WO2017177921A1 - 液晶聚酯组合物 - Google Patents

液晶聚酯组合物 Download PDF

Info

Publication number
WO2017177921A1
WO2017177921A1 PCT/CN2017/080251 CN2017080251W WO2017177921A1 WO 2017177921 A1 WO2017177921 A1 WO 2017177921A1 CN 2017080251 W CN2017080251 W CN 2017080251W WO 2017177921 A1 WO2017177921 A1 WO 2017177921A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polyester
polyester composition
ppm
sample
Prior art date
Application number
PCT/CN2017/080251
Other languages
English (en)
French (fr)
Inventor
李闻达
孙华伟
肖中鹏
曹民
罗德彬
许柏荣
周广亮
姜苏俊
曾祥斌
黄险波
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2017177921A1 publication Critical patent/WO2017177921A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • C09K19/3809Polyesters; Polyester derivatives, e.g. polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2293Oxides; Hydroxides of metals of nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the present invention relates to the field of polymer materials, and in particular to a liquid crystal polyester composition.
  • liquid crystal polyester As a special engineering material, liquid crystal polyester (LCP) has higher melting point and high heat stability than general-purpose resin. However, liquid crystal polyester still has thermal decomposition or external force when processed at high temperature. Thermal shearing and molecular chain scission lead to a decline in performance in all aspects. In order to improve the heat resistance stability of liquid crystal polyesters, many attempts have been made by those skilled in the art.
  • US 5,539,502 discloses a liquid crystal polymer composition having improved heat stability, the composition comprising 15 to 3000 ppm of an alkali metal or 50 to 3000 ppm of magnesium or calcium; and a liquid crystal polymer containing p-hydroxybenzoic acid, hydroquinone, and a combination Resorcinol, terephthalic acid, 2,6-naphthalene dicarboxylic acid and phthalic acid repeating units.
  • the introduction of the metal substance increases the melting point and heat distortion temperature of the composition, and the heat resistance is improved.
  • the liquid crystal polymer is contacted with the functional compound at a high temperature for a time sufficient for the melt viscosity to decrease by at least 10%.
  • CN1234749 discloses a liquid crystal polyester resin in which a repeating unit containing 4-hydroxyisophthalic acid and/or salicylic acid is used as a copolymerization component, and contains 10 to 5000 ppm of an alkali metal compound, and is called a coloring property of the resin. Excellent, high heat resistance, and good mechanical properties.
  • This invention primarily focuses on the improvement of the coloration and impact properties of liquid crystal polyesters, and does not clarify whether the heat resistance has changed in the examples or other parts of the patent. And this patent does not describe whether the invention is suitable for use in a liquid crystal polyester composition.
  • No. 6,755,991 discloses a liquid crystal polyester composition
  • a liquid crystal polyester composition comprising at least one aromatic dicarboxylic acid, at least one naphthalene containing carboxylic acid and from 1 to 1000 ppm of at least one alkali metal and from 0 to 3000 ppm of at least one transition metal.
  • the liquid crystal polyester composition prepared by the invention has improved whiteness and impact strength, and does not mention whether the high temperature heat resistance stability is changed.
  • the inventors have surprisingly found through a large number of experiments that metal is added to the formulation of the liquid crystal polyester composition.
  • the weight content of the nickel element is from 0.1 ppm to 300 ppm based on the total weight of the liquid crystal polyester composition, the melting point of the obtained liquid crystal polyester composition is improved, and the high-temperature heat resistance stability is unexpectedly remarkably improved.
  • a liquid crystal polyester composition having a metal nickel element content of from 0.1 ppm to 300 ppm by weight based on the total weight of the liquid crystal polyester composition.
  • the weight content of the metallic nickel element is preferably from 0.5 ppm to 100 ppm, more preferably from 1 ppm to 50 ppm, based on the total weight of the liquid crystal polyester composition.
  • the method for testing the weight content of the metallic nickel element drying the liquid crystal polyester composition at 120 ° C for 4 hours, taking 1 g of the sample to be treated, adding nitric acid and hydrogen peroxide, heating for 2 hours, continuously adding nitric acid and hydrogen peroxide; the digestion of the sample After completion, the sample was removed and the weight content of metallic nickel in the sample was analyzed using Agilent's Model 720ES fully automated inductively coupled plasma atomic emission spectrometer.
  • the introduction of the metallic nickel element is usually achieved by adding a nickel-containing compound, and the nickel-containing compound may be selected from nickel (II) acetate tetrahydrate, nickel (II) oxide, nickel (II) nitrate hexahydrate, nickel sulfide, sulfuric acid.
  • nickel-containing compound may be selected from nickel (II) acetate tetrahydrate, nickel (II) oxide, nickel (II) nitrate hexahydrate, nickel sulfide, sulfuric acid.
  • the source of the metallic nickel element indicated by the present invention is not limited to the above examples, and it can be detected by atomic emission spectrometry regardless of which form of the nickel-containing compound is used.
  • the weight content of the metallic nickel element is based on the metallic nickel element itself rather than the nickel-containing compound to which the metallic nickel element is added.
  • the weight content of the metallic nickel element expressed in ppm is calculated based on the total weight of the liquid crystal polyester composition.
  • the liquid crystal polyester composition of the present invention may further comprise a metal manganese element, and the metal manganese element is contained in an amount of from 0.1 ppm to 300 ppm by weight, based on the total weight of the liquid crystal polyester composition, preferably from 1 ppm to 100 ppm.
  • the method for testing the weight content of the metal manganese element drying the liquid crystal polyester composition at 120 ° C for 4 hours, taking 1 g of the sample to be treated, adding nitric acid and hydrogen peroxide, heating for 2 hours, continuously adding nitric acid and hydrogen peroxide; the digestion of the sample After completion, the sample was removed and the weight content of manganese metal in the sample was analyzed by Agilent's Model 720ES fully automated inductively coupled plasma atomic emission spectrometer.
  • the introduction of manganese metal is usually achieved by adding a manganese-containing compound, which may be selected from the group consisting of manganese (II) oxide, manganese (III) oxide, manganese (IV) oxide, manganese (II) acetate, manganese nitrate, and sulfurization.
  • a manganese-containing compound which may be selected from the group consisting of manganese (II) oxide, manganese (III) oxide, manganese (IV) oxide, manganese (II) acetate, manganese nitrate, and sulfurization.
  • the source of the metal manganese element indicated by the present invention is not limited to the above examples, and it can be detected by atomic emission spectrometry regardless of which form of the manganese-containing compound is used.
  • the weight content of the manganese metal element is based on the metal manganese element itself rather than the manganese-containing compound to which the metal manganese element is added.
  • the weight content of the metal manganese element expressed in ppm is calculated based on the total weight of the liquid crystal polyester composition.
  • the liquid crystal polyester composition of the present invention may further comprise a metallic copper element in an amount of from 0.1 ppm to 300 ppm by weight, based on the total weight of the liquid crystal polyester composition, preferably from 1 ppm to 100 ppm.
  • the method for testing the weight content of the metallic copper element drying the liquid crystal polyester composition at 120 ° C for 4 hours, taking 1 g of the sample to be treated, adding nitric acid and hydrogen peroxide, heating for 2 hours, continuously adding nitric acid and hydrogen peroxide; the digestion of the sample Upon completion, the sample was removed and the weight content of metallic copper in the sample was analyzed using Agilent's Model 720ES fully automated inductively coupled plasma atomic emission spectrometer.
  • the introduction of metallic copper element is usually achieved by adding a copper-containing compound, which may be selected from the group consisting of copper acetate, copper oxide, copper sulfide, copper (II) nitrate hydrate, copper (II) tartrate, 1-butyl sulfur.
  • a copper-containing compound which may be selected from the group consisting of copper acetate, copper oxide, copper sulfide, copper (II) nitrate hydrate, copper (II) tartrate, 1-butyl sulfur.
  • the source of the metallic copper element indicated by the present invention is not limited to the above examples, and it can be detected by atomic emission spectrometry regardless of which form of the copper-containing compound is used.
  • the weight content of the metallic copper element is based on the metallic copper element itself rather than the copper-containing compound to which the metallic copper element is added.
  • the weight content of the metallic copper element expressed in ppm is calculated based on the total weight of the liquid crystal polyester composition.
  • liquid crystal polyester composition comprises, by weight, the following components:
  • the liquid crystal polyester composition has a melting point of 150 ° C to 400 ° C; the melting point is tested by a NETZSCH DSC 200F3 differential scanning calorimeter DSC at a temperature of 20 ° C / min from room temperature
  • the temperature rise condition test was carried out, and after the endothermic peak temperature T m1 was observed, it was kept at a temperature 20 ° C higher than T m1 for 5 minutes, then cooled to room temperature under a temperature drop condition of 20 ° C / minute, and then again at 20 ° C / minute.
