layer 49 is formed on the entire surface of the axial end surfaces 45A and 45B including the inner ring outer peripheral side end surface 55.
- the creeping distance from the terminal portion of the insulating layer 49 to the housing and the shaft becomes longer than in the first embodiment, and the effect of preventing creeping discharge is enhanced.
- FIG. 10 is a partial cross-sectional view showing a second modification of the insulated bearing of the second embodiment.
- the insulating layer 49 of the inner ring 41 is also formed on the inner ring outer peripheral side end face 55 of the axial end faces 45A and 45B
- the insulating layer 27 of the outer ring 13 is the inner ring outer periphery of the axial end faces 25A and 25B.
- the configuration is the same as that of the insulating bearing 120 of the second modification of the first embodiment described above.
- the creeping distance from the end portions of the insulating layers 27 and 49 to the housing and the shaft is increased, and the insulating bearing 220 includes the insulating layer 49 of the inner ring 41 and the insulating layer of the outer ring 13. 27 and is supported by a housing and a shaft. For this reason, the insulation performance of the insulating bearing 220 can be further enhanced, and the occurrence of electrolytic corrosion and the reduction of the breakdown voltage due to creeping discharge can be more reliably prevented.
- FIG. 11 is a partial cross-sectional view showing a part of the axial cross section of the insulated bearing 300 of the third embodiment
- FIG. 12 is a partially enlarged cross-sectional view of the outer ring 13 shown in FIG.
- the pair of outer ring inner peripheral side end surfaces 61 of the axial end surfaces 25A and 25B of the outer ring 13 has the same axis as the axial width B1 of the pair of outer ring outer peripheral end surfaces 31 as shown in FIG. It has a direction width B2.
- the axial width B3 of the groove bottom portion of the pair of outer ring annular grooves 37 is narrower than the axial width B2 of the pair of outer ring inner peripheral side end faces 61. That is, the outer ring annular concave groove 37 is formed to be recessed inward in the axial direction from the outer ring inner peripheral side end face 61.
- Other configurations are the same as those of the insulated bearing 100 of the first embodiment shown in FIG.
- the axial width B2 of the outer ring inner peripheral side end face 61 is equal to the axial width B1 of the outer ring outer peripheral side end face 31, so that the step between the axial end faces 25A, 25B of the outer ring 13 is reduced.
- the insulating layer 27 is difficult to peel off. Further, since the insulating layer 27 is formed so as to cover at least the outer ring outer peripheral surface 23, the outer ring outer peripheral side end surface 31, and the outer ring annular groove 37 of the outer ring 13, a housing or shaft (not shown) existing outside the outer ring outer peripheral surface 23 is formed. On the other hand, it is possible to prevent the breakdown voltage from being lowered due to creeping discharge.
- FIG. 13 is a schematic view showing a photograph of the product according to the present invention in which an insulating layer is welded to an outer ring in which an outer ring annular groove is formed on an end surface in the axial direction.
- an insulating layer 27 having a sufficient thickness indicated by the following L1 to L6 is formed.
- the thickness L1 of the insulating layer 27 formed in the outer ring annular groove 37 is thicker than the thickness L6 of the insulating layer 27 formed on the outer ring outer peripheral end surface 31 that is substantially flat in the radial direction, and the minimum thickness L3.
- it has a thickness of 240 ⁇ m or more.
- L1 599.29 ⁇ m
- L2 256.38 ⁇ m
- L3 246.73 ⁇ m
- L4 369.50 ⁇ m
- L5 479.07 ⁇ m
- L6 407.72 ⁇ m
- FIG. 14 is a schematic cross-sectional view of a reference example in which an insulating layer is welded to an outer ring having an end face with a step difference, although there is no outer ring annular groove.
- the insulating layer 27 is not sufficiently applied to the surface of the outer ring 13.
- the states of the respective parts P1 to P4 are as follows. Further, the insulating layer 27 has a smaller thickness on the inner diameter side on the left side in the drawing than the outer ring outer peripheral side end face 31.
