JP5568322B2 - 粒子状物質の堆積量検出装置 - Google Patents

粒子状物質の堆積量検出装置 Download PDF

Info

Publication number
JP5568322B2
JP5568322B2 JP2010004905A JP2010004905A JP5568322B2 JP 5568322 B2 JP5568322 B2 JP 5568322B2 JP 2010004905 A JP2010004905 A JP 2010004905A JP 2010004905 A JP2010004905 A JP 2010004905A JP 5568322 B2 JP5568322 B2 JP 5568322B2
Authority
JP
Japan
Prior art keywords
filter
pipe
particulate matter
upstream
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010004905A
Other languages
English (en)
Other versions
JP2010249126A (ja
Inventor
順悟 近藤
啓治 松廣
謙治 青木
厚男 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2010004905A priority Critical patent/JP5568322B2/ja
Priority to US12/721,797 priority patent/US8210033B2/en
Publication of JP2010249126A publication Critical patent/JP2010249126A/ja
Application granted granted Critical
Publication of JP5568322B2 publication Critical patent/JP5568322B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/12Other sensor principles, e.g. using electro conductivity of substrate or radio frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、粒子状物質の堆積量検出装置に関するものであり、ディーゼルエンジン等の内燃機関の排気系に配置されたフィルターのPM堆積量の検出などに用いることができる。
ディーゼルエンジン等の内燃機関の有害成分は、PM(パーティキュレート マター:炭素微粒子からなるスート、高分子量炭化水素微粒子、サルフェート等の硫黄系微粒子など)として排出される。最近、環境省が、粒径2.5μm以下の微小粒子状物質について環境基準を定めることを検討しており、粒子状物質の規制が厳格となるため、対応が迫られており、開発競争が行われている。
ディーゼルエンジン用排ガス浄化装置としては、セラミック製の目封じタイプのハニカム体(ディーゼルPMフィルタ: DPF)が普及している。
DPFは、セラミックハニカム構造体のセルの開口部の両端を交互に目封じしたものである。すなわち、排ガス下流側で目詰めされた流入側セルと、排ガス上流側で目詰めされた流出側セルとを設け、流入側セルと流出側セルを区画するセル隔壁の細孔で排ガスを濾過し、粒子状物質を捕集する。
しかし、DPFは、粒子状物質が堆積すると、排ガスの圧力損失が上昇するために内燃機関の出力の低下や燃料消費量を抑えるために、堆積した粒子状物質を除去して再生する必要がある。そこで、排ガス中に燃料などの還元剤を添加し、DPF の上流側に配置された酸化触媒で燃焼させることで排ガスを昇温し、その高温の排ガスを
DPFへ供給する方法などによって、堆積したPMを燃焼させ
DPFを強制再生することが行われている。
ただし、フィルター内の粒子状物質の堆積量が、あるフィルター使用限界値を超えて捕集されている状態においてこの再生制御を行うと、PMの燃焼によってフィルターの局所的な温度や全体の温度が上昇しすぎて、フイルターのクラックや溶損が発生する。これを防止するために、フィルターの圧力損失、吸入空気量、排ガス温度、燃料噴射量、EGR開度、エンジン回転数等を測定してECUにて演算処理を行い、フィルター内の粒子状物質の堆積量の予測を行っている。
一方通常のディーゼルエンジン等の内燃機関では、このフィルター使用限界値に安全率を加味したものを再生制御ポイントとしており、通常
再生制御ポイント(g/L)=フィルター使用限界値(g/L)×安全係数
ただし安全係数は、0<安全係数<1
なので
再生制御ポイント(g/L)<フィルター使用限界値(g/L)
になるように再生制御ポイントを設定している。
この安全係数は、各自動車メーカーで設定がまちまちで、フィルター内の粒子状物質の堆積量の予測技術の完成度やメーカーの安全に関する指針で決定されている。そしてこの安全係数が1に近いほどフィルターの再生頻度が減り、燃費の悪化が減ることになる。そのため、精度よくフィルター内の粒子状物質の堆積量を予測することが求められている。
粒子状物質の堆積量が再生制御ポイントに達したと判定されたときに、排ガス温度を強制的に上昇させてフィルターの再生が行われる。このため、特許文献1(特開昭59-204747)には、排気ガス間路の対向する側壁に、マイクロ波送信アンテナとマイクロ波受信アンテナとを設置し、その間を流通する黒鉛濃度を測定する方法が記載されている。
また、非特許文献1(GE発表のAdvanced DPF soot sensor:International CTI Forum 2-4 Dec)には、DPF容器の入口と出口にそれぞれRF送信アンテナと受信アンテナを設置し、DPFに堆積したスートを検知する方法が記載されている。
特許文献2(特開2009−2276)では、DPFフィルターの外壁の中心部に送信アンテナと受信アンテナとを相対向するように取り付けている。そして、送信アンテナから数十GHz〜数十THzの電磁波を送信し、フィルターに通し、反対側に取り付けられた受信アンテナで受信し、電磁波の受信強度に基づいてフィルターへの粒子状物質の堆積量を算出する。
特開昭59-204747 特開2009−2276
GE発表のAdvanced DPF soot sensor:International CTI Forum 2-4 Dec
