WO2017179572A1 - Pmセンサ - Google Patents

Pmセンサ Download PDF

Info

Publication number
WO2017179572A1
WO2017179572A1 PCT/JP2017/014814 JP2017014814W WO2017179572A1 WO 2017179572 A1 WO2017179572 A1 WO 2017179572A1 JP 2017014814 W JP2017014814 W JP 2017014814W WO 2017179572 A1 WO2017179572 A1 WO 2017179572A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
porous body
cavity
filter
partition wall
Prior art date
Application number
PCT/JP2017/014814
Other languages
English (en)
French (fr)
Inventor
貴幸 古川
藤井 謙治
正 内山
和生 大角
中村 圭介
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to US16/093,666 priority Critical patent/US10865675B2/en
Priority to EP17782385.3A priority patent/EP3444590A4/en
Priority to CN201780021609.9A priority patent/CN109073525A/zh
Publication of WO2017179572A1 publication Critical patent/WO2017179572A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present disclosure relates to a PM sensor capable of detecting the amount of particulate matter (Particulate Matter) contained in exhaust gas discharged from an internal combustion engine.
  • the exhaust gas of the internal combustion engine contains particulate matter (hereinafter referred to as PM).
  • a PM filter is disposed in an exhaust gas passage (hereinafter referred to as an exhaust passage).
  • this PM filter for example, there is a diesel particulate filter (hereinafter referred to as DPF).
  • a PM sensor is used to determine the amount of PM deposited on the PM filter.
  • the PM sensor is disposed downstream of the PM filter in the exhaust passage, and is configured to take in a part of the exhaust gas after passing through the PM filter and discharge the exhaust passage after performing a predetermined process. .
  • the PM sensor is provided with a porous filter arranged in the passage of the exhaust gas taken in. PM contained in the exhaust gas passing through the porous filter accumulates on the upstream surface of the porous filter.
  • the PM sensor further includes at least a pair of electrodes facing each other with the porous filter interposed therebetween. The PM sensor derives the amount of PM deposited on the porous filter based on the capacitance of a capacitor formed of at least a pair of electrodes (see, for example, Patent Document 1).
  • the size and / or distribution of the pores of the porous filter are not necessarily uniform. Therefore, there is a variation in how PM accumulates inside the porous filter. Since PM in the porous filter does not affect the capacitance of the capacitor, if the PM accumulation varies, the detection accuracy of the PM sensor may be lowered.
  • This disclosure is intended to provide a PM sensor capable of suppressing a decrease in detection accuracy.
  • the present disclosure includes a porous body having a partition disposed in a passage for exhaust gas containing particulate matter, at least a pair of electrodes facing each other in a predetermined direction across the porous body, and the passage in the partition A deposition part including an upstream surface, wherein the particulate matter is deposited on the surface, wherein the partition wall is formed with pores having an average pore diameter smaller than an average pore diameter of a part other than the deposition part; , Directed to a PM sensor.
  • FIG. 1 is a schematic view illustrating an exhaust system to which a PM sensor according to the present disclosure is applied.
  • FIG. 2 is a partial cross-sectional view schematically showing a configuration example of the PM sensor shown in FIG. 3A is a perspective view schematically showing a configuration example of the sensor unit shown in FIG.
  • FIG. 3B is an exploded perspective view of the sensor unit of FIG. 3A.
  • 3C is a cross-sectional view of the sensor section taken along line C-C ′ of FIG.
  • FIG. 3D is a plan view of the porous body viewed from the rear end side in the cross section of the sensor unit along the line D-D ′ in FIG. 3B.
  • FIG. 4 is a partial cross-sectional view schematically showing a modification of the PM sensor of FIG.
  • the PM sensor 1A according to the present disclosure will be described in detail with reference to the drawings.
  • the L axis, the W axis, and the T axis are drawn.
  • the L axis, the W axis, and the T axis indicate the length direction, the width direction, and the height direction of the PM sensor 1A.
  • Each direction is orthogonal to each other.
  • the length direction, the width direction, and the height direction of the PM sensor 1A may be referred to as a length direction L, a width direction W, and a height direction T.
  • the positive direction side in the length direction L is referred to as the front end side
  • the negative direction side is referred to as the rear end side.
  • FIG. 1 shows an internal combustion engine 100, an exhaust system 200, and a PM sensor 1A according to the present disclosure.
  • the internal combustion engine 100 is typically a diesel engine.
  • the exhaust system 200 generally includes an exhaust pipe 202 that forms an exhaust passage P, an oxidation catalyst 204, and a PM filter 206.
  • the oxidation catalyst 204 is provided upstream of the PM filter 206 in the exhaust passage P.
  • the PM filter 206 is typically a diesel particulate filter.
  • Each PM sensor 1A is provided downstream of the PM filter 206 in the exhaust passage P.
  • Each PM sensor 1A is typically used for derivation of the amount of PM accumulated in the PM filter 206, and takes in a part of the exhaust gas after passing through the PM filter 206 to perform a predetermined process. After that, the exhaust passage is configured to be discharged.
  • the PM sensor 1A of the present disclosure will be described in detail with reference to FIGS. 2 to 3D. ⁇ 2.
  • the PM sensor 1 ⁇ / b> A includes an outer case 12, an inner case 14, a mounting portion 16, a sensor portion 18, a support member 110, and a control portion 112.
  • FIG. 2 regarding the outer case 12 and the inner case 14, a cross-sectional shape obtained by cutting each part along an imaginary plane parallel to the WL plane is shown.
  • the sensor unit 18 and the support member 110 a cross-sectional shape obtained by cutting each along the virtual plane is shown.
  • the outer case 12 has, for example, a cylindrical shape having a central axis parallel to the length direction L. Both ends of the outer case 12 in the length direction L are not closed and are openings having a predetermined inner diameter ⁇ 1.
  • the inner case 14 has, for example, a bottomed cylindrical shape having a central axis along the length direction L.
  • the inner case 14 is larger in size in the length direction L than the outer case 12.
  • the outer diameter ⁇ 2 of the inner case 14 is smaller than the inner diameter ⁇ 1 of the outer case 12.
  • the rear end portion of the inner case 14 is not closed, but is an opening having a predetermined inner diameter ⁇ 3.
  • a plurality of inlets (through holes) Hin ⁇ b> 1 are formed in the vicinity of the rear end portion of the inner case 14 along the circumferential direction of the outer peripheral surface of the inner case 14.
  • Hin1 through holes