- the thickness of the insulating layer on both end faces of the bearing outer ring (generally in the region of P1 to P3) was about 5 ⁇ m or less, and only an extremely thin film close to 0 ⁇ m was formed at the thinnest place.
- ⁇ Test method> Prepare two bearings that have the same shape and size and are coated under the same spraying conditions. ⁇ Take one bearing vertically and observe the state in which the insulating layer is coated on the bearing to identify the place where the coating is thinnest. ⁇ Put the other bearing into the housing and apply DC voltage. Then, the applied voltage is gradually increased until the coating breaks. Check the part of the dielectric breakdown due to the breakdown of the film and the voltage value of the dielectric breakdown.
- FIG. 15 shows an enlarged micrograph of the longitudinal section of one bearing at this time
- FIG. 16A shows a micrograph showing the corresponding part of the other bearing.
- the direction perpendicular to the spraying direction is shown as 180 °.
- the groove wall surface is 78% at the 140 ° inclined surface, 50% at the 120 ° inclined surface, and 33% at the 105 ° inclined surface.
- the film thickness was.
- the location Pa where the dielectric breakdown occurred was the 105 ° inclined surface with the smallest film thickness.
- the film thickness of the inclined surface with a small inclination angle is increased, and the insulating property is improved.
- the film thickness of the inclined surface having a large inclination angle (steep slope) was reduced and the dielectric breakdown strength was reduced.
- the present invention is not limited to this and can be widely applied to various bearings such as cylindrical roller bearings, tapered roller bearings, and angular ball bearings.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Description
(1) 互いに同心に配置された一対の軌道輪と、一対の前記軌道輪の間に転動自在に配置された転動体とを備え、一対の前記軌道輪の少なくとも一方に絶縁層が形成された絶縁軸受であって、
前記絶縁層が形成された軌道輪は、その両端面に断面円弧状の環状凹溝が形成され、且つ少なくとも当該軌道輪の非軌道面側周面から前記環状凹溝までの表面が前記絶縁層により覆われていることを特徴とする絶縁軸受。
(2) 前記絶縁層が形成された軌道輪において、その端面は、非軌道面側端面と、軌道面側端面と、前記非軌道面側周面と前記軌道面側端面との間に形成された前記環状凹溝とにより構成され、
前記非軌道面側端面の軸方向幅が前記軌道面側端面の軸方向幅より大きく、且つ前記環状凹溝と前記非軌道面側端面とが傾斜面により接続されていることを特徴とする(1)の絶縁軸受。