しかし、マイクロ波を用いてスートなどの粒子状物質の堆積量を検出しようとすると、スートの主成分であるカーボン粒子の吸収が大きくない。例えば、非特許文献1のGE社製スートセンサでは、平均値処理など演算処理をしてダイナミックレンジが15dB程度となるが、さらに、実際には、DPFの材質や形状や排ガス管形状、粒径サイズ、粒成分という変動パラメータがあり、十分な感度が得られないという問題があった。
さらに、マイクロ波を用いると、ある程度スートが堆積してくると、吸収感度が悪くなり堆積量2−4g/Lの範囲でしか使用することができないという問題もある。DPFのスート堆積量限界としては通常5g/L以上はあるので、この場合には十分な堆積容量がありながら再生処理をするアルゴリズムしか成立できず、燃費向上という観点から不十分であった。
特許文献2(特開2009−2276)では、DPFフィルターの容器外壁に送信アンテナと受信アンテナとを相対向するように設置し、ミリ波やテラ波を用いてフィルターを横断するように照射することで、フィルター横断面内にある粒子状物質を透過させてその量を測定する。しかし、この測定方法を実際にDPFフィルターに適用すると、DPFに堆積したスート全体量を測定する場合には、複数の断面を測定し、その和を求める必要があり、車載用としては複雑な機構とする必要がある。
本発明の課題は、フィルターにより捕集した粒子状物質の堆積量を電磁波を用いて検出する装置において、検出感度を向上させることである。
本発明は、粒子状物質を含む気体から前記粒子状物質を捕集するフィルター、
このフィルターを収容する容器、
この容器の上流側に設けられ、前記気体を容器内へと流す上流側配管、
容器の下流側に設けられ、フィルターを通過した後の気体を流す下流側配管、
下流側配管内に設けられ、30GHz以上、10THz以下の周波数の電磁波を送信する送信アンテナ、および
上流側配管内に設けられ、電磁波を受信する受信アンテナを備えており、
容器が、フィルターを収容する収容部と、この収容部と上流側配管とを連結する上流側連結部と、収容部と下流側配管とを連結する下流側連結部とを備えており、下流側連結部の内径が、収容部から下流側配管へと向かって小さくなっており、電磁波の周波数が、周波数fc(=c/Di)以上であり(Diは上流側配管および下流側配管の内径であり、cは光速である)、 受信アンテナで受信された電磁波の強度に基づいて、フィルターに捕集された粒子状物質の量を検出することを特徴とする。
本発明の装置は、粒子状物質を含有する気体を流す配管に粒子状物質の捕集用フィルターと、配管内径よりも大きな内径を持つ容器とを設置したタイプにおいて、配管内に送信アンテナと受信アンテナとを設置している。
本装置は、上流側配管内に送信アンテナを設置し、下流側配管内に受信アンテナを設置している。通常、フィルタが設置される容器は上流側、下流側配管よりも内径が大きく、その上流側の結合部はテーパ構造となっているために送信された電磁波は容器内壁に沿ってある程度広がり、フィルター広範囲に電磁波が効果的に照射されるようになり、フィルター全体の粒子状物質堆積量を正確に検知できるはずである。これと同時に、下流側の結合部もテーパ構造となっているために電磁波が容器内壁に沿って徐々に閉じ込められた後で受信アンテナに伝達されるので、電磁波の伝搬損失を小さくでき、効率よく受信アンテナで受信できるはずである。
しかし、実際には、特許文献1、非特許文献1のようにマイクロ波を使用すると、カットオフとなり、受信側まで伝搬させることができず、従って配管内に送受信アンテナを設置する方法は採用できない。
このため、本発明者は、ミリ波やテラ波、具体的には30GHz以上、10THz以下の周波数の電磁波を使用した。これらは配管内でカットオフとならない上、スートに対して高い吸収係数を有することがわかり、堆積量について0g/L以上、9g/L以下まで線形性が高く、センサ感度を0.1g/Lまで精度よく検知でき、ダイナミックレンジも例えば2〜4g/Lの範囲内で25dBとれることがわかった。
しかし、本発明者が更に検討を進めたところ、次の問題点が判明した。すなわち、ミリ波、テラ波を送信する送信アンテナをDPFの入口側配管内に設置し、受信アンテナを出口側配管内に設置した場合に、堆積量やフィルターによって、センサとしての感度が低下したり、不十分になることがあった。
本発明者がこの原因を検討したところ、以下の知見を得た。すなわち、上流側配管内に送信アンテナを設置し、ミリ波やテラ波を送信すると、配管から容器にわたってある程度広がり、フィルターに広範囲にわたって照射される効果はあった。電磁波の周波数が高くなると直進性が増すが、スートの吸収が大きくなり堆積量を検知できる。これらの効果は、下流側配管内に送信アンテナを設置し、上流側配管で受信する場合にも得られるはずであり、特に相違はないはずである。
しかし、現実には、送信アンテナを上流側に配置して下流側配管で受信するよりも、下流側配管内に送信アンテナを設置して上流側配管内で受信するほうが、センサ感度が高くなることがわかった。
この理由は詳細にはわからないが、以下のように推定できる。
すなわち、実際のディーゼルエンジンなどでは、スートはDPFフィルターの出口側に堆積し、入口側へと向かって積もってくる。本発明のようにミリ波、テラ波を配管内の送信アンテナから発信する形態では、
配管およびフィルター容器が、電磁波に対して導波管として機能する。この伝搬する電磁波に対して、配管部、フィルターの容器壁面、フィルターのうち粒子状物質の堆積していない部分、粒子状物質の堆積部分は、それぞれ異なる伝搬定数を持つ上、異なる部分との界面では特性インピーダンスの差によ
る反射が生じる。
粒子状物質を捕集するフィルターの場合、規則的周期的な構造となっており、かつ粒子状物質がフィルターの最下流側に堆積することから、出口側配管内に送信アンテナを設置して電磁波をフィルターへと照射すると、電磁波が堆積粒子状物質による減衰の影響を強く受け、この結果として感度を高くすることができた。上流側配管内に送信アンテナを設置した場合には、電磁波がまず周期的構造を持つフィルター内を通過する間に減衰し、減衰後に、出口側に堆積した粒子状物質を透過して減衰することから、粒子状物質の堆積量に対する感度が低下したものと考えられる。
本発明に係る粒子状物質の堆積量の検出装置を模式的に示すブロック図である。 本発明に係る装置のフィルターおよび容器の周辺を拡大して示す断面図である。 対照例に係る装置のフィルターおよび容器の周辺を拡大して示す断面図である。 容器5の寸法関係を示す模式図である。 実施例1におけるスート堆積量と受信強度との関係を示すグラフである。