  • tip part of the inner case 14 becomes a bottom part, and it is substantially closed although not perfect. More specifically, at least one outlet (through hole) Hout1 having a smaller diameter than the inner diameter ⁇ 3 is formed at the substantially center of the bottom.
  • the mounting portion 16 generally has a ring shape.
  • the inner case 14 and the outer case 12 are inserted and fixed to the distal end side of the mounting portion 16.
  • the mounting portion 16 By fixing the cases 12 and 14 to the mounting portion 16, (1) the central axes of the cases 12 and 14 are aligned, and (2) the inner case 14 is accommodated in the internal space of the outer case 12. . Further, in the present disclosure, (3) the front end portion of the inner case 14 protrudes from the front end portion of the outer case 12.
  • a male screw S2 is formed on the outer peripheral surface of the mounting portion 16.
  • a boss B2 is provided on the downstream side of the PM filter 206 in the exhaust passage P.
  • the boss B2 has a through-hole penetrating the exhaust pipe 202 and having an internal thread S4 formed on the inner peripheral surface thereof.
  • the male screw S2 can be screwed with the female screw S4.
  • a nut portion S6 is provided on the rear end side of the male screw S2.
  • the PM sensor 1 ⁇ / b> A is attached to the exhaust pipe 202 by the attachment portion 16 as described above and the female screw S ⁇ b> 4 of the exhaust pipe 202.
  • a through-hole H2 that penetrates along the length direction L and through which the conductive wires 210 and 212 (see FIGS. 3A and 3B) drawn from the sensor unit 18 pass is formed in the attachment portion 16.
  • the sensor unit 18 includes at least two electrodes 22 (five electrodes 22a to 22e shown in the figure) and at least one porous body 24 (four shown). Porous bodies 24a to 24d) and at least one heater 26 (two heaters 26a and 26b in the drawing).
  • Each electrode 22 is made of a planar conductor and has, for example, a substantially rectangular main surface substantially parallel to the LW plane.
  • Each electrode 22 is arranged in a predetermined direction (for example, the height direction T). Further, two electrodes 22 adjacent in a predetermined direction are opposed to each other with a predetermined distance to form a capacitor.
  • Each porous body 24 is composed of, for example, a combination of a plurality of partition walls 25 (refer to FIG. 3C in particular) made of an electrically insulating porous ceramic sheet, and is sandwiched, for example, one by one between electrodes 22 adjacent in a predetermined direction. It is. In FIG. 3C, only three partition walls 25 are shown for convenience. More specifically, the plurality of partition walls 25 are arranged between the adjacent electrodes 22 at intervals in parallel to a predetermined direction (for example, the height direction T) and extend in the length direction L. It is done.
  • a predetermined direction for example, the height direction T
  • the space between the adjacent electrodes 22 is partitioned by the plurality of partition walls 25, and, for example, a first cuboid cavity C1 and a second cuboid cavity C2 extending in the length direction L and adjacent in the width direction W are formed.
  • the A similar porous ceramic sheet is interposed between each partition wall 25 and each electrode 22.
  • FIG. 3A and FIG. 3B the space between the adjacent electrodes 22 is not partitioned in the height direction T by each porous body 24, and a total of five cuboid cavities C 1 and C 2 in the width direction W are formed. Partitioned. Moreover, in FIG. 3A and FIG. 3B, the location closed in each rectangular parallelepiped cavity C1, C2 is hatched.
  • the four porous bodies 24a to 24d are arranged in the height direction T.
  • the combination of the rectangular parallelepiped cavities C1 and C2 adjacent to each other in the height direction T via the electrode 22 also has the same relationship as described above. That is, when the tip of the first cuboid cavity C1 is an opening and the rear end thereof is closed, the tip of the second cuboid cavity C2 adjacent in the height direction T is closed, and the rear end thereof is an opening.
  • each partition wall 25 in each partition wall 25, a deposited portion is formed in a portion that forms a boundary with each second rectangular parallelepiped cavity C2 (that is, a portion including the surface of each partition wall 25).
  • One membrane layer as an example of H4 is provided. In this description, since the deposition part H4 is equivalent to the membrane layer, hereinafter, the reference numeral H4 is also given to the membrane layer.
  • Each membrane layer H4 is made of a metal oxide or a metal composite oxide, more specifically, alumina or silica. Each membrane layer H4 has heat resistance and electrical insulation. Each membrane layer H4 has a large number of pores. The average pore diameter of the membrane layer H4 is smaller than the average pore diameter of the porous body 24 in a portion other than the membrane layer H4 (hereinafter referred to as a non-deposited portion) in each partition wall 25 (porous body 24). Moreover, it is preferable that pores having substantially the same diameter are uniformly and regularly distributed inside the membrane layer H4. Further, preferably, the porosity of the non-deposited portion is smaller than the porosity of the membrane layer H4.
  • the average pore diameter of the pores of the porous body 24 is designed to be larger than the average pore diameter of the PM filter 206, for example.
  • the membrane layer H4 in which pores having an average pore size smaller than the average pore size of the porous body 24 are formed.
  • the PM filter 206 has predominantly pores with a diameter of several ⁇ m or more and several tens of ⁇ m or less
  • the average pore size of the porous body 24 is designed to exceed several tens of ⁇ m
  • the membrane layer H4 The average pore diameter is designed to be several tens of ⁇ m or less.
  • the membrane layer H4 is laminated on the porous body 24. The reason why such a configuration is adopted is to ensure the strength of the sensor unit 18.
  • At least one heater 26 is made of a linear conductor and embedded in an insulating ceramic sheet 28 (illustrated ceramic sheets 28a and 28b). For example, it is inserted between the electrode 22 and the porous body 24.
  • Each heater 26 is preferably made of a linear conductor having a narrow width as much as possible, and is meandering in the ceramic sheet 28 from the viewpoint of burning PM existing on or inside the porous body 24.
  • the function of the heater 26 can be given to at least one electrode 22.
  • the support member 110 is made of a fibrous mat having heat resistance.
  • the sensor unit 18 surrounded by the support member 110 is accommodated in the internal space of the inner case 14.
  • one lead 210 is drawn from each electrode 22 (see FIG. 3A), and one lead 212 is drawn from both ends of each heater 26 (see FIG. 3B). These conducting wires 210 and 212 are connected to the control unit 112.
  • the control unit 112 is an ECU (Electronic Control Unit) or the like, and includes a sensor regeneration control unit 32 and a PM amount deriving unit 34 as functional blocks.