上記構成の絶縁軸受によれば、環状凹溝と非軌道面側端面とが傾斜面により接続されるため、絶縁層を溶射により形成する場合に、絶縁層を軌道輪の非軌道面側周面から環状凹溝までの範囲で連続的に形成でき、且つ溶射材が環状凹溝内に蓄積しやすくなるので軌道輪の軌道面側周面へ到達しにくくなる。これにより、軌道輪の軌道面側周面に被膜が形成されることを回避でき、絶縁層を必要十分な厚さに形成できる。更に、当該軌道輪の非軌道面側端面の軸方向幅を前記軌道面側端面の軸方向幅より大きくすることで、ハウジングが当該軌道輪の端面にも嵌め合わされる場合において、沿面放電を抑制することができる。よって、沿面放電による破壊電圧の低下を防止でき、高い電食防止効果が得られる。
(3) 前記環状凹溝と前記傾斜面との断面形状は、2つの単一円弧により複合された複合円弧であり、且つ前記単一円弧同士は滑らかに接続していることを特徴とする(2)の絶縁軸受。
上記構成の絶縁軸受によれば、絶縁層を溶射により形成する場合に、環状凹溝と傾斜面に滑らかに連続する絶縁層を確実に形成できる。
(4) 前記複合円弧は、前記単一円弧同士の接合点において、それぞれの前記単一円弧の接線が共通していることを特徴とする(3)の絶縁軸受。
上記構成の絶縁軸受によれば、環状凹溝と傾斜面との断面形状がより滑らかに接続された複合円弧となる。
(5) 前記絶縁層は、セラミック溶射層であることを特徴とする(1)乃至(4)のいずれか一つの絶縁軸受。
上記構成の絶縁軸受によれば、比較的電気抵抗値が大きく、膜厚が薄くても優れた絶縁性を得ることができる。また、割れ、欠け等の損傷が発生しにくくなる。
<第1実施例>
図1は第1実施例の絶縁軸受100における軸方向断面の一部を示す一部断面図である。
絶縁軸受100は、互いに同心に配置された一対の軌道輪である内輪11及び外輪13と、転動体(玉)15と、保持器17とを有する。転動体15は、保持器17のポケットに収容され、軌道輪の間、すなわち、内輪11の内輪軌道面19と外輪13の外輪軌道面21との間に転動自在に配置される。
外輪13の両端面である一対の軸方向端面25A,25Bは、外輪外周面(非軌道面側周面)23に接続された外輪外周側端面(非軌道面側端面)31と、外輪内周面33に接続された外輪内周側端面(軌道面側端面)35と、外輪外周側端面31と外輪内周側端面35との間に円周方向全周にわたって形成された断面円弧状の外輪環状凹溝37とにより構成される。
次に、上記の第1実施例の絶縁軸受の変形例を説明する。なお、以下の説明においては、同一の部材、同一の部位に対しては、同一の符号を付与することで、その説明を省略又は簡略化する。
図4は第1実施例の絶縁軸受の変形例1を示す一部断面図である。本変形例の絶縁軸受110は、内輪41と、外輪43と、転動体(玉)15と、保持器17とを有する。内輪41には、後述のような絶縁層49が形成される。内輪41は、この絶縁層49を介してハウジング(又は軸)29に固定される。
内輪41の一対の軸方向端面45A,45Bは、内輪内周面(非軌道面側周面)47に接続された内輪内周側端面(非軌道面側端面)51と、内輪外周面53に接続された内輪外周側端面(軌道面側端面)55と、内輪内周側端面51と内輪外周側端面55との間に、円周方向全周にわたって形成された内輪環状凹溝57と、をそれぞれ有する。
図6は第1実施例の絶縁軸受の変形例2を示す一部断面図である。
本変形例の絶縁軸受120は、前述した変形例1の内輪41と、前述した第1実施例の外輪13と、転動体(玉)15と、保持器17とを有する。
図7は第2実施例の絶縁軸受200における軸方向断面の一部を示す一部断面図、図8は図7に示す外輪13の一部拡大断面図である。
本構成の絶縁軸受200は、外輪13の絶縁層27が図8に示す軸方向端面25A(25Bも同様)の外輪内周側端面35にも形成されたこと以外は、前述した第1実施例の絶縁軸受100と同様の構成である。
図9は第2実施例の絶縁軸受の変形例1を示す一部断面図である。本変形例の絶縁軸受210は、内輪41の絶縁層49が軸方向端面45A,45Bの内輪外周側端面55にも形成されたこと以外は、前述した第1実施例の変形例1の絶縁軸受110と同様の構成である。つまり、絶縁層49が、内輪外周側端面55を含む軸方向端面45A,45Bの全面に形成される。
図10は第2実施例の絶縁軸受の変形例2を示す一部断面図である。本変形例の絶縁軸受220は、内輪41の絶縁層49が軸方向端面45A,45Bの内輪外周側端面55にも形成され、外輪13の絶縁層27が軸方向端面25A,25Bの外輪内周側端面35にも形成されたこと以外は、前述した第1実施例の変形例2の絶縁軸受120と同様の構成である。
図11は第3実施例の絶縁軸受300における軸方向断面の一部を示す一部断面図、図12は図11に示す外輪13の一部拡大断面図である。
本構成の絶縁軸受300は、外輪13の軸方向端面25A,25Bの一対の外輪内周側端面61が、図12に示すように、一対の外輪外周側端面31の軸方向幅B1と同じ軸方向幅B2を有する。また、一対の外輪環状凹溝37の溝底部の軸方向幅B3は、一対の外輪内周側端面61の軸方向幅B2よりも狭い。つまり、外輪環状凹溝37は、外輪内周側端面61よりも軸方向内側に凹んで形成される。その他の構成は、前述した図1に示す第1実施例の絶縁軸受100と同様である。
L2=256.38μm
L3=246.73μm
L4=369.50μm
L5=479.07μm
L6=407.72μm
P2:被膜が見られない
P3:薄い皮膜
P4:被膜形成あり
<試験方法>
・形状とサイズが同じで、且つ同じ溶射条件で被膜された2つの軸受を用意する。