送信素子は限定されないが、以下のものが好ましい。
(周波数10GHz〜100GHz)
GaAsやSiGeなどのMMICやガンダイオード。
(50GHz〜1THz)
LN変調器により高次の光側帯波を発生させ所望の次数の側帯波を取り出し、フォトミキサによりそのビート信号を取り出すことにより上記電磁波を発生する光逓倍方式。この場合、LN変調器はマッハツェンダー型光変調器や位相変調器、またはこれらの集積型変調器が使用可能である。LN変調器は、特に限定はないが、特開2007−79466記載の薄板構造を用いることにより半波長電圧を低減でき、低駆動電圧で電磁波を発生できる。
さらに、ドメイン反転構造(QPM:Quasi-Phase-Matching)を形成したPPLN(Periodically Poled Lithium Niobate)素子やPPLT(Periodically
Poled Lithium Tantalate)素子、チェレンコフ放射を利用した光導波路(スラブ構造を含む)素子が使用できる。
(100GHz〜10THz)
ドメイン反転構造(QPM:Quasi-Phase-Matching)を形成したPPLN(Periodically Poled Lithium Niobate)素子やPPLT(Periodically
Poled Lithium Tantalate)素子、チェレンコフ放射を利用した光導波路(スラブ構造を含む)素子が使用できる。