  • Each functional block 32, 34 is realized by, for example, a microcomputer that executes a program.
  • the sensor regeneration control unit 32 energizes each heater 26 at a predetermined timing (more specifically, according to the capacitance of each capacitor (that is, the two electrodes 22 forming a pair)). Then, the PM deposited on each porous body 24 is burned (that is, sensor regeneration process).
  • the PM amount deriving unit 34 calculates the total PM amount in the exhaust gas from the internal combustion engine 100 based on the amount of change in capacitance during a predetermined period (for example, from the end of the sensor regeneration process to the start of the next sensor regeneration). presume.
  • the exhaust gas discharged from the internal combustion engine 100 is processed by the oxidation catalyst 204 and the PM filter 206 and flows toward the downstream side of the exhaust passage P. Part of the exhaust gas that has passed through the PM filter 206 is taken into the PM sensor 1A. More specifically, as shown in FIG. 2, the exhaust gas passes between the cases 12 and 14 and flows into the inner case 14 from the inlet Hin1. Thereafter, as shown in FIGS. 3C and 3D, the exhaust gas flows into the second rectangular parallelepiped cavity C ⁇ b> 2 from the opening on the rear end side of the porous body 24.
  • the exhaust gas passage since the downstream end of the exhaust gas passage is closed in the second rectangular parallelepiped cavity C2, the exhaust gas passes through the partition wall 25 and flows into the first rectangular parallelepiped cavity C1. In the first rectangular parallelepiped cavity C1, the upstream end of the exhaust gas passage is closed, so that the exhaust gas flows out from the opening on the tip side.
  • the PM amount deriving unit 34 is based on the amount of change in capacitance (more specifically, the amount of change in a predetermined period) obtained from the capacitor (paired electrode 22) via the lead wire 210. The total amount of PM in the exhaust gas from the internal combustion engine 100 is estimated.
  • the sensor regeneration control unit 32 energizes each heater 26 through the conducting wire 212 at a predetermined timing, and burns PM deposited on each porous body 24.
  • the partition wall 25 is disposed so as to block the exhaust gas passage, whereby a first cuboid cavity C1 and a second cuboid cavity C2 are formed.
  • the membrane layer H4 as described above is formed on the surface of the partition wall 25 on the second rectangular parallelepiped cavity C2 side (that is, the surface of the partition wall 25 on the upstream side of the exhaust gas passage). Therefore, when the exhaust gas flows into the opening at the rear end side of the second cuboid cavity C2, the exhaust gas itself passes through the membrane layer H4 and the partition wall 25 and flows into the first cuboid cavity C1, but is included in the exhaust gas. Most of the PM deposited is deposited on the surface of the membrane layer H4.
  • the PM sensor 1A includes the porous body 24 having a nonuniform pore size and distribution, the PM sensor 1A includes the membrane layer H4. There is almost no PM inside. Therefore, in the present PM sensor 1A, it is not necessary to consider the variation in the PM accumulation in the porous body 24. The present PM sensor 1A is not affected by the PM in the porous body 24, and the capacitance of the capacitor. Can be detected.
  • the accumulated PM is combusted at a predetermined timing (sensor regeneration process). Accordingly, the PM sensor is in the initial state every time the sensor regeneration process is performed. Therefore, even if the same porous filter is used, the PM accumulation in the porous filter differs in each initial state.
  • the PM sensor includes a plurality of porous filters
  • the PMs of the plurality of porous filters are burned together (that is, simultaneously) by the sensor regeneration process. Accordingly, in a certain initial state, the way PM accumulates in the plurality of porous filters is different.
  • the PM does not substantially remain inside the porous body 24 due to the membrane layer H4. Therefore, when the PM sensor 1A is in the initial state, the PM amount deriving unit 34 (see FIG. 2). The accuracy of the detection result of (see) is less likely to be affected.
  • the average pore diameter of the membrane layer H4 is smaller than that of the partition wall 25, but the porosity of the membrane increase H4 is larger than that of the partition wall 25.
  • the PM sensor 1 ⁇ / b> A includes an outer case 12 and an inner case 14.
  • the present invention is not limited to this, and the PM sensor 1 ⁇ / b> A may include a single case 42 as shown in FIG. 4 instead of the outer case 12 and the inner case 14.
  • the case 42 has, for example, a bottomed cylindrical shape having a central axis along the length direction L.
  • the rear end of the case 42 is not closed and is an opening.
  • tip part of case 42 becomes a bottom part, and is closed.
  • a plurality of inlets (through holes) Hin2 are formed along the circumferential direction of the outer peripheral surface of the case 42.
  • a plurality of outlets (through holes) Hout ⁇ b> 2 having an opening area larger than the inlet Hin ⁇ b> 2 are formed along the circumferential direction of the outer peripheral surface of the case 42. From the viewpoint of visibility in the figure, in FIG. 2, reference numerals Hin2 and Hout2 are attached to only one inlet and outlet.
  • the sensor unit 18 surrounded by the support member 110 is accommodated.
  • the details of the case 42 are described in Japanese Patent Application Laid-Open No. 2016-008863, and therefore detailed description thereof is omitted here.
  • the cavities C1 and C2 have a rectangular parallelepiped shape.
  • the present invention is not limited to this, and the cavities C1 and C2 may have a shape other than a rectangular parallelepiped.
  • the membrane layer H4 as an example of the deposition part is laminated on the surface of the non-deposition part of the porous body 24.
  • the deposited portion and the non-deposited portion may be formed on the partition wall 25 by means other than lamination (for example, a method of baking using a volatile substance or a foam material).
  • the accumulation portion is a portion including the surface of the partition wall 25 on the upstream side of the exhaust gas passage, and the non-deposition portion is a portion on the downstream side of the passage with respect to the accumulation portion.
  • the internal combustion engine 100 is a diesel engine.
  • the present invention is not limited to this, and the internal combustion engine 100 may be a gasoline engine.
  • the PM sensor of the present disclosure can suppress a decrease in detection accuracy and is useful for a vehicle application including an internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PMセンサは、粒子状物質を含む排気ガスの通路に配置された隔壁を有する多孔質体と、前記多孔質体を挟んで、所定方向において互いに対向する少なくとも一対の電極と、前記隔壁における前記通路上流側の表面を含み、前記表面に前記粒子状物質が堆積する堆積部であって、前記隔壁において前記堆積部以外の部分の平均孔径よりも小さい平均孔径の細孔が形成された堆積部と、を備えている。

