WO2017175657A1 - 水処理方法および水処理装置 - Google Patents

水処理方法および水処理装置 Download PDF

Info

Publication number
WO2017175657A1
WO2017175657A1 PCT/JP2017/013212 JP2017013212W WO2017175657A1 WO 2017175657 A1 WO2017175657 A1 WO 2017175657A1 JP 2017013212 W JP2017013212 W JP 2017013212W WO 2017175657 A1 WO2017175657 A1 WO 2017175657A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
scale inhibitor
reducing agent
treatment method
water treatment
Prior art date
Application number
PCT/JP2017/013212
Other languages
English (en)
French (fr)
Inventor
智宏 前田
谷口 雅英
賢司 斉藤
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to ES17779036T priority Critical patent/ES2881762T3/es
Priority to JP2018510565A priority patent/JP6881435B2/ja
Priority to EP17779036.7A priority patent/EP3441368B1/en
Priority to IL262150A priority patent/IL262150B/en
Priority to SG11201808847QA priority patent/SG11201808847QA/en
Priority to AU2017246762A priority patent/AU2017246762B2/en
Publication of WO2017175657A1 publication Critical patent/WO2017175657A1/ja
Priority to SA518400181A priority patent/SA518400181B1/ar

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/105Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances combined with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/12Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen
    • C02F5/125Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen combined with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/14Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus
    • C02F5/145Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus combined with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a water treatment method and a water treatment apparatus for obtaining permeated water having a low concentration solute with a semipermeable membrane module from raw water such as seawater and river water, groundwater, lake water, wastewater treated water containing solutes such as salt. More particularly, the present invention relates to a water treatment method and a water treatment apparatus for obtaining fresh water stably and inexpensively while preventing oxidative deterioration of a semipermeable membrane module.
  • Wastewater reuse is beginning to be applied in inland and coastal urban areas and industrial areas where there is no water source or where discharge is restricted due to drainage regulations.
  • Singapore an island country with scarce water sources, handles sewage generated in the country, stores it without releasing it into the sea, regenerates it to a level that can be drunk with a reverse osmosis membrane, and copes with water shortages.
  • the reverse osmosis method applied to seawater desalination and reuse of sewage wastewater applies water above the osmotic pressure to water containing solutes such as salinity and permeates the semipermeable membrane to remove the water from which the solute has been removed.
  • This technology can be used to obtain drinking water from, for example, seawater, brine, and water containing harmful substances, and has also been used in the production of industrial ultrapure water, wastewater treatment, and recovery of valuable resources. .
  • Non-patent Document 1 an inexpensive oxidizing agent such as hypochlorous acid constantly or intermittently to prevent biofilm generation.
  • the oxidizing agent tends to damage the functional layer of the reverse osmosis membrane, and in particular, the polyamide which is the mainstream of the reverse osmosis membrane tends to cause oxidative degradation (Non-Patent Document 2).
  • Patent Document 1 As a countermeasure, it has been proposed to monitor the oxidation-reduction potential of the concentrated water of the reverse osmosis membrane and suppress the amount of reducing agent added while suppressing the generation of oxidizing substances due to catalytic action (Patent Document 1).
  • Patent Document 1 since the redox potential is not so sensitive, it is not easy to completely protect the reverse osmosis membrane by only monitoring the redox potential of the concentrated water. Since the abnormality can be detected only after the vicinity of the osmotic membrane is in an oxidized state, the reverse osmosis membrane is exposed to the oxidizing substance for a short time.
  • the present invention relates to a water treatment method and water treatment for obtaining low-concentration permeated water with a semipermeable membrane module, using raw water such as seawater, river water containing a solute such as salt, groundwater, lake water, wastewater treated water, etc. More specifically, the present invention aims to provide a water treatment method and a water treatment apparatus for obtaining fresh water stably and inexpensively while preventing oxidative deterioration of a semipermeable membrane module.
  • the present invention has the following configuration.
  • Raw water or pretreated water obtained by pretreatment of the raw water in a pretreatment step is supplied as pressurized water to a semipermeable membrane module by a booster pump, and the supplied water is separated into concentrated water and permeated water.
  • the water treatment method is characterized in that the scale inhibitor is added to the feed water before or within 0 to 60 seconds after the addition of the reducing agent to the feed water.
  • the transition metal is Fe (II / III), Mn (II), Mn (III), Mn (IV), Cu (I / II), Co (II / III), Ni (II), Cr
  • the scale inhibitor is at least aminotris (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), hexaethylenediaminetetra (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), 1-hydroxyethylene-1 , 1, -diphosphonic acid, an organic acid containing at least one of tetramethylenediaminetetra (methylenephosphonic acid) or a salt of an organic acid, and a scale containing a component having a molecular weight of 200 g / mole to 10,000 g / mole It is an inhibitor,
  • the water treatment method as described in (6) characterized by the above-mentioned.
  • the scale inhibitor containing at least one of polyphosphoric acid, phosphorous acid, phosphonic acid, phosphorus hydride, phosphine oxide, ascorbic acid, catechin, polyphenol, and gallic acid as an accessory component.
  • the reducing agent is added to the feed water downstream of the pretreatment step, and the scale inhibitor is added before or after the addition of the reducing agent within 0 to 60 seconds.
  • the water treatment method according to (16). (18) The water treatment method according to (17), wherein the reducing agent and the scale inhibitor are simultaneously added to the supply water.
  • the scale inhibitor and the additional scale inhibitor are the same type of scale inhibitor.
  • the water treatment method according to any one of (1) to (19), wherein the scale inhibitor is a scale inhibitor containing a non-phosphate organic compound.
  • the semipermeable membrane module includes a semipermeable membrane containing polyamide as a main component.
  • the scale inhibitor is added to the supply water by mixing concentrated water of another semipermeable membrane module to which another scale inhibitor is added (1) to (22) )
  • the water treatment method according to any one of (24) A booster pump that pressurizes raw water or its pretreated water as supply water, a semipermeable membrane module that separates the pressurized supply water into concentrated water and permeate, and a reducing agent is added to the supply water
  • a reducing agent addition unit and a scale inhibitor addition unit for adding a scale inhibitor to the feed water are provided, and scale suppression is performed on the feed water before or after addition of the reducing agent to the feed water within 0 to 60 seconds.
  • Water treatment apparatus characterized by being able to add an agent.
  • a water treatment apparatus for supplying pretreated water obtained by pretreating raw water by a pretreatment unit to a semipermeable membrane module as supply water by a booster pump and separating the supplied water into concentrated water and permeated water
  • An additional reducing agent addition unit for adding an additional reducing agent to the raw water, and upstream of the pretreatment unit within 0 to 60 seconds before or after the addition of the additional reducing agent to the raw water.
  • An additional scale inhibitor addition unit for adding a phosphate-based scale inhibitor as an additional scale inhibitor to the raw water, and a scale inhibitor addition unit for adding a scale inhibitor to the feed water downstream of the pretreatment unit And the scale inhibitor can be added to the feed water within 0 to 60 seconds after the feed water is treated by the pretreatment unit.
  • a reducing agent addition unit for adding a reducing agent to the feed water is provided downstream of the pretreatment unit, and the scale inhibitor is added within 0 to 60 seconds before or after the addition of the reducing agent.
  • the present invention makes it possible to stably obtain fresh water while preventing deterioration and fouling of a semipermeable membrane in seawater desalination, particularly in high-concentration seawater such as the Middle East.
  • raw water such as river water, groundwater, lake water, and wastewater treatment water containing salt can be obtained stably and inexpensively while preventing contamination of the semipermeable membrane device, deterioration of the semipermeable membrane module and fouling. It becomes possible.
  • FIG. 1 is an example of a process flow of a semipermeable membrane separation apparatus to which the water treatment method of the present invention can be applied.
  • FIG. 2 is another example of the process flow of the semipermeable membrane separation apparatus to which the water treatment method of the present invention can be applied.
  • FIG. 3 is an example of a process flow of the semipermeable membrane separation apparatus in which the pretreatment unit has a biological treatment function in the water treatment method of the present invention.
  • FIG. 4 is an example of the process flow of the semipermeable membrane separation apparatus in which the pretreatment unit has a biological treatment function and the phosphate scale inhibitor is added upstream of the pretreatment unit in the water treatment method of the present invention. .
  • FIG. 1 is an example of a process flow of a semipermeable membrane separation apparatus to which the water treatment method of the present invention can be applied.
  • FIG. 2 is another example of the process flow of the semipermeable membrane separation apparatus to which the water treatment method of the present invention can be applied.
  • FIG. 3 is an
  • FIG. 5 shows an example of the process flow of the semipermeable membrane separation apparatus in which the pretreatment unit has a biological treatment function and the phosphate scale inhibitor is added to the upstream and downstream of the pretreatment unit in the water treatment method of the present invention. is there.
  • FIG. 6 is an example of a process flow of a semipermeable membrane separation apparatus for refluxing concentrated water obtained by the water treatment method of the present invention to raw water.
  • FIG. 1 An example of a semipermeable membrane separation apparatus to which the water treatment method of the present invention can be applied is shown in FIG.
  • raw water is temporarily stored in the raw water tank 2 from the raw water line 1, and then sent to the pretreatment unit 4 by the raw water supply pump 3 and pretreated.
  • the pretreated water passes through the intermediate water tank 5, the pretreated water supply pump 6, and the safety filter 7, and after being pressurized by the booster pump 8, the pretreated water is concentrated with the permeated water 10 by the semipermeable membrane module 9 composed of a semipermeable membrane module. Separated into water 11.
  • a scale inhibitor when a scale inhibitor is added after adding a reducing agent, an oxidizing substance is sequentially generated by a catalytic action from a transition metal such as copper and a reducing agent such as sodium bisulfite, and the semipermeable membrane module
  • a transition metal such as copper
  • a reducing agent such as sodium bisulfite
  • the semipermeable membrane module In view of deteriorating 9, the addition of a scale inhibitor within 0 to 60 seconds after the start of mixing of a transition metal such as copper and a reducing agent such as sodium bisulfite makes it possible to oxidize due to catalytic action. The knowledge which can suppress substance production was obtained.
  • the scale inhibitor is added to the water supplied to the semipermeable membrane module 9 before or within 0 to 60 seconds after the addition of the reducing agent.
  • transition metals such as copper in the supply water of the semipermeable membrane module 9, the concentration of impurities such as organic matter, the reducing agent concentration, the salinity concentration, and the water temperature, a transition metal such as copper and a reducing agent such as sodium bisulfite From this, it is easy to produce an oxidizing substance by catalytic action, so that the addition of a scale inhibitor preferably within 0 to 10 seconds, more preferably simultaneously, can suppress the production of oxidizing substances by catalytic action more reliably.
  • the addition of the reducing agent may be controlled according to the chlorine concentration or oxidation-reduction potential (ORP) of the supply water or concentrated water of the semipermeable membrane module 9.
  • ORP oxidation-reduction potential
  • the installation position and number of oxidation-reduction potentiometers are not particularly limited, but are generally installed at a plurality of locations.
  • the oxidation-reduction potentiometer 17a is installed and measured to determine whether or not the reducing agent needs to be added by the chemical injection pump 15a, and then measured by at least one of the oxidation-reduction potentiometers 17b, 17c, and 17d. And a method of adjusting the amount of the reducing agent added by the oxidation-reduction potential.
  • the semipermeable membrane in the semipermeable membrane module 9 is a polyamide-based reverse osmosis membrane
  • the oxidation-reduction potential applied to the operation management is preferably set as appropriate according to the type of the reverse osmosis membrane because the oxidation deterioration is likely to occur depending on the type of reverse osmosis.
  • a reducing agent and a scale inhibitor may be added upstream of the safety filter 7, but the safety filter 7 can be cleaned with an oxidizing agent added to sterilize and clean the system constantly or intermittently. Therefore, it is preferable to add a reducing agent and a scale inhibitor downstream of the safety filter 7 as shown in FIG.
  • the scale inhibitor is added intermittently or constantly, but for the purpose of adding the scale inhibitor, in principle, it is always added under conditions where the risk of scale generation is high, depending on the water temperature, scale component concentration, ionic strength, pH, etc. Under conditions where the risk of scale generation is low, there is no need to add a scale inhibitor.
  • water temperature, scale component concentration, ionic strength, and pH are measured in real time without delay, and in response to instantaneous oxidants and transition metal inflows that promote oxidation, the necessity of adding scale inhibitors is determined. Must be determined and requires advanced operational management skills. In such a case, it is preferable to always add a scale inhibitor, although the cost of the scale inhibitor is high, but it is simple and can reliably suppress oxidative degradation and scale generation.
  • the present invention is particularly effective when there is a risk that transition metal is contained in the water supplied to the semipermeable membrane module 9. That is, when the raw water or pretreated water contains 0.01 mg / L or more of a transition metal, the effect is great when the present invention is applied.
  • transition metals suitable for the present invention that is, which are likely to contribute to the oxidative degradation of the reverse osmosis membrane, Fe (II / III), Mn (II), Mn (III), Mn (IV), Cu (I / II), Co (II / III), Ni (II), Cr (II / III / IV / VI) can be mentioned.
  • a scale inhibitor containing a phosphoric acid organic compound is preferable, and a phosphorous acid or phosphonic acid organic compound is more preferable.
  • at least aminotris (methylene phosphonic acid) [English name: aminotris (methylene phosphonic acid)], diethylene triamine penta (methylene phosphonic acid) [English name: diethylenetriamine penta (methylene phosphonic acid)], hexaethylenediamine tetra (methylene phosphonic acid) [English name] : Hexamethylenediamine tetra (methylene phosphonic acid), ethylenediamine tetra (methylene phosphonic acid), 1-hydroxyethylene-1,1, -diphosphonic acid [English name: 1-Hydroxyethylidene-1,1 -diphosphonic acid], tetramethylenediaminetetra (methylenephosphonic acid) [English name: Tetramethylenediamine tetra (methylenephosphoric acid) [English name: Tetramethylenediamine
  • the molecular weight is too small, there is a risk of leaking to the permeate side through the semipermeable membrane. Conversely, if the molecular weight is too large, the amount added will increase, and the scale inhibitor itself may cause fouling. It is not preferable.
  • the scale inhibitor applied to the present invention contains at least one of polyphosphoric acid, phosphorous acid, phosphonic acid, phosphorus hydride, phosphine oxide, ascorbic acid, catechin, polyphenol, and gallic acid as accessory components. It is preferable.
  • the scale inhibitor is a scale inhibitor having a reducing function
  • the amount of reducing agent added such as sodium bisulfite can be reduced, and the amount of oxidizing substances such as persulfate radicals and sulfate radicals generated by the catalytic action can be reduced. Can be reduced.