受信素子は限定されないが、GaAs、InAs、GaNなどのショットキーダイオード、ボロメータ、焦電効果を利用した素子を例示できる。
粒子状物質とは、気体中に浮遊する性質を持つ物質であればよく、粒径は限定されないが、典型的には10nm〜10μmである。粒子状物質を構成する物質は特に制限はなく、カーボンを主とするPM(パティキュレート マター)、ハイドロカーボン(HC)、フェライト粉などの磁性体粉末、硫酸塩、硝酸塩を例示できる。
本発明では、周波数30GHz以上、10THZ以下の電磁波を使用する。周波数をこの範囲内とすることによって、電磁波が配管および容器内壁面に沿って伝搬および拡散し、フィルター広範囲に効率的に照射される上、捕集された粒子状物質にも効率的に吸収されるので、全体の感度を高くすることができる。この観点からは、電磁波の周波数の下限は、50GHzが更に好ましく、上限は、3THz、また 0.3THz以下が更に好ましい。
また、上記電磁波は、コリメートし平行ビームにすることにより、フィルターの影響を受けにくく、粒子状物質をさらに高感度で検知できる。
フィルターは、粒子状物質を含む気体が流通する容器中に配置されるものである。このフィルターは、本発明で用いる電磁波を透過するものでその透過率が小さいものほどよい。フィルターの形態としては、ハニカム構造体、多孔構造体を例示でき、ハニカム構造体が特に好ましい。また、フィルターの材質は、コージェライト、窒化ケイ素、アルミナ、炭化珪素などのセラミックスが好ましい。
本発明では、送信アンテナ、受信アンテナは各配管内に設けるが、電磁波の送信、受信処理を行うための素子は配管外に設けられていて良い。
配管の内径は限定されないが、通常は10〜300mmであることが多い。また、容器の内径(最大値)は、配管内径よりも大きい。したがって、使用する電磁波は、配管内径Diに対しカットオフ以下の電気長λcを有する必要があり、従って電磁波の周波数は、周波数fc以上にする必要がある(cは光速である)。
fc=c/λc=c/Di
また、容器の内径(最大値)は、20mm以上であることが好ましく、1000 mm以下であることが好ましい。
容器は、フィルターを収容する収容部、上流側連結部、下流側連結部を備えている。この場合には、収容部の内径が配管の内径よりも大きい。また、上流側連結部の内径は、収容部から上流側配管へと向かって小さくなっていることが好ましい。また、下流側連結部の内径は、収容部から下流側配管へと向かって小さくなっている。
本発明では、受信アンテナで受信した電磁波の強度を検出し、この強度に基づいて、フィルターに捕集された粒子状物質の堆積量を演算する。この具体的方法は限定されないが、好ましくは、予め決められた強度と堆積量との関係式に対して、電磁波受信手段で検出された電磁波強度を代入し、粒子状物質の堆積量を演算する。
フィルターそれ自体が電磁波をある程度吸収することから、ブランクとして、粒子状物質が捕集されていない状態で受信強度を測定しておく。そして、粒子状物質が捕集された状態における受信強度との差および電磁波吸収係数から、粒子状物質の堆積量を算出する。
おな、電磁波吸収係数は、電磁波透過率の対数で表され、透過率は、放射出力の入射出力に対する割合である。
本発明では、排ガス浄化装置に、フィルタの上流側で排ガス中に還元剤を供給する還元剤供給手段をさらに備えることが好ましい。このとき、排ガス中に還元剤を直接的に供給してよく、気筒内に還元剤をポスト噴射することで排ガス中に還元剤を間接的に供給することもできる。フィルターの温度が還元剤の発火温度より高くなっていれば、還元剤がフィルター内で燃焼し、燃焼熱によってフィルターが例えば 600℃以上の高温となることで、フィルターを再生することができる。還元剤供給手段としては、ポンプ、インジェクタなどがある。フィルタの上流側に酸化触媒を配置したり、フィルタに触媒層を形成することもできる。
還元剤供給手段を用いた場合には、フィルタに捕集された粒子状物質の堆積量の検出値に基づいて還元剤供給手段の駆動を制御する、制御手段を設けることが望ましい。これにより最適なタイミングで還元剤供給手段を駆動できるので、燃費が向上する。
図1に排ガス浄化装置を模式的に示す。ディーゼルエンジン1の排気マニホールドの排出管2が上流側配管3を介して容器5に連結されている。容器5の下流側に下流側配管4が設けられている。図2に示すように、容器5は、フィルターを収容する内径一定の収容部5b、上流側連結部5aおよび下流側連結部5cを備えている。
容器5の収容部5b内にはフィルター15が収容されている。フィルター15は、多数の細孔が規則的に形成された多孔質セラミックスのハニカム構造体である。この細孔の一部は排ガス下流側で目詰めされ、流入側セルを形成しており,残りは、排ガス上流側で目詰めされ、流出側セルを形成している。流入側セルと流出側セルとは交互に隣接するように形成されており、これによってハニカム形状のウォールフロー構造をなしている。