Description

PMセンサ
 本開示は、内燃機関から排出された排気ガスに含まれる粒子状物質(Particurate Matter)の量を検出可能なPMセンサに関する。
 内燃機関の排気ガス中には、粒子状物質(以下、PMという)が含まれる。PM除去のために、排気ガスの通路(以下、排気通路という)にはPMフィルタが配置される。このPMフィルタとしては、例えばディーゼルパティキュレートフィルタ(以下、DPFという)がある。
 PMフィルタは、PMを捕集し続けると目詰まりを起こす。それゆえ、PMフィルタに堆積したPMは強制的に燃焼させられ除去される。この処理は、PMフィルタの再生処理として知られている。
 PMフィルタでのPM堆積量の判定等のためにPMセンサが使用される。PMセンサは、排気通路においてPMフィルタよりも下流側に配置され、PMフィルタを通過後の排気ガスの一部を内部に取り込み、所定の処理を行った後に排気通路の排出するように構成される。
 所定の処理のため、PMセンサは、取り込んだ排気ガスの通路に配置された多孔質フィルタを備えている。この多孔質フィルタの通路上流側の表面には、自身を通過する排気ガスに含まれるPMが堆積していく。PMセンサはさらに、多孔質フィルタを挟んで互いに対向する少なくとも一対の電極を備えている。PMセンサは、少なくとも一対の電極により構成されるコンデンサの静電容量に基づき、多孔質フィルタへのPM堆積量を導出する(例えば、特許文献1を参照)。
特開2012-241643号公報
 しかし、従来のPMセンサにおいて、多孔質フィルタの細孔の大きさおよび/または分布は必ずしも一様ではない。それ故、多孔質フィルタの内部でのPMのたまり方にはばらつきがある。多孔質フィルタ内部のPMはコンデンサの静電容量に影響を与えないので、PMのたまり方にばらつきがあると、PMセンサの検出精度が低下する可能性があった。
 本開示は、検出精度の低下を抑制可能なPMセンサを提供することを目的とする。
 本開示は、粒子状物質を含む排気ガスの通路に配置された隔壁を有する多孔質体と、前記多孔質体を挟んで、所定方向において互いに対向する少なくとも一対の電極と、前記隔壁における前記通路上流側の表面を含み、前記表面に前記粒子状物質が堆積する堆積部であって、前記隔壁において前記堆積部以外の部分の平均孔径よりも小さい平均孔径の細孔が形成された堆積部と、を備えたPMセンサに向けられる。
 本開示によれば、検出精度の低下を抑制可能なPMセンサを提供することが出来る。
図1は、本開示に係るPMセンサが適用される排気系を例示する模式図である。 図2は、図1に示すPMセンサの構成例を模式的に示す部分断面図である。 図3Aは、図2に示すセンサ部の構成例を模式的に示す斜視図である。 図3Bは、図3Aのセンサ部の分解斜視図である。 図3Cは、図3Bの線C-C’に沿うセンサ部の断面を高さ方向Tから見た時の断面図である。 図3Dは、図3Bの線D-D’に沿うセンサ部の断面を後端側から多孔質体を見た時の平面図である。 図4は、図2のPMセンサの変形例を模式的に示す部分断面図である。
 以下、上記図面を参照して、本開示に係るPMセンサ1Aを詳説する。
 なお、上記図面のいくつかには、L軸、W軸およびT軸が描かれている。L軸、W軸およびT軸はPMセンサ1Aの長さ方向、幅方向および高さ方向を示す。各方向は互いに直交する。また、下記では、PMセンサ1Aの長さ方向、幅方向および高さ方向を、長さ方向L、幅方向Wおよび高さ方向Tと記載することがある。また、長さ方向Lにおける正方向側を先端側といい、その負方向側を後端側という。
 <1.PMセンサ1Aの周辺構成>
 図1には、内燃機関100と、排気系200と、本開示に係るPMセンサ1Aが示されている。
 内燃機関100は、典型的にはディーゼルエンジンである。
 排気系200は、大略的には、排気通路Pを形成する排気管202と、酸化触媒204と、PMフィルタ206と、を含む。酸化触媒204は、排気通路PにおいてPMフィルタ206よりも上流側に設けられる。PMフィルタ206は、典型的には、ディーゼルパティキュレートフィルタである。
 各PMセンサ1Aは、排気通路PにおいてPMフィルタ206よりも下流側に設けられる。各PMセンサ1Aは、典型的には、PMフィルタ206でのPM堆積量の導出等のために使用され、PMフィルタ206を通過後の排気ガスの一部を内部に取り込み、所定の処理を行った後に排気通路の排出するように構成される。
 以下、図2~図3Dを参照して、本開示のPMセンサ1Aについて詳説する。
 <2.PMセンサ1Aの詳細な構成>
 PMセンサ1Aは、外ケース12と、内ケース14と、取付部16と、センサ部18と、支持部材110と、制御部112と、を備えている。ここで、図2では、外ケース12および内ケース14に関しては、WL平面と平行な仮想面に沿って、それぞれの一部分を切断した断面形状が示される。センサ部18および支持部材110に関しては、同仮想面に沿ってそれぞれを切断した断面形状が示される。