  • an oxidizer for sterilizing and cleaning the inside of the system constantly or intermittently from a chemical injection tank (for oxidizer) 18a using a chemical injection pump (for oxidizer) 19a as required It is also possible to add a reducing agent after adding and supplying to raw water or pretreated water.
  • the oxidizing agent here is not particularly limited, but hypochlorous acid and alkali salts of permanganic acid are the most typical. Other examples include chlorous acid, chloric acid, perchloric acid, halogen, chromic acid and alkali salts thereof, chlorine dioxide, hydrogen peroxide, and the like.
  • the reducing agent used here is not particularly limited, but preferably contains any of sodium bisulfite, sodium sulfite, sodium pyrosulfite, and sodium thiosulfate.
  • the pH adjuster is generally sulfuric acid or sodium hydroxide, but is not particularly limited.
  • the flocculant is not particularly limited, and a cationic flocculant, an anionic flocculant, and a plurality of types can be appropriately used. However, in consideration of a case where unaggregated material leaks to the semipermeable membrane module, an anionic flocculant having a large charge and repulsion generally possessed by the semipermeable membrane is preferable.
  • the cationic flocculant When applying a cationic flocculant, it may be adsorbed on the semipermeable membrane, so it is preferable to apply after confirming that there is no problem by conducting a test in advance.
  • the cationic flocculant is not particularly limited as long as it has a positive charge and can easily aggregate a negatively charged substance, and is an inorganic flocculant that is inexpensive and has excellent fine particle aggregating power.
  • an organic polymer flocculant having a high cohesive force can be used because the cost is high but the functional groups are very large.
  • ferric chloride, (poly) ferric sulfate, a sulfate band, (poly) aluminum chloride and the like are preferable.
  • polymer flocculants include aniline derivatives, polyethyleneimine, polyamine, polyamide, cation-modified polyacrylamide and the like.
  • the anionic flocculant is not particularly limited as long as it has a negative charge and can easily agglomerate a positively charged substance.
  • An organic flocculant is mentioned.
  • the alginic acid which is a natural organic polymer and the organic polymer-based flocculant polyacrylamide is typical, and an anionic flocculant which is very preferable from the viewpoint of effects.
  • the above-mentioned chemical injection is not particularly limited for line injection or tank (tank) injection, and it is preferable to provide a stirrer or a static mixer as necessary.
  • the semipermeable membrane material to which the present invention can be applied a polymer material such as cellulose acetate polymer, polyamide, polyester, polyimide, and vinyl polymer can be used.
  • the membrane structure has a dense layer on at least one side of the membrane, and an asymmetric membrane having fine pores with gradually larger pore diameters from the dense layer to the inside of the membrane or the other side, or on the dense layer of the asymmetric membrane.
  • any of the composite membranes having a very thin separation functional layer formed of another material may be used.
  • a composite membrane having a functional layer of polyamide having high pressure resistance, high water permeability, and high solute removal performance and having an excellent potential is preferable.
  • a pressure higher than the osmotic pressure in order to obtain fresh water from a high-concentration aqueous solution including seawater, it is necessary to apply a pressure higher than the osmotic pressure, and an operating pressure of at least 5 MPa is often required substantially.
  • a structure in which polyamide is used as a separation functional layer and is held by a support made of a porous membrane or nonwoven fabric is suitable.
  • a composite semipermeable membrane having a functional layer of a crosslinked polyamide obtained by polycondensation reaction between a polyfunctional amine and a polyfunctional acid halide is suitable.
  • a crosslinked polyamide has high chemical stability against acids and alkalis.
  • the crosslinked polyamide is preferably formed by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide, and at least one of the polyfunctional amine or the polyfunctional acid halide component preferably contains a trifunctional or higher functional compound.
  • the polyfunctional amine refers to an amine having at least two primary and / or secondary amino groups in one molecule.
  • two amino groups are any of ortho, meta, and para positions.
  • Aromatic polyfunctional amines such as phenylenediamine, xylylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene and 3,5-diaminobenzoic acid bonded to benzene in the positional relationship of Aliphatic amines such as ethylenediamine and propylenediamine, alicyclic polyfunctional amines such as 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 1,3-bispiperidylpropane, 4-aminomethylpiperazine, etc.
  • aromatic polyfunctional amines are preferred in view of selective separation, permeability, and heat resistance of the membrane.
  • polyfunctional aromatic amines include m-phenylenediamine, p-phenylenediamine, 1, 3,5-triaminobenzene is preferably used.
  • m-PDA m-phenylenediamine
  • the polyfunctional acid halide refers to an acid halide having at least two carbonyl halide groups in one molecule.
  • trifunctional acid halides include trimesic acid chloride, 1,3,5-cyclohexanetricarboxylic acid trichloride, 1,2,4-cyclobutanetricarboxylic acid trichloride, and bifunctional acid halides include biphenyl dicarboxylic acid.
  • Aromatic difunctional acid halides such as acid dichloride, biphenylene carboxylic acid dichloride, azobenzene dicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride, naphthalene dicarboxylic acid chloride, aliphatic difunctional acid such as adipoyl chloride, sebacoyl chloride Mention may be made of alicyclic bifunctional acid halides such as halides, cyclopentane dicarboxylic acid dichloride, cyclohexane dicarboxylic acid dichloride, tetrahydrofuran dicarboxylic acid dichloride.
  • the polyfunctional acid halide is preferably a polyfunctional acid chloride, and considering the selective separation property and heat resistance of the membrane, the polyfunctional aromatic acid chloride is preferable. Preferably there is. Among them, it is more preferable to use trimesic acid chloride from the viewpoint of availability and ease of handling. These polyfunctional acid halides may be used alone or in combination.
  • the method for allowing the polyfunctional acid halide to be present in the separation functional layer is not particularly limited.
  • an aliphatic group is formed on the surface of the separation functional layer formed by interfacial polycondensation between a polyfunctional amine and a polyfunctional acid halide. It exists in the separation functional layer by a covalent bond by contacting the acid halide solution or coexisting an aliphatic acid halide in the interfacial polycondensation of the polyfunctional amine and polyfunctional aromatic acid halide. You just have to let them know.
  • the polyamide separation functional layer is composed of a polyfunctional amine aqueous solution, a polyfunctional acid halide organic solvent solution, and a carbon number different from this.
  • An organic solvent solution of an aliphatic acid halide in the range of ⁇ 4 may be brought into contact with the microporous support membrane and subjected to interfacial polycondensation.
  • the aliphatic acid halide used in the present invention usually has 1 to 4 carbon atoms, preferably 2 to 4 carbon atoms.
  • Such aliphatic acid halides include methanesulfonyl chloride, acetyl chloride, propionyl chloride, butyryl chloride, oxalyl chloride, malonic acid dichloride, succinic acid dichloride, maleic acid dichloride, fumaric acid dichloride, chlorosulfonylacetyl chloride, N, N -Dimethylaminocarbonyl chloride and the like.
  • oxalyl chloride is a main component as a balanced structure that can form a dense structure and does not significantly reduce water permeability.
  • polyamide is susceptible to oxidative degradation and is vulnerable to oxidizing agents such as hypochlorous acid. Therefore, the application of the present invention can efficiently protect the semipermeable membrane from the oxidizing agent, and is very effective.
  • a short-time chlorine contact treatment can be mentioned.
  • This method may be applied as a method for improving the desalination rate, particularly in seawater desalination. Since such a film is brought into contact with an oxidant in advance, durability against the oxidant is inferior to that of a film not subjected to chlorine contact treatment. It is preferable that the application of the present invention exerts a great effect.
  • the support including the microporous support membrane is a layer that does not substantially have separation performance, and is provided to give mechanical strength to the separation functional layer of the crosslinked polyamide having substantial separation performance.
  • a material in which a microporous support film is formed on a substrate such as a fabric or a nonwoven fabric is used.
  • the material of the microporous support membrane is not particularly limited.
  • homopolymers or copolymers of polysulfone, cellulose acetate, cellulose nitrate, polyvinyl chloride, polyacrylonitrile, polyphenylene sulfide, polyphenylene sulfide sulfone, etc. may be used alone or in combination. Can be used.
  • polysulfone is preferably used because of its high chemical, mechanical and thermal stability and easy molding.
  • the structure of the microporous support membrane is not particularly limited, and even if the structure has fine pores having a uniform pore diameter from the surface to the back surface, the surface has dense and fine pores on one side. It may be an asymmetric structure having a hole whose diameter gradually increases from one surface to the other surface.
  • the size of the fine micropores is preferably 100 nm or less.
  • the air permeability of the substrate is 0.1 to 2.0 cm 3 / cm 2 ⁇ s, preferably 0.4 to 1.5 cm 3. / Cm 2 ⁇ s is preferable.
  • the air permeability is measured based on the JIS L1096 Frazier method.
  • the nonwoven fabric to be used is not particularly limited, but at least two kinds of polyester fibers having a single yarn fiber degree of 0.3 to 2.0 dtex, particularly 0.1 to 0.6 dtex are used. It is preferable to use a nonwoven fabric formed by blending fibers.
  • pores having a diameter of 10 ⁇ m or less can be formed between the fibers constituting the substrate, and the bonding strength between the microporous support membrane and the nonwoven fabric can be increased. Furthermore, it is preferable that pores of 10 ⁇ m or less are present at a ratio of 90% or more.
  • the pore diameter here is measured based on the bubble point method of JIS K3832.
  • the element used in the semipermeable membrane module to which the present invention can be applied may be an element having an appropriate shape in accordance with the membrane form of the semipermeable membrane.
  • the semipermeable membrane of the present invention may be any of a hollow fiber membrane, a tubular membrane, and a flat membrane, and the element has a substantial liquid chamber on both sides of the semipermeable membrane, from one surface of the semipermeable membrane. There is no particular limitation as long as the liquid can be transmitted under pressure to the other surface.
  • flat membranes plate and frame types with a structure in which a plurality of composite semipermeable membranes supported by a frame are stacked, and types called spiral types are common, and these elements are rectangular or cylindrical housings.
  • a plurality of semipermeable membranes are arranged in the casing and the end portions thereof are potted to form a liquid chamber to constitute an element.
  • a liquid separator such an element is used alone or connected in series or in parallel.
  • a flat membrane-like separation membrane is wrapped around a water collecting pipe together with a supply-side flow channel member, a permeate-side flow channel member, and a film for increasing pressure resistance as required.
  • a net-like material, a mesh-like material, a grooved sheet, a corrugated sheet, or the like can be used for the supply-side channel member.
  • a net-like material, a mesh-like material, a grooved sheet, a corrugated sheet, or the like can be used for the permeate-side channel member. Any of them may be a net or sheet independent of the separation membrane, or may be integrated by adhesion or fusion.
  • the water collecting pipe has a plurality of holes on the side surface of the pipe, and the material may be any of resin, metal, etc., but in view of cost and durability, resins such as noryl resin and ABS resin are usually used. .
  • an adhesion method is preferably used.
  • the adhesive any known adhesive such as a urethane-based adhesive, an epoxy-based adhesive, and a hot melt adhesive can be used.
  • Examples of the pretreatment for supplying the raw water to the semipermeable membrane module in the present invention include removal of turbid components and organic substances and sterilization. These treatments can prevent performance degradation due to clogging or deterioration of the semipermeable membrane.
  • the specific pretreatment may be appropriately selected depending on the properties of the raw water.For example, when processing raw water containing a large amount of turbid components, sand filtration is performed after adding a flocculant such as polyaluminum chloride, Further, for example, it is preferable to perform filtration using a microfiltration membrane or an ultrafiltration membrane in which a plurality of hollow fiber membranes are bundled.
  • the biological membrane is chlorine or the like. It is preferable to deactivate the oxidizing agent by adding a reducing agent upstream of the pretreatment step having a biological treatment function so as not to be damaged by the oxidizing agent.
  • a reducing agent is added from the chemical injection tank (reducing agent) 14b to the upstream of the pretreatment unit 4 having a biological treatment function using a chemical injection pump (reducing agent) 15b.
  • reducing agent reducing agent
  • the biological treatment function is improved. It is possible to suppress the generation of an oxidizing substance due to catalytic action while stabilizing the pretreatment process.
  • the reducing agent added upstream of the pretreatment unit 4 having the biological treatment function is intermittently or constantly added, but the addition control is performed according to the chlorine concentration and the oxidation-reduction potential (ORP) of the pretreatment unit 4 having the biological treatment function.
  • the chlorine concentration and oxidation-reduction potential in the feed water of the pretreatment unit 4 having a biological treatment function may be measured by the chlorine concentration meter 16b and the oxidation-reduction potential (ORP) meter 17e and set for operation management.
  • a reducing agent in the chemical injection tank (reducing agent) 14b may be added so as to maintain the chlorine concentration or less or the oxidation-reduction potential (ORP) or less.
  • the installation position and number of oxidation-reduction potentiometers are not particularly limited, but are generally installed at a plurality of locations.
  • the oxidation-reduction potentiometer 17e is installed and measured to determine whether or not the reducing agent needs to be added by the chemical injection pump 15b, and the reducing agent addition amount is adjusted by the subsequent oxidation-reduction potential by the oxidation-reduction potential 17f.
  • the method is mentioned.
  • the oxidation-reduction potential is preferably maintained at 350 mV or less so that the oxidant does not damage the microorganisms in the pretreatment unit 4 having a biological treatment function, and the amount of addition of the reducing agent is set to 200 mV or less. It is more preferable to adjust.
  • a pretreatment unit 4 having a biological treatment function for example, a biological sand filter
  • a biological treatment function for example, a biological sand filter
  • a phosphoric acid system is used upstream of a pretreatment unit 4 having a biological treatment function by using a chemical injection pump (for scale inhibitor) 13 c from a chemical injection tank (for scale inhibitor) 12 c.
  • a scale inhibitor containing an organic compound the phosphoric acid in the scale inhibitor may be taken in as a nutrient salt into the biofilm in the pretreatment unit 4, so that transition metals such as copper by the scale inhibitor There is a concern that the effect of trapping may be reduced. Therefore, it is effective to add a scale inhibitor downstream from the pretreatment unit 4 having a biological treatment function using a chemical injection pump (for scale inhibitor) 13c from a chemical injection tank (for scale inhibitor) 12c.
  • scale suppression is performed by using a chemical injection pump (for scale inhibitor) 13d from a chemical injection tank (for scale inhibitor) 12d.
  • a chemical injection pump for scale inhibitor 13d from a chemical injection tank (for scale inhibitor) 12d.
  • a reducing agent and a scale inhibitor are added upstream of the pretreatment unit 4 having a biological treatment function, but a new oxidizing substance is generated and mixed in the middle of reaching the semipermeable membrane module 9. Since there is a concern that oxidative deterioration of the semipermeable membrane module 9 may occur, before the biological treatment function is provided from the chemical injection tank (for reducing agent) 14d using the chemical injection pump (for reducing agent) 15d. 0 to 60 seconds before or after adding the reducing agent from the chemical injection tank (for scale inhibitor) 12d using the chemical injection pump (for scale inhibitor) 13d by adding the reducing agent downstream of the processing unit 4.