上流側配管3内の流路3aには受信アンテナ11が設けられており、配管外に配置された受信素子部6と連結されている。また、下流側配管4の流路4a内には送信アンテナ10が設けられており、送信アンテナ10は、配管外に取り付けられた送信素子部7と連結されている。素子部6、7は、配線12を介して制御部8に連結されている。
エンジン1からの排ガスは、上流側配管3を矢印Aのように通過し、容器5内に入り、上流側端面15aからフィルター15を通過して下流側配管4の流路4a内を流れ、矢印Cのように排出される。フィルター15内には粒子状物質が捕集され、堆積する。
本発明に従い、制御装置8からの信号Eにより、下流側配管の流路4a内の送信アンテナ10から電磁波を矢印Dのように送信すると、電磁波は、配管4の内壁面および下流側連結部5cの内壁面に沿って伝搬し、フィルター15の下流側端面15bに幅広く照射される。そしてフィルター15内で、フィルター材質および粒子状物質による吸収減衰を受け、次いで矢印Dのように上流側配管3の流路3a内に伝搬し、受信アンテナ11で受信される。
この受信信号を矢印Fのように制御部8に送信し、制御部8で処理した後、矢印Gのように、送信電磁波の情報と受信電磁波の情報とを演算装置9に送信する。演算装置9では、送信電磁波の情報、例えば強度を、受信電磁波の情報,例えば強度と比較すると共に、電磁波強度と堆積量との関係を示す検量線の情報を参照し、堆積量を演算する。
得られた堆積量の演算結果を矢印Hのように出力することで利用可能とする。例えば、堆積量がしきい値を超えた時点でフィルター5を洗浄したり、交換の信号を出すことができる。
図3に示すように、上流側配管3の流路3aに送信アンテナ10を設置し、下流側配管4の流路4a内に受信アンテナ11を設置した場合には、電磁波Dがフィルター15の上流側の空隙の多い規則的周期的な構造を通過し、減衰した後で、フィルター15の下流側に堆積した粒子状物質による吸収を受けるものと考えられる。
本発明では、図2に示すように、出口側配管4内に送信アンテナ10を設置して電磁波をフィルターへと照射すると、電磁波が、フィルター15の下流側に堆積した粒子状物質による減衰の影響を強く受け、この結果として感度を高くすることができたものと考えられる。
図4に示すように、上流側連結部5aの長さ、下流側連結部5cの長さLは、電磁波の波長λの2倍以上であることが好ましく、また、上流側配管3、下流側配管4の内半径と容器5の収容部5bの内半径との差HがL×λ以下であることが好ましい。この条件を満足する場合は、電磁波が送信側結合部で十分に拡がり、受信側結合部で伝搬損失が発生することなく高効率、低損失で送受信できる。
(実施例1)
図1、図2を参照しつつ説明した装置を作製し、測定実験を行った。ただし、上流側配管の内半径を100mmとし、容器5の収容部5bの内半径を158mmとし、下流側配管4の内半径を100mmとした。また上流側連結部5a、下流側連結部5cの長さLを50mmとした。
使用したフィルター15のセル密度を300cpsiとし、材質をコージェライトとし、寸法はφ6インチ×長さ150mmであった。
照射電磁波Dの周波数を100GHzとし、フィルターのスート堆積量を0、0.86、1.45、4、6g/Lに変更した。電磁波の受信強度を測定した結果を図5に示す。この結果から、堆積量と受信強度は傾き一定であり、前記の演算方法にて受信強度をモニターすることにより堆積量を算出することが可能である。
(比較例1)
図1、図3を参照しつつ説明した比較例の装置を作製し、測定実験を行った。ただし、上流側配管3の内半径を100mmとし、容器5の収容部5bの内半径を158mmとし、下流側配管4の内半径を100mmとした。また上流側連結部5a、下流側連結部5cの長さLを50mmとした。
使用したフィルター15のセル密度は300cpsi、材質をコージェライトとし、寸法はφ6インチ×長さ150mmであった。また、照射電磁波Dの周波数を100GHzとした。
実施例1と同様にして、フィルターにおける堆積量を種々変更し、堆積量を測定したところ、実施例1と比較して受信強度が3dB低下することがわかった。
(実施例2)
次に、図1,図2に示す構成において、連結部長さL、配管と容器内径差Hを変化させ、受信強度の変化を測定した。ただし、電磁波周波数λを100GHz(波長3mm)とした。この場合、配管内径100mm、容器内のフィルター径は容器内径よりも5mm小さいものを使用した。
この結果を表1に示す。ただし、電磁波過剰損失は、L=2×λ、H=L×λの測定結果を基準とした損失を表す。この結果、連結部長さLが電磁波の波長λの2倍以上、内半差H(mm)がL(mm)×λ(mm)以下である場合には、電磁波の過剰損失がないことがわかった。
Figure 0005568322
1 エンジン 3 上流側配管 4 下流側配管 5 容器 5a 上流側連結部 5b 収容部 5c 下流側連結部 6 受信素子部 7 送信素子部 8 制御部 9 演算部 10 送信アンテナ 11 受信アンテナ A、C 排ガスの流れ D 電磁波