 外ケース12は、例えば、長さ方向Lに平行な中心軸を持つ円筒状の形状を有する。外ケース12における長さ方向Lの両端は閉止されずに、所定の内径φ1を有する開口部となっている。
 内ケース14は、例えば、長さ方向Lに沿う中心軸を持つ有底円筒状の形状を有する。内ケース14は、本開示では、長さ方向Lへのサイズについて、外ケース12よりも大きい。また、内ケース14の外径φ2は、外ケース12の内径φ1よりも小さい。さらに、内ケース14の後端部は閉止されずに、所定の内径φ3を有する開口部となっている。また、内ケース14の後端部近傍には、複数の入口(貫通孔)Hin1が内ケース14の外周面の周方向に沿って形成されている。なお、図の視認性の観点で、図2では、一つの入口にのみ参照符号Hin1が付されている。また、内ケース14の先端部は、底部となっており、完全ではないがほぼ閉止されている。より具体的には、この底部の略中央には、内径φ3よりも小径の出口(貫通孔)Hout1が少なくとも一つ形成される。
 取付部16は、大略的には、リング状の形状を有する。この取付部16の先端側には、内ケース14および外ケース12が挿入され固定される。両ケース12,14が取付部16に固定されることで、(1)両ケース12,14の中心軸が軸合わせされ、かつ(2)外ケース12の内部空間に内ケース14が収容される。さらに、本開示では、(3)内ケース14の先端部が外ケース12の先端部よりも突出する。
 取付部16の外周面には、雄ネジS2が形成される。排気通路PにおいてPMフィルタ206よりも下流側にはボスB2が設けられており、ボスB2には、排気管202を貫通しかつ内周面に雌ネジS4が形成された貫通孔があけられる。雄ネジS2は、この雌ネジS4と螺合可能になっている。また、雄ネジS2の後端側にはナット部S6が設けられる。上記のような取付部16と、排気管202の雌ネジS4とにより、PMセンサ1Aは排気管202に取り付けられる。
 また、取付部16には、長さ方向Lに沿って貫通し、センサ部18から引き出される導線210,212(図3A,図3Bを参照)が通過する貫通孔H2が形成される。
 センサ部18は、図3A~図3Dに示すように、対をなす少なくとも二個の電極22(図示は、五個の電極22a~22e)と、少なくとも一層の多孔質体24(図示は四個の多孔質体24a~24d)と、少なくとも一個のヒータ26(図示は二個のヒータ26a,26b)と、を備えている。
 各電極22は、面状導体からなり、例えば、LW平面に略平行で略矩形形状の主面を有する。各電極22は、所定方向(例えば高さ方向T)に配列される。また、所定方向に隣り合う二個の電極22は、所定距離だけあけて互いに対向して、コンデンサを構成する。
 各多孔質体24は、例えば、電気絶縁性を有する多孔質セラミックスシートからなる複数の隔壁25(図3Cを特に参照)の組み合わせからなり、所定方向に隣り合う電極22の間に例えば一層ずつ挟み込まれる。なお、図3Cには便宜上三個の隔壁25のみが示される。より具体的には、複数の隔壁25は、隣り合う電極22の間で、所定方向(例えば、高さ方向T)と平行に間隔をあけて配置され、かつ、長さ方向Lに延在させられる。これにより、隣り合う電極22の間の空間が複数の隔壁25で区画されて、例えば長さ方向Lに延在し幅方向Wに隣り合う第一直方体空洞C1および第二直方体空洞C2が形成される。なお、各隔壁25と各電極22の間にも、同様の多孔質セラミックシートが介在している。
 また、ある第一直方体空洞C1の先端が開口部で、その後端が閉止される場合、幅方向Wに隣接する第二直方体空洞C2の先端は閉止され、その後端は開口部とされる。このような関係は、直方体空洞C1,C2の全組み合わせに同様に当てはまる。
 なお、図3A,図3Bでは、各多孔質体24により、隣り合う電極22の間の空間は、高さ方向Tには区画されず、幅方向Wにおいて合計五個の直方体空洞C1,C2に区画される。また、図3A,図3Bでは、各直方体空洞C1,C2において閉止された箇所にはハッチングが付されている。
 また、本開示では、四個の多孔質体24a~24dが高さ方向Tに並ぶ。この場合、高さ方向Tに電極22を介して隣り合う直方体空洞C1,C2の組み合わせもまた上記と同様の関係を有する。即ち、第一直方体空洞C1の先端が開口部で、その後端が閉止される場合、高さ方向Tに隣接する第二直方体空洞C2の先端は閉止され、その後端は開口部とされる。
 また、本PMセンサ1Aでは、図3C,図3Dに示すように、各隔壁25において各第二直方体空洞C2との境界をなす部分(即ち、各隔壁25の表面を含む部分)に、堆積部H4の一例としてのメンブレン層が一層ずつ設けられる。本説明では、堆積部H4はメンブレン層と均等であるため、以下では、メンブレン層にも参照符号H4を付すこととする。