  • a scale inhibitor within the range, it is possible to suppress the generation of an oxidative substance by catalysis while stabilizing the pretreatment process, which is preferable.
  • the scale inhibitors added upstream and downstream of the pretreatment unit 4 having a biological treatment function may be the same type or different types, but the same type is preferable in terms of equipment and addition control.
  • a phosphate containing phosphorus as a nutrient salt is supplied onto the membrane surface of the semipermeable membrane module 9, the occurrence of biofouling is promoted, and phosphoric acid is taken in by the generated biofouling.
  • the transition material such as copper cannot be captured by the scale inhibitor, and the generation of an oxidizing substance is caused by the catalytic action. Therefore, it is possible to add a scale inhibitor containing non-phosphoric organic substances upstream of the semipermeable membrane module 9 from a chemical injection tank (for scale inhibitor) 12d using a chemical injection pump (for scale inhibitor) 13d. preferable.
  • Non-phosphate scale inhibitors applicable to the present invention include synthetic polymers such as polyacrylic acid, sulfonated polystyrene, polyacrylamide, and polyallylamine, and natural polymers such as carboxymethylcellulose, chitosan, and alginic acid as monomers.
  • synthetic polymers such as polyacrylic acid, sulfonated polystyrene, polyacrylamide, and polyallylamine
  • natural polymers such as carboxymethylcellulose, chitosan, and alginic acid as monomers.
  • ethylenediaminetetraacetic acid (EDTA) can be used, and ethylenediaminetetraacetic acid (EDTA) is particularly preferably used from the viewpoint of ease of operation such as solubility and cost.
  • the concentration of the concentrated water in the second-stage semipermeable membrane module 9b is often lower than that of the raw water.
  • the method of reducing the raw water concentration is often used.
  • the pH may be raised for the purpose of increasing the recovery rate or improving the removal rate of boron. For this reason, scale may be easily generated.
  • the scale inhibitor added from the chemical injection tank (for scale inhibitor) 12e using the chemical injection pump (for scale inhibitor) 13e is mixed with the supply water of the second-stage semipermeable membrane module 9b.
  • the concentrated water of the second-stage semipermeable membrane module 9b containing a scale inhibitor is preferably sent to the first-stage semipermeable membrane module 9a.
  • seawater was stored in a water tank while constantly adding 1 mg / L-Cl 2 of sodium hypochlorite and 0.1 mg / L-Cu of copper sulfate.
  • a pressurized hollow fiber membrane module (HFU-2008) 1 having a membrane area of 11.5 m 2 made of polyvinylidene fluoride hollow fiber UF membrane having a molecular weight cut off of 150,000 Da manufactured by Toray Industries, Inc.
  • the seawater stored by the pressurization pump was completely filtered at a filtration flux of 3 m / d and stored in an intermediate water tank.
  • the pretreatment unit is equipped with a backwash pump that supplies filtered water from the secondary side of the membrane to the primary side, and a compressor that supplies air from the lower part of the pretreatment unit to the primary side of the membrane, After continuous filtration for 30 minutes, the filtration is temporarily suspended, and air is supplied at 14 NL / min from the lower part of the pretreatment unit with backwashing of 3.3 m / d of backwashing flux using the filtered water of the intermediate tank as supply water. Washing that simultaneously performed air washing was carried out for 1 minute, and then, after the dirt in the pretreatment unit was drained, a cycle returning to normal filtration was repeated.
  • the filtered water stored in the intermediate water tank was added with a reducing agent after adding a scale inhibitor, passed through a safety filter with a supply pump, and then supplied to a semipermeable membrane module with a booster pump to produce fresh water.
  • the semipermeable membrane module was operated with a reverse osmosis membrane element (TM810C) manufactured by Toray Industries, Inc. and operated at an RO supply flow rate of 1.0 m 3 / h and a permeation flow rate of 0.12 m 3 / h (recovery rate 12%). .
  • T810C reverse osmosis membrane element
  • Example 1 After adding 1 mg / L of a phosphonic acid-based commercial scale inhibitor as a scale inhibitor, the operation was continued for 3 months while continuously adding sodium bisulfite 2 mg / L upstream of the semipermeable membrane module within 10 seconds. . During this time, the oxidation-reduction potential of the pretreatment water was 350 mV or less. Further, the redox potential of the reverse osmosis membrane concentrated water was 350 mV or less.
  • the amount of water produced by the reverse osmosis membrane element used decreased by 10%, the differential pressure increased by 15%, and the salt concentration of the permeated water deteriorated 1.1 times the initial value.
  • the reverse osmosis membrane element was disassembled and washed with acid and alkali, and as a result, both the amount of water produced and the quality of the permeated water were recovered to the same level as the initial performance. Furthermore, when the surface of the film was analyzed using ESCA (Electron-Spectrocopy-for-Chemical-Analysis; X-ray photoelectron analysis), no C—Cl bond was detected, and it was assumed that there was no oxidative deterioration of the film surface due to halogen contact.
  • ESCA Electro-Spectrocopy-for-Chemical-Analysis; X-ray photoelectron analysis
  • Example 2 The operation was carried out under the same conditions as in Example 1 except that 1 mg / L of a phosphonic acid-based commercial scale inhibitor was added as a scale inhibitor, and then 2 mg / L of sodium hydrogen sulfite was continuously added within 60 seconds. During this time, the oxidation-reduction potential of the pretreatment water was 350 mV or less. Further, the redox potential of the reverse osmosis membrane concentrated water was 350 mV or less.
  • the amount of water produced by the reverse osmosis membrane element used decreased by 10%, the differential pressure increased by 15%, and the salt concentration of the permeated water deteriorated 1.2 times the initial value.
  • the reverse osmosis membrane element was disassembled and washed with acid and alkali, and as a result, both the amount of water produced and the quality of the permeated water were recovered to the same level as the initial performance. Furthermore, when the surface of the film was analyzed using ESCA (Electron-Spectrocopy-for-Chemical-Analysis; X-ray photoelectron analysis), no C—Cl bond was detected, and it was assumed that there was no oxidative deterioration of the film surface due to halogen contact.
  • ESCA Electro-Spectrocopy-for-Chemical-Analysis; X-ray photoelectron analysis
  • Example 3 The operation was carried out under the same conditions as in Example 1 except that 2 mg / L of sodium bisulfite was added and 1 mg / L of a phosphonic acid-based commercial scale inhibitor was continuously added within 60 seconds. During this time, the oxidation-reduction potential of the pretreatment water was 350 mV or less. The redox potential of the reverse osmosis membrane concentrated water was also 350 mV or less.
  • the amount of water produced by the reverse osmosis membrane element used decreased by 10%, the differential pressure increased by 15%, and the salt concentration of the permeated water deteriorated 1.2 times the initial value.
  • the reverse osmosis membrane element was disassembled and washed with acid and alkali, and as a result, both the amount of water produced and the quality of the permeated water were recovered to the same level as the initial performance. Furthermore, when the surface of the film was analyzed using ESCA (Electron-Spectrocopy-for-Chemical-Analysis; X-ray photoelectron analysis), no C—Cl bond was detected, and it was assumed that there was no oxidative deterioration of the film surface due to halogen contact.
  • ESCA Electro-Spectrocopy-for-Chemical-Analysis; X-ray photoelectron analysis
  • Example 4 The operation was carried out under the same conditions as in Example 1, except that 2 mg / L of sodium bisulfite was added and 1 mg / L of a phosphonic acid-based commercial scale inhibitor was continuously added within 10 seconds. During this time, the oxidation-reduction potential of the pretreatment water was 350 mV or less. The redox potential of the reverse osmosis membrane concentrated water was also 350 mV or less.
  • the amount of water produced by the reverse osmosis membrane element used decreased by 10%, the differential pressure increased by 15%, and the salt concentration of the permeated water deteriorated 1.1 times the initial value.
  • the reverse osmosis membrane element was disassembled and washed with acid and alkali, and as a result, both the amount of water produced and the quality of the permeated water were recovered to the same level as the initial performance. Furthermore, when the surface of the film was analyzed using ESCA (Electron-Spectrocopy-for-Chemical-Analysis; X-ray photoelectron analysis), no C—Cl bond was detected, and it was assumed that there was no oxidative deterioration of the film surface due to halogen contact.
  • ESCA Electro-Spectrocopy-for-Chemical-Analysis; X-ray photoelectron analysis
  • Example 5 At a filtration flux of 0.5 m / d, the biofilm deposited on the surface of the filtration membrane and the biomass biological treatment function composed of the suspended state held on the primary side (feed water side) of the filtration membrane are expressed. After filtering the whole amount and continuously filtering for one day, the filtration is temporarily interrupted, the dirt in the pretreatment unit is drained, and then the cycle to return to normal filtration is repeated. In the upstream of the pretreatment unit, sodium bisulfite 2 mg / After adding L, phosphonic acid-based commercial scale inhibitor 1 mg / L is continuously added within 10 seconds, and further, polyacrylic acid 1 mg / L, which is a non-phosphoric acid-based scale inhibitor, is added downstream of the pretreatment unit.
  • Example 2 The operation was carried out under the same conditions as in Example 1 except that they were continuously added. During this time, the oxidation-reduction potential of the pretreatment water was 350 mV or less. The redox potential of the reverse osmosis membrane concentrated water was also 350 mV or less.
  • the amount of water produced by the reverse osmosis membrane element used decreased by 10%, the differential pressure increased by 5%, and the salt concentration of the permeated water deteriorated 1.1 times the initial value.
  • the reverse osmosis membrane element was disassembled and washed with acid and alkali, and as a result, both the amount of water produced and the quality of the permeated water were recovered to the same level as the initial performance. Furthermore, when the surface of the film was analyzed using ESCA (Electron-Spectrocopy-for-Chemical-Analysis; X-ray photoelectron analysis), no C—Cl bond was detected, and it was assumed that there was no oxidative deterioration of the film surface due to halogen contact.
  • ESCA Electro-Spectrocopy-for-Chemical-Analysis; X-ray photoelectron analysis
  • Example 6 The same conditions as in Example 5 except that 1 mg / L of a phosphonic acid-based commercial scale inhibitor, which is a phosphoric acid-based scale inhibitor, was continuously added downstream of the pretreatment unit as a substitute for the non-phosphate-based scale inhibitor. The operation was carried out. During this time, the oxidation-reduction potential of the pretreatment water was 350 mV or less. The redox potential of the reverse osmosis membrane concentrated water was also 350 mV or less.
  • a phosphonic acid-based commercial scale inhibitor which is a phosphoric acid-based scale inhibitor
  • the amount of water produced by the reverse osmosis membrane element used decreased by 10%, the differential pressure increased by 20%, and the salt concentration of the permeated water deteriorated 1.1 times the initial value.
  • the reverse osmosis membrane element was disassembled and washed with acid and alkali, and as a result, both the amount of water produced and the quality of the permeated water were recovered to the same level as the initial performance. Furthermore, when the surface of the film was analyzed using ESCA (Electron-Spectrocopy-for-Chemical-Analysis; X-ray photoelectron analysis), no C—Cl bond was detected, and it was assumed that there was no oxidative deterioration of the film surface due to halogen contact.
  • ESCA Electro-Spectrocopy-for-Chemical-Analysis; X-ray photoelectron analysis
  • Example 1 The operation was carried out under the same conditions as in Example 1 except that 2 mg / L of sodium bisulfite was added and 30 mg later, 1 mg / L of a phosphonic acid-based commercial scale inhibitor was continuously added. During this time, the oxidation-reduction potential of the pretreatment water was 350 mV or less, but the oxidation-reduction potential of the reverse osmosis membrane concentrated water frequently occurred over 350 mV, and the reverse osmosis membrane surface was in an oxidized state. I was suspected.
  • the amount of water produced by the reverse osmosis membrane element used decreased by 10%, the differential pressure increased by 10%, and the salt concentration of the permeated water deteriorated 1.5 times the initial value.
  • the reverse osmosis membrane element was disassembled and washed with acid and alkali, and as a result, both the amount of water produced and the quality of the permeated water were recovered to the same level as the initial performance. Furthermore, when the surface of the film was analyzed using ESCA (Electron Spectroscopic for Chemical Chemical Analysis; X-ray photoelectron analysis), C—Cl bonds were observed, and oxidative degradation of the film surface due to chlorine-based oxidizing substances was suspected.
  • ESCA Electrode Spectroscopic for Chemical Chemical Analysis; X-ray photoelectron analysis
  • Example 2 The operation was carried out under the same conditions as in Example 1, except that 2 mg / L of sodium bisulfite was added, and 1 mg / L of a phosphonic acid-based commercial scale inhibitor was continuously added after 2 minutes. During this time, the redox potential of the pretreated water was 350 mV or less, but the redox potential of the reverse osmosis membrane concentrated water occurred several times, and the redox potential of the collected reverse osmosis membrane concentrated water was Since it gradually increased and exceeded 350 mV, it was suspected that the oxidation-reduction potential reverse osmosis membrane surface was in an oxidized state.
  • the amount of water produced by the reverse osmosis membrane element used decreased by 10%, the differential pressure increased by 12%, and the salt concentration of the permeated water deteriorated 1.3 times the initial value.
  • the reverse osmosis membrane element was disassembled and washed with acid and alkali, and as a result, both the amount of water produced and the quality of the permeated water were recovered to the same level as the initial performance. Furthermore, when the surface of the film was analyzed using ESCA (Electron Spectroscopic for Chemical Chemical Analysis; X-ray photoelectron analysis), C—Cl bonds were observed, and oxidative degradation of the film surface due to chlorine-based oxidizing substances was suspected.
  • ESCA Electrode Spectroscopic for Chemical Chemical Analysis; X-ray photoelectron analysis
  • Example 3 The operation was carried out under the same conditions as in Example 1 except that 1 mg / L of a phosphonic acid-based commercial scale inhibitor was added as a scale inhibitor, and then 2 mg / L of sodium hydrogen sulfite was continuously added 30 minutes later. During this time, the redox potential of the pretreated water was 350 mV or less, but the redox potential of the reverse osmosis membrane concentrated water occurred several times, and the redox potential of the collected reverse osmosis membrane concentrated water was Since it gradually increased and exceeded 350 mV, it was suspected that the oxidation-reduction potential reverse osmosis membrane surface was in an oxidized state.
  • the amount of water produced by the reverse osmosis membrane element used decreased by 10%, the differential pressure increased by 12%, and the salt concentration of the permeated water deteriorated 1.3 times the initial value.
  • the reverse osmosis membrane element was disassembled and washed with acid and alkali, and as a result, both the amount of water produced and the quality of the permeated water were recovered to the same level as the initial performance. Furthermore, when the surface of the film was analyzed using ESCA (Electron Spectroscopic for Chemical Chemical Analysis; X-ray photoelectron analysis), C—Cl bonds were observed, and oxidative degradation of the film surface due to chlorine-based oxidizing substances was suspected.
  • ESCA Electrode Spectroscopic for Chemical Chemical Analysis; X-ray photoelectron analysis
  • Raw water line 2 Raw water tank 3: Raw water supply pump 4: Pretreatment unit 5: Intermediate water tank 6: Pretreatment water supply pump 7: Security filter 8: Booster pumps 9, 9a, 9b: Semipermeable membrane module 10: Permeation Water 11: Concentrated water 12a, 12b, 12c, 12d, 12e: Chemical injection tank (for scale inhibitor) 13a, 13b, 13c, 13d, 13e: chemical injection pump (for scale inhibitor) 14a, 14b, 14c, 14d, 14e: chemical injection tank (for reducing agent) 15a, 15b, 15c, 15d, 15e: chemical injection pump (for reducing agent) 16a, 16b: Chlorine meters 17a, 17b, 17c, 17d, 17e, 17f: Redox potential (ORP) meter 18a: Chemical injection tank (for oxidizing agent) 19a: chemical injection pump (for oxidizing agent)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Water Treatment By Sorption (AREA)
  • Physical Water Treatments (AREA)