・一方の軸受を縦断して、軸受に絶縁層が被膜された状態を観察し、被膜が最も薄い場所を特定する。
・他方の軸受をハウジングに入れ、直流電圧を印加する。そして、被膜の破壊が始まるまで印加電圧を徐々に増加させる。被膜の破壊により絶縁破壊した部位及び絶縁破壊した電圧値を確認する。
印加電圧を、DC1.54kVまで増加させると、他方の軸受がハウジングからの放電により破壊したことを確認した。
この破壊した部位の被膜状態を、一方の軸受を利用して検証した。その結果、破壊した部位は、被膜が最も薄い部位であることが分かった。
破壊部以外の部位(被膜の比較的厚い箇所)においては、印加電圧がDC1.54kVにおいても被膜の破損は確認されなかった。
図16A,図16Bに示すように、絶縁破壊が生じた場所Paは、最も膜厚の薄い105°の傾斜面であった。
13,43 外輪(軌道輪)
23 外輪外周面(非軌道面側周面)
25A,25B,45A,45B 軸方向端面
27,49 絶縁層
29 ハウジング
31 外輪外周側端面(非軌道面側端面)
33 外輪内周面(軌道面側周面)
35 外輪内周側端面(軌道面側端面)
37 外輪環状凹溝(環状凹溝)
47 内輪内周面(非軌道面側周面)
51 内輪内周側端面(非軌道面側端面)
53 内輪外周面(軌道面側周面)
55 内輪外周側端面(軌道面側端面)
57 内輪環状凹溝(環状凹溝)
61 外輪内周側端面(軌道面側端面)
100,110,120,200,210,220,300 絶縁軸受
R1,R2 単一円弧
Claims (5)
- 互いに同心に配置された一対の軌道輪と、一対の前記軌道輪の間に転動自在に配置された転動体とを備え、一対の前記軌道輪の少なくとも一方に絶縁層が形成された絶縁軸受であって、
前記絶縁層が形成された軌道輪は、その両端面に断面円弧状の環状凹溝が形成され、且つ少なくとも当該軌道輪の非軌道面側周面から前記環状凹溝までの表面が前記絶縁層により覆われていることを特徴とする絶縁軸受。 - 前記絶縁層が形成された軌道輪において、その端面は、非軌道面側端面と、軌道面側端面と、前記非軌道面側周面と前記軌道面側端面との間に形成された前記環状凹溝とにより構成され、
前記非軌道面側端面の軸方向幅が前記軌道面側端面の軸方向幅より大きく、且つ前記環状凹溝と前記非軌道面側端面とが傾斜面により接続されていることを特徴とする請求項1に記載の絶縁軸受。 - 前記環状凹溝と前記傾斜面との断面形状は、2つの単一円弧により複合された複合円弧であり、且つ前記単一円弧同士は滑らかに接続していることを特徴とする請求項2に記載の絶縁軸受。
- 前記複合円弧は、前記単一円弧同士の接合点において、それぞれの前記単一円弧の接線が共通していることを特徴とする請求項3に記載の絶縁軸受。
- 前記絶縁層は、セラミック溶射層であることを特徴とする請求項1乃至請求項4のいずれか一項に記載の絶縁軸受。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/091,857 US10605304B2 (en) | 2016-04-12 | 2017-04-12 | Insulated bearing |
JP2018512054A JP6762357B2 (ja) | 2016-04-12 | 2017-04-12 | 絶縁軸受 |
EP17782447.1A EP3444489B1 (en) | 2016-04-12 | 2017-04-12 | Insulated bearing |
CN201780023048.6A CN109072974B (zh) | 2016-04-12 | 2017-04-12 | 绝缘轴承 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-079592 | 2016-04-12 | ||
JP2016079592 | 2016-04-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017179634A1 true WO2017179634A1 (ja) | 2017-10-19 |
Family
ID=60042502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/015034 WO2017179634A1 (ja) | 2016-04-12 | 2017-04-12 | 絶縁軸受 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10605304B2 (ja) |
EP (1) | EP3444489B1 (ja) |
JP (1) | JP6762357B2 (ja) |
CN (1) | CN109072974B (ja) |
WO (1) | WO2017179634A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020130944A1 (de) * | 2019-11-28 | 2021-06-02 | Aktiebolaget Skf | Isoliervorrichtung für ein Lager |