 各メンブレン層H4は、金属酸化物または金属複合酸化物から、より特定的には、アルミナまたはシリカからなる。また、各メンブレン層H4は、耐熱性および電気絶縁性を有する。このような各メンブレン層H4には多数の細孔が形成されている。メンブレン層H4の平均孔径は、各隔壁25(多孔質体24)におけるメンブレン層H4以外の部分(以下、非堆積部という)の多孔質体24の平均孔径よりも小さい。また、メンブレン層H4の内部には、ほぼ同じ径の細孔が一様にかつ規則的に分布することが好ましい。また、好ましくは、非堆積部の気孔率は、メンブレン層H4の気孔率よりも小さくなっている。
 なお、多孔質体24の細孔の平均孔径は、例えば、PMフィルタ206の平均孔径よりも大きな値に設計される。この場合、メンブレン層H4としては、細孔の平均孔径が多孔質体24の平均孔径よりも小さな平均孔径の細孔が形成されたものが使用されることが好ましい。具体例を挙げると、PMフィルタ206が数μm以上数十μm以下の径の気孔を支配的に有するのであれば、多孔質体24の平均孔径は数十μm超に設計され、メンブレン層H4の平均孔径は、数十μm以下に設計される。
 また、本PMセンサ1Aでは、多孔質体24上にメンブレン層H4が積層される。このような構成が採用される理由は、センサ部18の強度を確保するためである。
 少なくとも一個のヒータ26(図示は、ヒータ26a,26b)は、図3Bに示すように、線状導体からなり、絶縁性セラミックシート28(図示は、セラミックシート28a,28b)内に埋設された状態で、例えば電極22と多孔質体24との間に挿入される。各ヒータ26は、多孔質体24の表面上または内部に存在するPMを燃焼させる観点から、極力幅狭の線状導体からなり、セラミックシート28内で蛇行していることが望ましい。なお、ヒータ26の機能は少なくとも一個の電極22に持たせることも可能である。
 再度図2を参照する。上記構成のセンサ部18において、長さ方向Tの両端面を少なくとも除く側面は、支持部材110により取り囲まれる。ここで、支持部材110は、耐熱性を有する繊維状のマットからなる。支持部材110で取り囲まれたセンサ部18は内ケース14の内部空間に収容される。
 また、各電極22からは導線210が一本ずつ引き出され(図3Aを参照)、また、各ヒータ26の両端からは導線212が一本ずつ引き出される(図3Bを参照)。これら導線210,212は、制御部112に接続される。
 制御部112は、ECU(Electronic Control Unit)等であって、センサ再生制御部32と、PM量導出部34とを機能ブロックとして含む。各機能ブロック32,34は、例えば、プログラムを実行するマイコンにより実現される。
 センサ再生制御部32は、予め定められたタイミングで(より具体的には、各コンデンサ(即ち、対をなす二個の電極22)の静電容量に応じて)、各ヒータ26を通電させて、各多孔質体24に堆積するPMを燃焼させる(即ち、センサ再生処理)。
 PM量導出部34は、所定期間(例えば、センサ再生処理終了時から次のセンサ再生開始時まで)における静電容量の変化量に基づいて、内燃機関100からの排気ガス中の総PM量を推定する。
 上記センサ再生処理および上記総PM量の推定に関しては、特開2016-008863号公報等で詳説されているため、ここでは、それぞれの詳説を控える。
 <3.PMセンサ1Aの動作>
 図1において、内燃機関100から排出された排気ガスは、酸化触媒204およびPMフィルタ206により処理されて、排気通路Pの下流側に向けて流れる。PMフィルタ206を通過した排気ガスの一部がPMセンサ1Aの内部に取り込まれる。より具体的には、図2に示すように、排気ガスは、両ケース12,14の間を通過して、入口Hin1から内ケース14の内部に流入する。その後、排気ガスは、図3C,図3Dに示すように、多孔質体24の後端側開口部から第二直方体空洞C2に流入する。ここで、第二直方体空洞C2において、排気ガスの通路の下流側端部は閉止されるため、排気ガスは、隔壁25を通過して、第一直方体空洞C1の内部に流入する。第一直方体空洞C1において、排気ガスの通路の上流側端部は閉止されるため、排気ガスはその先端側の開口部から流出する。
 PM量導出部34は、上記の通り、コンデンサ(対をなす電極22)から導線210を介して得られる静電容量の変化量(より具体的には、所定期間における変化量)に基づいて、内燃機関100からの排気ガス中の総PM量を推定する。また、センサ再生制御部32は、予め定められたタイミングで、導線212を介して各ヒータ26を通電させて、各多孔質体24に堆積するPMを燃焼させる。
 <4.PMセンサ1Aの主たる作用・効果>
 本PMセンサ1Aの多孔質体24において、隔壁25は、排気ガス通路を遮るように配置され、これによって、第一直方体空洞C1と第二直方体空洞C2とが形成される。隔壁25において第二直方体空洞C2側の表面(即ち、隔壁25において排気ガス通路の上流側の表面)には、上記のようなメンブレン層H4が形成される。従って、排気ガスが、第二直方体空洞C2の後端側開口部からに流入すると、排気ガス自体はメンブレン層H4および隔壁25を通過して第一直方体空洞C1に流入するが、排気ガスに含まれるPMの殆どはメンブレン層H4の表面上に堆積する。