Abstract

本発明は、原水もしくはその前処理水を、供給水として昇圧ポンプによって半透膜モジュールに加圧供給し、該供給水を濃縮水と透過水に分離する水処理方法において、該供給水に還元剤を添加する前または添加した後0~60秒以内に該供給水にスケール抑制剤を添加することを特徴とする水処理方法に関する。

Description

水処理方法および水処理装置
 本発明は、海水や、塩分などの溶質を含む河川水、地下水、湖水、廃水処理水などの原水から、半透膜モジュールで低濃度溶質の透過水を得るための水処理方法および水処理装置およびその運転方法に関するものであり、さらに詳しくは、半透膜モジュールの酸化劣化を防止しつつ、安定的かつ安価に淡水を得るための水処理方法および水処理装置に関するものである。
 近年、水資源の枯渇が深刻になりつつあり、これまで利用されてこなかった水資源の活用が検討され、特に最も身近でそのままでは利用できなかった海水から飲料水を製造する技術、いわゆる“海水淡水化”、更には下廃水を浄化し、処理水を淡水化する再利用技術が注目されてきている。海水淡水化は、従来、水資源が極端に少なく、かつ、石油による熱資源が非常に豊富である中東地域で蒸発法を中心に実用化されてきているが、熱源が豊富でない中東以外の地域ではエネルギー効率の高い逆浸透法が採用されている。
 しかしながら、最近では、逆浸透法の技術進歩による信頼性の向上やコストダウンが進み、中東地域において、逆浸透法海水淡水化プラントが建設され、世界的な展開を見せつつある。
 下廃水再利用は、内陸や海岸沿いの都市部や工業地域で、水源がないような地域や排水規制のために放流量が制約されているような地域で適用され始めている。特に、水源が乏しい島国のシンガポールでは、国内で発生する下水を処理後、海に放流せずに貯留し、逆浸透膜で飲料できるレベルの水にまで再生し、水不足に対応している。
 海水淡水化や下廃水再利用に適用される逆浸透法は、塩分などの溶質を含んだ水に浸透圧以上の圧力を加えて半透膜を透過させることで、溶質が除去された水を得ることができる。この技術は例えば海水、かん水、有害物を含んだ水から飲料水を得ることも可能であるし、また、工業用超純水の製造、排水処理、有価物の回収などにも用いられてきた。
 逆浸透膜を適用した水処理装置を安定運転させるためには、取水する原水水質に応じた前処理が必要であり、前処理が不十分だと、逆浸透膜が劣化したりファウリング(膜面汚れ)したりと、安定運転が困難になり易い。特に、逆浸透膜を劣化させる化学物質に逆浸透膜が晒された場合、洗浄によっても回復不能な致命的な状況に陥る可能性がある。即ち、逆浸透膜の機能層(逆浸透機能を発現する部分)が分解し、水と溶質との分離性能が低下する。
 一方、前処理を十分に行っても、長期間運転継続すると、取水配管から逆浸透モジュールまでバイオフィルムが形成され、その結果として逆浸透膜のバイオファウリングが発生し、安定運転が困難になる。そのため、常時もしくは間欠的に、安価な次亜塩素酸などの酸化剤を添加し、バイオフィルム発生を防止することが一般的である(非特許文献1)。しかし、酸化剤は、逆浸透膜の機能層にダメージを与え易く、特に逆浸透膜の主流であるポリアミドは、酸化劣化を生じやすい(非特許文献2)。そのため、酸化剤によるバイオフィルムの発生防止は、逆浸透膜の前までにとどめ、還元剤によって酸化剤を中和し、逆浸透膜を保護することが一般的である。なお、逆浸透膜は、逆浸透膜に悪影響を及ぼさない殺菌剤添加や洗浄剤で洗浄し、バイオファウリングの発生を防止する。
 ところが、逆浸透膜の前で亜硫酸水素ナトリウムなどの還元剤による中和を十分に行っても、逆浸透膜への供給水(前処理水)中に銅などの遷移金属が含まれていると、亜硫酸イオンが亜硫酸ラジカルとなり、さらに酸化性の過硫酸ラジカル、硫酸ラジカルなどの酸化性物質が生成される触媒反応が生じ易くなるので、逆浸透膜を酸化劣化させることが報告されている(非特許文献3)。
 触媒反応によって発生した酸化性物質による酸化劣化を防止する方法として、過剰な還元剤を添加することが一般的であるが、過剰な還元剤の添加は還元剤を餌とするバイオファウリングが生成しやすいことが報告されている(非特許文献4)。その結果として、安定運転のために必要な殺菌剤や洗浄剤が多く必要となり、安定運転が困難となったり、運転コストが高くなったりする。
 対応策として、逆浸透膜の濃縮水の酸化還元電位を監視し、還元剤の添加量を抑えつつ、触媒作用による酸化性物質生成を抑制することが提案されている(特許文献1)。しかし、酸化還元電位はそれほど高感度ではないため、濃縮水の酸化還元電位を監視するのみで、逆浸透膜を完全に保護することは容易でなく、何よりも、濃縮水の監視のみでは、逆浸透膜近傍が酸化状態になってから初めて異常を検知できるようになるため、短時間ではあるが、逆浸透膜が酸化性物質に晒されてしまうことになる。
 また、ホスホン酸系のスケール抑制剤を添加し、銅などの遷移金属をスケ-ル抑制剤で捕捉することによって、銅などの遷移金属と亜硫酸水素ナトリウムなどの還元剤との反応を阻害し、触媒作用による酸化性物質生成を抑制することが提案されている(特許文献2)。しかし、亜硫酸水素ナトリウムなどの還元剤とスケール抑制剤との添加順序やタイミングによっては、銅などの遷移金属がスケール抑制剤に捕捉される前に還元剤と反応が進んでしまい、効果的に抑制できないという問題がある。
日本国特開平09-057076号公報 日本国特開2013-52333号公報 日本国特開平02-115027号公報 日本国特開2013-111559号公報 日本国特許5804228号公報
M. Furuichiら,Over-Eight-year Operation and Maintenance of 40,000 m3/day Seawater RO Plant in Japan,Proc. of IDA World Congress,SP05-209(2005) 植村忠廣ら、複合逆浸透膜の耐塩素性と塩素劣化による膜構造、膜分離特性の変化、日本海水学会誌、第57巻、第3号(2003) Yosef Ayyashら,Performance of reverse osmosis membrane in Jeddah Phase I plant,Desalination,96,215-224(1994) M.Nagaiら,SWRO Desalination for High Salinity,Proc. of IDA World Congress,DB09-173(2009)
 本発明は、海水や、塩分などの溶質を含む河川水、地下水、湖水、廃水処理水などの原水を用いて、半透膜モジュールで低濃度の透過水を得るための水処理方法および水処理装置に関するものであり、さらに詳しくは、半透膜モジュールの酸化劣化を防止しつつ、安定的かつ安価に淡水を得るための水処理方法および水処理装置を提供することを目的とする。
 前記課題を解決するために、本発明は次の構成をとる。
 (1)原水もしくは前記原水を前処理工程により前処理した前処理水を、供給水として昇圧ポンプによって半透膜モジュールに加圧供給し、該供給水を濃縮水と透過水とに分離する水処理方法において、該供給水に還元剤を添加する前または添加した後0~60秒以内に該供給水にスケール抑制剤を添加することを特徴とする水処理方法。
 (2)前記供給水に還元剤を添加する前または添加した後0~10秒以内に該供給水に前記スケール抑制剤を添加することを特徴とする(1)に記載の水処理方法。
 (3)前記供給水が、遷移金属を0.001mg/L以上含有する供給水であることを特徴とする(1)または(2)に記載の水処理方法。
 (4)前記遷移金属が、Fe(II/III)、Mn(II)、Mn(III)、Mn(IV)、Cu(I/II)、Co(II/III)、Ni(II)、Cr(II/III/IV/VI)の少なくとも一つからなる遷移金属であることを特徴とする(3)に記載の水処理方法。
 (5)前記スケール抑制剤が、還元機能を有するスケール抑制剤であることを特徴とする(1)~(4)のいずれかに記載の水処理方法。
 (6)前記スケール抑制剤が、リン酸系の有機化合物を含むスケール抑制剤であることを特徴とする(1)~(5)のいずれかに記載の水処理方法。
 (7)前記スケール抑制剤が、少なくとも、アミノトリス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、ヘキサエチレンジアミンテトラ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、1-ヒドロキシエチレン-1,1,-ジホスホン酸、テトラメチレンジアミンテトラ(メチレンホスホン酸)のうち一つ以上を含む有機酸もしくは有機酸の塩であるとともに、分子量が200g/モル以上10000g/モル以下である成分を含むスケール抑制剤であることを特徴とする(6)に記載の水処理方法。
 (8)前記スケール抑制剤が、少なくとも、ポリリン酸、亜リン酸、ホスホン酸、水素化リン、ホスフィンオキシド、アスコルビン酸、カテキン、ポリフェノール、没食子酸のうち一つ以上を副成分として含むスケール抑制剤であることを特徴とする(6)または(7)に記載の水処理方法。
 (9)前記供給水が、酸化剤を添加した後に、前記還元剤を添加する供給水であることを特徴とする(1)~(8)のいずれかに記載の水処理方法。
 (10)前記供給水に前記還元剤を添加する0~60秒前に該供給水に前記スケール抑制剤を添加することを特徴とする(1)~(9)のいずれかに記載の水処理方法。
 (11)前記供給水に前記還元剤を添加する0~10秒前に該供給水に前記スケール抑制剤を添加することを特徴とする(1)~(10)のいずれかに記載の水処理方法。
 (12)前記供給水に前記還元剤と前記スケール抑制剤とを同時添加することを特徴とする(1)~(11)のいずれかに記載の水処理方法。
 (13)前記還元剤が亜硫酸水素ナトリウム、亜硫酸ナトリウム、ピロ亜硫酸ナトリウム、チオ硫酸ナトリウムのいずれかを含む還元剤であることを特徴とする(1)~(12)のいずれかに記載の水処理方法。
 (14)前記前処理工程として生物処理機能を有することを特徴とする(1)~(13)のいずれかに記載の水処理方法。
 (15)原水を前処理工程により前処理した前処理水を、供給水として昇圧ポンプによって半透膜モジュールに加圧供給し、該供給水を濃縮水と透過水とに分離する水処理方法において、前記前処理工程の上流で、前記原水に追加の還元剤を添加する前または添加した後0~60秒以内に、さらに追加のスケール抑制剤としてリン酸系のスケール抑制剤を添加し、前記原水を前記前処理工程で処理した後0~60秒以内に、前記スケール抑制剤を添加することを特徴とする水処理方法。
 (16)前記供給水に前記追加の還元剤と前記追加のスケール抑制剤とを同時に添加することを特徴とする(15)に記載の水処理方法。
 (17)前記前処理工程の下流で前記供給水に前記還元剤を添加し、前記還元剤を添加する前または添加した後0~60秒以内に前記スケール抑制剤を添加することを特徴とする(15)または(16)に記載の水処理方法。
 (18)前記供給水に前記還元剤と前記スケール抑制剤とを同時に添加することを特徴とする(17)に記載の水処理方法。
 (19)前記スケール抑制剤と前記追加のスケール抑制剤とが同種のスケール抑制剤であることを特徴とする(15)~(18)のいずれかに記載の水処理方法。
 (20)前記スケール抑制剤が非リン酸系の有機化合物を含むスケール抑制剤であることを特徴とする(1)~(19)のいずれかに記載の水処理方法。
 (21)前記半透膜モジュールが、ポリアミドを主成分とする半透膜を含むことを特徴とする(1)~(20)のいずれかに記載の水処理方法。
 (22)前記半透膜が、製造時に塩素処理されている半透膜であることを特徴とする(21)に記載の水処理方法。
 (23)別のスケール抑制剤が添加された、他の半透膜モジュールの濃縮水を混合することによって、前記供給水に前記スケール抑制剤を添加することを特徴とする(1)~(22)のいずれかに記載の水処理方法。
 (24)原水もしくはその前処理水を供給水として加圧する昇圧ポンプと、昇圧された該供給水を濃縮水と透過水とに分離する半透膜モジュールと、該供給水に還元剤を添加する還元剤添加ユニットと、該供給水にスケール抑制剤を添加するスケール抑制剤添加ユニットを備え、該供給水に還元剤を添加する前または添加した後0~60秒以内に該供給水にスケール抑制剤を添加可能なことを特徴とする水処理装置。
 (25)還元剤添加ユニットの上流に、酸化剤を添加する酸化剤添加ユニットを備えることを特徴とする(24)に記載の水処理装置。
 (26)還元剤添加ユニットの上流または下流に、生物処理機能を有する前処理ユニットを備えることを特徴とする(24)または(25)に記載の水処理装置。
 (27)原水を前処理ユニットにより前処理した前処理水を、供給水として昇圧ポンプによって半透膜モジュールに加圧供給し、該供給水を濃縮水と透過水とに分離する水処理装置において、前記原水に追加の還元剤を添加する追加の還元剤添加ユニットと、該原水に前記追加の還元剤を添加する前または添加した後0~60秒以内に前記前処理ユニットの上流で、該原水に追加のスケール抑制剤としてリン酸系のスケール抑制剤を添加する追加のスケール抑制剤添加ユニットと、前記前処理ユニットの下流で、該供給水にスケール抑制剤を添加するスケール抑制剤添加ユニットとを備え、該供給水に前記前処理ユニットで処理した後0~60秒以内に該供給水に前記スケール抑制剤を添加可能なことを特徴とする水処理装置。
 (28)前記前処理ユニットの下流で、前記供給水に還元剤を添加する還元剤添加ユニットを備え、該還元剤を添加する前または添加した後0~60秒以内に前記スケール抑制剤を添加可能なことを特徴とする(27)に記載の水処理装置。