US11708859B2 (en) * | 2021-12-15 | 2023-07-25 | Schaeffler Technologies AG & Co. KG | Bearing element having polymeric coating and method of application of polymeric coating to bearing element for electrical insulation |
KR20240130238A (ko) * | 2023-02-21 | 2024-08-29 | 주식회사 베어링아트 | 전식 방지 베어링 및 그 제조 방법 |
CN117879235A (zh) * | 2024-01-05 | 2024-04-12 | 中山市霆宇金属制造有限公司 | 一种可防止电流电蚀的电机轴及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0643352U (ja) * | 1992-11-18 | 1994-06-07 | 光洋精工株式会社 | 電食防止転がり軸受 |
JP2000145796A (ja) * | 1998-11-06 | 2000-05-26 | Koyo Seiko Co Ltd | 電食防止転がり軸受 |
JP2004308735A (ja) * | 2003-04-04 | 2004-11-04 | Ntn Corp | 電食防止軸受 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5610516U (ja) * | 1979-07-05 | 1981-01-29 | ||
JPH0743488Y2 (ja) | 1987-09-01 | 1995-10-09 | 株式会社不二越 | 電食防止形ころがり軸受 |
JPH03103615A (ja) * | 1989-09-12 | 1991-04-30 | Railway Technical Res Inst | 電気絶縁軸受 |
JP3538487B2 (ja) | 1995-09-26 | 2004-06-14 | Ntn株式会社 | 樹脂絶縁軸受 |
CN100427784C (zh) * | 2002-10-08 | 2008-10-22 | Ntn株式会社 | 电蚀防止滚动轴承 |
JP2005133876A (ja) * | 2003-10-31 | 2005-05-26 | Ntn Corp | 電食防止型転がり軸受 |
JP2006077944A (ja) | 2004-09-13 | 2006-03-23 | Nsk Ltd | 電食防止用絶縁転がり軸受 |
JP2006329366A (ja) | 2005-05-27 | 2006-12-07 | Nsk Ltd | 電食防止用絶縁転がり軸受 |
EP1950436B1 (en) * | 2005-10-27 | 2017-10-11 | NSK Ltd. | Insulating rolling bearing for use in prevention of electric corrosion, method for manufacture thereof, and bearing device |
JP2007211893A (ja) * | 2006-02-09 | 2007-08-23 | Jtekt Corp | 転がり軸受の軌道輪とシール部材との固定構造 |
US8172463B2 (en) * | 2006-03-08 | 2012-05-08 | Ntn Corporation | Rolling bearing with a ceramic coating and method for manufacturing the same |
JP2008223996A (ja) * | 2007-03-15 | 2008-09-25 | Jtekt Corp | 転がり軸受の密封装置 |
DE102013104186A1 (de) | 2013-04-25 | 2014-10-30 | Coatec Gmbh | Lagerring, elektrisch isolierende Beschichtung und Verfahren zum Aufbringen einer elektrisch isolierenden Beschichtung |
US9581203B2 (en) * | 2015-04-22 | 2017-02-28 | Schaeffler Technologies AG & Co. KG | Shunt bearing with insulating coating |
FR3039601B1 (fr) * | 2015-07-29 | 2018-02-23 | Aktiebolaget Skf | Assemblage de roulement |
-
2017
- 2017-04-12 US US16/091,857 patent/US10605304B2/en active Active
- 2017-04-12 WO PCT/JP2017/015034 patent/WO2017179634A1/ja active Application Filing
- 2017-04-12 CN CN201780023048.6A patent/CN109072974B/zh active Active