  • the temperature rise condition was measured, and the endothermic peak temperature T m2 observed at this time was the melting point of the liquid crystal polyester composition.
  • liquid crystal polyester by mole percentage, comprises the following repeating unit:
  • the repeating unit derived from the aromatic dicarboxylic acid is from 0 mol% to 35 mol%.
  • the liquid crystal polyester by mole percentage, comprises the following repeating unit:
  • the repeating unit derived from the aromatic dicarboxylic acid is from 0 mol% to 25 mol%.
  • the repeating unit derived from the aromatic hydroxycarboxylic acid is selected from the group consisting of 4-hydroxybenzoic acid a repeating unit of a complex unit and/or 2-hydroxy-6-naphthoic acid;
  • the repeating unit derived from an aromatic diol is selected from the group consisting of repeating units of hydroquinone and/or 4,4′-dihydroxybiphenyl a repeating unit;
  • the repeating unit derived from the aromatic dicarboxylic acid is selected from the group consisting of a repeating unit of terephthalic acid, a repeating unit of isophthalic acid, and a repeating unit of 2,6-naphthalenedicarboxylic acid.
  • a repeating unit derived from an aromatic hydroxycarboxylic acid, a repeating unit derived from an aromatic diol, and an aromatic second are respectively added according to a ratio.
  • the temperature is refluxed for 1 hour to 3 hours; thereafter, the temperature is further increased, and the mixture is heated from 140 ° C to 160 ° C to 300 ° C to 350 ° C over 2 hours to 4 hours, during which unreacted acetic anhydride and side reactions are distilled off.
  • the product is acetic acid; in the final polycondensation stage, the reaction system is depressurized, and it is judged by observing the increase of the torque as the end point of the reaction; at this time, the prepolymer in the melt state is discharged through the discharge port and cooled to room temperature; The prepolymer is transferred to a solid phase polymerization apparatus, and the temperature is raised from room temperature to 260 ° C to 280 ° C over 5 hours to 7 hours, and the solid phase polymerization is carried out at this temperature for 9 hours to 11 hours; The product is derived, to obtain a liquid crystal polyester.
  • the filler is selected from the group consisting of fibrous fillers and/or plate fillers;
  • the fibrous filler is selected from the group consisting of glass fibers, asbestos fibers, silica fibers, silica-alumina fibers, and potassium titanate.
  • the plate-shaped filler is selected from one or more of talc, mica, graphite, kaolin; preferably mica.
  • the glass fiber has a number average fiber diameter of from 3 micrometers to 30 micrometers, a number average aspect ratio of 5 or more, a number average fiber length of 50 micrometers to 3000 micrometers; and an average particle diameter of the mica of 0.5 micrometers - 200 microns.
  • a filler When a filler is added, more than 100 parts by weight of a filler is added to 100 parts by weight of the liquid crystal polyester, and the mechanical strength of the liquid crystal polyester composition may be lowered.
  • the method of adding the filler is not particularly limited, and a method well known in the art can be cited.
  • various known additives may be added to the liquid crystal polyester composition used in the present invention in an amount which does not impair the object of the present invention; various additives may be selected from plasticizers, stabilizers, and coloring agents. One or more of a agent, a lubricant, a mold release agent, and an antioxidant.
  • a suitable plasticizer is a phthalate.
  • Suitable stabilizers include organic phosphites such as triphenyl phosphite, tris-(2,6-dimethylphenyl) phosphite, tri-decylphenyl phosphite, dimethylphenylphosphonic acid Ester, trimethyl phosphate, etc., organic phosphite, alkylated monohydric or polyhydric phenol, alkylation reaction product of polyhydric phenol and diene, butylated reaction product of p-cresol or dicyclopentadiene , alkylated hydroquinones, hydroxylated thiodiphenyl ethers, alkylene-bisphenols, benzyl compounds, polyol esters, benzotriazoles, benzophenones Or a variety of combinations.
  • organic phosphites such as triphenyl phosphite, tris-(2,6-dimethylphenyl) phosphite, tri-decylphenyl
  • Suitable release agents include metal stearates, alkyl stearates, pentaerythritol stearate, paraffin, montan wax, and the like.
  • Suitable colorants include various pigments, dyes such as metal oxides of inorganic pigments and zinc oxides of mixed metal oxides, titanium oxide, iron oxides, sulfides such as zinc sulfide, etc.; aluminates, silicates, ferric acid Salt, etc., carbon black, ultramarine; organic pigments such as azo, diazo, anthraquinone, phthalocyanine, quinoline, naphthalene, ketone, azine, and the like.
  • Suitable lubricants include higher fatty acids, higher fatty esters, metal salts of higher fatty acids, and the like.
  • Suitable antioxidants include organic phosphites, alkylated monohydric or polyhydric phenols, alkylation products of polyphenols and dienes, butylated reaction products of p-cresol or dicyclopentadiene, alkane Alkalized hydroquinones, hydroxylated thiodiphenyl ethers, alkylene-bisphenols, benzyl compounds, polyol esters, and the like.
  • the various additives are not limited to the above, and may optionally contain other kinds of components which are not harmful to the thermal stability and physical properties of the liquid crystal polyester, as well as other substances commonly found in thermoplastic compositions, such as one or more kinds of polypropylene, Polyamide, polyester, polyphenylene sulfide, polyether ketone, polycarbonate, polyether sulfone, polyphenyl ether and modified substances thereof, thermoplastic resin such as polyetherimide, thermosetting resin such as phenolic resin, epoxy Resin, polyimide resin and cyanide resin.
  • thermoplastic resin such as polyetherimide, thermosetting resin such as phenolic resin, epoxy Resin, polyimide resin and cyanide resin.
  • the method of blending a filler, various additives, and the like in the liquid crystal polyester according to the embodiment of the present invention is not particularly limited, and a dry blending, a solution mixing method, a polymerization of a liquid crystal polyester, and a melt-kneading may be used.
  • melt kneading is preferred.
  • the temperature of the melt-kneading is not less than the melting point of the liquid crystal polyester, and the melting point is +50 ° C or lower.
  • a method of kneading a liquid crystal polyester, a filler, and various additives from a post-loading machine may be used; or a liquid crystal polyester and various additives may be introduced from a post-loading machine.
  • the liquid crystal polyester composition of the embodiment of the present invention is injection-molded, and is subjected to injection molding, compression molding, extrusion molding, blow molding, press molding, and the like.
  • the molded article described herein may be various molded articles such as injection molded articles, extrusion molded articles, press molded articles, sheets, tubes, unstretched films, uniaxially stretched films, and biaxially stretched films, and may be undrawn.
  • Various kinds of filaments such as stretched silk and super drawn yarn.
  • extrusion molding the effects of the present invention can be remarkably obtained, and therefore it is preferable.
  • the liquid crystal polyester composition obtained by the extrusion molding process has the following specific steps: liquid crystal polyester, filler, nickel-containing compound and/or manganese-containing compound and/or copper-containing compound, and/or each according to a ratio
  • the additives are uniformly mixed by a high-speed mixer, then added to a twin-screw extruder, melt-mixed at a screw speed of 280 RPM-320 RPM, and the temperature of the barrel is 290 ° C - 355 ° C.
  • Extrusion, cooling, pelletizing, and liquid crystal polymerization Ester composition Extrusion, cooling, pelletizing, and liquid crystal polymerization Ester composition.
  • the nickel-containing compound may be selected from nickel (II) acetate tetrahydrate, nickel (II) oxide, nickel (II) nitrate hexahydrate, nickel sulfide, nickel (II) sulfate, ammonium (II) sulfate hexahydrate, oxalic acid.
  • An inorganic compound such as nickel carbonate hydrate, nickel phosphide, nickel peroxide or nickel (II) perchlorate hexahydrate may also be selected from nickel octoate hydrate, nickel 2-ethylhexanoate, nickel acetylacetonate, and preliminary Porphyrin nickel, bis(cyclopentadienyl)nickel(II), nickel phthalocyanine, [1,3-bis(diphenylphosphino)propane]nickel dichloride (II), 5,10,15,20- Tetraphenyl-21H, 23H-porphin nickel (II), ethylene glycol dimethyl ether bromide, dichlorobis(tributylphosphine) nickel (I
  • the source of the metallic nickel element indicated by the present invention is not limited to the above examples, and it can be detected by atomic emission spectrometry regardless of which form of the nickel-containing compound is used.
  • the weight content of the metallic nickel element is based on the metallic nickel element itself rather than the nickel-containing compound to which the metallic nickel element is added.
  • the weight content of the metallic nickel element expressed in ppm is calculated based on the total weight of the liquid crystal polyester composition.
  • the manganese-containing compound may be selected from the group consisting of manganese (II) oxide, manganese (III) oxide, manganese (IV) oxide, manganese (II) acetate, manganese nitrate, manganese sulfide, manganese sulfate, manganese carbonate, manganese acetate, potassium permanganate, Lithium permanganate, sodium permanganate, magnesium permanganate, trimanganese tetraoxide, manganese fluoride, manganese chloride, manganese iodide, manganese molybdate, bis(trifluoromethanesulfonate) manganese inorganic compound, It may be manganese carbonyl, manganese (II) acetylacetonate, manganese (III) acetylacetonate, manganese pentoxide, manco manganese, hexaonitrile manganese potassium, manganese (II
  • the source of the metal manganese element indicated by the present invention is not limited to the above examples, and it can be detected by atomic emission spectrometry regardless of which form of the manganese-containing compound is used.