 本発明によって、海水淡水化、特に中東のような高濃度の海水において、半透膜の劣化とファウリングを防止しつつ、安定的に淡水を得ることが可能となる。また、塩分を含む河川水、地下水、湖水、廃水処理水などの原水においても、半透膜装置の汚染、半透膜モジュールの劣化とファウリングを防止しつつ、安定的かつ安価に淡水を得ることが可能となる。
図1は、本発明の水処理方法を適用可能な半透膜分離装置のプロセスフローの一例である。 図2は、本発明の水処理方法を適用可能な半透膜分離装置のプロセスフローの別の一例である。 図3は、本発明の水処理方法を前処理ユニットが生物処理機能を有する半透膜分離装置のプロセスフローの一例である。 図4は、本発明の水処理方法を前処理ユニットが生物処理機能を有し、前処理ユニットの上流にリン酸系のスケール抑制剤を添加する半透膜分離装置のプロセスフローの一例である。 図5は、本発明の水処理方法を前処理ユニットが生物処理機能を有し、前処理ユニットの上下流にリン酸系のスケール抑制剤を添加する半透膜分離装置のプロセスフローの一例である。 図6は、本発明の水処理方法で得た濃縮水を原水に還流する半透膜分離装置のプロセスフローの一例である。
 以下、本発明の望ましい実施の形態を、図面を用いて説明する。ただし、本発明の範囲がこれらに限られるものではない。
 本発明の水処理方法を適用可能な半透膜分離装置の一例を図1に示す。図1に示す半透膜分離装置は、原水が原水ライン1から原水槽2に一旦貯留された後、原水供給ポンプ3で前処理ユニット4に送液され、前処理される。前処理水は、中間水槽5、前処理水供給ポンプ6、保安フィルター7を経て、昇圧ポンプ8で昇圧された後、半透膜モジュールから構成される半透膜モジュール9で透過水10と濃縮水11とに分離させる。
 本発明では、還元剤を添加した後にスケール抑制剤を添加する場合、銅などの遷移金属と亜硫酸水素ナトリウムなどの還元剤とから触媒作用によって逐次的に酸化性物質が生成され、半透膜モジュール9を劣化させてしまうことに鑑み、銅などの遷移金属と亜硫酸水素ナトリウムなどの還元剤とが混合開始してから0~60秒以内にスケール抑制剤を添加することで、触媒作用による酸化性物質生成を抑制できる知見を得た。
 そこで、薬注タンク(スケール抑制剤用)12aから薬注ポンプ(スケール抑制剤用)13aを用いて、薬注タンク(還元剤用)14aから薬注ポンプ(還元剤用)15aを用いて、還元剤を添加する前または添加した後0~60秒以内に半透膜モジュール9の供給水にスケール抑制剤を添加する。さらに、半透膜モジュール9の供給水中の銅などの遷移金属濃度、有機物などの夾雑物濃度、還元剤濃度、塩分濃度、水温によっては、銅などの遷移金属と亜硫酸水素ナトリウムなどの還元剤とから触媒作用によって酸化性物質が生成し易くなるため、好ましくは0~10秒以内に、さらに好ましくは同時にスケール抑制剤を添加することで、より確実に触媒作用による酸化性物質生成を抑制できる。
 また、還元剤を添加する前にスケール抑制剤を添加する場合、還元剤添加ポイントの上流でスケール抑制剤を添加し、銅などの遷移金属をスケ-ル抑制剤で捕捉することで、銅などの遷移金属と亜硫酸水素ナトリウムなどの還元剤との反応を阻害し、触媒作用による酸化性物質生成を抑制することができる。
 一方、半透膜モジュール9の供給水中に次亜塩素酸などの酸化剤が含有されている場合、スケール抑制剤が次亜塩素酸などの酸化剤と逐次的に反応が進行してしまい、銅などの遷移金属を捕捉するためスケール抑制剤が失括してしまう。したがって、半透膜モジュール9の供給水に還元剤を添加する0~60秒前にスケール抑制剤を添加すると酸化剤によるスケール抑制剤の失括を低減できる。また、半透膜モジュール9の供給水中の有機物などの夾雑物濃度、次亜塩素酸などの酸化剤濃度、水温によっては、酸化剤によるスケール抑制剤の失括が進行し易くなるため、好ましくは0~10秒以内に、さらに好ましくは同時にスケール抑制剤を添加することで、酸化剤によるスケール抑制剤の失括を低減できる。
 半透膜モジュール9の供給水にスケール抑制剤と還元剤とを同時に添加するために、スケール抑制剤と還元剤との添加ポイントを可能な限り近くすることが好ましく、半透膜モジュール9の供給水に添加する前に薬注ライン中で混合しても構わないし、薬注タンク内でスケール抑制剤と還元剤とを混合しても構わない。
 スケール抑制剤添加ポイントについては、半透膜モジュール9の供給水配管径(D)と供給水流量(Q)とを考慮して決める。例えば、還元剤を添加した後t秒以内にスケール抑制剤を添加する場合、半透膜モジュール9の供給水配管内径(D)[m]、供給水流量(Q)[m/秒]を考慮し、還元剤添加ポイントの下流 L=Q×t×4/(πD )[m]以内にスケール抑制剤を添加し、還元剤添加ポイントから添加した還元剤とスケール抑制剤とを混合させる。また、スケール抑制剤添加ポイントと還元剤添加ポイントとの間で、異なる配管内径の配管が接続されている場合、各配管の内径と供給水流量とから算出されるLを積分し、スケール抑制剤添加ポイントと還元剤との添加ポイントを決める。
 還元剤は間欠もしくは常時添加されるが、半透膜モジュール9の供給水や濃縮水の塩素濃度や酸化還元電位(ORP)に応じて添加制御しても構わなく、半透膜モジュール9の供給水中の塩素濃度や酸化還元電位を塩素濃度計16aや酸化還元電位(ORP)計17aで計測し、運転管理のために設定した塩素濃度以下や酸化還元電位(ORP)以下を維持するように、薬注タンク(還元剤)14a中の還元剤を添加しても構わない。
 酸化還元電位計(もしくは、塩素濃度計)の設置位置や個数は、特に制約されるものではないが、複数個所に設置することが一般的である。好ましい例としては、酸化還元電位計17aを、薬注ポンプ15aによる還元剤添加要否を決定するために設置・計測し、その後の酸化還元電位計17b、17c、17dの少なくとも1つによって計測された酸化還元電位で還元剤添加量を調整するという方法が挙げられる。ここで、半透膜モジュール9中の半透膜がポリアミド系逆浸透膜の場合、酸化還元電位を350mV以下に維持することが好ましく、200mV以下になるように還元剤添加量を調整する方がより好ましいが、逆浸透の種類によって酸化劣化し易くなるため、運転管理に適用する酸化還元電位は逆浸透膜の種類に応じて適宜設定することが好ましい。
 また、保安フィルター7の上流に還元剤とスケール抑制剤とを添加しても構わないが、常時もしくは間欠的に系内を殺菌洗浄するために添加された酸化剤で保安フィルター7まで洗浄ができるため、図2に示すように、保安フィルター7の下流に還元剤とスケール抑制剤とを添加することが好ましい。
 スケール抑制剤は間欠もしくは常時添加されるが、スケール抑制剤添加の目的からして、水温やスケール成分濃度、イオン強度、pHなどによって、予めスケール発生リスクが高い条件では、原則として常時添加するが、スケール発生のリスクが低い条件では、スケール抑制剤を添加する必要がない。そのためには、水温、スケール成分濃度、イオン強度、pHをリアルタイムに遅滞なく計測し、また、瞬間的な酸化剤や酸化を促進する遷移金属の流入に対応し、スケール抑制剤添加の要否を決定しなければならなく、高度な運転管理技術を必要とする。そのような場合は、スケール抑制剤を常時添加する方法をとるのが、スケール抑制剤の費用はかかるものの、簡便かつ、酸化劣化およびスケール発生を確実に抑制でき好ましい。
 半透膜モジュール9の供給水に遷移金属が含有されるリスクがある場合に、本発明が特に効果的である。即ち、原水もしくは前処理水が遷移金属を0.01mg/L以上含有するような場合に本発明を適用すると効果が大きい。なお、ここで、本発明に適した、すなわち、逆浸透膜の酸化劣化に寄与しやすい遷移金属としては、Fe(II/III)、Mn(II)、Mn(III)、Mn(IV)、Cu(I/II)、Co(II/III)、Ni(II)、Cr(II/III/IV/VI)を挙げることができる。
 本発明に適用可能なスケール抑制剤としては、リン酸系の有機化合物を含むスケール抑制剤が好ましく、より好ましくは亜リン酸もしくはホスホン酸系の有機化合物が適している。特に、少なくとも、アミノトリス(メチレンホスホン酸)[英名:aminotris(methylenephosphonic acid)]、ジエチレントリアミンペンタ(メチレンホスホン酸)[英名:diethylenetriamine penta(methylene phosphonic acid)]、ヘキサエチレンジアミンテトラ(メチレンホスホン酸)[英名:Hexamethylenediamine tetra(methylene phosphonic acid)、エチレンジアミンテトラ(メチレンホスホン酸)[英名:Ethylenediamine tetra(methylene phosphonic acid)]、1-ヒドロキシエチレン-1,1,-ジホスホン酸[英名: 1-Hydroxyethylidene-1,1-diphosphonic acid]、テトラメチレンジアミンテトラ(メチレンホスホン酸)[英名: Tetramethylenediamine tetra(methylene phosphoric acid)]のうち一つ以上を含む有機酸もしくは有機酸の塩からなるとともに、その分子量が200g/モル以上10,000g/モル以下であることが好ましい。さらに好ましくは、200g/モル以上1,000g/モル以下であるとよい。あまり分子量が小さいと、半透膜を通り抜けて透過側にリークする危険性が有り、逆に大きすぎると添加量が多くなり、また、スケール抑制剤そのものがファウリングの原因になるリスクを生じるため好ましくない。
 更に、本発明に適用するスケール抑制剤には、副成分として、ポリリン酸、亜リン酸、ホスホン酸、水素化リン、ホスフィンオキシド、アスコルビン酸、カテキン、ポリフェノール、没食子酸のうち一つ以上を含むことが好ましい。
 また、スケール抑制剤が、還元機能を有するスケール抑制剤であれば、亜硫酸水素ナトリウムなどの還元剤の添加量を低減でき、触媒作用によって発生する過硫酸ラジカルや硫酸ラジカルなどの酸化性物質生成量が低減できるため好ましい。
 本水処理装置において、必要に応じて、常時もしくは間欠的に系内を殺菌洗浄するための酸化剤が薬注タンク(酸化剤用)18aから薬注ポンプ(酸化剤用)19aを用いて、原水や前処理水に添加供給した後に、還元剤を添加することも可能である。ここでいう酸化剤とは、特に制限されるものではないが、次亜塩素酸や過マンガン酸のアルカリ塩が最も代表的である。他に、亜塩素酸、塩素酸、過塩素酸、ハロゲン、クロム酸やそのアルカリ塩、二酸化塩素、過酸化水素、などを例示することができる。また、ここで用いる還元剤とは、特に制限されるものではないが、亜硫酸水素ナトリウム、亜硫酸ナトリウム、ピロ亜硫酸ナトリウム、チオ硫酸ナトリウムのいずれかを含むことが好ましい。
 また、同様に、必要に応じて、前処理に必要なpH調整剤や凝集剤などを添加することが可能である。
 pH調整剤は、硫酸もしくは水酸化ナトリウムが一般的であるが、特に制約はない。凝集剤に関しても、特に制約はなく、カチオン凝集剤、アニオン凝集剤、さらに複数種類を適宜使用することができる。ただし、万一、未凝集物が半透膜モジュールへリークした場合を考慮すると、半透膜が一般的に有する荷電と反発が大きなアニオン凝集剤が好ましい。
 カチオン系凝集剤を適用する場合は、半透膜に吸着する恐れがあるため、あらかじめ試験をして問題ないことを確認してから適用することが好ましい。カチオン系凝集剤は、正荷電を有し、負荷電物質を選択的に凝集しやすい凝集剤であれば、特に制約されるものではなく、安価かつ微粒子の凝集力に優れた無機系の凝集剤や、コストは高くなるが官能基が非常に多いために凝集力が大きい有機系高分子凝集剤などを用いることができる。無機系凝集剤の具体例としては、塩化第二鉄、(ポリ)硫酸第二鉄、硫酸バンド、(ポリ)塩化アルミニウムなどが好ましい。特に、飲料水用途に使用する場合はアルミニウムの濃度が問題になる可能性があることから、鉄系、とくに安価な塩化第二鉄の適用が好ましい。また代表的な高分子系凝集剤としては、アニリン誘導体、ポリエチレンイミン、ポリアミン、ポリアミド、カチオン変性ポリアクリルアミド等を挙げることができる。
 一方、アニオン系凝集剤は、反対に負荷電を有し、正荷電物質を選択的に凝集し易い凝集剤であれば、特に制約されるものではないが、一般には、高分子凝集剤などの有機系凝集剤が挙げられる。具体的には、天然有機系高分子であるアルギン酸、有機高分子系凝集剤としては、ポリアクリルアミドが代表的であり、効果の面からも非常に好ましいアニオン系凝集剤である。
 なお、前述した薬注は、ライン注入でも、槽(タンク)内注入でも特に制約はなく、必要に応じて攪拌機やスタティックミキサーなどを備えることが好ましい。
 本発明を適用可能な、半透膜の素材には酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材を使用することができる。また、その膜構造は、膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜や、非対称膜の緻密層の上に別の素材で形成された非常に薄い分離機能層を有する複合膜のどちらでもよい。
 しかしながら、中でも高耐圧性と高透水性、高溶質除去性能を兼ね備え、優れたポテンシャルを有する、ポリアミドを機能層とした複合膜が好ましい。特に、海水をはじめとする高濃度水溶液から淡水を得るためには浸透圧以上の圧力をかける必要があり、実質的には少なくとも5MPaの操作圧力が必要となることが多い。この圧力に対して、高い透水性と阻止性能とを維持できるためにはポリアミドを分離機能層とし、それを多孔質膜や不織布からなる支持体で保持する構造のものが適している。