- 2017-04-12 EP EP17782447.1A patent/EP3444489B1/en active Active
- 2017-04-12 JP JP2018512054A patent/JP6762357B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0643352U (ja) * | 1992-11-18 | 1994-06-07 | 光洋精工株式会社 | 電食防止転がり軸受 |
JP2000145796A (ja) * | 1998-11-06 | 2000-05-26 | Koyo Seiko Co Ltd | 電食防止転がり軸受 |
JP2004308735A (ja) * | 2003-04-04 | 2004-11-04 | Ntn Corp | 電食防止軸受 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3444489A4 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017179634A1 (ja) | 2019-05-30 |
JP6762357B2 (ja) | 2020-09-30 |
US10605304B2 (en) | 2020-03-31 |
US20190120288A1 (en) | 2019-04-25 |
EP3444489B1 (en) | 2020-09-09 |
EP3444489A1 (en) | 2019-02-20 |
EP3444489A4 (en) | 2019-03-20 |
CN109072974B (zh) | 2020-08-07 |
CN109072974A (zh) | 2018-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9581203B2 (en) | Shunt bearing with insulating coating | |
WO2017179634A1 (ja) | 絶縁軸受 | |
US9175728B2 (en) | Rolling bearing with integrated electrical shunt | |
US9790995B2 (en) | Bearing seal with integrated grounding brush | |
CN110081073B (zh) | 轴承用的电绝缘装置 | |
JP2008263698A (ja) | 電動機 | |
JP2005198374A (ja) | 回転電機 | |
JP2013199954A (ja) | 電食防止用絶縁転がり軸受 | |
JP2008169959A (ja) | 電食防止用絶縁転がり軸受 | |
RU2012104086A (ru) | Способ изготовления неподвижного соединения типа вал-ступица стальных деталей (варианты) | |
JP2009243572A (ja) | 分割軸受 | |
US10612625B2 (en) | Planet wheel assembly for a planetary gear | |
JP2010001934A (ja) | 電食防止型絶縁転がり軸受用軌道輪の製造方法 | |
JP2014081004A (ja) | 電食防止用絶縁転がり軸受 | |
WO2024024128A1 (ja) | 電食防止転がり軸受 | |
JP2007198519A (ja) | 電食防止用絶縁転がり軸受 | |
KR102711462B1 (ko) | 축전류 해소 장치 | |
JP2009243618A (ja) | 転がり軸受 | |
US10539178B2 (en) | Vapor deposition bearing coating | |
RU2683406C1 (ru) | Способ защиты подшипников электрических машин от повреждения электрическим током | |
JP2021127815A (ja) | 転がり軸受装置 | |
JP7165039B2 (ja) | 転がり軸受 | |
JP2021124159A (ja) | 転がり軸受装置 | |
WO2007043298A1 (ja) | 電食防止転がり軸受 | |
JP2023030949A (ja) | 軸受装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018512054 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017782447 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017782447 Country of ref document: EP Effective date: 20181112 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17782447 Country of ref document: EP Kind code of ref document: A1 |