  • the weight content of the manganese metal element is based on the metal manganese element itself rather than the manganese-containing compound to which the metal manganese element is added.
  • the weight content of the metal manganese element expressed in ppm is calculated based on the total weight of the liquid crystal polyester composition.
  • the copper-containing compound may be selected from the group consisting of copper acetate, copper oxide, copper sulfide, copper (II) nitrate hydrate, copper (II) tartrate, copper 1-butoxide, copper (II) difluoride, copper chromite, Copper (II) hydroxide, cuprous oxide, cuprous chloride, copper (II) chloride, cuprous sulfide, copper (I) iodide, basic copper carbonate, copper sulfate, copper sulfite, copper pyrophosphate, etc.
  • the inorganic compound may also be batholine, copper 2,3-naphthalocyanine, copper (II) 2-ethylhexanoate, copper (II) 2-pyrazinecarboxylate, copper 3-methylsalicylate ( I), copper acetylacetonate, perfluorophthalocyanine copper, copper polyphthalocyanine, copper thiophenol (I), copper phthalocyanine (II), copper 3,5-diisopropylsalicylate hydrate, three Copper fluoroacetylacetonate, copper (II) trifluoromethanesulfonate, copper tetraethanophosphate hexafluorophosphate, copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate), double (Triphenylphosphine) an organic compound such as copper (I) borohydride, cuprous thiophene-2-carboxylate or copper (I) bromotriphenylphosphonium (I
  • the source of the metallic copper element indicated by the present invention is not limited to the above examples, and it can be detected by atomic emission spectrometry regardless of which form of the copper-containing compound is used.
  • the weight content of the metallic copper element is based on the metallic copper element itself rather than the copper-containing compound to which the metallic copper element is added.
  • the weight content of the metallic copper element expressed in ppm is calculated based on the total weight of the liquid crystal polyester composition.
  • the molded article formed by the liquid crystal polyester composition obtained by the present invention can be applied to various gears, various housings, sensors, LED lamps, connectors, sockets, resistors, relay housings, relay bases, relays.
  • the invention has the following beneficial effects:
  • the weight content of the metal nickel element added in the liquid crystal polyester composition formulation is 0.1 ppm to 300 ppm based on the total weight of the liquid crystal polyester composition, the melting point of the obtained liquid crystal polyester composition is improved, and high temperature heat resistance is obtained.
  • the stability is unexpectedly significantly improved.
  • Test method for the weight content of the metallic nickel element drying the liquid crystal polyester composition at 120 ° C for 4 hours, taking 1 g of the sample to be treated, adding nitric acid and hydrogen peroxide, heating for 2 hours, continuously adding nitric acid and hydrogen peroxide; and digesting the sample After completion, the sample was removed and the weight content of metallic nickel in the sample was analyzed using Agilent's Model 720ES fully automated inductively coupled plasma atomic emission spectrometer.
  • Test method for the weight content of the metal manganese element drying the liquid crystal polyester composition at 120 ° C for 4 hours, taking 1 g of the sample to be treated, adding nitric acid and hydrogen peroxide, heating for 2 hours, continuously adding nitric acid and hydrogen peroxide; and digesting the sample After completion, the sample was removed and the weight content of manganese metal in the sample was analyzed by Agilent's Model 720ES fully automated inductively coupled plasma atomic emission spectrometer.
  • Test method for the weight content of the metallic copper element drying the liquid crystal polyester composition at 120 ° C for 4 hours, taking 1 g of the sample to be treated, adding nitric acid and hydrogen peroxide, heating for 2 hours, continuously adding nitric acid And hydrogen peroxide; after the digestion of the sample is completed, the sample after the solution is removed, and the weight content of the metal copper element in the sample is analyzed by Agilent's model 720ES fully automatic inductively coupled plasma atomic emission spectrometer.
  • Test method for melting point of the liquid crystal polyester composition by using a NETZSCH DSC 200F3 type differential scanning calorimeter (DSC), the endothermic peak temperature T was observed at a temperature rise condition of 20 ° C / min from room temperature. After m1 , it was kept at a temperature 20 ° C higher than T m1 for 5 minutes, then cooled to room temperature under a temperature drop condition of 20 ° C / minute, and then measured again at a temperature rising condition of 20 ° C / minute, at which time the observed absorption was observed.
  • the heat peak temperature T m2 is the melting point of the liquid crystal polyester composition.
  • Test method for high temperature heat stability of the liquid crystal polyester composition the liquid crystal polyester composition was dried at 120 ° C for 4 hours, and added to a Dynisco LCR 7000 high pressure capillary rheometer, and the barrel temperature was maintained in the liquid crystal polyester combination. 10 ° C above the melting point of the material, using a die with an inner diameter of 1 mm and a length of 40 mm; after the sample is added, the test procedure is set, the temperature is kept constant for 5 min, and the measurement is performed at a constant shear rate of 1000 sec -1 to obtain a shear of the sample at a constant temperature of 5 min. The viscosity is cut, at which time a part of the sample is extruded, and the remaining sample is kept constant in the barrel.
  • the measurement is still performed at a constant shear rate of 1000 sec -1 to obtain a shear viscosity at a constant temperature of 60 min;
  • the sample of the polyester composition is kept at a constant temperature above its melting temperature, at which time a thermal decomposition reaction will occur, usually accompanied by a decrease in molecular weight; therefore, the shear viscosity and specific logarithmic viscosity of the sample are compared at a constant temperature of 5 min and a constant temperature of 60 min.
  • the degree can directly reflect the heat stability of the liquid crystal polyester composition at high temperature, and the decrease of the melt viscosity and specific volume logarithmic viscosity is small, which represents high temperature heat resistance stability. better.
  • the filler (such as glass fiber, talc, etc.) contained in the composition has no influence on the heat resistance of the liquid crystal polyester composition, and at a high temperature, the polymer thermally decomposes to break the molecular chain and lower the molecular weight.
  • the mechanism for adding the nickel-containing compound to the liquid crystal polyester composition to improve the heat resistance of the liquid crystal polyester composition is not fully understood. It may be that the metal ion forms a complex with the macromolecule to make the structure more stable; it may also be a metal ion. It has a catalytic effect on the molecular chain growth. At high temperature, the molecular chain growth rate is close to the molecular chain rupture rate, which makes the macromolecular structure as a whole stable.
  • HBA 4-hydroxybenzoic acid
  • TA Terephthalic acid
  • IA Isophthalic acid
  • HNA 2-hydroxy-6-naphthoic acid
  • NDA 2,6-naphthalenedicarboxylic acid
  • Nickel-containing compounds used in the present invention are Nickel-containing compounds used in the present invention:
  • Nickel Oxide (II) Sigma-Aldrich (Shanghai) Trading Co., Ltd.;
  • Nickel boride Sigma-Aldrich (Shanghai) Trading Co., Ltd.;
  • Nickel 2-ethylhexanoate Sigma-Aldrich (Shanghai) Trading Co., Ltd.;
  • Nickel Sulfide Sigma-Aldrich (Shanghai) Trading Co., Ltd.;
  • the glass fiber used in the present invention grade CS03JAPX-1, number average fiber diameter 10 micrometers, number average aspect ratio 300, number average fiber length 3000 micrometers, Asahi Fiber Glass Co., Ltd.
  • a repeating unit derived from an aromatic hydroxycarboxylic acid, a repeating unit derived from an aromatic diol, and an aromatic second are respectively added according to a ratio.
  • the temperature is refluxed for 1 hour to 3 hours; thereafter, the temperature is further increased, and the mixture is heated from 140 ° C to 160 ° C to 300 ° C to 350 ° C over 2 hours to 4 hours, during which unreacted acetic anhydride and side reactions are distilled off.
  • the product is acetic acid; in the final polycondensation stage, the reaction system is depressurized, and it is judged by observing the increase of the torque as the end point of the reaction; at this time, the prepolymer in the melt state is discharged through the discharge port and cooled to room temperature; The prepolymer is transferred to a solid phase polymerization apparatus, and the temperature is raised from room temperature to 260 ° C to 280 ° C over 5 hours to 7 hours, and the solid phase polymerization is carried out at this temperature for 9 hours to 11 hours; The product was derived to obtain a liquid crystal polyester.
  • the liquid crystal polyester, the filler, the nickel-containing compound and/or the manganese-containing compound and/or the copper-containing compound prepared by the examples A1 to A4, and/or various additives are uniformly mixed by a high-speed mixer according to the ratio of Table 2. , adding a twin-screw extruder, melt mixing at a screw speed of 280 RPM-320 RPM, a barrel temperature of 290 ° C - 355 ° C, extrusion, cooling, pelletizing, that is, a liquid crystal polyester composition. The melting point, melt viscosity and specific volume logarithmic viscosity of the obtained liquid crystal polyester composition are shown in Table 2.
  • the content of the metallic nickel element, the metallic manganese element, and the metallic copper element in the liquid crystal polyester composition is carried out by the actual addition amount of the nickel-containing compound, the manganese-containing compound, and the copper-containing compound in the preparation process of the liquid crystal polyester composition. Adjusted and measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