Claims (4)

  1. 粒子状物質を含む気体から前記粒子状物質を捕集するフィルター、
    このフィルターを収容する容器、
    この容器の上流側に設けられ、前記気体を前記容器内へと流す上流側配管、
    前記容器の下流側に設けられ、前記フィルターを通過した後の気体を流す下流側配管、
    前記下流側配管内に設けられ、30GHz以上、10THz以下の周波数の電磁波を送信する送信アンテナ、および
    前記上流側配管内に設けられ、前記電磁波を受信する受信アンテナを備えており、
    前記容器が、前記フィルターを収容する収容部と、この収容部と前記上流側配管とを連結する上流側連結部と、前記収容部と前記下流側配管とを連結する下流側連結部とを備えており、前記下流側連結部の内径が、前記収容部から前記下流側配管へと向かって小さくなっており、前記電磁波の周波数が、周波数fc(=c/Di)以上であり(Diは前記上流側配管および前記下流側配管の内径であり、cは光速である)、前記受信アンテナで受信された前記電磁波の強度に基づいて、前記フィルターに捕集された前記粒子状物質の量を検出することを特徴とする、粒子状物質の堆積量検出装置。
  2. 前記上流側連結部の内径が、前記収容部から前記上流側配管へと向かって小さくなっていることを特徴とする、請求項記載の装置。
  3. 前記上流側連結部および下流側連結部の長さLが前記電磁波の波長λの2倍以上であり、かつ前記配管の内半径と前記収容部の内半径との差HがL×λ以下であることを特徴とする、請求項1または2記載の装置。
  4. 前記粒子状物質がパーティキュレート マターであることを特徴とする、請求項1〜のいずれか一つの請求項に記載の装置。
JP2010004905A 2009-03-25 2010-01-13 粒子状物質の堆積量検出装置 Active JP5568322B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010004905A JP5568322B2 (ja) 2009-03-25 2010-01-13 粒子状物質の堆積量検出装置
US12/721,797 US8210033B2 (en) 2009-03-25 2010-03-11 Devices for detecting accumulation amount of particulates