 上記のことから、PMセンサ1Aに、細孔の大きさや分布が一様でない多孔質体24が使用されていたとしても、PMセンサ1Aにはメンブレン層H4が備わっているため、多孔質体24の内部にはPMは殆どたまらない。よって、本PMセンサ1Aでは、多孔質体24におけるPMのたまり方のばらつきを考慮する必要が無く、本PMセンサ1Aは、多孔質体24におけるPMの影響を受けずに、コンデンサの静電容量を検出することが可能となる。
 <5.PMセンサ1Aの他の作用・効果>
 また、従来のPMセンサでは多孔質フィルタが利用されていたため、多孔質フィルタへのPM堆積量が無いか少ない状態(即ち、初期状態)では、PMセンサの検出結果の精度に影響が生じるという問題点があった。以下、この問題点についてより具体的に説明する。
 この種のPMセンサでは、予め定められたタイミングで、堆積したPMが燃焼させられる(センサ再生処理)。従って、センサ再生処理の度にPMセンサは初期状態になる。従って、たとえ同一多孔質フィルタであっても、各初期状態において、多孔質フィルタ内へのPMのたまり方が異なる。
 また、PMセンサが複数の多孔質フィルタを備えている場合、センサ再生処理により、複数の多孔質フィルタのPMが一括的に(即ち同時に)燃焼させられる。従って、ある初期状態において、複数の多孔質フィルタ内へのPMのたまり方が異なる。
 上記の通り、従来のPMフィルタでは、初期状態におけるPMのたまり方が一様ではないため、PMセンサの検出結果の精度に影響が生じてしまう。
 しかし、PMセンサ1Aによれば、メンブレン層H4によりPMは多孔質体24の内部で実質的に留まることが無いため、PMセンサ1Aが初期状態の場合に、PM量導出部34(図2を参照)の検出結果の精度に影響が生じにくくなる。
 また、PMセンサ1Aによれば、メンブレン層H4の平均孔径は、隔壁25のそれよりも小さくなっているが、メンブレン増H4の気孔率が、隔壁25のそれよりも大きくなっている。これにより、メンブレン層H4を隔壁25に積層しても、この部分において圧力損失が過度に大きくなることを防止している。
 <6.第一変形例>
 上記PMセンサ1Aは、外ケース12と内ケース14とを備えていた。しかし、これに限らず、PMセンサ1Aは、外ケース12および内ケース14に代えて、図4に示すように単一のケース42を備えていても構わない。なお、これ以外に、図4のPMセンサ1Aと、図2のそれとの間に相違点は無い。それ故、図4において図2に示す構成に相当するものには同一参照符号を付け、それぞれの説明を省略する。
 ケース42は、例えば、長さ方向Lに沿う中心軸を持つ有底円筒状の形状を有する。ケース42の後端部は閉止されずに開口部となっている。また、ケース42の先端部は、底部となっており閉止される。
 また、ケース42の先端部近傍には、複数の入口(貫通孔)Hin2がケース42の外周面の周方向に沿って形成されている。また、ケース42の後端部近傍には、入口Hin2よりも開口面積の大きな複数の出口(貫通孔)Hout2がケース42の外周面の周方向に沿って形成されている。なお、図の視認性の観点で、図2では、一つの入口および出口にのみ参照符号Hin2,Hout2が付されている。
 上記ケース42の内部空間には、支持部材110で取り囲まれたセンサ部18が収容される。なお、上記ケース42の詳細については、特開2016-008863号公報に記載されているため、ここでは、その詳説を控える。
 なお、PMセンサ1Aのケースに関しては他にも様々な形状を採用可能である。
 <7.付記>
 また、上記では、空洞C1,C2の形状は直方体であると説明した。しかし、これに限らず、空洞C1,C2は直方体以外の形状を有していても構わない。
 また、上記では、堆積部の一例としてのメンブレン層H4は、多孔質体24の非堆積部の表面上に積層されていた。しかし、積層以外の手段(例えば、揮発性物質または発泡材料を用いて焼成する方法)で、隔壁25に堆積部と非堆積部とが形成されても構わない。堆積部は、隔壁25において、排気ガスの通路上流側の表面を含む部分であり、非堆積部は、堆積部を基準として通路下流側の部分である。
 また、上記では、内燃機関100がディーゼルエンジンであるとして説明した。しかし、これに限らず、内燃機関100はガソリンエンジンであっても構わない。
 <8.関連出願の相互参照>
 本出願は、2016年4月14日付で出願された日本国特許出願(特願2016-081541号)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示のPMセンサは、検出精度の低下を抑制可能であり、内燃機関を備えた車両用途に有用である。
 1A PMセンサ
 22 電極
 24 多孔質体
 H4 メンブレン層(堆積部)