液晶聚酯组合物,基于液晶聚酯组合物的总重量,金属镍元素的重量含量为0.1ppm-300ppm。所述金属镍元素的重量含量的测试方法:将液晶聚酯组合物在120℃干燥4小时,取1g待处理样品,加入硝酸和双氧水,加热2小时,期间不断加入硝酸和双氧水;样品的消解完成后,取消解后的试样,采用Agilent公司型号为720ES的全自动电感耦合等离子体原子发射光谱仪分析样品中金属镍元素的重量含量。通过选用在液晶聚酯组合物配方中添加金属镍元素的重量含量基于液晶聚酯组合物的总重量为0.1ppm-300ppm时,得到的液晶聚酯组合物的熔点提高,且高温耐热稳定性得到意想不到的显著改善。

Description

一种液晶聚酯组合物 技术领域
本发明涉及高分子材料领域,特别涉及一种液晶聚酯组合物。
背景技术
液晶聚酯(LCP)作为一种特种工程类材料,与通用树脂相比,具有较高的熔点和高耐热稳定性,然而液晶聚酯仍然存在着在高温下加工时热分解或因受外力热剪切而分子链断链,导致各方面性能下降的现象。为了改善液晶聚酯的耐热稳定性,本领域专业人员做了许多尝试。
US5397502公开了一种耐热稳定性改善的液晶聚合物组合物,组合物包含15~3000ppm的碱金属或50~3000ppm的镁或钙;液晶聚合物含有对羟基苯甲酸、对苯二酚、联苯二酚、对苯二甲酸、2,6-萘二甲酸和联苯二甲酸重复单元。金属物质的引入提高了组合物的熔点及热变形温度,使耐热性得到改善。然而专利中提到使液晶聚合物与功能性化合物在高温下接触并持续足够长的时间使得其熔体粘度下降至少10%。本领域专业技术人员所公知,液晶树脂长时间在高于其熔融温度下处理,由于热分解会会导致熔体粘度和分子量的降低,由此带来的还有力学性能的下降,以及副反应的发生,这可能会增大树脂起泡的风险。
CN1234749公开了一种液晶聚酯树脂,其中含有4-羟基间苯二甲酸和/或水杨酸而来的重复单元作为共聚成分,而且含有10~5000ppm的碱金属化合物,并称树脂的着色性优良、耐热性高,且机械性好。该发明主要侧重液晶聚酯着色度和冲击性能的改善,并未在实施例或专利中其它部分阐明耐热性能是否有变化。且该专利并未说明发明是否适用于液晶聚酯组合物。
US6755991公开了一种液晶聚酯组合物,包含至少一种芳族二羧酸,至少一种含萘环羧酸以及1~1000ppm至少一种碱金属和0~3000ppm至少一种过渡金属。该发明制备的液晶聚酯组合物具有改进的白度和冲击强度,并未提及高温耐热稳定性是否变化。
到目前为止,关于在液晶聚酯组合物中添加金属镍元素对所述液晶聚酯组合物高温耐热稳定性的影响未见报道。
本发明人经过大量实验惊讶地发现,选用在液晶聚酯组合物配方中添加金属 镍元素的重量含量基于液晶聚酯组合物的总重量为0.1ppm-300ppm时,得到的液晶聚酯组合物的熔点提高,且高温耐热稳定性得到意想不到的显著改善。
发明内容
为了克服现有技术的缺点与不足,本发明的首要目的在于提供一种高温耐热稳定性得到显著改善的液晶聚酯组合物。
本发明是通过如下技术方案实现的:
一种液晶聚酯组合物,基于液晶聚酯组合物的总重量,金属镍元素的重量含量为0.1ppm-300ppm。
优选地,基于液晶聚酯组合物的总重量,金属镍元素的重量含量优选为0.5ppm-100ppm,更优选为1ppm-50ppm。
其中,金属镍元素的重量含量的测试方法:将液晶聚酯组合物在120℃干燥4小时,取1g待处理样品,加入硝酸和双氧水,加热2小时,期间不断加入硝酸和双氧水;样品的消解完成后,取消解后的试样,采用Agilent公司型号为720ES的全自动电感耦合等离子体原子发射光谱仪分析样品中金属镍元素的重量含量。
目前尚未有文献报道在液晶聚酯组合物中引入金属镍元素对组合物性能的影响,本发明意外发现在液晶聚酯组合物中引入适量的镍元素,液晶聚酯组合物的熔点提高,且在高温环境下显现出优异的耐热稳定性。而当液晶聚酯组合物中金属镍元素的重量含量超过特定值时,液晶组合物含有较高金属残留物质,势必会影响其作为电子电器类零部件的介电性能,大大缩小其使用范围,且流动性会出现显著的下降。
金属镍元素的引入通常是通过添加含镍化合物来实现的,含镍化合物可以选自乙酸镍(II)四水合物、氧化镍(II)、硝酸镍(II)六水合物、硫化镍、硫酸镍(II)、硫酸镍(II)铵六水合物、草酸镍(II)二水合物、六氟镍(IV)酸钾、氟化镍(II)、氢氧化镍(II)、氯化镍(II)、溴化镍(II)、硼化镍、碱式碳酸镍水合物、磷化镍、过氧化镍、高氯酸镍(II)六水合物等无机化合物,也可以选自辛酸镍水合物、2-乙基己酸镍、乙酰丙酮镍、初卟啉镍、双(环戊二烯)镍(II)、酞菁镍、[1,3-双(二苯基膦)丙烷]二氯化镍(II)、5,10,15,20-四苯基-21H,23H-卟吩镍(II)、乙二醇二甲醚溴化镍、二氯二(三丁基膦)镍(II)、二氯二(三甲基膦)镍(II)、双(1,5-环辛二烯)镍(O)、双(三丁基膦)二溴化镍、双(三环己基膦)二氯化镍(II)、双(三苯基膦)二溴化镍、双(乙基环戊二烯)镍(II)、四(亚磷酸三苯酯)镍、环己 烷丁酸镍等有机化合物。本发明所指出的金属镍元素的来源不仅限于上述举例,无论使用哪种形式的含镍化合物,都能够使用原子发射光谱法检测到。金属镍元素的重量含量是以金属镍元素本身而不是以添加金属镍元素的含镍化合物为基准的。以ppm表示的金属镍元素的重量含量是以液晶聚酯组合物的总重量为基准计算的。
本发明的液晶聚酯组合物还可以包括金属锰元素,基于液晶聚酯组合物的总重量,金属锰元素的重量含量为0.1ppm-300ppm,优选为1ppm-100ppm。
其中,金属锰元素的重量含量的测试方法:将液晶聚酯组合物在120℃干燥4小时,取1g待处理样品,加入硝酸和双氧水,加热2小时,期间不断加入硝酸和双氧水;样品的消解完成后,取消解后的试样,采用Agilent公司型号为720ES的全自动电感耦合等离子体原子发射光谱仪分析样品中金属锰元素的重量含量。
金属锰元素的引入通常是通过添加含锰化合物来实现的,含锰化合物可以选自氧化锰(II)、氧化锰(III)、氧化锰(IV)、乙酸锰(II)、硝酸锰、硫化锰、硫酸锰、碳酸锰、醋酸锰、高锰酸钾、高锰酸锂、高锰酸钠、高锰酸镁、四氧化三锰、氟化锰、氯化亚锰、碘化锰、钼酸锰、双(三氟甲磺酸)锰无机化合物,也可以是羰基锰、乙酰丙酮锰(II)、乙酰丙酮锰(III)、五羰基溴化锰、代森锰、六腈基锰钾、酞菁锰(II)、2-甲基环戊二烯三羰基锰、三(2,2,6,6-四甲基-3,5-庚烯酸)锰、三羰基环戊二烯锰(I)、双(五甲基环戊二烯)锰(II)、双(四甲基环戊二烯)锰(II)、双(异丙基环戊二烯)锰、环己基丁酸锰、羟基异丙基环戊二烯基三羰基锰等有机化合物。本发明所指出的金属锰元素的来源不仅限于上述举例,无论使用哪种形式的含锰化合物,都能够使用原子发射光谱法检测到。金属锰元素的重量含量是以金属锰元素本身而不是以添加金属锰元素的含锰化合物为基准的。以ppm表示的金属锰元素的重量含量是以液晶聚酯组合物的总重量为基准计算的。
本发明的液晶聚酯组合物还可以包括金属铜元素,基于液晶聚酯组合物的总重量,金属铜元素的重量含量为0.1ppm-300ppm,优选为1ppm-100ppm。
其中,金属铜元素的重量含量的测试方法:将液晶聚酯组合物在120℃干燥4小时,取1g待处理样品,加入硝酸和双氧水,加热2小时,期间不断加入硝酸和双氧水;样品的消解完成后,取消解后的试样,采用Agilent公司型号为720ES的全自动电感耦合等离子体原子发射光谱仪分析样品中金属铜元素的重量含量。
金属铜元素的引入通常是通过添加含铜化合物来实现的,含铜化合物可以选自乙酸铜、氧化铜、硫化铜、硝酸铜(II)水合物、酒石酸铜(II)、1-丁基硫醇铜、二氟化铜(II)、亚铬酸铜、氢氧化铜(II)、氧化亚铜、氯化亚铜、氯化铜(II)、硫化亚铜、碘化铜(I)、碱式碳酸铜、硫酸铜、亚硫酸铜、焦磷酸铜等无机化合物,也可以是浴铜灵、2,3-萘酞菁铜、2-乙基己酸铜(II)、2-吡嗪羧酸铜(II)、3-甲基水杨酸铜(I)、乙酰丙酮酸铜、全氟酞菁铜、聚酞菁铜、苯硫酚铜(I)、酞菁铜(II)、3,5-二异丙基水杨酸铜水合物、三氟乙酰丙酮化铜、三氟甲烷磺酸铜(II)、六氟磷酸四乙氰铜、双(2,2,6,6-四甲基-3,5-庚二酮酸)铜、双(三苯基膦)硼氢化铜(I)、噻吩-2-甲酸亚铜、溴三(三苯基膦)铜(I)等有机化合物。本发明所指出的金属铜元素的来源不仅限于上述举例,无论使用哪种形式的含铜化合物,都能够使用原子发射光谱法检测到。金属铜元素的重量含量是以金属铜元素本身而不是以添加金属铜元素的含铜化合物为基准的。以ppm表示的金属铜元素的重量含量是以液晶聚酯组合物的总重量为基准计算的。
其中,所述液晶聚酯组合物,按重量份计,包括如下组分:
液晶聚酯                 100份;
填充剂                   5份-100份。
其中,所述液晶聚酯组合物的熔点为150℃-400℃;所述熔点的测试方法为:通过NETZSCH公司DSC 200F3型差示扫描量热仪DSC,在从室温开始以20℃/分钟的升温条件测试,观测到吸热峰温度Tm1后,在比Tm1高20℃的温度下保持5分钟,然后在20℃/分钟的降温条件下冷却至室温,然后再次以20℃/分钟的升温条件进行测定,此时观测到的吸热峰温度Tm2即为液晶聚酯组合物的熔点。