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009073688 2009-03-25
JP2009073688 2009-03-25
JP2010004905A JP5568322B2 (ja) 2009-03-25 2010-01-13 粒子状物質の堆積量検出装置

Publications (2)

Publication Number Publication Date
JP2010249126A JP2010249126A (ja) 2010-11-04
JP5568322B2 true JP5568322B2 (ja) 2014-08-06

Family

ID=42782433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010004905A Active JP5568322B2 (ja) 2009-03-25 2010-01-13 粒子状物質の堆積量検出装置

Country Status (2)

Country Link
US (1) US8210033B2 (ja)
JP (1) JP5568322B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8319183B2 (en) * 2008-10-31 2012-11-27 Corning Incorporated Methods of characterizing and measuring particulate filter accumulation
JP2010271303A (ja) * 2009-04-22 2010-12-02 Ngk Insulators Ltd 粒子状物質の堆積量検出方法および装置
US8470070B2 (en) * 2010-07-22 2013-06-25 Caterpillar Inc. Ash detection in diesel particulate filter
US9051866B2 (en) * 2012-05-22 2015-06-09 GM Global Technology Operations LLC Method and apparatus for monitoring a particulate filter
US9151205B2 (en) * 2013-02-15 2015-10-06 Indiana University Research & Technology Corporation Real-time soot measurement in a diesel particulate filter
US20150268027A1 (en) * 2013-03-15 2015-09-24 Medusa Scientific Llc Electric field sensing and e field visualization
EP2927443A1 (en) 2014-04-02 2015-10-07 Caterpillar Inc. Apparatus and method for detecting urea deposit formation
JP6507497B2 (ja) * 2014-06-23 2019-05-08 いすゞ自動車株式会社 センサ
JP6717020B2 (ja) * 2016-04-14 2020-07-01 いすゞ自動車株式会社 Pmセンサ
CN105736092B (zh) * 2016-04-21 2018-06-29 杭州携蓝环保科技有限公司 发动机尾气净化的气流均匀装置、净化装置
JP6711183B2 (ja) * 2016-07-08 2020-06-17 富士通株式会社 微粒子検出器及び排気浄化装置
BR112019027469A2 (pt) * 2017-06-27 2020-07-07 Cummins Emission Solutions Inc. detecção de depósito de redutor com o uso de um sensor de radiofrequência
JP6947980B2 (ja) * 2017-12-21 2021-10-13 富士通株式会社 粒子状物質検出器及びフィルタ処理装置
JP6835018B2 (ja) * 2018-03-12 2021-02-24 トヨタ自動車株式会社 異常診断装置
JP6881363B2 (ja) * 2018-03-16 2021-06-02 トヨタ自動車株式会社 異常診断装置
JP6828706B2 (ja) * 2018-03-22 2021-02-10 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP7207195B2 (ja) * 2019-06-24 2023-01-18 トヨタ自動車株式会社 内燃機関の排気浄化装置
US11726035B2 (en) * 2020-12-11 2023-08-15 Raytheon Technologies Corporation Terahertz enhanced foreign object debris discrimination for optical particulate sensor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477771A (en) * 1982-06-21 1984-10-16 General Motors Corporation Microwave detection of soot content in a particulate trap
US4580441A (en) 1983-05-10 1986-04-08 Nippondenso Co., Ltd. Diesel smoke meter
JPS59204747A (ja) 1983-05-10 1984-11-20 Nippon Denso Co Ltd デイ−ゼルスモ−クセンサ
CA2022702C (en) * 1990-08-03 1995-02-07 Frank B. Walton Method and apparatus for detecting soot concentration in particulate trap
JPH10238335A (ja) * 1997-02-28 1998-09-08 Matsushita Electric Ind Co Ltd フィルタ再生装置
US7677031B2 (en) * 2005-07-26 2010-03-16 Caterpillar Inc. Particulate loading monitoring system
JP2007079466A (ja) 2005-09-16 2007-03-29 Ngk Insulators Ltd 無線発振装置およびレーダ装置
JP4822262B2 (ja) * 2006-01-23 2011-11-24 沖電気工業株式会社 円形導波管アンテナ及び円形導波管アレーアンテナ
US7679374B2 (en) * 2006-05-01 2010-03-16 Massachusetts Institute Of Technology Microwave sensing for determination of loading of filters
JP2009002276A (ja) * 2007-06-22 2009-01-08 Nippon Soken Inc 粒子状物質の捕集量検出方法及び捕集量検出装置と排ガス浄化装置
JP4949976B2 (ja) 2007-09-03 2012-06-13 トヨタ自動車株式会社 粒子状物質の捕集分布検出方法及び捕集分布検出装置と排ガス浄化装置
JP5060368B2 (ja) 2008-04-02 2012-10-31 トヨタ自動車株式会社 粒子状物質の捕集量検出方法及び捕集量検出装置と排ガス浄化装置
JP5562073B2 (ja) * 2009-03-25 2014-07-30 日本碍子株式会社 粒子状物質の堆積量検出装置
JP2010271303A (ja) * 2009-04-22 2010-12-02 Ngk Insulators Ltd 粒子状物質の堆積量検出方法および装置