 また、ポリアミド半透膜としては、多官能アミンと多官能酸ハロゲン化物との重縮合反応により得られる架橋ポリアミドの機能層を支持体に有してなる複合半透膜が適している。このような架橋ポリアミドは、酸やアルカリに対して化学的安定性が高い。架橋ポリアミドは、多官能アミンと多官能酸ハロゲン化物との界面重縮合により形成され、多官能アミンまたは多官能酸ハロゲン化物成分の少なくとも一方が3官能以上の化合物を含んでいることが好ましい。
 ここで、多官能アミンとは、一分子中に少なくとも2個の一級および/または二級アミノ基を有するアミンをいい、例えば、2個のアミノ基がオルト位やメタ位、パラ位のいずれかの位置関係でベンゼンに結合したフェニレンジアミン、キシリレンジアミン、1,3,5ートリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸などの芳香族多官能アミン、エチレンジアミン、プロピレンジアミンなどの脂肪族アミン、1,2-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ピペラジン、1,3-ビスピペリジルプロパン、4-アミノメチルピペラジンなどの脂環式多官能アミン等を挙げることができる。中でも、膜の選択分離性や透過性、耐熱性を考慮すると芳香族多官能アミンであることが好ましく、このような多官能芳香族アミンとしては、m-フェニレンジアミン、p-フェニレンジアミン、1,3,5-トリアミノベンゼンが好適に用いられる。更には、入手の容易性や取り扱いのし易さから、m-フェニレンジアミン(以下、m-PDAと記す)を用いることがより好ましい。これらの多官能アミンは、単独で用いたり、混合して用いたりしてもよい。
 多官能酸ハロゲン化物とは、一分子中に少なくとも2個のハロゲン化カルボニル基を有する酸ハロゲン化物をいう。例えば、3官能酸ハロゲン化物では、トリメシン酸クロリド、1,3,5-シクロヘキサントリカルボン酸トリクロリド、1,2,4-シクロブタントリカルボン酸トリクロリドなどを挙げることができ、2官能酸ハロゲン化物では、ビフェニルジカルボン酸ジクロリド、ビフェニレンカルボン酸ジクロリド、アゾベンゼンジカルボン酸ジクロリド、テレフタル酸クロリド、イソフタル酸クロリド、ナフタレンジカルボン酸クロリドなどの芳香族2官能酸ハロゲン化物、アジポイルクロリド、セバコイルクロリドなどの脂肪族2官能酸ハロゲン化物、シクロペンタンジカルボン酸ジクロリド、シクロヘキサンジカルボン酸ジクロリド、テトラヒドロフランジカルボン酸ジクロリドなどの脂環式2官能酸ハロゲン化物を挙げることができる。多官能アミンとの反応性を考慮すると、多官能酸ハロゲン化物は多官能酸塩化物であることが好ましく、また、膜の選択分離性、耐熱性を考慮すると、多官能芳香族酸塩化物であることが好ましい。中でも、入手の容易性や取り扱いのし易さの観点から、トリメシン酸クロリドを用いるとより好ましい。これらの多官能酸ハロゲン化物は、単独で用いたり、混合して用いたりしてもよい。
 多官能酸ハロゲン化物を分離機能層に存在させる方法は特に限定されるものではなく、たとえば、多官能アミンと多官能酸ハロゲン化物との界面重縮合により形成された分離機能層の表面に脂肪族酸ハロゲン化物溶液を接触させたり、多官能アミンと多官能芳香族酸ハロゲン化物との界面重縮合の際に脂肪族酸ハロゲン化物を共存させたりすることで、分離機能層中に共有結合によって存在せしめればよい。
 すなわち、微多孔性支持膜上にポリアミド分離機能層を形成するにあたり、そのポリアミド分離機能層を、多官能アミン水溶液と、多官能酸ハロゲン化物の有機溶媒溶液と、これとは異なる炭素数が1~4の範囲内の脂肪族酸ハロゲン化物の有機溶媒溶液とを微多孔性支持膜上で接触させ界面重縮合させればよい。その場合、本発明において用いられる脂肪族酸ハロゲン化物は、通常炭素数1~4を有するが、好ましくは炭素数2~4である。炭素数が多くなるに従って、立体障害によって脂肪族酸ハロゲン化物の反応性が低下したり、多官能酸ハロゲン化物の反応点への接近が困難になり円滑な膜形成が妨げられたりするため、膜の性能が低下する。かかる脂肪族酸ハロゲン化物としては、メタンスルホニルクロリド、アセチルクロリド、プロピオニルクロリド、ブチリルクロリド、オキサリルクロリド、マロン酸ジクロリド、コハク酸ジクロリド、マレイン酸ジクロリド、フマル酸ジクロリド、クロロスルホニルアセチルクロリド、N,N-ジメチルアミノカルボニルクロリドなどが挙げられる。これらは単独でも2種以上を同時に使用してもよいが、膜を緻密構造にでき、かつ、透水性をあまり低下させないバランスのとれたものとしてオキサリルクロリドを主成分とすることが好ましい。ただし、ポリアミドは、酸化劣化を起こし易く、次亜塩素酸をはじめとする酸化剤に対して脆弱である。そのため、本発明の適用によって酸化剤から効率的に半透膜を保護することができ、非常に効果が大きい。
 また、ポリアミド半透膜のイオン除去性能を向上させる後処理として、短時間の塩素接触処理が挙げられる。この方法は、特に海水淡水化においては、脱塩率を向上させる方法として適用されることがある。このような膜は、あらかじめ酸化剤に接触させることになるので、酸化剤に対する耐久性は、塩素接触処理を施していない膜に比べて劣るため、酸化剤接触に対してより厳密に管理することが好ましく、本発明の適用が大きな効果を発現する。
 そして、微多孔性支持膜を含む支持体は、実質的には分離性能を有さない層であり、実質的に分離性能を有する架橋ポリアミドの分離機能層に機械的強度を与えるために設けられるもので、布帛や不織布などの基材上に微多孔性支持膜を形成したものなどが用いられる。
 微多孔性支持膜の素材としては、特に限定されず、例えば、ポリスルホン、酢酸セルロース、硝酸セルロース、ポリ塩化ビニル、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン等のホモポリマーまたはコポリマーを単独あるいはブレンドして使用することができる。これらの素材の中では化学的、機械的、熱的に安定性が高く、成型が容易であることから、ポリスルホンが好ましく使用される。また、微多孔性支持膜の構造としては特に限定されず、膜の表面から裏面にわたって孔径が均一な微細な孔を有する構造であっても、片面に緻密で微細な孔を有し、その面からもう一方の面まで徐々に孔径が大きくなるような孔を有する非対称構造であってもよい。緻密な微細孔の大きさは100nm以下であることが好ましい。
 ここで、複合半透膜の性能を十分に発揮させるためには、基材の通気度は、0.1~2.0cm/cm・s、好ましくは、0.4~1.5cm/cm・sであることが好ましい。なお、通気度は、JIS L1096のフラジール法に基づいて測定される。また、使用する不織布としても特に限定されるものではないが、単糸繊維度が0.3~2.0デシテックス、特に0.1~0.6デシテックスの範囲にある少なくとも2種類のポリエステル繊維を混繊して形成された不織布を用いることが好ましい。この場合、基材を構成している繊維間に直径10μm以下の孔を形成することができ、微多孔性支持膜と不織布の接合強度を高くすることができる。さらに、10μm以下の孔が90%以上の割合で存在することが好ましい。ここでいう孔径は、JIS K3832のバブルポイント法に基づいて測定される。
 本発明を適用可能な半透膜モジュールに使用されるエレメントは、半透膜の膜形態に合わして適切な形態のエレメントとすればよい。本発明の半透膜としては、中空糸膜,管状膜,平膜のいずれでもよく、エレメントとしては、半透膜の両側に実質的な液室を有し、半透膜の一方の表面から他方の表面に液体を加圧透過させることができるものであれば、特に制限されるものではない。平膜の場合は、枠体で支持した複合半透膜を複数枚積層する構造のプレート&フレーム型や、スパイラル型と呼ばれるタイプが一般的であり、これらのエレメントを矩形や円筒状の筐体に納めて用いる。また、中空糸膜、管状膜の場合は、複数本の半透膜を筐体内に配置するとともにその端部をポッティングして液室を形成し、エレメントを構成する。そして、液体分離装置としてこのようなエレメントを単体でまたは複数個を直列あるいは並列に接続して使用する。
 これらのエレメント形状の中では、スパイラル型が最も代表的である。これは、平膜状の分離膜を供給側流路部材や透過側流路部材、さらに必要に応じて耐圧性を高めるためのフィルムと共に集水管の周囲に巻囲したものである。供給側流路部材には、ネット状材料、メッシュ状材料、溝付シート、波形シート等が使用できる。透過側流路部材には、ネット状材料、メッシュ状材料、溝付シート、波形シート等が使用できる。いずれも、分離膜と独立したネットやシートでも構わないし、接着や融着するなどして一体化したものでも差し支えない。
 集水管は、管の側面に複数の孔を有するものであり、材質は、樹脂、金属など何れでもよいが、コスト、耐久性を鑑みて、ノリル樹脂、ABS樹脂等の樹脂が通常使用される。分離膜端部を封止するための手段としては、接着法が好適に用いられる。接着剤としては、ウレタン系接着剤、エポキシ系接着剤、ホットメルト接着剤等、公知の何れの接着剤も使用することができる。
 本発明における原水を半透膜モジュールに供給する前処理としては、濁質成分,有機物の除去や殺菌などを挙げることができる。これらの処理により半透膜の目詰まりや劣化による性能低下を防ぐことができる。具体的な前処理は、原水の性状により適宜選択すればよいが、例えば、濁質成分が多く含まれる原水を処理する場合は、ポリ塩化アルミニウムなどの凝集剤を加えた後に砂ろ過を行い、さらに例えば複数本の中空糸膜を束ねた精密ろ過膜や限外ろ過膜によるろ過を行うことが好ましい。
 また、粒子状ろ材表面に形成させた生物膜によってBOD成分を除去してバイオファウリングの発生を抑制する生物処理機能を有する前処理工程(例えば、生物砂ろ過)の場合、生物膜が塩素などの酸化剤でダメージを受けないように、生物処理機能を有する前処理工程の上流に還元剤を添加し、酸化剤を失活させることが好ましい。
 本発明では、図3に示すように、薬注タンク(還元剤)14bから薬注ポンプ(還元剤)15bを用いて生物処理機能を有する前処理ユニット4の上流に還元剤を添加し、薬注タンク(スケール抑制剤)12bから薬注ポンプ(スケール抑制剤)13bを用いて還元剤を添加する前または添加した後0~60秒以内にスケール抑制剤を添加することで、生物処理機能を有する前処理工程を安定化しつつ触媒作用による酸化性物質生成を抑制することができる。
 生物処理機能を有する前処理ユニット4の上流に添加する還元剤は、間欠もしくは常時添加されるが、生物処理機能を有する前処理ユニット4の塩素濃度や酸化還元電位(ORP)に応じて添加制御しても構わなく、生物処理機能を有する前処理ユニット4の供給水中の塩素濃度や酸化還元電位を塩素濃度計16bや酸化還元電位(ORP)計17eで計測し、運転管理のために設定した塩素濃度以下や酸化還元電位(ORP)以下を維持するように、薬注タンク(還元剤)14b中の還元剤を添加しても構わない。
 酸化還元電位計(もしくは、塩素濃度計)の設置位置や個数は、特に制約されるものではないが、複数個所に設置することが一般的である。好ましい例としては、酸化還元電位計17eを、薬注ポンプ15bによる還元剤添加要否を決定するために設置・計測し、その後の酸化還元電位17fによる酸化還元電位によって還元剤添加量を調整するという方法が挙げられる。ここで、酸化剤が生物処理機能を有する前処理ユニット4中の微生物にダメージを与えないように、酸化還元電位を350mV以下に維持することが好ましく、200mV以下になるように還元剤添加量を調整する方がより好ましい。
 スケール抑制剤添加ポイントについては、還元剤添加ポイントとスケール抑制剤添加ポイントとの間で、生物処理機能を有する前処理ユニット4、例えば、生物砂ろ過器が含まれる場合、供給水流量と、生物砂ろ過器の入口側配管長と配管内径、出口側配管長と配管内径、生物砂ろ過の線速度と砂層厚さを考慮して決める。すなわち、生物砂ろ過器4の上流で添加した還元剤にt秒以内にスケール抑制剤を添加する場合、還元剤添加ポイントから生物砂ろ過器4の入口まで配管長(Lin)[m]と入口側配管内径(Din)[m]、生物砂ろ過器4の線速度(Lv)[m/秒]と砂層厚み(H)[m]、生物砂ろ過器4の出口からスケール抑制剤添加ポイントまでの配管長(Lout)[m]と出口側配管内径(Dout)[m]および供給水流量(Q)[m/秒]を考慮し、t=π/4×(Din ×Lin+Dout ×Lout)/Q+H/Lv[秒]が0~60秒以内、好ましくは0~10秒以内となるように、還元剤添加ポイントから生物砂ろ過器4の入口まで配管長(Lin)[m]と生物砂ろ過器4の出口からスケール抑制剤添加ポイントまでの配管長(Lout)[m]を決める。
 また、図4に示すように、生物処理機能を有する前処理ユニット4の上流に、薬注タンク(スケール抑制剤用)12cから薬注ポンプ(スケール抑制剤用)13cを用いてリン酸系の有機化合物を含むスケール抑制剤を添加する場合、前処理ユニット4内の生物膜中にスケール抑制剤中のリン酸が栄養塩として取り込まれる可能性があるため、スケール抑制剤による銅などの遷移金属を捕捉する効果が低減することが懸念される。そこで、生物処理機能を有する前処理ユニット4の下流に、薬注タンク(スケール抑制剤用)12cから薬注ポンプ(スケール抑制剤用)13cを用いて、スケール抑制剤を追加添加することが効果的であり、生物処理機能を有する前処理工程で処理した後0~60秒以内に、薬注タンク(スケール抑制剤用)12dから薬注ポンプ(スケール抑制剤用)13dを用いて、スケール抑制剤を添加制御することで、前処理工程を安定化しつつ触媒作用による酸化性物質生成を効率良く抑制することができる。