其中,所述液晶聚酯,按摩尔百分比计,包含如下重复单元:
衍生自芳香族羟基羧酸的重复单元     30mol%-100mol%;
衍生自芳香族二醇的重复单元         0mol%-35mol%;
衍生自芳香族二羧酸的重复单元       0mol%-35mol%。
优选地,所述液晶聚酯,按摩尔百分比计,包括如下重复单元:
衍生自芳香族羟基羧酸的重复单元     50mol%-100mol%;
衍生自芳香族二醇的重复单元         0mol%-25mol%;
衍生自芳香族二羧酸的重复单元       0mol%-25mol%。
其中,所述衍生自芳香族羟基羧酸的重复单元选自衍生自4-羟基苯甲酸的重 复单元和/或2-羟基-6-萘甲酸的重复单元;所述衍生自芳香族二醇的重复单元选自对苯二酚的重复单元和/或4,4’-二羟基联苯的重复单元;所述衍生自芳香族二羧酸的重复单元选自对苯二甲酸的重复单元、间苯二甲酸的重复单元、2,6-萘二甲酸的重复单元中一种或几种。
上述液晶聚酯的制备方法,可以采用本领域技术人员熟知的标准缩聚技术方法,包括如下步骤:
在装配有搅拌器、温度计、氮气导入管和回流冷凝装置的反应釜中按照配比分别加入衍生自芳香族羟基羧酸的重复单元、衍生自芳香族二醇的重复单元和衍生自芳香族二羧酸的重复单元,并加入一定比例的醋酸酐为酰化剂;然后将氮气通入反应釜中进行置换;开动搅拌,在氮气流中将反应混合物由室温加热到140℃-160℃,在此温度下回流1小时-3小时;此后继续升温,将混合物经2小时-4小时从140℃-160℃加热到300℃-350℃,在此过程中蒸出未反应的醋酸酐和副反应产物醋酸;终缩聚阶段,对反应体系进行减压,并通过观察扭矩升高作为反应结束的终点判断;此时将熔体状态的预聚物经放料口排出,并冷却至室温;进一步将预聚物转移至固相聚合装置,经5小时-7小时将温度由室温升高至260℃-280℃,在此温度下保温9小时-11小时进行固相聚合反应;反应结束后将产物导出,从而得到液晶聚酯。
其中,所述填充剂选自纤维状填充剂和/或板状填充剂;所述纤维状填充剂选自玻璃纤维、石棉纤维、二氧化硅纤维、二氧化硅-氧化铝纤维、钛酸钾纤维、碳或石墨纤维、金属纤维中的一种或几种;优选为玻璃纤维;所述板状填充剂选自滑石、云母、石墨、高岭土中的一种或几种;优选为云母。
优选地,所述玻璃纤维的数均纤维直径为3微米-30微米,数均长径比大于等于5,数均纤维长度为50微米-3000微米;所述云母的平均粒径为0.5微米-200微米。
当添加填充剂,相对于液晶聚酯100重量份,添加超过100份以上的填充剂,液晶聚酯组合物的机械强度可能降低。添加填充剂的方法不特别限制,并且可以列举在本领域中公知的方法。
此外,除了上述组分以外,可以以不损害本发明目的的量向本发明中使用的液晶聚酯组合物中加入公知的各种添加剂;各种添加剂可以选自增塑剂、稳定剂、着色剂、润滑剂、脱模剂、抗氧剂中的一种或几种。
合适的增塑剂为邻苯二甲酸酯。
合适的稳定剂包括有机亚磷酸酯,如亚磷酸三苯酯,亚磷酸三-(2,6-二甲基苯基)酯,亚磷酸三-壬基苯基酯,二甲基苯膦酸酯,磷酸三甲酯等,有机亚磷酸酯,烷基化的一元酚或者多元酚,多元酚和二烯的烷基化反应产物,对甲酚或者二环戊二烯的丁基化反应产物,烷基化的氢醌类,羟基化的硫代二苯基醚类,亚烷基-双酚,苄基化合物,多元醇酯类,苯并三唑类,二苯甲酮类的一种或者多种组合。
合适的脱模剂包括硬脂酸金属盐类,硬脂酸烷基酯类,硬脂酸季戊四醇酯类,石蜡,褐煤蜡等等。
合适的着色剂包括各种颜料,染料,如无机颜料的金属氧化物和混合金属氧化物的氧化锌,氧化钛,氧化铁,硫化物如硫化锌等;铝酸盐,硅酸盐,铁酸盐等,炭黑,群青;有机颜料如偶氮类,重氮类,蒽醌类、酞菁、喹啉类,萘,酮,嗪类等等。
合适的润滑剂包括高级脂肪酸、高级脂肪酯、高级脂肪酸的金属盐等。
合适的抗氧剂包括有机亚磷酸酯,烷基化的一元酚或者多元酚,多元酚和二烯的烷基化反应产物,对甲酚或者二环戊二烯的丁基化反应产物,烷基化的氢醌类,羟基化的硫代二苯基醚类,亚烷基-双酚,苄基化合物,多元醇酯类等。
各种添加剂不限于上述几种,可任选含有对液晶聚酯的热稳定性和物理性质无害的其它种类组分以及热塑性组合物中常见的其它物质,如一种或多种的聚丙烯、聚酰胺、聚酯、聚苯硫醚、聚醚酮、聚碳酸酯、聚醚砜、聚苯基醚及其改性物质,热塑性树脂如聚醚酰亚胺,热固性树脂如酚醛树脂、环氧树脂、聚酰亚胺树脂和氰化物树脂。
本发明的实施方式的液晶聚酯中配合填充剂、各种添加剂等的方法,没有特定的限定,可以使用干式掺混、溶液混合法、液晶聚酯的聚合是添加、熔融混炼等,其中优选为熔融混炼。如捏合机,单轴或双轴挤出机、胶辊机等,其中优选使用双轴挤出机。熔融混炼的温度为液晶聚酯的熔点以上,熔点+50℃以下。
作为混炼方法,可以使用从后装进料机一并投入液晶聚酯、填充剂、各种添加剂来进行混炼的方法;也可以从后装进料机透入液晶聚酯和各种添加剂,从侧进料机添加填充剂进行混炼的方法,亦可以制备高浓度包含液晶聚酯和各种添加剂的液晶聚酯组合物母粒,接着将液晶聚酯组合物母粒与填充剂进行混炼以成为 规定的浓度的方法等的任一种方法。
本发明的实施方式的液晶聚酯组合物通过进行注射成型,注射压缩成型、压缩成型、挤出成型、吹塑成型、压制成型纺丝等公知的熔融成型品。这里所述的成型品,可以为注射成型品、挤出成型品、压制成型品、片、管、未拉伸薄膜、单轴拉伸薄膜、双轴拉伸薄膜等各种膜制品、未拉伸丝、超拉伸丝等各种纤维丝等。在挤出成型的情况下,可显著获得本发明的效果,因此优选。
其中,通过挤出成型工艺得到的液晶聚酯组合物,具体步骤如下:按照配比将液晶聚酯、填充剂、含镍化合物和/或含锰化合物和/或含铜化合物、和/或各种添加剂用高速混合机混合均匀后,加入双螺杆挤出机,在280RPM-320RPM的螺杆转速下熔融混合,螺筒温度为290℃-355℃,挤出,冷却、切粒,即得液晶聚酯组合物。
含镍化合物可以选自乙酸镍(II)四水合物、氧化镍(II)、硝酸镍(II)六水合物、硫化镍、硫酸镍(II)、硫酸镍(II)铵六水合物、草酸镍(II)二水合物、六氟镍(IV)酸钾、氟化镍(II)、氢氧化镍(II)、氯化镍(II)、溴化镍(II)、硼化镍、碱式碳酸镍水合物、磷化镍、过氧化镍、高氯酸镍(II)六水合物等无机化合物,也可以选自辛酸镍水合物、2-乙基己酸镍、乙酰丙酮镍、初卟啉镍、双(环戊二烯)镍(II)、酞菁镍、[1,3-双(二苯基膦)丙烷]二氯化镍(II)、5,10,15,20-四苯基-21H,23H-卟吩镍(II)、乙二醇二甲醚溴化镍、二氯二(三丁基膦)镍(II)、二氯二(三甲基膦)镍(II)、双(1,5-环辛二烯)镍(O)、双(三丁基膦)二溴化镍、双(三环己基膦)二氯化镍(II)、双(三苯基膦)二溴化镍、双(乙基环戊二烯)镍(II)、四(亚磷酸三苯酯)镍、环己烷丁酸镍等有机化合物。本发明所指出的金属镍元素的来源不仅限于上述举例,无论使用哪种形式的含镍化合物,都能够使用原子发射光谱法检测到。金属镍元素的重量含量是以金属镍元素本身而不是以添加金属镍元素的含镍化合物为基准的。以ppm表示的金属镍元素的重量含量是以液晶聚酯组合物的总重量为基准计算的。
含锰化合物可以选自氧化锰(II)、氧化锰(III)、氧化锰(IV)、乙酸锰(II)、硝酸锰、硫化锰、硫酸锰、碳酸锰、醋酸锰、高锰酸钾、高锰酸锂、高锰酸钠、高锰酸镁、四氧化三锰、氟化锰、氯化亚锰、碘化锰、钼酸锰、双(三氟甲磺酸)锰无机化合物,也可以是羰基锰、乙酰丙酮锰(II)、乙酰丙酮锰(III)、五羰基溴化锰、代森锰、六腈基锰钾、酞菁锰(II)、2-甲基环戊二烯三羰基锰、三(2,2,6,6- 四甲基-3,5-庚烯酸)锰、三羰基环戊二烯锰(I)、双(五甲基环戊二烯)锰(II)、双(四甲基环戊二烯)锰(II)、双(异丙基环戊二烯)锰、环己基丁酸锰、羟基异丙基环戊二烯基三羰基锰等有机化合物。本发明所指出的金属锰元素的来源不仅限于上述举例,无论使用哪种形式的含锰化合物,都能够使用原子发射光谱法检测到。金属锰元素的重量含量是以金属锰元素本身而不是以添加金属锰元素的含锰化合物为基准的。以ppm表示的金属锰元素的重量含量是以液晶聚酯组合物的总重量为基准计算的。
含铜化合物可以选自乙酸铜、氧化铜、硫化铜、硝酸铜(II)水合物、酒石酸铜(II)、1-丁基硫醇铜、二氟化铜(II)、亚铬酸铜、氢氧化铜(II)、氧化亚铜、氯化亚铜、氯化铜(II)、硫化亚铜、碘化铜(I)、碱式碳酸铜、硫酸铜、亚硫酸铜、焦磷酸铜等无机化合物,也可以是浴铜灵、2,3-萘酞菁铜、2-乙基己酸铜(II)、2-吡嗪羧酸铜(II)、3-甲基水杨酸铜(I)、乙酰丙酮酸铜、全氟酞菁铜、聚酞菁铜、苯硫酚铜(I)、酞菁铜(II)、3,5-二异丙基水杨酸铜水合物、三氟乙酰丙酮化铜、三氟甲烷磺酸铜(II)、六氟磷酸四乙氰铜、双(2,2,6,6-四甲基-3,5-庚二酮酸)铜、双(三苯基膦)硼氢化铜(I)、噻吩-2-甲酸亚铜、溴三(三苯基膦)铜(I)等有机化合物。本发明所指出的金属铜元素的来源不仅限于上述举例,无论使用哪种形式的含铜化合物,都能够使用原子发射光谱法检测到。金属铜元素的重量含量是以金属铜元素本身而不是以添加金属铜元素的含铜化合物为基准的。以ppm表示的金属铜元素的重量含量是以液晶聚酯组合物的总重量为基准计算的。