Also Published As

Publication number Publication date
JP2010249126A (ja) 2010-11-04
US20100242441A1 (en) 2010-09-30
US8210033B2 (en) 2012-07-03

Similar Documents

Publication Publication Date Title
JP5568322B2 (ja) 粒子状物質の堆積量検出装置
JP5562073B2 (ja) 粒子状物質の堆積量検出装置
JP4798813B1 (ja) 粒子状物質の検出方法
JP5613540B2 (ja) 粒子状物質の堆積量検出方法および装置
US8119988B2 (en) Collection-amount detection method for particulate matters and collection-amount detection apparatus therefor and exhaust-gas converting apparatus
JP4949976B2 (ja) 粒子状物質の捕集分布検出方法及び捕集分布検出装置と排ガス浄化装置
KR100899966B1 (ko) 배기가스 정화 장치
JP2010271303A (ja) 粒子状物質の堆積量検出方法および装置
JP6682870B2 (ja) マイクロ波照射装置、排気浄化装置、加熱装置及び化学反応装置
US8650857B2 (en) Apparatus and method for onboard performance monitoring of exhaust gas particulate filter
JP6733275B2 (ja) マイクロ波加熱装置及び排気浄化装置
US7513921B1 (en) Exhaust gas filter apparatus capable of regeneration of a particulate filter and method
JP5060368B2 (ja) 粒子状物質の捕集量検出方法及び捕集量検出装置と排ガス浄化装置
JP6855884B2 (ja) 排気浄化装置、内燃装置、発電装置及び自動車
Sappok et al. Radio frequency diesel particulate filter soot and ash level sensors: Enabling adaptive controls for heavy-duty diesel applications
JP2010223169A (ja) 粒子状物質の堆積量検出装置
JP6711183B2 (ja) 微粒子検出器及び排気浄化装置
Hanamura et al. Visualization of combustion phenomena in regeneration of diesel particulate filter
JP2010223165A (ja) 粒子状物質の堆積量検出装置
Choi et al. Detailed Investigation of Filtration and Regeneration Processes in a Diesel Particulate Filter System
Williams et al. Low Power Autoselective Regeneration of Monolithic Wall Flow Diesel Particulate Filters
JP2014092122A (ja) 排気ガス浄化フィルタの粒子状物質蓄積量計測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R150 Certificate of patent or registration of utility model

Ref document number: 5568322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150