 さらに、図5に示すように、生物処理機能を有する前処理ユニット4の上流に還元剤とスケール抑制剤を添加したが、半透膜モジュール9に達する途中で新たな酸化性物質の生成・混入があった場合、半透膜モジュール9の酸化劣化が起こることが懸念されるため、薬注タンク(還元剤用)14dから薬注ポンプ(還元剤用)15dを用いて生物処理機能を有する前処理ユニット4の下流に還元剤を添加し、薬注タンク(スケール抑制剤用)12dから薬注ポンプ(スケール抑制剤用)13dを用いて還元剤を添加する前または添加した後0~60秒以内にスケール抑制剤を添加することで、前処理工程を安定化しつつ触媒作用による酸化性物質生成を抑制することができ、好適である。
 生物処理機能を有する前処理ユニット4の上流と下流とに添加するスケール抑制剤については、同種でも異種でも構わないが、設備面や添加制御面では同種の方が好ましい。一方、半透膜モジュール9の膜面上に栄養塩であるリンを含むリン酸塩が供給されるとバイオファウリングの発生が助長され、さらに発生したバイオファウリングによってリン酸が取り込まれるため、スケール抑制剤で銅などの遷移金属を捕捉できなくなり触媒作用によって酸化性物質生成が起こることが懸念される。したがって、薬注タンク(スケール抑制剤用)12dから薬注ポンプ(スケール抑制剤用)13dを用いて非リン酸系の有機物を含むスケール抑制剤を半透膜モジュール9の上流に添加することが好ましい。
 本発明に適用可能な非リン酸系のスケール抑制剤としては、ポリアクリル酸、スルホン化ポリスチレン、ポリアクリルアミド、ポリアリルアミンなどの合成ポリマーやカルボキシメチルセルロース、キトサン、アルギン酸などの天然高分子が、モノマーとしてはエチレンジアミン四酢酸などが使用でき、溶解性など操作のし易さ、コストの点から特にエチレンジアミン四酢酸(EDTA)が好適に用いられる。
 また、図6に示すように、透過水二段法では、二段目の半透膜モジュール9bの濃縮水の濃度が原水よりも低濃度であることが多いため、原水に還流混合して、原水濃度を下げるという方法がとられることが少なくない。ここで二段目では、回収率を高めたり、ホウ素の除去率を向上させる目的でpHを上げたりすることがあり、そのためにスケールが生成し易い場合があるので、スケール抑制剤を併用することが少なくない。この場合、薬注タンク(スケール抑制剤用)12eから薬注ポンプ(スケール抑制剤用)13eを用いて添加されたスケール抑制剤は、二段目の半透膜モジュール9bの供給水に混合され、スケール抑制剤を含有した該二段目の半透膜モジュール9bの濃縮水が、一段目の半透膜モジュール9aへ送られるため好適である。
 下記構成の水処理装置を用いて本発明の効果を確認した。
 まず、次亜塩素酸ナトリウムを1mg/L-Cl、硫酸銅を0.1mg/L-Cu常時添加しながら3.5%海水を水槽に貯留した。続いて、前処理ユニットとして、東レ(株)製の分画分子量15万Daのポリフッ化ビニリデン製中空糸UF膜で膜面積が11.5mの加圧型中空糸膜モジュール(HFU-2008)1本を用い、加圧ポンプによって貯留した海水をろ過流束3m/dで全量ろ過し、中間水槽に貯留した。前処理ユニットには、ろ過水を膜の2次側から1次側に供給する逆洗ポンプと、前処理ユニットの下部から膜の1次側に空気を供給するコンプレッサーとが備えられており、30分間連続ろ過した後、ろ過を一旦中断し、中間水槽のろ過水を供給水として逆洗流束3.3m/dの逆圧洗浄と前処理ユニットの下部から14NL/minで空気を供給する空気洗浄を同時に行う洗浄を1分間実施して、その後、前処理ユニット内の汚れを排水した後、通常のろ過に戻るサイクルを繰り返し行った。中間水槽に貯留されたろ過水は、スケール抑制剤を添加した後に還元剤を添加し、供給ポンプで保安フィルターを経由した後、昇圧ポンプで、半透膜モジュールに供給し、淡水を製造した。半透膜モジュールは、東レ(株)製逆浸透膜エレメント(TM810C)1本を用い、RO供給流量1.0m/h、透過流量0.12m/h(回収率12%)で運転した。
<実施例1>
 スケール抑制剤として、ホスホン酸系の市販スケール抑制剤1mg/Lを添加した後、10秒以内に亜硫酸水素ナトリウム2mg/Lを半透膜モジュールの上流に連続添加しながら、3ヶ月間運転継続した。この間、前処理水の酸化還元電位は、350mV以下であった。また、逆浸透膜濃縮水の酸化還元電位が350mV以下であった。
 運転後、使用した逆浸透膜エレメントの造水量が10%低下、差圧が15%増加、透過水の塩濃度は初期の1.1倍悪化した。この逆浸透膜エレメントを解体し、酸とアルカリとで洗浄した結果、造水量、透過水質共に初期性能と同等まで回復した。さらに、膜表面をESCA(Electron Spectroscopy for Chemical Analysis;X線光電子分析)を用いて分析したところ、C-Cl結合は検出されず、ハロゲン接触による膜面の酸化劣化はなかったと推察された。
<実施例2>
 スケール抑制剤として、ホスホン酸系の市販スケール抑制剤1mg/Lを添加した後、60秒以内に亜硫酸水素ナトリウム2mg/Lを連続添加した以外は、実施例1と同じ条件で運転を実施した。この間、前処理水の酸化還元電位は、350mV以下であった。また、逆浸透膜濃縮水の酸化還元電位が350mV以下であった。
 運転後、使用した逆浸透膜エレメントの造水量が10%低下、差圧が15%増加、透過水の塩濃度は初期の1.2倍悪化した。この逆浸透膜エレメントを解体し、酸とアルカリとで洗浄した結果、造水量、透過水質共に初期性能と同等まで回復した。さらに、膜表面をESCA(Electron Spectroscopy for Chemical Analysis;X線光電子分析)を用いて分析したところ、C-Cl結合は検出されず、ハロゲン接触による膜面の酸化劣化はなかったと推察された。
<実施例3>
 亜硫酸水素ナトリウム2mg/Lを添加した後、60秒以内にホスホン酸系の市販スケール抑制剤1mg/Lを連続添加した以外は、実施例1と同じ条件で運転を実施した。この間、前処理水の酸化還元電位は、350mV以下であった。また、逆浸透膜濃縮水の酸化還元電位も350mV以下であった。
 運転後、使用した逆浸透膜エレメントの造水量が10%低下、差圧が15%増加、透過水の塩濃度は初期の1.2倍悪化した。この逆浸透膜エレメントを解体し、酸とアルカリとで洗浄した結果、造水量、透過水質共に初期性能と同等まで回復した。さらに、膜表面をESCA(Electron Spectroscopy for Chemical Analysis;X線光電子分析)を用いて分析したところ、C-Cl結合は検出されず、ハロゲン接触による膜面の酸化劣化はなかったと推察された。
<実施例4>
 亜硫酸水素ナトリウム2mg/Lを添加した後、10秒以内にホスホン酸系の市販スケール抑制剤1mg/Lを連続添加した以外は、実施例1と同じ条件で運転を実施した。この間、前処理水の酸化還元電位は、350mV以下であった。また、逆浸透膜濃縮水の酸化還元電位も350mV以下であった。
 運転後、使用した逆浸透膜エレメントの造水量が10%低下、差圧が15%増加、透過水の塩濃度は初期の1.1倍悪化した。この逆浸透膜エレメントを解体し、酸とアルカリとで洗浄した結果、造水量、透過水質共に初期性能と同等まで回復した。さらに、膜表面をESCA(Electron Spectroscopy for Chemical Analysis;X線光電子分析)を用いて分析したところ、C-Cl結合は検出されず、ハロゲン接触による膜面の酸化劣化はなかったと推察された。
<実施例5>
 ろ過膜の表面に堆積したバイオフィルムおよびろ過膜の1次側(供給水側)に保持された懸濁態からなるバイオマスの生物処理機能が発現するように、ろ過流束0.5m/dで全量ろ過し、1日連続ろ過した後、ろ過を一旦中断し、前処理ユニット内の汚れを排水した後、通常のろ過に戻るサイクルを繰り返し行い、前処理ユニットの上流に、亜硫酸水素ナトリウム2mg/Lを添加した後、10秒以内にホスホン酸系の市販スケール抑制剤1mg/Lを連続添加し、さらに前処理ユニットの下流に非リン酸系のスケール抑制剤であるポリアクリル酸1mg/Lを連続添加した以外は、実施例1と同じ条件で運転実施した。この間、前処理水の酸化還元電位は、350mV以下であった。また、逆浸透膜濃縮水の酸化還元電位も350mV以下であった。
 運転後、使用した逆浸透膜エレメントの造水量が10%低下、差圧が5%増加、透過水の塩濃度は初期の1.1倍悪化した。この逆浸透膜エレメントを解体し、酸とアルカリとで洗浄した結果、造水量、透過水質共に初期性能と同等まで回復した。さらに、膜表面をESCA(Electron Spectroscopy for Chemical Analysis;X線光電子分析)を用いて分析したところ、C-Cl結合は検出されず、ハロゲン接触による膜面の酸化劣化はなかったと推察された。
<実施例6>
 前処理ユニットの下流に、非リン酸系スケール抑制剤の代替としてリン酸系のスケール抑制剤であるホスホン酸系の市販スケール抑制剤1mg/Lを連続添加した以外は、実施例5と同じ条件で運転実施した。この間、前処理水の酸化還元電位は、350mV以下であった。また、逆浸透膜濃縮水の酸化還元電位も350mV以下であった。
 運転後、使用した逆浸透膜エレメントの造水量が10%低下、差圧が20%増加、透過水の塩濃度は初期の1.1倍悪化した。この逆浸透膜エレメントを解体し、酸とアルカリとで洗浄した結果、造水量、透過水質共に初期性能と同等まで回復した。さらに、膜表面をESCA(Electron Spectroscopy for Chemical Analysis;X線光電子分析)を用いて分析したところ、C-Cl結合は検出されず、ハロゲン接触による膜面の酸化劣化はなかったと推察された。
<比較例1>
 亜硫酸水素ナトリウム2mg/Lを添加した後、30分後にホスホン酸系の市販スケール抑制剤1mg/Lを連続添加した以外は、実施例1と同じ条件で運転を実施した。この間、前処理水の酸化還元電位は、350mV以下であったが、逆浸透膜濃縮水の酸化還元電位が350mVを超えることがたびたび発生し、逆浸透膜面で酸化状態になっていることが疑われた。
 運転後、使用した逆浸透膜エレメントの造水量が10%低下、差圧が10%増加、透過水の塩濃度は初期の1.5倍悪化した。この逆浸透膜エレメントを解体し、酸とアルカリとで洗浄した結果、造水量、透過水質共に初期性能と同等まで回復した。さらに、膜表面をESCA(Electron Spectroscopy for Chemical Analysis;X線光電子分析)を用いて分析したところ、C-Cl結合が認められ、塩素系酸化性物質による膜面の酸化劣化が疑われた。
<比較例2>
 亜硫酸水素ナトリウム2mg/Lを添加した後、2分後にホスホン酸系の市販スケール抑制剤1mg/Lを連続添加した以外は、実施例1と同じ条件で運転を実施した。この間、前処理水の酸化還元電位は、350mV以下であったが、逆浸透膜濃縮水の酸化還元電位が350mVを超えることが数回発生、採水した逆浸透膜濃縮水の酸化還元電位が緩やかに上昇して350mVを超えたことから、酸化還元電位逆浸透膜面で酸化状態になっていることが疑われた。
 運転後、使用した逆浸透膜エレメントの造水量が10%低下、差圧が12%増加、透過水の塩濃度は初期の1.3倍悪化した。この逆浸透膜エレメントを解体し、酸とアルカリとで洗浄した結果、造水量、透過水質共に初期性能と同等まで回復した。さらに、膜表面をESCA(Electron Spectroscopy for Chemical Analysis;X線光電子分析)を用いて分析したところ、C-Cl結合が認められ、塩素系酸化性物質による膜面の酸化劣化が疑われた。
<比較例3>
 スケール抑制剤として、ホスホン酸系の市販スケール抑制剤1mg/Lを添加した後、30分後に亜硫酸水素ナトリウム2mg/Lを連続添加した以外は、実施例1と同じ条件で運転を実施した。この間、前処理水の酸化還元電位は、350mV以下であったが、逆浸透膜濃縮水の酸化還元電位が350mVを超えることが数回発生、採水した逆浸透膜濃縮水の酸化還元電位が緩やかに上昇して350mVを超えたことから、酸化還元電位逆浸透膜面で酸化状態になっていることが疑われた。
 運転後、使用した逆浸透膜エレメントの造水量が10%低下、差圧が12%増加、透過水の塩濃度は初期の1.3倍悪化した。この逆浸透膜エレメントを解体し、酸とアルカリとで洗浄した結果、造水量、透過水質共に初期性能と同等まで回復した。さらに、膜表面をESCA(Electron Spectroscopy for Chemical Analysis;X線光電子分析)を用いて分析したところ、C-Cl結合が認められ、塩素系酸化性物質による膜面の酸化劣化が疑われた。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2016年4月8日出願の日本特許出願(特願2016-077855)および2016年8月29日出願の日本特許出願(特願2016-166695)に基づくものであり、その内容はここに参照として取り込まれる。
1:原水ライン
2:原水槽
3:原水供給ポンプ
4:前処理ユニット
5:中間水槽
6:前処理水供給ポンプ
7:保安フィルター
8:昇圧ポンプ
9、9a、9b:半透膜モジュール
10:透過水
11:濃縮水
12a、12b、12c、12d、12e:薬注タンク(スケール抑制剤用)
13a、13b、13c、13d、13e:薬注ポンプ(スケール抑制剤用)
14a、14b、14c、14d、14e:薬注タンク(還元剤用)
15a、15b、15c、15d、15e:薬注ポンプ(還元剤用)
16a、16b:塩素計
17a、17b、17c、17d、17e、17f:酸化還元電位(ORP)計
18a:薬注タンク(酸化剤用)
19a:薬注ポンプ(酸化剤用)