本发明所获得的液晶聚酯组合物形成的成型品可以有如下应用,以各种齿轮、各种壳体、传感器、LED灯、连接器、插座、电阻器、继电器壳体、继电器底座、继电器用绕线轴、开关、线圈轴、电容器、可变电容器壳体、光拾波器、共振器、各种端子板、变压器、插头、印刷布线板、调谐器、扬声器、传声器、头戴式听筒、小型电动机、磁头底座、功率模块、外壳、半导体、液晶显示器部件、FDD托架、FDD底盘、HDD部件、电动机刷握、抛物面天线、计算机相关部件等为代表的电气电子部件、以VTR部件、电视部件、熨斗、电吹风、电饭煲部件、微波炉部件、音响部件、音频、激光盘、光盘等语音设备部件、照明部件、电冰箱部件、空调部件、打字机部件、文字处理机部件等为代表的家庭、企业电气制品部件、办公室计算机相关部件、电话机相关部件、传真机相关部件、复印机相关部件、洗涤用夹具、无油轴承、船尾轴承、水中轴承等各种轴承、电 动机部件、以点火器、打字机等为代表的机械相关部件、以显微镜、双筒望远镜、照相机、钟表等为代表的光学设备、精密机械相关部件;交流发电机端子、交流发电机连接器、IC调节器、调光器用电位器底座、排气气阀等各种阀、燃料关联、排气系、吸气系的各种管、进气口喷嘴通气管、进气歧管、燃料泵、发动机冷却水接头、汽化器主体、汽化器隔离物、排气气体传感器、冷却水传感器、油温传感器、节气门位置传感器、曲轴位置传感器、空气流量计、制动衬块磨耗传感器、空调用恒温器底座、空调用电动机绝缘体、电动窗等车载用电动机绝缘体、取暖器暖风流量控制阀、散热器电动机用刷握、水泵叶轮、涡轮叶片、刮水器电动机相关部件、分电器、起动器开关、起动器继电器、传动装置用线束、窗户洗涤器喷嘴、空调面板开关基板、燃料关联电磁阀用线圈、保险丝用连接器、喇叭端子、电装部件绝缘板、步进电动机转子、灯圈、灯座、灯光反射器、灯壳、制动活塞、螺线管线轴、发动机滤油器、点火装置壳体等汽车、车辆相关部件等,在印刷布线板,小型薄壁电子器件等中特别有用。
本发明与现有技术相比,具有如下有益效果:
本发明通过选用在液晶聚酯组合物配方中添加金属镍元素的重量含量基于液晶聚酯组合物的总重量为0.1ppm-300ppm时,得到的液晶聚酯组合物的熔点提高,且高温耐热稳定性得到意想不到的显著改善。
具体实施方式
下面通过具体实施方式来进一步说明本发明,以下实施例为本发明较佳的实施方式,但本发明的实施方式并不受下述实施例的限制。
所述金属镍元素的重量含量的测试方法:将液晶聚酯组合物在120℃干燥4小时,取1g待处理样品,加入硝酸和双氧水,加热2小时,期间不断加入硝酸和双氧水;样品的消解完成后,取消解后的试样,采用Agilent公司型号为720ES的全自动电感耦合等离子体原子发射光谱仪分析样品中金属镍元素的重量含量。
所述金属锰元素的重量含量的测试方法:将液晶聚酯组合物在120℃干燥4小时,取1g待处理样品,加入硝酸和双氧水,加热2小时,期间不断加入硝酸和双氧水;样品的消解完成后,取消解后的试样,采用Agilent公司型号为720ES的全自动电感耦合等离子体原子发射光谱仪分析样品中金属锰元素的重量含量。
所述金属铜元素的重量含量的测试方法:将液晶聚酯组合物在120℃干燥4小时,取1g待处理样品,加入硝酸和双氧水,加热2小时,期间不断加入硝酸 和双氧水;样品的消解完成后,取消解后的试样,采用Agilent公司型号为720ES的全自动电感耦合等离子体原子发射光谱仪分析样品中金属铜元素的重量含量。
所述液晶聚酯组合物的熔点的测试方法:通过NETZSCH公司DSC 200F3型差示扫描量热仪(DSC),在从室温开始以20℃/分钟的升温条件测试,观测到吸热峰温度Tm1后,在比Tm1高20℃的温度下保持5分钟,然后在20℃/分钟的降温条件下冷却至室温,然后再次以20℃/分钟的升温条件进行测定,此时观测到的吸热峰温度Tm2为液晶聚酯组合物的熔点。
所述液晶聚酯组合物的比容对数粘度的测试方法:将液晶聚酯组合物溶解于五氟苯酚中,将玻纤过滤掉,然后制成浓度为0.01g/mL的溶液,测试温度为60℃,采用内径为0.7mm的乌氏粘度计测量;并由公式:比容对数粘度=[ln(ηr)]/C计算得到,其中ηr为相对粘度(t溶液/t溶剂),C为溶液浓度。
所述液晶聚酯组合物的高温耐热稳定性的测试方法:将液晶聚酯组合物在120℃干燥4小时,加入Dynisco LCR7000型高压毛细管流变仪中,料筒温度维持在液晶聚酯组合物熔点之上10℃,使用内径1mm,长度40mm的口模测量;样品加入后,设定测试程序,保持恒温5min,以1000秒-1的恒定剪切速率进行测量,得到样品恒温5min的剪切粘度,此时会有一部分样品被挤出,剩余样品继续在料筒中恒温,在第60min时,仍以1000秒-1的恒定剪切速率进行测量,得到恒温60min的剪切粘度;由于液晶聚酯组合物样品在其熔融温度之上恒温,此时将有热分解反应发生,通常会伴随分子量的降低;因此比较样品在恒温5min和恒温60min时剪切粘度和比容对数粘度的降低程度,可以较直观的反映液晶聚酯组合物在高温下的耐热稳定性,熔融粘度和比容对数粘度降低值较小,代表高温耐热稳定性较好。通常,组合物中所包含的填充剂(如玻璃纤维、滑石等)对液晶聚酯组合物的耐热性并无影响,在高温下聚合物会发生热分解使分子链断裂,分子量下降。液晶聚酯组合物中加入含镍化合物使液晶聚酯组合物耐热性提高的机理尚不完全清楚,可能是金属离子与大分子形成络合物,使结构更加稳定;亦有可能是金属离子对分子链增长起到了催化作用,在高温下分子链增长速率与分子链断裂速率相近,使得大分子结构整体保持稳定。
本发明中使用的液晶聚酯含有的重复单元对应的单体的名称和缩写分别如下:
4-羟基苯甲酸(HBA);
4,4’-二羟基联苯(BP);
对苯二甲酸(TA);
间苯二甲酸(IA);
2-羟基-6-萘甲酸(HNA);
对苯二酚(HQ);
2,6-萘二甲酸(NDA);
本发明中使用的含镍化合物:
氧化镍(II):西格玛-奥德里奇(上海)贸易有限公司;
硼化镍:西格玛-奥德里奇(上海)贸易有限公司;
2-乙基己酸镍:西格玛-奥德里奇(上海)贸易有限公司;
硫化镍:西格玛-奥德里奇(上海)贸易有限公司;
本发明中使用的含锰化合物:
氧化锰(IV):西格玛-奥德里奇(上海)贸易有限公司;
本发明中使用的含铜化合物:
乙酸铜:西格玛-奥德里奇(上海)贸易有限公司;
本发明中使用的玻璃纤维:牌号CS03JAPX-1,数均纤维直径10微米,数均长径比300,数均纤维长度3000微米,Asahi Fiber Glass Co.,Ltd。
实施例A1-A4:液晶聚酯的制备
在装配有搅拌器、温度计、氮气导入管和回流冷凝装置的反应釜中按照配比分别加入衍生自芳香族羟基羧酸的重复单元、衍生自芳香族二醇的重复单元和衍生自芳香族二羧酸的重复单元,并加入一定比例的醋酸酐为酰化剂;然后将氮气通入反应釜中进行置换;开动搅拌,在氮气流中将反应混合物由室温加热到140℃-160℃,在此温度下回流1小时-3小时;此后继续升温,将混合物经2小时-4小时从140℃-160℃加热到300℃-350℃,在此过程中蒸出未反应的醋酸酐和副反应产物醋酸;终缩聚阶段,对反应体系进行减压,并通过观察扭矩升高作为反应结束的终点判断;此时将熔体状态的预聚物经放料口排出,并冷却至室温;进一步将预聚物转移至固相聚合装置,经5小时-7小时将温度由室温升高至260℃-280℃,在此温度下保温9小时-11小时进行固相聚合反应;反应结束后将产物导出,从而得到液晶聚酯。
表1 实施例A1-A4的具体配比及其测试性能结果
Figure PCTCN2017080251-appb-000001
实施例1-17及对比例1-6:液晶聚酯组合物的制备
按表2的配比将由实施例A1-A4制备所得液晶聚酯、填充剂、含镍化合物和/或含锰化合物和/或含铜化合物、和/或各种添加剂用高速混合机混合均匀后,加入双螺杆挤出机,在280RPM-320RPM的螺杆转速下熔融混合,螺筒温度为290℃-355℃,挤出,冷却、切粒,即得液晶聚酯组合物。所得液晶聚酯组合物的熔点、熔融粘度和比容对数粘度列于表2中。
其中,液晶聚酯组合物中的金属镍元素、金属锰元素、金属铜元素含量是在液晶聚酯组合物的制备过程中通过含镍化合物、含锰化合物、含铜化合物的实际添加量来进行调整并测得的。
表2
Figure PCTCN2017080251-appb-000002
Figure PCTCN2017080251-appb-000003
续表2
Figure PCTCN2017080251-appb-000004
续表2
Figure PCTCN2017080251-appb-000005
Figure PCTCN2017080251-appb-000006
从表2的实施例1-17及对比例1-6的比较可以看出,本发明通过选用在液晶聚酯组合物配方中添加金属镍元素的重量含量基于液晶聚酯组合物的总重量为0.1ppm-300ppm时,得到的液晶聚酯组合物的熔点提高,且高温耐热稳定性得到意想不到的显著改善。