Claims (3)

  1.  粒子状物質を含む排気ガスの通路に配置された隔壁を有する多孔質体と、
     前記多孔質体を挟んで、所定方向において互いに対向する少なくとも一対の電極と、
     前記隔壁における前記通路上流側の表面を含み、前記表面に前記粒子状物質が堆積する堆積部であって、前記隔壁において前記堆積部以外の部分の平均孔径よりも小さい平均孔径の細孔が形成された堆積部と、を備えた、PMセンサ。
  2.  前記堆積部の気孔率は、前記隔壁において前記堆積部以外の部分よりも大きくなっている、請求項1に記載のPMセンサ。
  3.  前記表面が前記所定方向と平行で、
     前記隔壁は、前記一対の電極間の空間を、前記所定方向と直交方向に配列された第一空洞および第二空洞に区画し、
     前記第一空洞の下流側端部が開口部となっており、前記第一空洞の上流側端部は閉止され、
     前記第二空洞の下流側端部は閉止され、前記第二空洞の上流側端部は開口部となっている、請求項1に記載のPMセンサ。
PCT/JP2017/014814 2016-04-14 2017-04-11 Pmセンサ WO2017179572A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/093,666 US10865675B2 (en) 2016-04-14 2017-04-11 Particulate matter (PM) sensor for detecting quantity of PM in exhaust gas from e.g. diesel engine
EP17782385.3A EP3444590A4 (en) 2016-04-14 2017-04-11 PARTICLE MATERIAL SENSOR
CN201780021609.9A CN109073525A (zh) 2016-04-14 2017-04-11 颗粒物传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-081541 2016-04-14
JP2016081541A JP6717020B2 (ja) 2016-04-14 2016-04-14 Pmセンサ

Publications (1)

Publication Number Publication Date
WO2017179572A1 true WO2017179572A1 (ja) 2017-10-19

Family

ID=60041663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014814 WO2017179572A1 (ja) 2016-04-14 2017-04-11 Pmセンサ

Country Status (5)

Country Link
US (1) US10865675B2 (ja)
EP (1) EP3444590A4 (ja)
JP (1) JP6717020B2 (ja)
CN (1) CN109073525A (ja)
WO (1) WO2017179572A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119755U (ja) * 1984-07-12 1986-02-05 トヨタ自動車株式会社 排気ガス中のパテイキユレ−ト堆積量センサ
JPH0633734A (ja) * 1992-07-10 1994-02-08 Ibiden Co Ltd 排気ガス浄化装置
WO2011125772A1 (ja) * 2010-03-31 2011-10-13 日本碍子株式会社 ハニカムフィルタ
JP2016008862A (ja) * 2014-06-23 2016-01-18 いすゞ自動車株式会社 センサ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4363289B2 (ja) * 2004-09-21 2009-11-11 株式会社デンソー 内燃機関の排気ガス浄化装置
JP5208897B2 (ja) * 2008-10-09 2013-06-12 日本碍子株式会社 ハニカムフィルタ
JP5568322B2 (ja) * 2009-03-25 2014-08-06 日本碍子株式会社 粒子状物質の堆積量検出装置
JP5874196B2 (ja) 2011-05-20 2016-03-02 いすゞ自動車株式会社 粒子状物質センサ
WO2014087472A1 (ja) * 2012-12-03 2014-06-12 トヨタ自動車株式会社 排気浄化フィルタ
JP6089763B2 (ja) * 2013-02-20 2017-03-08 いすゞ自動車株式会社 粒子状物質の測定装置
JP6028615B2 (ja) * 2013-02-20 2016-11-16 いすゞ自動車株式会社 粒子状物質の測定装置
JP6379838B2 (ja) 2014-08-11 2018-08-29 いすゞ自動車株式会社 センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119755U (ja) * 1984-07-12 1986-02-05 トヨタ自動車株式会社 排気ガス中のパテイキユレ−ト堆積量センサ
JPH0633734A (ja) * 1992-07-10 1994-02-08 Ibiden Co Ltd 排気ガス浄化装置
WO2011125772A1 (ja) * 2010-03-31 2011-10-13 日本碍子株式会社 ハニカムフィルタ
JP2016008862A (ja) * 2014-06-23 2016-01-18 いすゞ自動車株式会社 センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3444590A4 *

Also Published As

Publication number Publication date
EP3444590A1 (en) 2019-02-20
JP6717020B2 (ja) 2020-07-01
US10865675B2 (en) 2020-12-15
US20190128159A1 (en) 2019-05-02
CN109073525A (zh) 2018-12-21
JP2017191048A (ja) 2017-10-19
EP3444590A4 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
WO2016084660A1 (ja) 診断装置及びセンサ
CN107076692B (zh) 传感器
JP6409452B2 (ja) 診断装置
WO2016133127A1 (ja) 排気浄化装置
WO2016024591A1 (ja) センサ
WO2017179572A1 (ja) Pmセンサ
JP6766358B2 (ja) センサ
WO2017179571A1 (ja) Pmセンサ
JP6405938B2 (ja) 診断装置及びセンサ
WO2016133140A1 (ja) センサ
JP6705268B2 (ja) センサ
JP2018054377A (ja) Pmセンサ
JP2018054376A (ja) Pmセンサ
JP6409436B2 (ja) 診断装置
JP2018124182A (ja) センサおよびその製造方法
JP2018072023A (ja) Pmセンサ
JP2018059417A (ja) Pmセンサ
JP2018059447A (ja) Pmセンサ
JP6784050B2 (ja) センサ
JP6805531B2 (ja) センサ
WO2016047530A1 (ja) 診断装置
JP2018054314A (ja) Pmセンサ
JP2018119887A (ja) Pmセンサ
JP2018127982A (ja) 加熱装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017782385

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017782385

Country of ref document: EP

Effective date: 20181114

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782385

Country of ref document: EP

Kind code of ref document: A1