Claims (28)

  1.  原水もしくは前記原水を前処理工程により前処理した前処理水を、供給水として昇圧ポンプによって半透膜モジュールに加圧供給し、該供給水を濃縮水と透過水とに分離する水処理方法において、該供給水に還元剤を添加する前または添加した後0~60秒以内に該供給水にスケール抑制剤を添加することを特徴とする水処理方法。
  2.  前記供給水に還元剤を添加する前または添加した後0~10秒以内に該供給水に前記スケール抑制剤を添加することを特徴とする請求項1に記載の水処理方法。
  3.  前記供給水が、遷移金属を0.001mg/L以上含有する供給水であることを特徴とする請求項1または2に記載の水処理方法。
  4.  前記遷移金属が、Fe(II/III)、Mn(II)、Mn(III)、Mn(IV)、Cu(I/II)、Co(II/III)、Ni(II)、Cr(II/III/IV/VI)の少なくとも一つからなる遷移金属であることを特徴とする請求項3に記載の水処理方法。
  5.  前記スケール抑制剤が、還元機能を有するスケール抑制剤であることを特徴とする請求項1~4のいずれかに記載の水処理方法。
  6.  前記スケール抑制剤が、リン酸系の有機化合物を含むスケール抑制剤であることを特徴とする請求項1~5のいずれかに記載の水処理方法。
  7.  前記スケール抑制剤が、少なくとも、アミノトリス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、ヘキサエチレンジアミンテトラ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、1-ヒドロキシエチレン-1,1,-ジホスホン酸、テトラメチレンジアミンテトラ(メチレンホスホン酸)のうち一つ以上を含む有機酸もしくは有機酸の塩であるとともに、分子量が200g/モル以上10000g/モル以下である成分を含むスケール抑制剤であることを特徴とする請求項6に記載の水処理方法。
  8.  前記スケール抑制剤が、少なくとも、ポリリン酸、亜リン酸、ホスホン酸、水素化リン、ホスフィンオキシド、アスコルビン酸、カテキン、ポリフェノール、没食子酸のうち一つ以上を副成分として含むスケール抑制剤であることを特徴とする請求項6または7に記載の水処理方法。
  9.  前記供給水が、酸化剤を添加した後に、前記還元剤を添加する供給水であることを特徴とする請求項1~8のいずれかに記載の水処理方法。
  10.  前記供給水に前記還元剤を添加する0~60秒前に該供給水に前記スケール抑制剤を添加することを特徴とする請求項1~9のいずれかに記載の水処理方法。
  11.  前記供給水に前記還元剤を添加する0~10秒前に該供給水に前記スケール抑制剤を添加することを特徴とする請求項1~10のいずれかに記載の水処理方法。
  12.  前記供給水に前記還元剤と前記スケール抑制剤とを同時添加することを特徴とする請求項1~11のいずれかに記載の水処理方法。
  13.  前記還元剤が亜硫酸水素ナトリウム、亜硫酸ナトリウム、ピロ亜硫酸ナトリウム、チオ硫酸ナトリウムのいずれかを含む還元剤であることを特徴とする請求項1~12のいずれかに記載の水処理方法。
  14.  前記前処理工程として生物処理機能を有することを特徴とする請求項1~13のいずれかに記載の水処理方法。
  15.  原水を前処理工程により前処理した前処理水を、供給水として昇圧ポンプによって半透膜モジュールに加圧供給し、該供給水を濃縮水と透過水とに分離する水処理方法において、前記前処理工程の上流で、前記原水に追加の還元剤を添加する前または添加した後0~60秒以内に、さらに追加のスケール抑制剤としてリン酸系のスケール抑制剤を添加し、前記原水を前記前処理工程で処理した後0~60秒以内に、前記スケール抑制剤を添加することを特徴とする水処理方法。
  16.  前記供給水に前記追加の還元剤と前記追加のスケール抑制剤とを同時に添加することを特徴とする請求項15に記載の水処理方法。
  17.  前記前処理工程の下流で前記供給水に前記還元剤を添加し、前記還元剤を添加する前または添加した後0~60秒以内に前記スケール抑制剤を添加することを特徴とする請求項15または16に記載の水処理方法。
  18.  前記供給水に前記還元剤と前記スケール抑制剤とを同時に添加することを特徴とする請求項17に記載の水処理方法。
  19.  前記スケール抑制剤と前記追加のスケール抑制剤とが同種のスケール抑制剤であることを特徴とする請求項15~18のいずれかに記載の水処理方法。
  20.  前記スケール抑制剤が非リン酸系の有機化合物を含むスケール抑制剤であることを特徴とする請求項1~19のいずれかに記載の水処理方法。
  21.  前記半透膜モジュールが、ポリアミドを主成分とする半透膜を含むことを特徴とする請求項1~20のいずれかに記載の水処理方法。
  22.  前記半透膜が、製造時に塩素処理されている半透膜であることを特徴とする請求項21に記載の水処理方法。
  23.  別のスケール抑制剤が添加された、他の半透膜モジュールの濃縮水を混合することによって、前記供給水に前記スケール抑制剤を添加することを特徴とする請求項1~22のいずれかに記載の水処理方法。
  24.  原水もしくはその前処理水を供給水として加圧する昇圧ポンプと、昇圧された該供給水を濃縮水と透過水とに分離する半透膜モジュールと、該供給水に還元剤を添加する還元剤添加ユニットと、該供給水にスケール抑制剤を添加するスケール抑制剤添加ユニットを備え、該供給水に還元剤を添加する前または添加した後0~60秒以内に該供給水にスケール抑制剤を添加可能なことを特徴とする水処理装置。
  25.  還元剤添加ユニットの上流に、酸化剤を添加する酸化剤添加ユニットを備えることを特徴とする請求項24に記載の水処理装置。
  26.  還元剤添加ユニットの上流または下流に、生物処理機能を有する前処理ユニットを備えることを特徴とする請求項24または25に記載の水処理装置。
  27.  原水を前処理ユニットにより前処理した前処理水を、供給水として昇圧ポンプによって半透膜モジュールに加圧供給し、該供給水を濃縮水と透過水とに分離する水処理装置において、前記原水に追加の還元剤を添加する追加の還元剤添加ユニットと、該原水に前記追加の還元剤を添加する前または添加した後0~60秒以内に前記前処理ユニットの上流で、該原水に追加のスケール抑制剤としてリン酸系のスケール抑制剤を添加する追加のスケール抑制剤添加ユニットと、前記前処理ユニットの下流で、該供給水にスケール抑制剤を添加するスケール抑制剤添加ユニットとを備え、該供給水に前記前処理ユニットで処理した後0~60秒以内に該供給水に前記スケール抑制剤を添加可能なことを特徴とする水処理装置。
  28.  前記前処理ユニットの下流で、前記供給水に還元剤を添加する還元剤添加ユニットを備え、該還元剤を添加する前または添加した後0~60秒以内に前記スケール抑制剤を添加可能なことを特徴とする請求項27に記載の水処理装置。
PCT/JP2017/013212 2016-04-08 2017-03-30 水処理方法および水処理装置 WO2017175657A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES17779036T ES2881762T3 (es) 2016-04-08 2017-03-30 Método de tratamiento de agua
JP2018510565A JP6881435B2 (ja) 2016-04-08 2017-03-30 水処理方法および水処理装置
EP17779036.7A EP3441368B1 (en) 2016-04-08 2017-03-30 Water treatment method
IL262150A IL262150B (en) 2016-04-08 2017-03-30 Water treatment method and water treatment facility
SG11201808847QA SG11201808847QA (en) 2016-04-08 2017-03-30 Water treatment method and water treatment device
AU2017246762A AU2017246762B2 (en) 2016-04-08 2017-03-30 Water treatment method and water treatment device
SA518400181A SA518400181B1 (ar) 2016-04-08 2018-10-06 طريقة لمعالجة المياه

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-077855 2016-04-08
JP2016077855 2016-04-08
JP2016-166695 2016-08-29
JP2016166695 2016-08-29

Publications (1)

Publication Number Publication Date
WO2017175657A1 true WO2017175657A1 (ja) 2017-10-12

Family

ID=60001318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013212 WO2017175657A1 (ja) 2016-04-08 2017-03-30 水処理方法および水処理装置

Country Status (8)

Country Link
EP (1) EP3441368B1 (ja)
JP (1) JP6881435B2 (ja)
AU (1) AU2017246762B2 (ja)
ES (1) ES2881762T3 (ja)
IL (1) IL262150B (ja)
SA (1) SA518400181B1 (ja)
SG (2) SG11201808847QA (ja)
WO (1) WO2017175657A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188138A1 (ja) * 2018-03-27 2019-10-03 東レ株式会社 水処理方法および水処理装置
JP2020081939A (ja) * 2018-11-20 2020-06-04 三浦工業株式会社 水処理システム
JP2020195937A (ja) * 2019-05-31 2020-12-10 東レ株式会社 淡水の製造方法
CN113272045A (zh) * 2019-01-28 2021-08-17 栗田工业株式会社 药液注入控制方法
JP7347127B2 (ja) 2019-10-31 2023-09-20 東レ株式会社 淡水の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000300966A (ja) * 1999-02-17 2000-10-31 Toray Ind Inc 膜の殺菌方法および膜分離装置
JP2001149950A (ja) * 1999-12-01 2001-06-05 Kurita Water Ind Ltd 水処理方法及び水処理装置
WO2012093573A1 (ja) * 2011-01-05 2012-07-12 栗田工業株式会社 有機物含有水の処理方法及び処理装置
JP2013052333A (ja) * 2011-09-02 2013-03-21 Mitsubishi Heavy Ind Ltd 逆浸透処理方法および逆浸透処理装置
JP2013180277A (ja) * 2012-03-05 2013-09-12 Kurita Water Ind Ltd 逆浸透膜処理用スケール防止剤および逆浸透膜処理におけるスケール生成防止方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071252A (ja) * 2001-09-06 2003-03-11 Nitto Denko Corp 多段式逆浸透処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000300966A (ja) * 1999-02-17 2000-10-31 Toray Ind Inc 膜の殺菌方法および膜分離装置
JP2001149950A (ja) * 1999-12-01 2001-06-05 Kurita Water Ind Ltd 水処理方法及び水処理装置
WO2012093573A1 (ja) * 2011-01-05 2012-07-12 栗田工業株式会社 有機物含有水の処理方法及び処理装置
JP2013052333A (ja) * 2011-09-02 2013-03-21 Mitsubishi Heavy Ind Ltd 逆浸透処理方法および逆浸透処理装置
JP2013180277A (ja) * 2012-03-05 2013-09-12 Kurita Water Ind Ltd 逆浸透膜処理用スケール防止剤および逆浸透膜処理におけるスケール生成防止方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3441368A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188138A1 (ja) * 2018-03-27 2019-10-03 東レ株式会社 水処理方法および水処理装置
JPWO2019188138A1 (ja) * 2018-03-27 2021-03-18 東レ株式会社 水処理方法および水処理装置
JP7115539B2 (ja) 2018-03-27 2022-08-09 東レ株式会社 水処理方法
JP2020081939A (ja) * 2018-11-20 2020-06-04 三浦工業株式会社 水処理システム
JP7180310B2 (ja) 2018-11-20 2022-11-30 三浦工業株式会社 水処理システム
CN113272045A (zh) * 2019-01-28 2021-08-17 栗田工业株式会社 药液注入控制方法
EP3919162A4 (en) * 2019-01-28 2022-09-14 Kurita Water Industries Ltd. METHOD OF CONTROLLING A CHEMICAL INFUSION
CN113272045B (zh) * 2019-01-28 2024-04-05 栗田工业株式会社 药液注入控制方法
JP2020195937A (ja) * 2019-05-31 2020-12-10 東レ株式会社 淡水の製造方法
JP7347127B2 (ja) 2019-10-31 2023-09-20 東レ株式会社 淡水の製造方法

Also Published As

Publication number Publication date
EP3441368B1 (en) 2021-07-07
IL262150A (en) 2018-11-29
AU2017246762A1 (en) 2018-10-25
SG10202009606PA (en) 2020-10-29
JPWO2017175657A1 (ja) 2019-02-14
SG11201808847QA (en) 2018-11-29
SA518400181B1 (ar) 2022-04-17
JP6881435B2 (ja) 2021-06-02
ES2881762T3 (es) 2021-11-30
EP3441368A4 (en) 2019-10-16
IL262150B (en) 2022-08-01
AU2017246762B2 (en) 2022-10-20
EP3441368A1 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
JP6657958B2 (ja) 造水方法
JP6881435B2 (ja) 水処理方法および水処理装置
Francis et al. A comprehensive review of forward osmosis and niche applications
JP5286785B2 (ja) 淡水製造方法
Singh et al. Introduction to membrane processes for water treatment
JP2006187719A (ja) 淡水製造装置の運転方法および淡水製造装置
JP2007152265A (ja) 淡水製造装置の運転方法および淡水製造装置
JP6194887B2 (ja) 淡水製造方法
WO2012144384A1 (ja) 放射性ハロゲン含有水の浄化方法、透過水の製造方法および放射性ハロゲン含有水の浄化装置
WO2012098969A1 (ja) 膜モジュールの洗浄方法、造水方法および造水装置
JP2016128142A (ja) 半透膜の阻止率向上方法
JP2009072766A (ja) 水処理方法
JP7115539B2 (ja) 水処理方法
JP2005224651A (ja) 淡水製造方法および淡水製造装置
JP2008086849A (ja) 水処理方法および水処理装置
JP2006075667A (ja) 半透膜装置の運転方法および装置
JP2020049418A (ja) 水処理供給水の調製方法及び造水方法
JP4470472B2 (ja) 複合半透膜及びそれを用いた水の製造方法
JP2005034723A (ja) 逆浸透膜の改質方法及び再生分離膜
US20100116731A1 (en) Reverse Osmosis Water Purifier Having Simple Filter Configuration
Misra et al. Introduction to Membrane Distillation and Its Application in Emerging Contaminants Removal
Duranceau Charting the future course for reverse osmosis and nanofiltraton membranes–opportunities and challenges

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510565

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017246762

Country of ref document: AU

Date of ref document: 20170330

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017779036

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017779036

Country of ref document: EP

Effective date: 20181108

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779036

Country of ref document: EP

Kind code of ref document: A1