Claims (15)

  1. 一种液晶聚酯组合物,其特征在于,基于液晶聚酯组合物的总重量,金属镍元素的重量含量为0.1ppm-300ppm。
  2. 根据权利要求1所述的液晶聚酯组合物,其特征在于,金属镍元素的重量含量的测试方法:将液晶聚酯组合物在120℃干燥4小时,取1g待处理样品,加入硝酸和双氧水,加热2小时,期间不断加入硝酸和双氧水;样品的消解完成后,取消解后的试样,采用Agilent公司型号为720ES的全自动电感耦合等离子体原子发射光谱仪分析样品中金属镍元素的重量含量。
  3. 根据权利要求1所述的液晶聚酯组合物,其特征在于,基于液晶聚酯组合物的总重量,金属镍元素的重量含量优选为0.5ppm-100ppm,更优选为1ppm-50ppm。
  4. 根据权利要求1所述的液晶聚酯组合物,其特征在于,还包括金属锰元素,基于液晶聚酯组合物的总重量,金属锰元素的重量含量为0.1ppm-300ppm,优选为1ppm-100ppm。
  5. 根据权利要求4所述的液晶聚酯组合物,其特征在于,金属锰元素的重量含量的测试方法:将液晶聚酯组合物在120℃干燥4小时,取1g待处理样品,加入硝酸和双氧水,加热2小时,期间不断加入硝酸和双氧水;样品的消解完成后,取消解后的试样,采用Agilent公司型号为720ES的全自动电感耦合等离子体原子发射光谱仪分析样品中金属锰元素的重量含量。
  6. 根据权利要求1所述的液晶聚酯组合物,其特征在于,还包括金属铜元素,基于液晶聚酯组合物的总重量,金属铜元素的重量含量为0.1ppm-300ppm,优选为1ppm-100ppm。
  7. 根据权利要求6所述的液晶聚酯组合物,其特征在于,金属铜元素的重量含量的测试方法:将液晶聚酯组合物在120℃干燥4小时,取1g待处理样品,加入硝酸和双氧水,加热2小时,期间不断加入硝酸和双氧水;样品的消解完成后,取消解后的试样,采用Agilent公司型号为720ES的全自动电感耦合等离子体原子发射光谱仪分析样品中金属铜元素的重量含量。
  8. 根据权利要求1-7任一项所述的液晶聚酯组合物,其特征在于,所述液晶聚酯组合物,按重量份计,包括如下组分:
    液晶聚酯              100份;
    填充剂                5份-100份。
  9. 根据权利要求8所述的液晶聚酯组合物,其特征在于,所述液晶聚酯组合物的熔点为150℃-400℃;所述熔点的测试方法为:通过NETZSCH公司DSC200F3型差示扫描量热仪DSC,在从室温开始以20℃/分钟的升温条件测试,观测到吸热峰温度Tm1后,在比Tm1高20℃的温度下保持5分钟,然后在20℃/分钟的降温条件下冷却至室温,然后再次以20℃/分钟的升温条件进行测定,此时观测到的吸热峰温度Tm2即为液晶聚酯组合物的熔点。
  10. 根据权利要求8所述的液晶聚酯组合物,其特征在于,所述液晶聚酯,按摩尔百分比计,包含如下重复单元:
    衍生自芳香族羟基羧酸的重复单元              30mol%-100mol%;
    衍生自芳香族二醇的重复单元                  0mol%-35mol%;
    衍生自芳香族二羧酸的重复单元                0mol%-35mol%。
  11. 根据权利要求10所述的液晶聚酯组合物,其特征在于,所述液晶聚酯,按摩尔百分比计,包括如下重复单元:
    衍生自芳香族羟基羧酸的重复单元              50mol%-100mol%;
    衍生自芳香族二醇的重复单元                  0mol%-25mol%;
    衍生自芳香族二羧酸的重复单元                0mol%-25mol%。
  12. 根据权利要求10或11所述的液晶聚酯组合物,其特征在于,所述衍生自芳香族羟基羧酸的重复单元选自衍生自4-羟基苯甲酸的重复单元和/或2-羟基-6-萘甲酸的重复单元;所述衍生自芳香族二醇的重复单元选自对苯二酚的重复单元和/或4,4’-二羟基联苯的重复单元;所述衍生自芳香族二羧酸的重复单元选自对苯二甲酸的重复单元、间苯二甲酸的重复单元、2,6-萘二甲酸的重复单元中一种或几种。
  13. 根据权利要求8所述的液晶聚酯组合物,其特征在于,所述填充剂选自纤维状填充剂和/或板状填充剂;所述纤维状填充剂选自玻璃纤维、石棉纤维、二氧化硅纤维、二氧化硅-氧化铝纤维、钛酸钾纤维、碳或石墨纤维、金属纤维中的一种或几种;优选为玻璃纤维;所述板状填充剂选自滑石、云母、石墨、高岭土中的一种或几种;优选为云母。
  14. 根据权利要求13所述的液晶聚酯组合物,其特征在于,所述玻璃纤维的数均纤维直径为3微米-30微米,数均长径比大于等于5,数均纤维长度为50 微米-3000微米;所述云母的平均粒径为0.5微米-200微米。
  15. 根据权利要求8所述的液晶聚酯组合物,其特征在于,还包含各种添加剂;所述各种添加剂选自增塑剂、稳定剂、着色剂、润滑剂、脱模剂、抗氧剂中的一种或几种。
PCT/CN2017/080251 2016-04-13 2017-04-12 液晶聚酯组合物 WO2017177921A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610226653.0 2016-04-13
CN201610226653.0A CN105801824A (zh) 2016-04-13 2016-04-13 一种液晶聚酯组合物

Publications (1)

Publication Number Publication Date
WO2017177921A1 true WO2017177921A1 (zh) 2017-10-19

Family

ID=56459240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080251 WO2017177921A1 (zh) 2016-04-13 2017-04-12 液晶聚酯组合物

Country Status (2)

Country Link
CN (1) CN105801824A (zh)
WO (1) WO2017177921A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114591602A (zh) * 2022-02-28 2022-06-07 珠海万通特种工程塑料有限公司 一种高介电常数液晶聚酯组合物及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105801824A (zh) * 2016-04-13 2016-07-27 金发科技股份有限公司 一种液晶聚酯组合物

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710976A (ja) * 1993-06-29 1995-01-13 Mitsubishi Chem Corp 溶融異方性共重合ポリエステルの製造方法
US20020045728A1 (en) * 2000-07-28 2002-04-18 Kabushiki Kaisha Ueno Seiyaku Oyo Kenkyujo Aromatic dicarboxylic acid composition and liquid crystalline polyester resin made from the same
WO2010014630A2 (en) * 2008-07-29 2010-02-04 Polyone Corporation Crystallized thermoplastic polyhydroxyalkanoate compounds
US20110065871A1 (en) * 2008-05-21 2011-03-17 Toray Industries, Inc. Method for producing aliphatic polyester resin, and an aliphatic polyester resin composition
CN103540151A (zh) * 2012-07-13 2014-01-29 金发科技股份有限公司 用于沉积金属薄膜的改性树脂组合物、其制备方法以及其应用
CN103717672A (zh) * 2011-12-27 2014-04-09 东丽株式会社 热塑性树脂组合物和其成型品
CN105801824A (zh) * 2016-04-13 2016-07-27 金发科技股份有限公司 一种液晶聚酯组合物
CN105860445A (zh) * 2016-04-13 2016-08-17 金发科技股份有限公司 一种液晶聚酯组合物
CN105885370A (zh) * 2016-04-13 2016-08-24 金发科技股份有限公司 一种液晶聚酯组合物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710976A (ja) * 1993-06-29 1995-01-13 Mitsubishi Chem Corp 溶融異方性共重合ポリエステルの製造方法
US20020045728A1 (en) * 2000-07-28 2002-04-18 Kabushiki Kaisha Ueno Seiyaku Oyo Kenkyujo Aromatic dicarboxylic acid composition and liquid crystalline polyester resin made from the same
US20110065871A1 (en) * 2008-05-21 2011-03-17 Toray Industries, Inc. Method for producing aliphatic polyester resin, and an aliphatic polyester resin composition
WO2010014630A2 (en) * 2008-07-29 2010-02-04 Polyone Corporation Crystallized thermoplastic polyhydroxyalkanoate compounds
CN103717672A (zh) * 2011-12-27 2014-04-09 东丽株式会社 热塑性树脂组合物和其成型品
CN103540151A (zh) * 2012-07-13 2014-01-29 金发科技股份有限公司 用于沉积金属薄膜的改性树脂组合物、其制备方法以及其应用
CN105801824A (zh) * 2016-04-13 2016-07-27 金发科技股份有限公司 一种液晶聚酯组合物
CN105860445A (zh) * 2016-04-13 2016-08-17 金发科技股份有限公司 一种液晶聚酯组合物
CN105885370A (zh) * 2016-04-13 2016-08-24 金发科技股份有限公司 一种液晶聚酯组合物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114591602A (zh) * 2022-02-28 2022-06-07 珠海万通特种工程塑料有限公司 一种高介电常数液晶聚酯组合物及其制备方法和应用
CN114591602B (zh) * 2022-02-28 2023-06-20 珠海万通特种工程塑料有限公司 一种高介电常数液晶聚酯组合物及其制备方法和应用

Also Published As

Publication number Publication date
CN105801824A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
TWI450818B (zh) 熱塑性樹脂組成物及其成形品
JP6315152B1 (ja) 液晶性ポリエステル樹脂組成物、成形品および成形品の製造方法
WO2012090407A1 (ja) 全芳香族液晶ポリエステルおよびその製造方法
JP2019006973A (ja) 液晶性ポリエステル樹脂組成物、成形品および成形品の製造方法
WO2017133332A1 (zh) 一种液晶聚酯以及由其组成的模塑组合物和其应用
WO2017133448A1 (zh) 一种液晶聚酯以及由其组成的模塑组合物和其应用
JP5126453B2 (ja) 液晶性ポリエステルおよびその製造方法
WO2017177922A1 (zh) 一种液晶聚酯组合物
WO2017177921A1 (zh) 液晶聚酯组合物
CN105860445A (zh) 一种液晶聚酯组合物
JP2015063641A (ja) 液晶性ポリエステル樹脂組成物およびそれからなる成形品
KR102644138B1 (ko) 액정 폴리에스테르 수지, 그의 제조 방법 및 그것을 포함하는 성형품
CN105907058B (zh) 一种液晶聚酯组合物
JP2019183040A (ja) 液晶ポリエステル樹脂、その製造方法およびそれからなる成形品
JP2015124276A (ja) 液晶性ポリエステル樹脂組成物およびその成形品
JP2013227366A (ja) 熱可塑性樹脂組成物およびその成形品
CN105733219A (zh) 一种液晶聚酯组合物
CN105885370A (zh) 一种液晶聚酯组合物
JP4834940B2 (ja) 高誘電性樹脂組成物
JP2018104527A (ja) 液晶ポリエステル樹脂組成物およびそれからなる成形品
JPH08165411A (ja) 樹脂組成物の製造方法
TWI445732B (zh) 液晶性聚酯及其製造方法
CN105860465A (zh) 一种液晶聚酯组合物
JPH05230371A (ja) ポリフェニレンスルフィド樹脂組成物
CN105885369A (zh) 一种液晶聚酯组合物

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17781897

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17781897

Country of ref document: EP

Kind code of ref document: A1